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Automated Registration for Dual-View X-Ray
Mammography Using Convolutional
Neural Networks

William C. Walton

Abstract—Objective: Automated registration algorithms
for a pair of 2D X-ray mammographic images taken from two
standard imaging angles, namely, the craniocaudal (CC)
and the mediolateral oblique (MLO) views, are developed.
Methods: A fully convolutional neural network, a type
of convolutional neural network (CNN), is employed to
generate a pixel-level deformation field, which provides a
mapping between masses in the two views. Novel distance-
based regularization is employed, which contributes
significantly to the performance. Results: The developed
techniques are tested using real 2D mammographic
images, slices from real 3D mammographic images, and
synthetic mammographic images. Architectural variations
of the neural network are investigated and the performance
is characterized from various aspects including image
resolution, breast density, lesion size, lesion subtlety,
and lesion Breast Imaging-Reporting and Data System
(BI-RADS) category. Our network outperformed the state-of-
the-art CNN-based and non-CNN-based registration tech-
niques, and showed robust performance across various
tissue/lesion characteristics. Conclusion: The proposed
methods provide a useful automated tool for co-locating
lesions between the CC and MLO views even in challenging
cases. Significance: Our methods can aid clinicians to
establish lesion correspondence quickly and accurately in
the dual-view X-ray mammography, improving diagnostic
capability.

Index Terms—Convolutional neural network, image reg-
istration, lesion correspondence, mammography, X-ray.

|. INTRODUCTION

REAST cancer is one of the leading causes of death for
B women worldwide, with half a million lives lost annually,
including more than 40,000 in the United States alone [1].
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Early detection has been shown to be critical for less invasive
treatment of breast cancer and for saving lives [2]. Hence, tools
and techniques that can aid clinicians in early detection of breast
cancer are invaluable.

X-ray-based mammography is the main imaging modality
used for annual breast cancer screening in asymptomatic
women. It is also used for more specialized diagnostic
exams, which are performed when suspicious symptoms are
present [3]. Conventional mammography involves 2D full-field
digital mammography (FFDM) or, in recent years, digital breast
tomosynthesis (DBT). DBT involves obtaining several low dose
mammographic images across an arc. Reconstruction generates
multiple contiguous 1 mm thick slices through the breast, and
synthesized 2D images of the entire breast [4].

Mammographic imaging typically involves imaging the
breast from at least two different angles. The most frequently
used views are the craniocaudal (CC) and the mediolateral
oblique (MLO) views. Each view involves physically position-
ing and compressing the breast between the detector and a
compression paddle closer to the X-ray source. The CC view
is obtained at an angle of 0 degrees from the top to the bottom
of the compressed breast and the MLO view is obtained at an
angle in the range of 45 to 50 degrees from medial, near the
center of the chest, toward the axilla [5]. The breast lesions
may be visible in both views or only in one view depending
on the lesion location in the breast and the density of the breast
tissue. When the breast tissue is very dense, e.g., when it is made
up of mostly fibrous and glandular components, it can obscure
lesions, as the background breast tissue will have similar X-ray
attenuation compared to the lesion. This is in contrast to fatty
breast tissue, where lesions have much greater density compared
to the surrounding tissue, making the lesions readily visible.

Currently, radiologists screen for breast cancer by analyzing
each image for abnormalities, and then searching for the corre-
spondences in the other views [6]. Seeing a lesion in both views
is an important feature signaling that the lesion is more likely to
be real rather than a false alarm. Additionally, it supports better
characterization and localization of the lesion, which is critical.
In comparing the two views, radiologists consider certain geo-
metrical features such as the distance between the lesion and the
nipple, the clock position of the lesion with respect to the nipple,
and the size, shape, and textural composition of the lesion. The
position of the patient during the image acquisition procedure
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is also factored in. In essence, finding correspondences between
lesions is predominantly a manual process for the radiologists.

Therefore, automated registration algorithms can signifi-
cantly enhance the workflow of the radiologists and potentially
contribute to improving diagnostic accuracy. Studies show that a
significant portion of missed lesions are detected retrospectively,
suggesting that an automated algorithm to help locate the lesions
in both views could have considerably increased the detectability
in earlier exams [7]. This, in turn, could help with determining
malignancy, or whether to employ other imaging modalities or
a biopsy. Registration will also be instrumental for guiding tar-
geted ultrasound (US) biopsies and surgical procedures, which
require accurate lesion positions. Furthermore, computer-aided
diagnosis (CAD) algorithms that involve joint processing (or
fusion) of multiple breast images can benefit from an accurate
registration module [8], [9].

However, the registration of mammographic images is partic-
ularly challenging due to the non-rigid and heterogeneous nature
of the breast tissue and the distortions that occur during image
acquisition [7]. Conventional registration techniques often fail
to account for the complexities involved in how the anatomical
features in the compressed breast are projected onto 2D X-ray
images [10]. While medical image registration techniques often
aim at obtaining one-to-one correspondences, mammographic
images involve one-to-many mappings, as a pixel in one mam-
mogram image may correspond to a locus of points in the
other [11]. Validation of the registration results can be chal-
lenging as it requires the ground truth provided by the experts.
Radiologists generally record the truth only for candidate lesion
locations, and not for other tissue areas.

Our goal is to develop deep learning-based registration al-
gorithms for two-view X-ray mammography to help clinicians
establish lesion correspondence quickly and accurately. Recent
advances in machine learning techniques using deep neural
networks, in particular, convolutional neural networks (CNNs),
achieved remarkable improvement in computer vision tasks.
However, challenges still remain in achieving the desired level of
accuracy and the best approach has not yet been identified [12]-
[14]. In fact, most CNN-based image registration methods have
focused on the imaging modalities that capture slices from the
same viewing angle, such as the Magnetic Resonance Imaging
(MRI) or Computed Tomography (CT) scans [15]-[20]. Very
limited research on CNN-based mammographic image registra-
tion techniques has been reported in the literature, especially
without the use of other imaging modalities [21]-[24].

Our approach is to employ a fully convolutional neural net-
work (FCN) [25], which processes a pair of images from the CC
and MLO views, to generate a deformation field that provides a
mapping between the two views. A key idea is to incorporate the
associated lesion location masks into the training loss function,
in the form of a regularizer that captures the distance between
the registered lesions. It turns out that our distance-based regu-
larization significantly enhances the network’s ability to match
the corresponding lesion tissue between the two views. In the
operational stage, given a CC and MLO pair, a deformation field
is inferred without lesion masks, providing a mapping between
masses in the two views.

In our conference precursor [21], we used 2D-projected im-
ages of 3D handwritten digit shapes to perform preliminary tests
of the CNN-based registration algorithms. In the tests involving
real X-ray images, the lesion distance-based regularization was
not employed. In this paper, careful performance analysis is
carried out in terms of different regularizers, the choice of tissue
texture similarity measures, and architectural variations of the
CNNs. Furthermore, the methods are tested on different X-ray
image types, including conventional 2D X-ray mammography,
slices from DBT data (3D mammography), and in silico (i.e.,
computer-modeled) phantom-based synthetic mammographic
images. Performance is characterized for different image res-
olutions and breast densities, as well as with respect to the
lesion attributes such as the size, level of subtlety, and Breast
Imaging-Reporting and Data System (BI-RADS) category [26].

In our experiments with 2D X-ray imagery, our techniques
achieved registration success rates of up to 90.4%. Lesion cor-
respondence between the CC and MLO views was established
reliably even for dense tissue cases. Furthermore, when the net-
work was trained on 2D X-ray imagery and then tested on slices
from DBT X-ray imagery, up to 96.7% registration success rates
were achieved. Our network outperformed the state-of-the-art
CNN-based and non-CNN-based deformable image registration
techniques. Experiments with synthetic mammogram images
also revealed that they can improve the performance when used
to augment real training images.

The rest of this paper is organized as follows. In Section II,
a brief review of the related works is given. The registration
problem is formulated in Section I1I, and our proposed methods
are put forth in Section IV. The experimental results are pre-
sented in Section V. Some discussions are given in Section VI
and conclusions are provided in Section VII.

Il. RELATED WORKS

Medical image registration has been an area of active re-
search [14], [27]-[30]. Prior to deep learning, diffeomorphic
non-rigid registration techniques achieved state-of-the-art per-
formance [31]-[33]. Recently, CNN-based approaches gained
much attention [15]-[20], [34]-[36]. They typically aim to learn
a deformation field that provides a mapping between two or
more images, in self-supervised [15], or semi-supervised man-
ners [16], [36]. Spline-based interpolation was employedin [17],
[19], [34], whereas the deformation vectors of individual pixels
were estimated directly in [15], [16], [37]. Some ingested full
image frames [36], while others operated on patches [15], [18],
[20]. Despite the significant developments, however, existing
CNN-based registration techniques have mostly focused on im-
ages taken from the same viewing angle, and not many addressed
the registration of breast tissue.

Breast image registration poses unique challenges due to the
inhomogeneous, anisotropic, soft-tissue, and non-rigid nature
of breast tissue [7], which, combined with the physical com-
pression and patient position alteration, results in significant
diversity in the tissue appearances and displacement patterns.
Thus, it is often advocated to incorporate other data modalities
such as the MRI, DBT, and US [38]-[40], as well as various
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modeling assumptions [41]. When it comes to the registration
of the CC and MLO views using only X-ray images, early
non-CNN efforts focused on finding correspondence between
lesions in different views [42]-[44].

Most CNN-based techniques that process multiple mam-
mographic views have been geared towards malignancy
classification [45]. Two CNNs were employed to process a
full mammographic X-ray image as well as their patches for
malignancy detection [46]. A Siamese CNN architecture was
employed for classifying matching versus non-matching pairs
of lesions between the CC and MLO views [9]. The symmetry
information in the CC and MLO views of both left and right
breasts was exploited for cancer screening [47]. While these
works highlight the benefit of processing two or more mammo-
graphic views, they do not specifically tackle the problem of
multi-view tissue/lesion registration.

To our knowledge, only limited research has been done on
CNN-based techniques for registering the CC and MLO views. A
U-Net was employed in [22] to register mammographic images
from the same view (e.g., CC to CC or MLO to MLO). In [23],
an affine transformation was learned for registration of CC
and MLO views in a semi-supervised manner using a spatial
transformer module [48]. Densely connected CNN blocks with
shared weights were employed to obtain discriminative features
and find correspondence between detected masses in CC and
MLO views in [24].

Some recent CNN-based medical image registration tech-
niques share important characteristics with our proposed CC-
to-MLO registration method, such as the use of FCNs with skip
connections and the incorporation of additional ground truth
mask images for training. In [15], voxel-wise registration of
MRI slices of brain tissue was proposed using a FCN with a skip
architecture. The method did not use other ground truth labels,
but took a self-supervised approach based on an intensity-based
similarity measure with total variation regularization. The reg-
istration of cardiac features in MR images was tackled using a
U-Net architecture in [35]. A diffeomorphic parameterization
of the deformation field was adopted and the ground truth
segmented shapes of anatomical features were employed to aid
training. The algorithm in [16] also involved a U-Net archi-
tecture, which, in addition to the input image pair, optionally
incorporated a pair of binary segmentation masks of anatomical
features into the regularization term of the training cost. The
authors of [36] similarly utilized binary anatomical label images
in addition to input image pairs in a U-Net-like architecture to
perform multi-modal image registration of MR and US images of
the prostate region. They adopted a multi-scale Dice similarity
measure, based on Gaussian-blurred versions of the fixed and
warped label images for training but did not use intensity-based
similarity measures.

I1l. PROBLEM FORMULATION

A moving (source) image I,,,(x) and a fixed (target) image
I¢(x) are defined with 2D pixel coordinates = € @ C R2. Our
goal is to learn a function Dg (I, I,,,) = d(x), represented by a
CNN with parameter vector 8, which yields a deformation field

d : @ — ) that warps the moving image to match the fixed one.
That is, it is desired that (1,,, o d)(x) is similar to I () in terms
of a suitable similarity measure .S. In order to govern the nature
of the resulting deformation field based on prior knowledge, a
regularizer R(d) is also incorporated. The loss function is then
defined as

L(If7fm) = —S(If,[m o Dg([f, Im)) + )»R(Dg([f,]m))
M

where A > 0 is a weight to balance the similarity and the regu-
larization terms. The CNN training amounts to solving

min Ep{L(Is.In)} 2)

where Ep{-} represents taking an average with respect to the
data set D of the fixed and moving image pairs (I, I,y,).

Although (1) is formulated to obtain a pixel-wise map-
ping d(x) for each image pair, our goal is not so much to
achieve precise pixel-level registration, as to establish a useful
correspondence between regions of interest, such as lesions.!
That is, our objective is that when a clinician selects a can-
didate lesion location « in one view, the trained network can
present a likely location d(x) of the lesion in the other view
accurately.

A. Similarity Measure

Two alternative similarity measures are considered in our
work. The similarity measure based on the sum absolute error
(SAE) is the negative of the average difference in the individual
pixel intensities, defined as

Ssan(li, 1) i= —ﬁ S @) - L) 3

xel)

where || is the number of pixels in the images.

The second one is normalized cross-correlation (NCC) which
is also known as the Pearson correlation coefficient. Upon defin-
ing the mean intensity of image T as T := |Q|~' >, I (), the
NCC is defined as

xeQ)

> (Ii(x)— 1) (I2(x) - I2)

xe)

T (h(e)-Top] : T (@) Toy] :

xe) xe
4)

Sncc(li, 1) =

which yields a value between —1 and 1.

The SAE measure is suitable for comparing images that have
similar intensity distributions, and is more robust to large inten-
sity differences due to outliers than the sum of squared errors,
since the latter places far more emphasis on the pixels with
large absolute residuals [49]. The NCC metric is more suitable
when the intensity and contrast distributions vary significantly
over images as the denominator in (4) effectively normalizes the
measure [50].

n this work, we focus on masses, corresponding to one of the two main
categories of breast lesions. Masses and calcifications are commonly treated
separately in mammographic image analysis research.
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B. Regularization

1) Total Variation Regularization: Regularization allows
for the incorporation of prior knowledge on the learned de-
formation fields and also prevents overfitting when the num-
ber of parameters in @ is large, which is often the case with
deep CNNs. Non-rigid deformation field-based registration al-
gorithms commonly employ a form of smoothness-promoting
regularization on the deformation field. For instance, Tikhonov
regularization can be employed to penalize the /5-norm of the
Jacobian of the deformation field, enforcing smoothness [51].
When sharp transitions are expected, Tikhonov regularization
may not be suitable. In our context, the anisotropic total variation
regularization (TVR) is considered, which is the ¢;-norm of the
deformation field Jacobian Vd(x), given by

Rrvr(d) = [[Vd(z)]h )

where || - ||1 is the sum of the absolute values of all entries in the
Jacobian matrix. It can handle large, non-smooth displacements,
which can occur in mapping the anatomical features between the
CC and the MLO images [52].

2) Incorporating Ground Truth Lesion Masks: The sec-
ond regularization we considered utilizes the ground truth le-
sion locations in the CC and MLO views, which are provided
through the lesion masks available with the CC/MLO image
pairs. Lesion masks have been exploited in CNN-based regis-
tration algorithms by capturing the amount of overlap of known
anatomical features after registration [16], [36]. In the dual-view
X-ray mammography, however, the amount of overlap may not
provide a strong enough supervision signal due to the severe
distortions in the mammographic views. (Indeed, there may be
no overlap at all.) Instead, we propose a new regularization
function, termed distance-based regularization (DBR), which
penalizes the (normalized) distance between the lesion locations
after registration.

Let A;") : 2 — {1,0} be the mask image that has the pixel
intensity of 1 within the n-th lesion, and 0 outside, in the fixed
view I¢. In the paired moving image I,,, AP Q- {1,0}
represents the corresponding lesion mask. Define the centroid
w(A) € R? of a mask A as

o Z{w:/\(w):l} T
SR Y

Then, the DBR function is defined as

(6)

N (n) (n)
") (n 1 [(AF7) = p(Am” o d)|l1
Roon(d (A ALY = 5 30— ()
n=1 ||N<Af ) = w(Am”) 1y
(7

where N is the number of lesions in the given image pair
(I fyIm ). Note that in general there can be zero, one, or more than
one annotated lesions in (/¢, I,,). The regularization function is
simply set to zero if there are no lesions annotated. For a term
inside the sum in (7), the numerator is the distance between the
centroids of the lesions in the fixed view and in the moving view
after the warping is done according to d. Hence, if the displaced
lesion pixels are close to the lesion location in the other view,

Fig. 1. Lesion distances before and after registration. The CC and the
MLO views are superimposed and the ground truth lesion masks in the
CC/MLO views, as well as the warped CC lesion (marked as CC’), are
indicated.

the penalty will be low. The /;-norm-based Manhattan distance
is adopted as it is less sensitive to the outliers than e.g. the
Euclidean distance.? On the other hand, the denominator is the
distance between the lesion centroids before registration. Thus,
the regularizer penalizes more heavily the case where the ground
truth displacement is small, and more leniently when a large
displacement is expected. This provides the balance necessary
for training the network to work well in all cases. It is also
emphasized that the DBR is used only in the training, and not in
the operational testing stage.

Fig. 1 illustrates the example lesion masks in an overlapped
CC/MLO image. The lesions marked as CC and MLO are the
ground truth lesions, and the one marked with CC’ is the warped
version of the CC lesion. In this example, it can be seen that
the distance between the MLO and the CC' lesions has been
reduced by registration, but they still do not overlap. Thus, a
regularization function based on the amount of lesion overlap
will not provide any supervision signal in this case, while our
DBR function can still capture useful information.

V. PROPOSED CNN ARCHITECTURES

A CNN is often used for image classification, where the input
is animage and the output is a class label for the image. The CNN
architecture processes the input image through multiple layers
of convolution, pooling, and element-wise nonlinear operations,
to produce discriminative features. The features are then fed to
fully-connected layers to produce the label. In our work, the
CNN is adopted to generate a deformation field d(x) based on
the input images I¢(x) and I,,(x), where the inputs and the
outputs are defined over the same domain « € (). That is, the
inputs and the outputs are “images” of the same size. In FCNs,
instead of fully-connected final layers, upsampling convolution
(or up-convolution) layers are employed to yield an output that
is of the same size as the input [25], [53]. Therefore, FCNs are
natural candidates for CNN-based image registration [14]-[16].

Fig. 2 shows our CNN architecture. Similar to [25], [15], two
variants are considered. One is the serial architecture, consisting
of a single path of layers from the input to the output, which is
depicted by the solid arrows in Fig. 2. The other variant is the
skip architecture, which has additional branches for tapping the

>The modified Hausdorff distance, which computes the distance accounting
for the entire set of points, was also tested. The results are presented in App. H
in the Supplementary Material.
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The proposed CNN architecture.
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Fig. 2.

features at various depths of layers, as indicated by the dashed
arrows in Fig. 2. The number on top of each layer in Fig. 2
represents the number of the feature maps at the output of the
layer. The convolution layers also include batch normalization
and nonlinear activation using the rectified linear units (ReL.Us),
except for the final convolution layers in all paths (i.e., Conv 5,
6, and 7 layers). The kernel sizes and the strides at the individual
layers depend on the input image size. The table of kernel sizes
and strides is included in App. A in the Supplementary Material.

The input to both architectures is the pair of CC/MLO images
(which are input as two channels). The network outputis Ad(x),
which captures the relative displacement of pixel x in the
moving image. The deformation field is given as

d(x) .=z + Ad(x). ©))

During the training, only the displacements arriving at the pixels
within the image boundary are actually employed. When DBR
is used, the available lesion masks are incorporated.

A. Serial Architecture

The serial architecture contains five convolution layers, two
pooling layers, and two up-convolution layers. The final layer
results in two feature maps that correspond to the vertical and
the horizontal displacements in Ad(x). The training loss for the
serial architecture is given by

Lo([f,]m) = — S(If,[m o d) + CYRTVR(d)

+ BRppr(d; {AYY, AD}) )

where «v and /3 are nonnegative weights for balancing the regu-
larization terms.

B. Skip Architecture

The branching paths in the skip architecture capture the
higher-resolution features from the early, shallow layers, which
are combined with the lower-resolution yet larger-scale features
obtained by the deeper layers. The skip connections help with
predicting fine details in the output [25]. In our implementation,
two additional branches are taken at the outputs of the first and
the second pooling layers, which are appropriately upsampled to
match the resolution of the output of the main path. Let us denote
the deformation fields from the first and the second skip paths
as dq(x) and da(z), respectively. Define the loss function L,,

for the p-th skip path in the same way as in (9), with d replaced
by d,, where p € {1,2}. Then, the skip architecture is trained
based on the overall loss function L that averages the individual
paths’ losses using nonnegative weights {,up}gzo as

2

E(va Iny) = Z tpLp(Lg; Im).
p=0

(10)

V. EXPERIMENTS
A. Experiment Setup

1) Data Sets: Three X-ray image data sets were utilized in
our experiments. The primary data set is the Curated Breast
Imaging Subset of the Digital Database for Screening Mam-
mography (CBIS-DDSM), a publicly available set of digitized
scanned-film mammography data, curated by trained mammog-
raphers [54]. The data set includes the CC and MLO X-ray image
pairs for each breast along with corresponding binary image
masks indicating the lesion locations. Information describing
each image view, lesion type, pathology, and diagnosis is also
provided.

The second data set consists of a limited number of de-
identified DBT images with accompanying lesion location and
diagnostic information, obtained as part of a research effort in
Johns Hopkins Medicine (JHM) [IRB00185772, 12/3/2018].

The third data set involves synthetic mammogram images
generated using software tools developed through the Vir-
tual Imaging Clinical Trial for Regulatory Evaluation (VIC-
TRE) project in the United States Food and Drug Admin-
istration (FDA) [55]. In-silico X-ray images were gener-
ated from 3D phantoms, simulating physical compression
of the breast, different imaging angles, and insertion of
lesions.

Table I summarizes some details regarding the images used
in the experiments, which will be explained later.

2) Preprocessing: Prior to ingestion to the networks, the
images were preprocessed. First, the images were re-oriented
so that the chest is on the left and the nipple is on the right
side of the image frame. Then, artifacts such as the burned-
in annotations were removed using a simple histogram-based
technique that detects bright pixels in the narrow regions along
the top, bottom, and right sides of the image. Next, the breast
tissue boundary was extracted in order to generate a breast tissue
mask, which is useful for limiting processing to only the breast
tissue areas, and thus, improving the training process. The nipple
location and its distance to the chest wall were also detected
to help distinguish between multiple lesions in a breast when
such cases arise. In our experiments, however, only single-lesion
cases were used due to the limited availability of ground truth
for evaluating multiple-lesion cases. For the MLO images, an
extra step is applied to detect and mask the pectoral muscle,
which is outside the breast tissue area, to prevent the networks
from processing this area. For the training data, slight rotations
(up to £15°) were applied as a means of data augmentation
to generate extra training images. More details on the last two
steps are provided in App. B of the Supplementary Material.
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TABLE |
IMAGE SiZES AND COUNTS IN DATA SETS
Data sets Average original | Original image Number of Augmentations | Total training | Validation /
image size resolution (um) | training pairs per image pairs test pairs
CBIS-DDSM 5280 x 3131 N/A 496 8 4464 146 / -
JHM DBT slices 2457 x 1975 70 - - - -/ 60
FDA synthetic 2000 x 1500 76 2250 4 11250 103 /95

The images were resampled to the resolutions of 330 x 220,
660 x 440, and 990 x 660, for comparison of the registration
performance under different image and mini-batch sizes. The
original image sizes are shown in Table I. The pixel intensities
were also normalized to the range of [0,1].

3) Training: The networks were implemented in MATLAB.
For training, Adam optimizer was employed with an initial learn-
ing rate of 0.001 and random weight initialization [56]. Around
60 to 100 epochs were used for training, with the mini-batch
sizes ranging from 8 to 32, based in part on the available GPU
memory. For the skip architecture, the weights for the main path
and the first and second skip branches were set to p = 0.22,
w=0.13, and p = 0.65, respectively. Here again, although our
training formulation accommodates multiple lesions per image
pair [cf. (7)], we used only the images with single lesions, due to
the lack of ground truth information on lesion correspondence.
Matching multiple lesions per image pair for training is left for
future research.

4) Testing: To assess the registration performance, a metric
based on the ground truth lesion locations is defined. This is
motivated by the clinical usage of registration, where clinicians
desire to quickly establish correspondence between the candi-
date lesion locations in different views. Specifically, for a given
pair of test images, the deformation field computed by the trained
network is applied to the moving image. In particular, the pixels
in the lesion locations in the moving image are translated to
hopefully match the lesion pixels in the fixed image. A region
of interest (ROI) is defined in the fixed image as a disc centered
around the ground truth lesion, with a radius equal to 7.5% of
the height of the image. The registration is deemed successful if
any of the translated pixels fall inside the ROI. The performance
metric is the percentage of the image pairs with successful
registration. A sensitivity analysis, in terms of the ROI size
and the fraction of overlapping pixels, is provided in App. C
in the Supplementary Material. See also the related discussion
in Section VI.

In the case of the skip architecture, the union of the pixels
translated by the three deformation fields is used. The union is
preferred to the average as the centroid of the union turns out to
be usually closer to the target lesion location than the centroid
of the average. Although the union results in a somewhat larger
displacement area, it is still substantially smaller than the entire
breast tissue area, and thus is useful for the clinicians for finding
the lesion locations.

Fig. 3 illustrates the test process. Fig. 3(a) is a CC view with a
visibly distinct lesion. Fig. 3(b) is the corresponding MLO view.
In Fig. 3(c), the masks for the CC and the MLO view lesions are
superimposed, where the translated lesion pixels are depicted
in magenta. As some of (in fact, in this example, most of) the

(a) (b) (©

Fig. 3. Determining the registration success. (a) Input CC view with
a lesion. (b) Input MLO view with the corresponding lesion. (c) The
projected pixels in magenta fall inside the ROI indicated by the black
circle in the CC/MLO overlay.

magenta pixels fall inside the ROI indicated by the black circle,
the registration is counted successful.

It is noted that medical image registration algorithms are
often assessed using the mean-square error (MSE) or the Dice
metrics [7]. However, for breast image registration, there are
significant distortions and occlusions in different views due to
the non-rigid nature of the breast and the physical compression
process. Thus, direct pixel-wise comparison may be too strict to
reflect the registration performance meaningfully. Our perfor-
mance metric takes advantage of the ground truth lesion masks
provided with curated mammography data sets, and falls in with
the fact that even rough lesion location correspondence in an
automated fashion can be very helpful in clinical settings. More
discussion on the metric can be found in Section VI.

B. CBIS-DDSM Data Set

Several sets of experiments were conducted with the CBIS-
DDSM data. We maintained the CBIS-DDSM’s established
division of training and test data. For training, 496 CC and MLO
image pairs containing single masses were selected, which we
increased to 4,464 pairs using augmentation, as noted in Table I.
Similarly, 146 pairs of test images, with single masses, were used
from the designated test set. As the breast tissue and lesions occur
in a wide variety of sizes, shapes, and characteristics, instead
of further sub-dividing the data set into separate training and
validation sets, the test data set was used also for determining the
best model parameters and the optimal validation performances
are reported. It is later verified that the model does not overfit
by testing the trained networks on a completely different data
set in Section V-C.

1) Parameter Tuning: Parameters v and (3 in (9) were tuned
based on the registration success rate. Since DBR was found
to have a greater influence on the performance than TVR, the
DBR parameter S was first tuned without TVR (that is, with
o = 0). Then, o was optimized in search of further performance
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Fig. 4. Registration success rates versus 3. Each box indicates the

range of 25 to 75 percentiles with the red line showing the median. The
outliers depicted by the red plus markers are roughly outside the +2.7¢0
range. (a) SAE with serial architecture. (b) NCC with serial architecture.
(c) SAE with skip architecture. (d) NCC with skip architecture.

improvement. We used the input resolution of 330 x 220, as our
preliminary trials found that the results gave a good indication of
the trends at higher resolutions. Furthermore, numerous param-
eter combinations could be experimented with lower training
burden.

Fig. 4 depicts the registration success rates at different levels
of DBR by adjusting g for the serial and the skip architectures
and using the SAE and NCC similarity measures. For each /3
value, nine training trials were performed with different random
initializations of the network weights. The blue boxes in Fig. 4
represent [25,75] percentile ranges of the resulting success rates,
and the red lines indicate the medians. It can be seen that the
performance improves significantly with DBR compared to the
cases with the similarity measure alone (5 = 0). This is because
DBR guides the networks to recognize the lesions and put more
effort toward registering them correctly.

It turns out that for optimal DBR settings, incorporating
TVR does not yield significant improvement in performance
beyond what was obtained with DBR. For this reason, we set
a = 0 henceforth for simplicity. Performance plots involving the
tuning of « for the optimal /3 settings are presented in App. D
in the Supplementary Material.

2) Performance of Proposed Networks: Fig. 5 shows the
highest registration success rates observed from the proposed
algorithm with different input image resolutions, similarity mea-
sures, and network architectures using optimal DBR parameters.
It can be seen that as the input image size increases, the registra-
tion performance also improves in general. The NCC measure
generally yields better success rates than SAE. Between the se-
rial and the skip architectures, it is clear that the skip architecture
outperforms the serial architecture, which can be attributed to
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Fig. 6. Performance comparison with existing algorithms.

the multiple resolutions in the deformation fields obtained from
different skip levels. However, the skip architecture has higher
computation and memory requirements.

3) Comparison With Existing Algorithms: The registra-
tion performance of our algorithm was compared to those
of three existing non-rigid medical image registration meth-
ods. First, Thirion’s Demons algorithm as implemented in
the MATLAB imregdemons function was compared [32],
[57]. Demons algorithm is a diffeomorphic image registra-
tion technique, which performs an iterative optimization for
each image pair using a multi-resolution pyramid approach.
The symmetric image normalization (SyN) method was also
tested using the implementation in the Advanced Normaliza-
tion Tools (ANTSs) software package [33]. The SyN method is
another diffeomorphic technique, based on maximizing cross-
correlation within the space of diffeomorphic maps. Finally,
the VoxelMorph algorithm was tested, which is based on the
U-Net CNN architecture. It can also incorporate the ground
truth anatomical features into the training based on a Dice
metric [16].

The registration performances achieved with the input image
size of 330 x 220 are shown in Fig. 6. For our technique,
NCC was employed and the results both with and without
DBR (8 =4 and 8 = 0, respectively) are shown. TVR was
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not enabled (o =0). For VoxelMorph, we experimented
with the MSE and NCC similarity metrics and a range of
diffusion regularizer weights [16]. This was done both with and
without the Dice-based regularization. The results using MSE,
with a diffusion regularization weight of A = 0.01, with and
without the Dice-based regularization, were selected as these
yielded the highest registration success rates. It can be seen that
our proposed techniques significantly outperform the existing
methods. Comparing the CNN-based methods (our methods and
VoxelMorph) with the traditional diffeomorphic registration
algorithms, one can clearly observe the superiority of the
CNN-based approaches. Note that the diffeomorphic methods
are computationally more intensive than the CNN-based ones
due to their iterative optimization. The CNN-based methods take
30 msec or less for registering images of size 330 x 220, while
Demons algorithm takes about 500 msec and SyN around 5 sec.,
using an Intel Xeon CPU @ 2.20 GHz. More importantly, it can
be seen that our proposed techniques perform much better than
VoxelMorph, especially with DBR. As discussed in Section III-
B2, due to the significant distortions in mammographic images,
the network training may not generate deformation fields that
can move the source lesion pixels far enough to actually overlap
with the target lesions. In such cases, the Dice metric will not
provide useful signals for training, while our DBR metric can
still quantify the relative quality of registration by means of the
distance between the moved and the target lesions. Interestingly,
our serial network architecture without DBR still outperforms
the VoxelMorph algorithm with Dice regularization, although
the margin becomes narrower compared to the case with DBR.
This shows that our optimized CNN architecture already has
merits over the VoxelMorph architecture for our application.
Note that VoxelMorph was designed for brain MRI data, which
involve much more correlated images with far less deformation
due to the same viewing angle.

Some typical registration results obtained from the proposed
and the existing methods are depicted in Fig. 7, based on the input
size of 330 x 220. Fig. 7(a) shows the case of fatty tissue and
Fig. 7(b) dense tissue. In either plot, the top panel in column (i)
is the CC view with the lesion encircled in red. The bottom
panel in the same column displays the overlay of the CC and the
MLO masks, highlighting the locations of the lesions in green for
CC and in magenta for MLO, respectively. Columns (ii)—(viii)
show exemplar registration results from the various algorithms
and architectures tested.

The top panels in columns (ii)—(viii) depict the MLO images
with the ground truth lesion location encircled in blue and the
evaluation metric ROIs indicated by black circles. (In Fig. 7(b),
the size of the MLO lesion is similar to the ROI size, rendering
the blue and the black circles to almost coincide.) The red circles
indicate the centroid locations of the displaced CC lesion pixels
with their diameters set equal the lesion size in the CC view.
In the bottom panels, the projected lesion pixels are shown in
magenta. For the skip architecture, the union of the displaced
pixels from all three branches are depicted. The deformation
vectors are displayed in quiver plots, showing the individual
pixel displacements. The arrows for the lesion pixels are shown
in red with higher density. For the skip architecture, the arrows

(i) (i) (iii) (iv) (v) (vi) (vii) (viii)

Skip/DBR  Serial/DBR  Serial/no DBR VoxelMorph/  VoxelMorph/

DICE no DICE

()

Demons SYN

(vii) (viii)

SR

Skip/DBR

Demons SYN

Serial/DBR  Serial/no DBR  VoxelMorph/  VoxelMorph/
DICI no DICE

(b)

Fig. 7. Exemplar registration results. (a) Fatty tissue example. (b)
Dense tissue example.

corresponding to the average of the deformation vectors are
shown for simplicity of visualization.

It can be seen from Fig. 7 that our registration networks place
the CC lesion pixels closer to the target MLO lesion location,
compared to the other algorithms. Overall, this is consistent with
the registration performance results in Fig. 6. Even in the dense
tissue case, where the lesions are more difficult to discern, our
algorithms are seen to more closely land the displaced CC lesions
at the location of the MLO lesions. Note that VoxelMorph does
move the CC lesions in the direction toward the MLO lesions,
but often falls short of making the full distance.

4) Performance by Lesion/Tissue Characteristics: The
registration performance of the proposed method was also evalu-
ated based on the lesion BI-RADS assessment categories, lesion
subtlety ratings, lesion sizes, and the density of breast tissue.
BI-RADS is a categorization system in breast imaging, including
mammography. BI-RADS assessment categories range from
0 to 6, with O denoting incomplete assessment, 1 negative, 2
benign, 3 probably benign, 4 suspicious, 5 highly suggestive of
malignancy, and 6 biopsy proven malignancy. Only BI-RADS
categories 0 to 5 were available in our subset of the CBIS-DDSM
data set.

BI-RADS also provides an assessment of breast tissue density
with four density descriptors: 1 almost entirely fatty, 2 scat-
tered fibroglandular, 3 heterogeneously dense, and 4 extremely
dense [26]. Dense tissue makes it more difficult to identify
masses, as dense tissue can overlap and obscure breast lesions.
The CBIS-DDSM data set also contains subtlety ratings, which
are not part of BI-RADS, but were generated by experienced
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Fig. 9. Lesion sizes for BI-RADS categories. The circle diame-

ters are proportional to lesion sizes. Blue and red denote suc-
cessful and unsuccessful registrations, respectively, using the serial
architecture.

radiologists. The subtlety ratings range from 1 (subtle) to 5 (more
obvious). We also categorized the lesions by their diameters
into five groups. The registration performances are based on the
990 x 660 resolution images with NCC and DBR. TVR was not
used (o = 0).

To aid the interpretation of the results, the distribution of the
test data set is presented first. Fig. 8 shows the number of images
with each BI-RADS and subtlety category. It can be seen that
most lesions in the CBIS-DDSM test set are in the higher BI-
RADS categories and appear more obvious. Fig. 9 shows the
lesion size distributions for each BI-RADS category. The blue
and red circles denote successful and unsuccessful registrations,
respectively, using the serial architecture.

Fig. 10(a) shows the success rates for different BI-RADS
categories using both the serial and the skip architectures. The
number of images in each category is indicated at the bottom
of the figure. The success rates are seen to be uniformly above
78% in all cases. Note that the images with ratings 1 or 2 are
too few to draw meaningful conclusions. Fig. 10(b) shows the
performance versus subtlety categories. Again, it is seen that
rates above 80% are achieved across the board.

Fig. 10(c) depicts the success rates by the diameters of the
lesions® It can be seen that the registration success rate generally
increases with the lesion size. In the largest diameter range of
[120,145] pixels, only one of nine lesions was mis-registered by
the serial architecture, and a close examination of this case makes
us question the accuracy of the ground truth based on the nipple-
to-lesion distance in each view. In fact, our algorithms actually
appear to map the CC lesion close to the expected location in
the MLO view. Regarding the slightly lower success rates in the
smallest-size group with the diameter range of [20,44] pixels, the

3The pixel resolution in microns was not available for the CBIS-DDSM data
set. Hence, the diameters were measured in pixels.
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Fig. 10. Registration success rates by lesion and tissue characteris-
tics. (a) Performance by BI-RADS. (b) Performance by lesion subtlety.
(c) Performance by lesion size. (d) Performance by breast density.

registration algorithm had difficulty especially when the small
lesions were located far away in the two views.

Fig. 10(d) shows the registration performance for different
categories of breast tissue density. It can be seen that high
registration success rates are maintained even for dense tissue
(category 4). This is encouraging since the dense tissue presents
greater challenges for radiologists in discerning the lesions.
Further examination of the extremely dense cases in our test
set revealed that there were not as many small lesions and not
as many lesions with large separation distances between the two
views. The lack of cases with ground truth for very small lesions
in extremely dense tissue is conceivable in that these would be
difficult for clinicians to identify visually. Hence, these factors
give some explanation for the high registration success rates
in this category. The somewhat lower performance in the fatty
breast tissue category is attributed to a few image pairs with
very small lesions and yet another case with questionable ground
truth. In general it is encouraging that our algorithm performs
relatively well across the board.

Several additional factors should be considered in interpreting
or comparing the registration results, in particular with respect to
Figs. 10(a) and 10(d). For instance, BI-RADS and breast density
assessments can vary among clinicians [58], [59]. Additionally,
the BI-RADS assessment category for lesions may be updated at
different stages of the examination process [60]. The BI-RADS
scale is also nonlinear [61]. These and other factors are discussed
in detail in App. E in the Supplementary Material.

C. Experiments With Other Data Sets

1) Experiments With DBT Slices: We also applied the net-
works, which were trained on CBIS-DDSM images, to a com-
pletely different data set in order to see how well the networks
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Fig. 11. Registration success rates for JHM DBT slices.

(a)

Fig. 12.  Exemplar registration results for DBT slices based on model
trained on CBIS-DDSM images. (a) Input CC image (top) and the
CC/MLO mask overlay (bottom). (b) Result from serial architecture. (c)
Result from skip architecture.

can generalize. The JHM DBT data set is a 3D mammography
data set containing the CC and MLO cubes for 60 patient cases.
Each case involved a single mass-type lesion. One slice from
each CC cube and another from the corresponding MLO cube
were extracted such that the slices intersect with a lesion. (The
result was not very sensitive to which slice in a cube was
used as the DBT slices are highly correlated across slices.) The
images were then resampled to the input resolution for which
the networks were trained. Note that the CC/MLO slices from
DBT cubes were used only for testing, and not for training.

Fig. 11 shows the success rates achieved on DBT data based
on the the same configurations and models used for Fig. 5. It can
be seen that the success rates are generally comparable to those
achieved on the CBIS-DDSM data in Fig. 5. This shows that the
models trained using CBIS-DDSM images are not overfit, and
that the registration performance is quite robust.

Fig. 12 shows exemplar registration results using both net-
works with NCC for the 990 x 660 resolution test images.
Columns (b) and (c¢) depict the results from the serial and the skip
architectures, respectively. As can be seen in the top panels of
columns (b) and (c), both architectures displace the CC lesion
indicated by the red circle to the vicinity of the MLO lesion

TABLE Il
REGISTRATION SUCCESS RATES BY LESION SizE FOR JHM DBT SLICES
Diameter (pixels) |22 ~ 44 |45 ~ 69|70 ~ 94|95 ~ 119 | 120 ~ 145
Avg. diam. (cm) 0.6 1.1 1.6 2.1 2.5
Serial arch. 71.4% | 93.3% | 93.8% 100% 100%
Skip arch. 71.4% 100% 100% 100% 100%
Image counts 7 15 16 13 9
TABLE Il
REGISTRATION SUCCESS RATES BY BREAST DENSITY FOR JHM
DBT SLICES
Breast density category 1 2 3 4
Serial architecture 0% 90% 97.3% | 100%
Skip architecture 0% | 100% | 97.3% | 100%
Image counts 1 20 37 2

indicated by the blue circle. However, it was generally observed
that the deformation vectors in the lesion areas for the DBT
data tend to vary less uniformly in terms of the directions and
magnitudes, compared to those for the CBIS-DDSM data. This
seems to indicate increased uncertainty for the networks that
were trained in one data set and used on another. Indeed, the
DBT data involves completely different imaging processes than
those of the digitized scanned-film images in the DDSM data
set.

Tables II and III show the performance on the DBT data by
lesion size and breast density, respectively. An image resolution
of 990 x 660 pixels was used with the NCC measure. From
Table II, it can be seen that the networks perform better with
larger lesions, similar to the CBIS-DDSM case. The average
success rate of above 90% was achieved. From Table III, it is
seen that the DBT data almost entirely consists of scattered
fibroglandular (category 2) and heterogeneously dense tissue
(category 3), and the success rates are maintained above 90% in
these categories. The BI-RADS assessments for the DBT data
were not available.

2) Experiments With Synthetic X-Ray Images: Here, our
goal is to see if further improvement in performance can be
achieved by augmenting the real training images with synthetic
ones [55]. The CBIS-DDSM training set was combined with
the synthetic X-ray images generated from 3D breast phantoms,
designed to represent scattered fibroglandular tissue with single
mass-type lesions. The lesion diameters were in the range of
around 1.0 cm to 1.2 cm (approximately 23 to 28 pixels at the
330 x 220 resolution) due to the constraints in the software and
computing platform.

We first conducted training and testing using only the syn-
thetic data set. The training set contained 2,250 synthetic image
pairs plus 4-fold augmentations, totaling 11,250 image pairs.
The sizes of the validation set and the test set were 103 and 95
image pairs, respectively. The 330 x 220 image resolution was
used with SAE and DBR. A registration success rate of 82.5%
was obtained using the serial architecture. This is comparable to
the performance achieved on the real data set for similar lesion
sizes; see Fig. 10(c). Fig. S8 shows an example synthetic image
pair, with the registration results using the serial and the skip
architectures.
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Fig. 13. Registration success rates when trained using a mixture of
real and synthetic X-ray images. (a) Serial architecture. (b) Skip archi-
tecture.

Then, the CBIS-DDSM training set with 4464 image pairs
was combined with the synthetic images in different ratios. We
experimented with the real to synthetic image ratios of 1 : z,
with = equal to 0,0.25,0.5, 1, and 2, resulting in 4464, 5580,
6696, 8928, and 13392 training image pairs in total, respectively.
The trained networks were tested on 146 real test image pairs as
before.

Fig. 13 shows the resulting registration success rates for both
architectures. It can be observed that the synthetic images can
indeed help boost the performance for the mix ratios up to 1 :
1, but beyond that the performance begins to degrade as the
discrepancy between the real and the synthetic data kicks in.
Fig. S9 shows the registration examples. Columns (b) and (c)
represent the results from the serial architecture without and with
the 1 : 1 synthetic data mixing, respectively. Similarly, columns
(d) and (e) correspond to the skip architecture case. In both
cases, the improvement in performance using the mixed data set
for training is visible in achieving closer displacements to the
target location.

VI. DISCUSSION

There are some limitations to our algorithms and experiments.
First, our experiments involved limited data. However, the re-
sults from applying our models to a different imaging modality
and the improvement observed from using computer-generated
data for augmentation indicate promising directions to address
data limitation—a general challenge in this area.

The ROI-based criterion for registration success may be
deemed less precise for assessing registration accuracy than the
conventional pixel-level metrics such as the MSE or Dice. Our
ROI-based metric is motivated by the mammography radiolo-
gists’ practices and the need to capture the degree of usefulness in
aiding them to establish the lesion correspondence. A radiologist
first finds a lesion in one view. Then, with the given knowledge
of the size and other features such as textural composition,
spiculations, and various geometrical features (such as the rela-
tive distance/orientation toward the nipple), she tries to find the
matching lesion in the other view. Thus, a ROI that indicates the
approximate location of the lesion can already be very helpful
to the radiologist. In fact, in breast image registration, there are
significant distortions and occlusions in different views, and
assessments based on matching the lesions in the pixel level
may not adequately capture the level of helpfulness from the

(a) (b) (©) (d)

Fig. 14. Demons algorithm results. The warped CC view in panel (b)
appears to move the lesion near the desired location in the MLO view in
(c) (encircled in blue). Yet, the deformation field in (d) indicates that the
bright pixels in (b) were moved from non-lesion locations.

clinicians’ standpoint and can even be misleading. This can
be verified from the example in Fig. 7(b), for which the Dice
metric is evaluated to be only 0.13 for our serial network with
DBR. Still, the ROI can aid the radiologist to quickly locate
the matching lesion. More justification based on a sensitivity
analysis is provided in App. C of the Supplementary Material.

Our method tries to displace individual pixels in the moving
image and it is not guaranteed that a continuous region is mapped
to a continuous region. The TVR constraint can promote this, but
as we mentioned in Section V-B1, strong TVR actually comes at
odds with the registration performance; see also App. D in the
Supplementary Material. Furthermore, the lesions at different
views often have very different sizes, as was the case again in
Fig. 7(b). Mapping a smaller lesion in one view toward a larger
one in another view inevitably results in dispersing the pixels.

Related, it was observed in Section V-B3 that our algorithm
yields deformation fields that are not as smooth as those from
other algorithms, except for the deformation vectors for the le-
sion locations. This is because, with DBR, the training of our net-
works places more emphasis on registering the lesion tissue than
the normal tissue areas. Hence, the network inherently learns to
detect the lesions and register the corresponding pixels better. In
fact, our experiments revealed that smoother deformation fields
are sometimes obtained by trying to match the overall shape of
one breast scene to the other. That is, it was observed that in some
cases algorithms move pixels from non-lesion locations to form
regions of high intensity in the target lesion areas. An instance
of this is illustrated in Fig. 14 based on Demons algorithm,
which incorporates a form of smoothness regularization [32],
[57]. Fig. 14(a) shows the CC view with the lesion location.
Fig. 14(b) depicts its warped version, which appears to show
that the projected CC lesion pixels are near the desired lesion
location in the MLO view shown in Fig. 14(c). However, the
deformation field shown in Fig. 14(d) indicates that the pixels
forming the bright region in Fig. 14(b) are actually moved from
areas unrelated to the CC lesion. In fact, the displaced CC lesion,
indicated by the red circle in Fig. 14(c), has not moved very far
from its original location.

Our experiments were also limited to mass-type lesions. In-
deed, there are other common abnormalities such as calcifica-
tions, architectural distortions, and asymmetries [26]. However,
due to the distinct attributes of the different abnormalities, it is
common to design an algorithm for a specific lesion type [45],
[62]. We also excluded the multiple lesion case from our study,
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similar to other recent studies [24]. First, the single lesion occur-
rences are much more frequent [63]. While the CBIS-DDSM and
other curated mammography data sets contain cases with mul-
tiple lesions, the ground truth related to matching the lesions is
usually not available. Establishing such ground truth in sufficient
quantities requires significant expertise and effort. Although be-
yond the scope of the present work, some indication of the perfor-
mance of our networks on multi-lesion cases can be viewed for a
few examples provided in App. F in the Supplementary Material.

Although we do try to capture the correlations in the tissue
areas other than the lesions through the SAE or the NCC
measures, the resulting registration in the non-lesion areas is
seen rather weak. The limitation can be ascribed to the modest
number of training samples and the large distortions inherent
in the mammographic views. Additional regularization based
on geometrical priors such as the nipple distance or angular
positions may be useful [21], [42], [43], but this is left for future
research.

VII. CONCLUSION

An automated registration method for the CC and MLO
views of 2D X-ray mammography has been proposed based on
CNNs with serial and skip architectures. A custom regularization
technique using binary masks of ground truth lesion locations
was incorporated to significantly enhance the registration per-
formance. The proposed networks were tested using a real
mammography data set (the CBIS-DDSM data set), and the per-
formance was characterized from various aspects. Our method
outperformed state-of-the-art CNN-based and non-CNN-based
image registration techniques in the dual-view mammography
registration task. We also tested the trained networks for reg-
istering DBT slices, which verified the robust performance of
the networks across related mammographic imaging modalities.
Finally, the networks were trained using the real data set mixed
with the computer-generated synthetic mammography data set to
achieve even better performance. Our method has a potential for
aiding the radiologists to quickly establish correspondence for
the lesions in different mammographic views. Future research
directions include utilizing multiple lesions per image pair and
producing confidence estimates.
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