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SUMMARY 

 
This paper proposes an approach based on graph theory and combinatorial enumeration for sizing 
of movable energy resources (MERs) to improve the resilience of the electric power supply. The 
proposed approach determines the size and number of MERs to be deployed in a distribution system 
to ensure the quickest possible recovery of the distribution system following an extreme event. The 
proposed approach starts by generating multiple line outage scenarios based on fragility curves of 
distribution lines. The generated scenarios are reduced using the k-means method. The distribution 
network is modeled as a graph where distribution network reconfiguration is performed for each 
reduced line outage scenario. The combinatorial enumeration technique is used to compute all 
combinations of total MER by size and number. The expected load curtailment (ELC) corresponding 
to each locational combination of MERs is determined. The minimum ELCs of all combinations of 
total MER are used to construct a minimum ELC matrix, which is later utilized to determine optimal 
size and number of MERs. The proposed approach is validated through a case study performed on 
a 33-node distribution test system. 
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1 INTRODUCTION  
Extreme events, both natural (e.g., hurricanes, wildfires, ice or hailstorms, earthquakes) and man-
made (e.g., cyber- and physical-attacks), have been more frequent over the past decade. For instance, 
20 weather-related catastrophes, each costing over $1 billion, occurred in the United States in 2021 
alone [1]. Such extreme events have severely damaged crucial power system components, causing 
prolonged power outages across entire systems. The goal of the electric utilities to provide their 
consumers with a dependable and resilient electricity supply has been jeopardized by extreme 
weather events and subsequent outages [2]. To lessen the impact of these events on end customers, 
post-disaster service restoration (PDSR) procedures must be devised. By making the best use of the 
resources at hand, PDSR’s main objective is to reduce the duration of outages and load curtailments. 
The most efficient PDSR solutions have been found to be those utilizing smart grid technologies, 
such as the formation of microgrids, network reconfiguration, repair crew dispatch, distributed 
generation, energy storage, movable energy resources (MERs), and combinations of these 
techniques.  
 
MERs are adaptable and transportable resources that can be quickly relocated from staging 
locations. They may be constructed in a variety of sizes and quickly integrated into the distribution 
grid following a disaster, thus their adaptability. These resources may be built to handle loads of up 
to a few megawatts. If no other resources are available, MERs can be deployed to serve local and 
isolated critical loads when a portion of a distribution system is islanded due to equipment failures 
or damages.  
 
The deployment of MERs for PDSR has gained significant traction. To increase the resilience of 
distribution networks, a two-stage robust optimization methodology for scheduling and routing 
MERs has been developed in [3]. To improve the seismic resilience of distribution systems using 
MERs, a two-stage PDSR technique, based on mixed-integer linear programming (MILP) has been 
developed in [4]. For an active distribution system, a MILP-based PDSR technique has been 
proposed in [5], using an approach to route and schedule energy storage systems for improved 
resilience. Most of the aforementioned research mainly concentrate on coordinating and dispatching 
MERs with other PDSR strategies for service restoration, without determining optimal size and 
number of MERs for a spectrum of potential contingencies.  
 
This paper proposes an approach based on graph theory and combinatorial enumeration for sizing 
of MERs. High wind speed is taken as an example of weather-related extreme events. A set of 
multiple line outage scenarios is generated based on forecasted wind speed. Generated scenarios are 
then reduced using the k-means method. The reduced scenarios are used to determine expected load 
curtailments (ELCs) when MERs are deployed at various locations for all combinations of total size 
and number of MERs. The minimum ELCs for each set of MERs are used to construct a minimum 
ELC matrix, which is utilized to determine optimal size and number of MERs. The proposed 
approach is validated through a case study on a 33-node distribution test system.  
 
The remainder of the paper is organized as follows: the graph theory modeling of the distribution 
network is explained in Section 2, the proposed approach and solution algorithm are described in 
Section 3, a case study on the 33-node system is used to validate the proposed work in Section 4, 
and Section 5 provides some concluding remarks. 
 
 
 



2 GRAPH THEORY MODELING OF DISTRIBUTION NETWORK 
This section presents the graph theoretic modeling of the distribution network to address the sizing 
problem being investigated for distribution system resilience. A distribution network forms a 
meshed network when all the switches (sectionalizing and tie-switches) are closed, and can be 
represented as an undirected graph G = (N, E), where N is a set of nodes (or vertices) and E is a set 
of edges (or branches). 
 
2.1 Spanning Tree 
A subset of the undirected graph (i.e., G = (N, E)) known as a spanning tree is one that has the least 
number of edges connecting each vertex (or node). In a spanning tree, the difference between 
number of nodes and number of edges is equal to one and all the vertices are connected – there are 
no cycles (or loops) [6]. Many spanning trees that share the same number of vertices and edges can 
exist in a linked graph. Each edge of the undirected graph G has a particular value (or weights). 
Depending on the problem being studied, different edge weights are used. When determining the 
minimum spanning tree, the total edge weights of the spanning tree are minimized. Figure 1(a) 
shows a spanning tree of a hypothetical 12-node system. The spanning tree shown in the figure 
consists of all system nodes (i.e., 12) and 11 closed branches (edges). 

 
Figure 1: (a) A spanning tree; and (b) a spanning forest for a hypothetical 12-node system 

  
2.2 Spanning Forest 
In graph theory, a forest is a union of trees that are disconnected from each other. A spanning forest 
is a forest that spans all vertices of the undirected graph G and is made up of a collection of 
disconnected spanning trees [7]. Each vertex of the undirected graph G is contained in one of the 
spanning trees after all of them are connected [8]. When a disconnected graph has many connected 
components, a spanning forest is formed, which contains a spanning tree of each component [9]. 
Fig. 1(b) shows the spanning forest formed as a result of disconnection of two additional branches 
(2–3 and 3–10) in the spanning tree presented in Fig. 1(a). The spanning forest shown in Fig. 1(b) 
consists of three spanning trees (ST-1, ST-2, and ST-3).  
 
Kruskal’s algorithm is used in this work to search for the optimal spanning forest [10]. Based on a 
given undirected graph, Kruskal’s spanning forest search algorithm (KSFSA) first creates a forest 
F where each graph vertex functions as a single tree. Since KSFSA is a greedy algorithm, it 
continues, at each iteration, to connect the subsequent least-weight edge that avoids a loop or cycle 
to the forest F. The optimal spanning forest is the forest F that is created after the final iteration. 
Fig. 2 shows the flowchart of KSFSA. 



 
Figure 2: Flowchart of Kruskal’s spanning forest search algorithm 

 
3 PROPOSED APPROACH 
This section presents the proposed approach for event modeling, scenario generation and reduction, 
and construction of a minimum ELC matrix. 
 
3.1 Extreme Event Modeling and Scenario Generation  
In this work, the weather-related fragility curve is used to model extreme events and generate 
multiple line outage scenarios. A fragility curve is applied to characterize the performance and 
vulnerabilities of different system components confronting uncertain weather-related extreme 
events. The failure probabilities of each component are obtained by mapping the weather forecast 
and monitoring data to the fragility curve [11]. We have taken the multiple line outages caused by 
high wind speeds as an example of a weather-related extreme event in this study. Mathematically, 
the probability of line outages caused by high wind speeds can be represented as follows: 

 

𝑃𝑙(𝜔) = {

𝑃𝑙̅ , 𝑖𝑓 𝜔 < 𝜔𝑐𝑟𝑙

𝑃𝑙.ℎ𝑤(𝜔), 𝑖𝑓 𝜔𝑐𝑟𝑙 ≤ 𝜔 < 𝜔𝑐𝑝𝑠𝑒

1, 𝑖𝑓 𝜔 ≥ 𝜔𝑐𝑝𝑠𝑒

 

 

 
 

(1) 

where 𝑃𝑙 is the probability of line failure as a function of wind speed, 𝜔; 𝑃𝑙̅ is the failure probability 
at normal weather condition; 𝑃𝑙.ℎ𝑤 is the probability of line failure at high wind; 𝜔𝑐𝑟𝑙 is the critical 
wind speed (i.e., the speed above which the distribution lines start experiencing failure); and 𝜔𝑐𝑝𝑠𝑒 
is the speed above which the distribution lines completely collapse [12].  
 
 
 



3.2 Scenario Reduction Using k-means Method  
The accuracy of an approach is always improved when a large number of line outage scenarios is 
used. However, solving the problem with many scenarios takes more time. The generated line outage 
scenarios are, therefore, reduced using the k-means method in this work to make the proposed 
approach computationally tractable. The k-means method is an iterative procedure that attempts to 
split a set of scenarios into a set of unique clusters. It attempts to minimize distance between 
scenarios in the same cluster while maximizing the distance between different clusters. In addition, 
when scenarios are assigned to a cluster, the distance between them and the cluster centers is kept 
to a minimum [13].  
 
3.3 Computing Expected Load Curtailment (ELC)  
The ELC for 𝑖𝑡ℎ  combination of MER locations is determined using the amount of curtailed critical 
load for each reduced line outage scenario as follows. 

 

𝐸𝐿𝐶𝑖 = ∑ 𝑃𝑟(𝑗) × 𝐿𝐶𝑖(𝑗)

𝐾

𝑗=1

, 

 

 
 

(2) 

where 𝐾 is the total number of reduced scenarios; 𝑃𝑟(𝑗) is the probability of the 𝑗𝑡ℎ reduced 
scenario; and 𝐿𝐶𝑖(𝑗) is the critical load curtailment of the 𝑗𝑡ℎ reduced scenario for the 𝑖𝑡ℎ 
combination of MER deployment locations, which is calculated as follows. 

 

𝐿𝐶𝑖(𝑗) = ∑ 𝜔𝑚Δ𝑃𝑚𝑖(𝑗),

𝑁

𝑚=1

 

 

 
 

(3) 

where 𝛥𝑃𝑚𝑖(𝑗) is the load curtailment at node 𝑚 of the 𝑗𝑡ℎ reduced scenario for the 𝑖𝑡ℎ combination 
of MER deployment location(s); 𝜔𝑚 is the critical load factor at node 𝜔; and 𝑁 is the total number 
of nodes in the system. While computing the critical load curtailment, the nodal power balance 
constraints and radiality constraint should always be satisfied.  
 
The proposed methodology to determine optimal size and location of MERs can be summarized in 
the following steps.  
1)  Collect system data, including generation data, line data, load data, etc.  
2) Generate a set of multiple line outage scenarios based on weather forecasting and monitoring 
data.  
3) Generate a set of reduced scenarios along with their probabilities using a scenario reduction 
technique.  
4) Enumerate all combinations of total size and number of MERs, based on a certain level of 
granularity.  
5) For each combination of total size and number of MERs, determine ELCs corresponding to each 
combination of MER deployment location.  
6) Determine minimum ELC for each combination of total size and number of MERs.  
7) Construct a matrix of minimum ELCs based on a combination of total size and number of MERs. 
8) Calculate the derivative of the minimum ELC matrix with respect to the number of MERs, then 
convert the derivative matrix into a vector by averaging over total sizes of MERs. Note that the 
optimal number of MERs is the number corresponding to the entry of the vector whose sign changes 
from negative to positive.  



9) Calculate the second derivative of the minimum ELC matrix with respect to size of MERs. 
Convert the second derivative matrix into a vector by averaging over numbers of MERs. Here, the 
optimal size of MERs is the size corresponding to the maximum entry of the vector.  
 
The flowchart of the proposed approach, following these nine steps to construct the minimum ELC 
matrix, is shown in Figure 3. 

 
Figure 3: Flowchart of the proposed approach to construct the minimum ELC matrix  

 
4 CASE STUDY AND DISCUSSION 
A case study was created to test the proposed approach and is described in this section, along with 
an implementation and results discussion. 
  
4.1 System Description  
To demonstrate the effectiveness of the proposed approach, a 33-node system is used for numerical 
simulations. A 33-node distribution test system is a radial distribution system with 33 nodes, 32 
branches, and 5 tie-lines (37 branches) [14]. All branches, including tie-lines, are numbered from 1 
to 37. The system’s overall load is 3.71 MW, and the critical loads are assigned at each node, in 
kW. The locations and amounts of critical loads considered for the 33-node system are shown in 
Table 1.  
 
 
 



Table 1: Location of Critical Loads for the 33-node system 
Nodes Critical Loads 

(kW) 
 Nodes Critical Loads 

(kW) 
4 60  20 45 
5 30  21 45 
6 60  22 45 
7 200  23 45 
8 200  26 60 
9 60  27 60 
10 30  28 60 
11 25  29 60 
18 45  30 60 
19 45  33 30 

 
 

4.2 Implementation and Results  
For the implementation of the proposed approach, multiple line outage scenarios are generated by 
considering a high wind speed event as an example of a weather-related extreme event. The critical 
wind speed of 30 m/s, and the collapse speed of 55 m/s, are assumed for the fragility model (1) 
under consideration [12]. The failure probability of 0.01 is considered at normal weather conditions. 
The failure probability starts increasing after 30 m/s and varies linearly up to 55 m/s.  The wind 
fragility curve for distribution lines is shown in Fig. 4. In this modeling, 10,000 random outage 
scenarios are generated, and the k-means method is used to reduce the generated scenarios into 200 
reduced outage scenarios for wind speeds of 38 m/s. The k-means method results in 200 reduced 
line outage scenarios, along with their failure probabilities.  

 
Figure 4: Wind fragility curve for distribution lines 

 
The combinatorial enumeration technique is used to compute all combinations of total size and 
number of MERs. The total sizes of MERs ranging from 500 kW to 1900 kW are taken at a 
granularity level of 100 kW. For each total MER size, the number of MERs ranging from 1 to 10 
are taken. For combinations consisting of a single MER, its size is equal to the total MER size. For 
combinations with multiple MERs, the individual sizes of MERs are assumed to be equal to the total 
MER size divided by the number of MERs. For each combination of total MER size and the number 
of MERs, there are multiple locational combinations. For each locational combination of MERs, the 
expected load curtailment (ELC) is determined by considering critical load curtailments 
corresponding to each of the 200 reduced line outage scenarios and their failure probabilities.  



 
Figure 5: A test case for the 33-node distribution system 

 
Fig. 5 shows the case for a reduced scenario where outages of lines 3, 6, 15, 19, 25, 30, and 32 occur. 
In this scenario, the distribution network is reconfigured by closing tie-switches 33, 36, and 37, 
using KSFSA. The tie-switches 34 and 35 are open to maintain radial configuration. When MERs 
with 300 kW capacity each are deployed at nodes 6, 11, 15, and 22, two microgrids (MG-1 and MG-
2) and two isolates (IL-1 and IL-2) are formed. The two isolates are devoid of power supply. The 
total critical loads of IL-1 and IL-2 are 0 kW and 75 kW, respectively. Therefore, the total critical 
load curtailment for this reduced scenario is 75 kW. When the procedure shown in Figure 3 is 
followed, the minimum ELC matrix is formed, as shown in Table 2. 

Table 2: Minimum ELC matrix 
Total 

MER size 
(kW) 

/Number 
of MERs 

1 2 3 4 5 6 7 8 9 10 

500 306.633 297.857 293.235 291.224 290.514 289.6 289.255 289.167 289.376 290.089 

600 275.965 263.233 257.222 255.605 254.325 253.815 252.984 252.634 252.506 252.253 

700 247.683 229.533 223.513 219.461 218.463 218.11 217.191 216.653 216.266 216.003 

800 221.297 196.57 189.77 183.764 183.924 182.204 181.789 181.035 180.408 180.448 

900 196.881 166.573 157.104 151.897 150.232 147.759 146.951 146.8 145.387 146.488 

1000 176.251 141.16 128.767 124.478 120.322 117.259 116.224 115.211 114.68 117.174 

1100 158.803 118.702 103.926 99.6455 94.373 89.4748 89.5464 87.0585 88.4829 91.4035 

1200 147.327 102.806 85.6925 78.973 74.4985 67.6935 68.5553 65.301 67.0478 70.961 

1300 142.561 94.277 75.9558 65.8495 62.1615 54.7228 54.7878 53.2583 56.2931 59.176 

1400 142.561 91.294 72.5542 59.021 56.0005 50.5713 49.412 49.463 52.2787 54.57 

1500 142.561 88.877 70.33 54.7625 52.3145 47.8405 46.2631 46.8567 48.994 51.5195 

1600 142.561 86.918 69.044 52.022 49.7855 46.564 44.1306 45.147 46.931 49.526 

1700 142.561 85.248 67.8728 50.234 48.056 45.3958 42.9269 44.2593 45.3977 47.774 

1800 142.561 83.863 65.9125 49.1715 46.884 44.6805 42.3654 43.2615 44.36 46.214 

1900 142.561 82.862 64.5482 48.609 45.8485 44.1748 41.9911 42.5153 43.6782 44.897 

 
In general, when the total MER size or the number of MERs increases, the minimum ELC continues 
to decrease, as shown in Table 2. However, the rate of change of minimum ELCs is not the same 
when the total MER size or the number of MERs increases. Due to this reason, the derivatives of 
the matrix are computed to analyze the rate of change of minimum ELCs.  



 
Table 3: The first derivative of the Minimum ELC matrix w.r.t. number of MERs 

Total 
MER size 

(kW) 
/Number 
of MERs 

1 2 3 4 5 6 7 8 9 10 

500 -8.78 -6.70 -3.32 -1.36 -0.81 -0.63 -0.22 0.06 0.46 0.71 
600 -12.73 -9.37 -3.81 -1.45 -0.90 -0.67 -0.59 -0.24 -0.19 -0.25 
700 -18.15 -12.08 -5.04 -2.53 -0.68 -0.64 -0.73 -0.46 -0.33 -0.26 
800 -24.73 -15.76 -6.40 -2.92 -0.78 -1.07 -0.58 -0.69 -0.29 0.04 
900 -30.31 -19.89 -7.34 -3.44 -2.07 -1.64 -0.48 -0.78 -0.16 1.10 
1000 -35.09 -23.74 -8.34 -4.22 -3.61 -2.05 -1.02 -0.77 0.98 2.49 
1100 -40.10 -27.44 -9.53 -4.78 -5.09 -2.41 -1.21 -0.53 2.17 2.92 
1200 -44.52 -30.82 -11.92 -5.60 -5.64 -2.97 -1.20 -0.75 2.83 3.91 
1300 -48.28 -33.30 -14.21 -6.90 -5.56 -3.69 -0.73 0.75 2.96 2.88 
1400 -51.27 -35.00 -16.14 -8.28 -4.22 -3.29 -0.55 1.43 2.55 2.29 
1500 -53.68 -36.12 -17.06 -9.01 -3.46 -3.03 -0.49 1.37 2.33 2.53 
1600 -55.64 -36.76 -17.45 -9.63 -2.73 -2.83 -0.71 1.40 2.19 2.60 
1700 -57.31 -37.34 -17.51 -9.91 -2.42 -2.56 -0.57 1.24 1.76 2.38 
1800 -58.70 -38.32 -17.35 -9.51 -2.25 -2.26 -0.71 1.00 1.48 1.85 
1900 -59.70 -39.01 -17.13 -9.35 -2.22 -1.93 -0.83 0.84 1.19 1.22 

Average 
over total 

MER 
sizes  

-39.93 -26.78 -11.50 -5.92 -2.83 -2.11 -0.71 0.26 1.33 1.76 

 
Table 4: The second derivative of the Minimum ELC matrix w.r.t. total size of MERs 

Total 
MER 
size 

(kW) 
/Numbe

r of 
MERs 

1 2 3 4 5 6 7 8 9 10 

Average 
over 

number of 
MERs 

500 1.19 0.46 1.15 -0.26 0.16 0.04 0.24 0.28 0.31 0.79 0.44 

600 1.67 0.65 1.14 -0.15 0.49 -0.01 0.34 0.37 0.41 0.97 0.59 

700 2.04 1.34 0.83 1.05 0.96 0.28 0.46 0.67 0.56 1.14 0.93 

800 2.41 2.81 1.61 3.14 1.70 1.67 1.41 1.44 1.59 2.13 1.99 

900 3.18 3.77 3.31 3.83 3.09 3.02 3.21 2.53 3.49 3.61 3.30 

1000 4.03 4.26 4.48 3.45 4.44 3.85 4.47 3.98 4.52 4.26 4.18 

1100 5.46 5.86 6.30 4.61 5.91 5.88 5.66 6.49 6.18 5.71 5.81 

1200 6.04 6.71 7.48 6.39 6.83 8.11 7.13 8.52 8.22 7.46 7.29 

1300 4.06 4.76 5.59 5.68 5.59 6.97 6.56 6.85 6.22 6.14 5.84 

1400 1.19 1.78 2.41 3.24 3.07 3.28 3.47 2.88 2.36 2.84 2.65 

1500 0.00 0.44 0.79 1.64 1.40 1.11 1.30 0.95 0.93 0.98 0.95 

1600 0.00 0.33 0.09 1.04 0.83 0.53 0.88 0.61 0.69 0.43 0.54 

1700 0.00 0.31 -0.22 0.73 0.51 0.31 0.60 0.21 0.47 0.22 0.31 

1800 0.00 0.26 0.10 0.43 0.21 0.22 0.25 0.10 0.30 0.17 0.20 

1900 0.00 0.19 0.30 0.25 0.07 0.10 0.09 0.13 0.18 0.12 0.14 

 
 



Table 3 shows the first derivative of the minimum ELC matrix with respect to the number of MERs. 
In general, the first derivative of minimum ELC continues to increase as the number of MERs 
increases. This implies that the rate of decrease in minimum ELCs is lower for higher number of 
MERs and it is not efficient to increase the number of MERs. The last row of Table 3 shows the 
vector of the average (over total sizes of MERs) of the first derivatives of the minimum ELCs. We 
have defined the optimal number of MERs as the number corresponding to the entry of the vector 
whose sign changes from negative to positive. Therefore, the optimal number of MERs for this case 
is seven. 

 
Table 4 shows the second derivative of the minimum ELC matrix with respect to the total size of 
MERs. The second derivative of minimum ELC increases, reaches a maximum point, and then 
decreases as the total size of MERs is increased. The last column of Table 4 gives the average (over 
numbers of MERs) vector of the second derivatives of minimum ELCs, which is also shown in 
Figure 6. The average of the second derivative of minimum ECL is maximum when the total MER 
size is 1200 kW. Therefore, the optimal size of MERs for the case under investigation is 1200 kW.  

 
Figure 6: Plot of the average of second derivative of minimum ELC versus total MER size 

 
 

5 CONCLUSION 
 
This paper has proposed an approach based on graph theory and combinatorial enumeration to 
determine optimal size and number of movable energy resources (MERs) for enhanced electricity 
system resilience. Multiple line outage scenarios were generated, and the k-means method was used 
to reduce the generated scenarios to a manageable number of scenarios. The expected load 
curtailment (ELC) corresponding to each locational combination of MERs is determined 
considering the reduced line outage scenarios. The minimum ELC matrix was constructed to 
determine optimal size and number of MERs. The case study on a 33-node distribution system 
demonstrated the effectiveness of the proposed approach in determining the overall size and number 
of MERs for a spectrum of potential contingencies. Applying this research to real-world examples, 
using historic outage events, and to other types of distribution test systems would be valuable for 
future research. 
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