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Abstract

A key challenge in many modern data analysis tasks is that user data is heteroge-
neous. Different users may possess vastly different numbers of data points. More
importantly, it cannot be assumed that all users sample from the same underlying
distribution. This is true, for example in language data, where different speech
styles result in data heterogeneity. In this work we propose a simple model of
heterogeneous user data that differs in both distribution and quantity of data, and we
provide a method for estimating the population-level mean while preserving user-
level differential privacy. We demonstrate asymptotic optimality of our estimator
and also prove general lower bounds on the error achievable in our problem.

1 Introduction

Many practical problems in statistical data analysis and machine learning deal with the setting in
which each user generates multiple data points. In such settings the distribution of each user’s data
may be (somewhat) different and, furthermore, users may possess vastly different numbers of samples.
This issue is one the key challenges in federated learning [20] leading to considerable interest in
models and algorithms that address the issue.

As an example, consider the task of next-word prediction for a keyboard. Different users typing on a
keyboard may have different styles of writing, leading to different distributions. There are aspects of
the language that are common to all users, and likely additional aspects of style that are common to
large groups of users. Thus while each user has their own data distribution, there are commonalities
to all the distributions, and additional commonalities amongst distributions corresponding to subsets
of users. Modeling and learning such relationships between users’ distributions is crucial for building
a better global model, as well as for personalizing models for users.

The focus of this work is on differentially private algorithms for such settings. We assume that there
is an unknown global meta-distribution D. For each user i, a personal data distribution Di is chosen
randomly from D (for example, by sampling a set of parameters that define Di). Each user then
receives some number ki of i.i.d. samples from Di. The goal is to solve an analysis task relative
to D, with an eye towards better modeling of each Di even when ki is small. This abstract setting
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can model many practical settings where the relationships between the Di’s take different forms.
Indeed the standard loss in federated learning is the unweighted average over users of a per-user
loss function [20, Sec. 3.3.2], which corresponds to learning D. Little theoretical work has been
done in this setting and even the most basic statistical tasks are poorly understood. Thus we start by
focusing on the fundamental problem of mean estimation in this setting. Specifically, in our model,
D is a distribution on the interval [0, 1] with unknown mean p and unknown variance σ2

p. Further, we
assume that Di is simply a Bernoulli distribution with mean pi ∼ D.

While the general Di setting is of interest, there are many settings where users generate Boolean
signals. For example, each sample from the Bernoulli distribution could represent whether or not the
user has clicked on an ad. Another common example is model evaluation, where the user produces
a Bernoulli sample by engaging or not engaging with a feature (e.g., phone keyboard next word
suggestion, crisis helpline link, search engine knowledge panels, sponsored link in search results,
etc.). As a concrete example, a language model is used to make the next word suggestions on a
phone keyboard. A new version of this model would be first tested to measure the average suggestion
acceptance rate over users. Each user would thus generate a set of independent Bernoulli r.v.’s with
each individual mean pi corresponding to the model accuracy for the user. Heterogeneity comes
from different users typing differently (and hence model accuracy varying across users) and using the
keyboard with different frequency. Note that the distribution of model accuracies among users is the
meta distribution D in our work. More generally, measuring the average accuracy of a classification
model among a large group of users is an important task in itself. Such models are deployed in
privacy-sensitive applications such as health and finance. The resulting statistics may need to be
shared with third parties or other teams within a company, raising potential user privacy concerns.

Our main contribution is a differentially private algorithm that estimates p and σp in this setting. We
first study this question in an idealized setting with known σp and no privacy constraints. Here the
optimal non-private estimator for pi is simple and linear: it is a weighted linear combination of the
individual user means with weights that depend on the ki’s and on σp. The variance of this estimate
is σ2

ideal ≈ (
∑

i min(ki, σ
−2
p ))−1. This expression has a natural interpretation: this is the variance

from using min(ki, σ
−2
p ) samples from user i and averaging all the Bernoulli samples thus obtained.

The restriction on using at most σ−2
p samples from each user ensures that the estimator is not too

affected by their individual mean pi.

Even in the case where it is known that σ2
p = 0, the solution is non-trivial and, to the best of our

knowledge, no optimal private algorithm was previously known. In this case, each user samples from
the same distribution, but there may be deviations in the number of samples that each user holds. In
the absence of privacy constraints, this setting poses no additional complexity over the case where
each user has a single data point, since the data points all come from the same distribution. However,
with the requirement of user-level differential privacy, additional care needs to be taken to hide all
samples from any individual user. In this case, we already need to employ many of the technical tools
developed in this work, as we show in Appendix C.

We show that under mild assumptions, there is no asymptotic price to privacy (and to not knowing
σp). We provide a differentially private estimator for p with variance O(σ2

ideal). Interestingly, the
estimator achieving this bound in the private setting is non-linear. Further, we show that σ2

ideal is
near-optimal, under some mild technical conditions.

Our technical results highlight several of the challenges associated with ensuring user-level privacy
when data is heterogeneous. For example, the optimal choice of weights for each user contribution
itself depends on p and σp that we are trying to estimate. Further, we show a novel approach to
proving lower bounds for private statistical estimation in the heterogenous setting. Our approach
builds on the proof of the Cramér-Rao lower bound in statistics, and we show how privacy terms can
be incorporated in this approach to show near optimality of our algorithms for nearly every setting
of ki’s. These tools and insights should be useful for modeling and designing algorithms for more
involved data analysis tasks.

Our work lays the foundation for similar model-driven exploration in other settings. There have been
attempts to handle heterogeneity by phrasing the problem as meta-learning or multi-task learning [20,
Sec 3.3.3], which implicitly makes some assumptions about the different distributions. Our goal is to
start with a more principled approach that makes explicit the assumptions on the relationship between
different distributions and use that to derive the algorithm. For example, if were to model the Di’s

2



as having means coming from a mixture of Gaussians, the estimation of cluster means would be a
necessary step in an EM-type algorithm. Our choice of Di’s being Bernoulli is meant to capture
discrete distribution learning problems that have been extensively studied in private federated settings.
Our techniques are general and would extend naturally to real-valued settings where, e.g., Di is a
Gaussian with mean pi and known variance. While we make minimal assumptions on D, our results
asymptotically match the lower bounds for the case of D being Gaussian with known variance. Our
techniques also extend in natural ways to higher dimensions.

Our main results involve two estimators; a non-realisable estimator p̂idealε that assumes that the mean
and variance of D are known to the estimator, and a realisable estimator p̂realisticε that is private with
respect to the user’s samples, but not with respect to each user’s number of samples ki. Let p̂i be
the mean of the ki samples from user i. The estimator p̂realisticε requires as input initial, less accurate
(ε, δ)-DP mean and variance estimators meanε,δ and varianceε,δ . The main results of this paper can
be (informally) summarised as follows:

• Near optimality of p̂idealε [Theorem 5.1]. For any parameterized family of distributions
p 7→ Dp, if the Fisher information of p̂i is inversely proportional to the variance of p̂i for
all i, and each p̂i is sufficiently well concentrated (sub-Gaussian is sufficient) then p̂idealε is
minimax optimal, up to logarithmic factors, among all unbiased estimators of p in the range
p ∈ [1/3, 2/3]. The proof of this result involves a Cramér-Rao style proof which may be of
independent interest.

• Near optimality of p̂realisticε [Theorem 4.1]. Under mild conditions on the accuracy of
meanε,δ and varianceε,δ , and assuming the max and and median ki are within a factor of
(nε/ log n)− 1, then Var(p̂realisticε ) = O(Var(p̂idealε ).

• Lower bound in terms of ki [Corollary 5.5]. We give an explicit formula for the minimax
optimal error in terms of the sequence k1, · · · , kn and variance σ2

p.

Our main algorithmic results require concentration of the meta-distribution D. We note that in
practice, this is not an unreasonable assumption. For example, in the case of model evaluation, it may
be be reasonable to assume that a general model has similar accuracy for the vast majority of users,
or formally, that the model accuracy is well-concentrated.

1.1 Related Work

Frequency estimation in the example-level privacy model has been well-studied in the central [12, 11]
and local models [18, 14, 7, 1, 2]. Similarly, private mean estimation has been well studied in
both central [12, 16] and local models [9, 8, 5] of privacy. These works have focused on providing
example-level privacy (rather than user-level) in settings with homogeneous data, i.e., i.i.d. samples.

[23] recently studied the problem of learning discrete distributions in the homogeneous cases (same
distribution and same number of samples per user) with user-level differential privacy, and [22]
extended such results to other statistical tasks. These works also consider the setting with different
number of samples per user although only via a reduction to same number of samples by discarding
the data of users that have less than the median number of samples and effectively only using the
median number of samples from all the other users. This approach can be asymptotically suboptimal
for many natural distributions of ki’s and is also likely to be worse in practice. Previously, [27]
showed how to build a (user-level) differentially private recommendation system, and [25] showed
how to train a language model with user-level differential privacy.

User-level differential privacy in the context of heterogeneous data distributions has been studied
in the constant ki setting [31]. Much of the complexity in our setting arises from variation in the ki
values, which makes it challenging to maintain user-level privacy while leveraging the additional data
points from users with a large number of data points. The challenges to optimization due to data
heterogeneity have also been studied; [34, 15], and Eichner et al. [13] study the approach of using
different models for different groups from a convex optimization point-of-view. Mathematically,
similar issues are addressed in meta-analysis [6, 33], where the heterogeneity comes from different
studies instead of different users. The non-private approach of inverse variance weighting that we
recap in Section 3 is standard in that context.
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2 Model and Preliminaries

Let D be a distribution on [0, 1] with (unknown) mean p and variance σ2
p. We assume a population

of n ∈ N users, where each user i ∈ [n] has a hidden variable pi ∼ D and ki ∈ N samples
x1
i , . . . , x

ki
i ∼i.i.d. Ber(pi). That is, the samples of user i are i.i.d. from a Bernoulli distribution with

parameter pi, which we will denote Di =Ber(pi). Assume without loss of generality that individuals
are sorted by their ki, so that k1 ≥ · · · ≥ kn. The samples xj

i and hidden variables pi of each user
are unknown to the analyst, and we start with assuming that the ki’s are publicly known. In Appendix
D, we extend our results to the general case where the ki’s are also private.

The analyst’s goal is to estimate the population mean p with an estimator of minimum variance in a
manner that is differentially private with respect to user data (pi and {xj

i}). Each user provides their
own estimate of their pi to the analyst based on their data xi: p̂i = 1

ki

∑ki

j=1 x
j
i . The analyst can then

aggregate these (possibly along with other information) into her estimate of p.

Let us first give some intuition for the distribution of these p̂i. Let D(k) be the distribution that
first samples pi ∼ D, then samples x1, · · · , xk ∼ Ber(pi) and finally outputs p̂i = 1

k

∑k
i=1 xi.

The following lemma (proven in Appendix A) shows that the variance of p̂i is larger than σ2
p and

transitions from p(1− p) to σ2
p as k increases (equivalently as p̂i concentrates around pi).

Lemma 2.1. For all distributions D supported on [0, 1] with mean p and variance σ2
p, σ2

p ≤ p(1−p).

Further, E[D(k)] = p and Var(D(k)) = 1
kp(1− p) +

(
1− 1

k

)
σ2
p.

We assume that ki and pi are independent, so the amount of data an individual has is independent
of her data distribution. This is crucial for the problem setup: in order for learning from the
heterogeneous population to be advantageous, there must a common meta-distribution is shared
across all individuals in the population, rather than a meta-distribution only for each fixed ki.

2.1 Differential Privacy

Differential privacy (DP) [12] informally limits the inferences that can be made about an individual
as a result of computations on a large dataset containing their data. The definition of DP requires a
pairwise neighbouring relation between datasets, and DP algorithms ensure that differences between
all pairs of neighboring datasets should be hidden by the private algorithm.

In our setting where users have multiple data points, we must distinguish between user-level and
event-level DP. The former considers D and D′ neighbours if they differ on all data points associated
with a single user, whereas the latter considers D and D′ neighbours only if they differ on a single
data point, regardless of the number of data points contributed by that user. Naturally, user-level DP
provides substantially stronger privacy guarantees, and is often more challenging to achieve from a
technical perspective. In this work, we will provide user-level DP guarantees.

Definition 2.2 (User-level (ε, δ)-Differential Privacy [12]). Given ε ≥ 0, δ ∈ [0, 1] and a neigh-

bouring relation ∼, a randomized mechanism M : X k1 × · · · × X kn → Y is (ε, δ)-differentially
private if for all neighboring datasets D ∼ D′ ∈ X k1 × · · · × X kn , and all events E ⊆ Y ,
Pr[M(D) ∈ E] ≤ eε · Pr[M(D′) ∈ E] + δ, where the probabilities are taken over the random
coins of M. When δ = 0, we refer to this as ε-differential privacy.

One standard tool for achieving ε-differential privacy is the Laplace Mechanism. For a given
function f to be evaluated on a dataset D, the Laplace Mechanism first computes f(D) and then
adds Laplace noise which depends on the sensitivity of f , defined for real-valued functions as
∆f = maxD,D′ neighbors |f(D)− f(D′)|. The Laplace Mechanism outputs ML(D, f, ε) = f(D) +
Lap(∆f/ε) and is (ε, 0)-DP.

3 A Non-Private Estimator

We begin by illustrating the procedure for computing an optimal estimator p̂ in the non-private setting.
The general structure of the estimator will be the same in both settings. The analyst will compute the
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Algorithm 1 Non-private Heterogeneous Mean Estimation

Input: number of users n, number of samples held by each user (k1, . . . , kn) (ki ≥ ki+1), user-level
estimates (p̂1, · · · , p̂n).

1: Initial Estimates
2: p̂initial =

∑n
i=9n/10 x

1
i

3: σ̂2
p = 1

logn(logn−1)

∑
i,j∈[logn](p̂i − p̂j)

2

4: Defining weights

5: for i = log n to 9n/10 do

6: Compute σ̂2
i = 1

ki
(p̂initial − (p̂initial)2) + (1− 1

ki
)σ̂2

p.

7: ŵi =
1/σ̂2

i∑9n/10
j=log n 1/σ̂2

j

8: Final Estimate
9: return p̂realistic =

∑n
i=logn ŵip̂i

population-level mean estimate p̂ as a weighted linear combination of the user-level estimates p̂i.2

The key question is how to derive the weights so that individuals with more reliable estimates (i.e.,
larger ki) have more influence over the final result.

Let σ2
i be the variance of p̂i. In an idealized setting where the σ2

i are all known, the analyst can
minimize the variance of the estimator by weighting each user’s estimate p̂i proportionally to the
inverse variance of their estimate. The weights are normalised to ensure the estimate is unbiased.
This approach yields the following estimator, which is optimal in the non-private setting [17]:

p̂ideal =
∑n

i=1 w
∗
i p̂i where w∗

i =
1/σ2

i∑n
j=1

1/σ2
j
. (1)

In practice, the σ2
i s are unknown, so the analyst must rely on estimates to assign weights. Fortunately,

the user-level variance σ2
i can be expressed as a function of ki and the population statistics p and σ2

p,
as shown in Lemma 2.1:

σ2
i = 1

ki
(p− p2) + (1− 1

ki
)σ2

p. (2)

Now, p and σ2
p are also unknown but since they are population statistics, we can use simple estimators

to obtain initial estimates. These initial statistics can then be used to define the weights, resulting in
a refined estimate of the mean p. Specifically, as outlined in Algorithm 1, we split users into three
groups. The log n individuals with the most data are used to produce an estimate of Var(D(klogn)),
which serves as a proxy for σ2

p. The 1/10th of individuals with the least data are used to produce
an initial estimate of the mean p. The remaining 9n/10− log n individuals are used to produce the
final estimate. We split the individuals into separate groups to ensure the initial estimates and the
final estimate are independent so we can easily obtain variance bounds on the final estimate. The
specific sizes of the three groups are heuristic, the exact fraction 1/10 is not necessary. Under some
mild conditions on D, and if n is large enough, the error incurred by p̂realistic is within a constant
factor of the error incurred by the ideal estimator p̂ideal.3

4 A Framework for Private Estimators

We now turn to our main result, which is a framework for designing differentially private estimators
for the mean p of the meta-distribution D. We discussed in Section 3 the need for initial estimates of p
and σ2

p to weight the contributions of the users. In the non-private setting, there are canonical, optimal
choices of these estimators; the empirical mean and empirical variance. In the private setting, these
choices are not canonical, and different estimators may perform better in different settings. There
is a considerable literature exploring various mean and variance estimators for the homogeneous,

2In the non-private setting, this restriction is without loss of generality since the optimal estimator takes this
form. In the private setting this is still near-optimal; see Section 5 for more details.

3This can be observed by viewing the non-private setting as a simplified version of the setting studied in
Section 5, which proves near-optimality of (truncated) linear estimators for this problem.
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single-data-point-per-user setting. As such, we leave the choice of the specific initial mean and
variance estimators as parameters of the framework. This allows us to focus on the nuances of the
heterogeneous setting, not addressed in prior work. In Appendix F, we give a specific pair of private
mean and variance estimators that provably perform well in our framework.

As in the previous section, we will define two estimators: a ideal estimator p̂idealε (only implementable
if all the σ2

i are known), and a realisable estimator p̂realisticε . The main result in this section (Theorem
4.1) is that under some mild conditions and assuming n is sufficiently large, there exists an (ε, δ)-DP
estimator p̂realisticε (Algorithm 2) such that for some constant C, Var(p̂realisticε ) ≤ C ·Var(p̂idealε ).

4.1 The Complete Information Private Estimator

As in Section 3, we begin with a discussion of the ideal estimator if the σi were known. This ideal
estimator p̂idealε has a similar form to p̂ideal with some crucial differences. The first main distinction
is that Laplace noise is added to achieve DP, where the standard deviation of the noise must be scaled
to the sensitivity of the statistic. A natural solution would be to add noise directly to the non-private
estimator p̂ideal, but the sensitivity of this statistic is too high. In fact, the worst case sensitivity of
p̂ideal is 1, which would result in the noise that completely masks the signal. Thus, the first change

we make is to limit the weight of any individual’s contribution by setting wi =
min{1/σ2

i ,T/σi}∑n
j=1

min{1/σ2
j ,T/σj}

for some truncation parameter T . Intuitively, the parameter T controls the trade-off between variance
of the weighted sum of individual estimates (which is minimized by assigning high weight to low
variance estimators) and variance of the noise added for privacy (which is minimized by assigning
roughly equal weight to all users).

We make one final modification to lower the sensitivity of the statistic. Inspired by the Gaussian
mean estimator of [21], we truncate the individual contributions p̂i into a sub-interval of [0, 1]. The
truncation intervals [ai, bi] are chosen to be as small as possible (to reduce the sensitivity and hence
the noise added for privacy), while simultaneously ensuring that p̂i ∈ [ai, bi] with high probability
(to avoid truncating relevant information for the estimation). In order to achieve this, we need a tail
bound on the distribution D. To maintain generality for now, we assume there exists a known function
fk
D(n, σ

2
p, β) that gives high-probability concentration guarantees of p̂i around p, and is defined such

that Pr
(
∀i, |p̂i − p| ≤ fki

D (n, σ2
p, β)

)
≥ 1− β. Appendix G presents a more detailed discussion of

the structure of these concentration functions and how they may be estimated if they are unknown to
the analyst.

We can now describe the full information, or ideal, estimator p̂idealε :

p̂idealε =
∑n

i=1 w
∗
i [p̂i]

bi
ai

+ Lap(
maxi w

∗
i |bi−ai|
ε ), (3)

where [p̂i]
bi
ai

denotes the projection of p̂i onto the interval [ai, bi] and

ai = p− fki

D (n, σ2
p, β), bi = p+ fki

D (n, σ2
p, β), and w∗

i =
min{1/σ2

i ,T
∗/σi}∑n

j=1 min{1/σ2
j ,T

∗/σj} . (4)

We would like to choose the truncation parameter T ∗ to minimise the variance of the resulting
estimator:

Var(p̂idealε ) =
∑n

i=1(w
∗
i )

2Var([p̂i]
bi
ai
) + maxi

(w∗
i )

2|bi−ai|2
ε2 . (5)

Although we do not know Var([p̂i]
bi
ai
) exactly, we do know that [p̂i]biai

= p̂i with high probability, and
thus we can approximate Var([p̂i]biai

) with σi. Throughout the remainder of the paper, we will assume
that β is chosen such that 1

2σ
2
i ≤ Var([p̂i]

bi
ai
). Thus, we will approximate the optimal truncation

parameter by

T ∗ = argmin
T

n∑

i=1

(w∗
i )

2σ2
i +max

i

(w∗
i )

2|bi − ai|2
ε2

= argmin
T

1
(
∑n

j=1 min{1/σ2
j ,T/σi})2 (

∑n
i=1 min{1/σ2

i , T
2}+maxi

min{1/σ4
i ,T

2/σ2
i }|bi−ai|2

ε2 ).

(6)
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We’ll show in Section 5 that under some conditions on the Fisher information of D(k), p̂idealε is
optimal up to logarithmic factors among all private unbiased estimators for heterogeneous mean
estimation.
Example 1. As a simple example, suppose that p ∈ ( 13 ,

2
3 ), σp = 1/

√
n, and ki = dn

i e. In this
case, an asymptotically optimal non-private estimator averages all the

∑
ki = O(n log n) available

samples. It can be shown that this gives us an unbiased estimator with standard deviation Θ( 1√
n logn

).

A naive sensitivity-based noise addition method will give us privacy error O( 1
ε logn ), since the weight

of the first user in this average is Θ(1/ log n). Our truncation-based algorithm will truncate the ith

user’s contribution to a range of width

√
logn
ki

≈
√

i logn
n . Applying our algorithm would then give

us privacy error Θ( 1
ε
√
n logn

). In other words, for constant ε, privacy does not have an asymptotic

cost. We remark that in this case, any uniform weighted average will incur asymptotically larger
standard deviation Ω( 1√

n
).

4.2 Realizable Private Heterogeneous Mean Estimation

Our goal in this section is to design a realizable estimator p̂realisticε that is competitive with the ideal
estimator p̂idealε . As in the non-private setting, we divide the individuals into three groups. The first
group, consisting of the n/10 individuals with the lowest ki will be used to compute the initial mean
estimate p̂initialε . The log n individuals with the largest ki will be used to compute the initial variance
estimate σ̂2

p. These initial estimates will be plugged into expressions to compute σ̂2
i , âi, and b̂i for

the remaining individuals log n+ 1 ≤ i ≤ 9n/10. As in the non-private setting, the specific sizes
of these groups are heuristic. The important thing is that the size of the first two groups are large
enough that the resulting mean and variance estimates are sufficiently accurate, and the last group
contains Θ(n)-users whose ki is above the median.

Since the estimate p̂initialε used in âi and b̂i may had additional error up to α, we shift these estimates
by an additive α to account for this error. Next, all of these intermediate estimates and the user-level
mean estimates p̂i from users log n + 1 ≤ i ≤ 9n/10 will be used to compute the optimal weight
cutoff T̂ ∗, the optimal weights ŵ∗

i for each user log n + 1 ≤ i ≤ 9n/10, and finally the estimator

p̂realisticε as a weighted sum of the truncated user-level estimates [p̂i]
b̂i
âi

plus Laplace noise. This
procedure is presented in full detail in Algorithm 2.

For the remainder of this section, we turn to establishing the accuracy requirements of meanε,δ and
varianceε,δ that ensure that the error of p̂realisticε is within a constant factor of the error of p̂idealε .
Theorem 4.1. For any ε > 0, δ ∈ [0, 1], Algorithm 2 is (ε, δ)-DP. If,

• meanε,δ is such that given n/10 samples from D, with probability 1 − β |p − p̂initialε | ≤
fki

D (n, σ2
p, β) and p̂initialε (1− p̂initialε ) ∈

[
1
2p(1− p), 3

2p(1− p)
]
,

• varianceε,δ is such that given log n samples from D(k), with probability 1 − β, σ̂2
p ∈

[Var(D(k)), 8Var(D(k))],

• the kis are such that k1

kn/2
≤ n/2−logn

logn ,

then with probability 1− 2β, Var(p̂realisticε ) ≤ C ·Var(p̂idealε ) for some absolute constant C.

A full proof of Theorem 4.1 is given in Appendix B; we present intuition and a proof sketch here.
The first two conditions of Theorem 4.1 ensure that the mean and variance estimates are sufficiently
accurate to use in the remainder of the algorithm. Notice that the initial estimates do not need to
be especially accurate. In fact, provided p is not too close to 0 or 1, the DP mean estimator that
simply adds noise to the sample mean achieves the right accuracy (see Lemma F.1 for details). In
Appendix F, we also give a DP variance estimator that achieves the desired accuracy guarantee using
only log n samples, under some mild conditions (Lemma F.4). Thus the set of mean and variance
estimators that satisfy the accuracy requirements of Theorem 4.1 are non-empty. We note that the
constants 1/2 , 3/2 and 8 in Theorem 4.1 are not intrinsic; any constant multiplicative factors will
suffice. We also note that the specific sizes of the three groups outlined in Algorithm 2 are heuristic
and can be varied to ensure that the initial estimator achieves the required accuracy.
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Algorithm 2 Private Heterogeneous Mean Estimation

Input: (ε, δ)-DP mean estimator meanε,δ, (ε, δ)-DP variance estimator varianceε,δ, number of
users n, number of samples held by each user (k1, . . . , kn s.t. ki ≥ ki+1), user-level estimates
(p̂1, · · · , p̂n), error guarantee on meanε,δ α > 0, and desired high probability bound β ∈ [0, 1].

1: Initial Estimates
2: p̂initialε = meanε,δ(x

1
9n/10+1, · · · , x1n)

3: σ̂2
p = varianceε,δ(p̂1, · · · , p̂logn)

4: Defining weights and truncation

5: for i = log n+ 1 to 9n/10 do

6: Compute σ̂2
i = 1

ki
(p̂initialε − (p̂initialε )2) + (1− 1

ki
)σ̂2

p.

7: âi = p̂initialε − α− fki

D (n, σ̂2
p, β)

8: b̂i = p̂initialε + α+ fki

D (n, σ̂2
p, β)

9:

10: T̂ ∗ = argminT
(
∑9n/10

i=log n+1
min{ 1

σ̂2
i

,T 2}+maxlog n+1≤i≤9n/10
min{1/σ̂i

4,T2/σ̂2
i }|b̂i−âi|

2

ε2
)

(
∑9n/10

i=log n+1
min{1/σ̂2

j ,T/σ̂i})2

11: for i = log n+ 1 to 9n/10 do

12: ŵi
∗
=

min{1/σ̂2
i ,T̂

∗/σ̂i}∑9n/10
j=log n+1

min{1/σ̂2
j ,T̂

∗/σ̂i}

13: Final Estimate

14: Λ = maxi∈[logn+1,9n/10]
min{1/σ̂2

i ,T̂
∗/σ̂i}|b̂i−âi|∑9n/10

j=log n+1
min{1/σ̂2

j ,T̂
∗/σ̂i}

15: Sample Y ∼ Lap
(
Λ
ε

)

16: return p̂realisticε =
∑9n/10

i=logn+1 ŵi
∗
[p̂i]

b̂i
âi

+ Y

The final assumption ensures that the log n users with the most data can not estimate the mean of
meta-distribution alone. Note that up to logarithmic factors, this condition simply requires that the
number of data points held by the user with the most data is at most n times the number of data points
of the median user. If n is large, then this is unlikely to be a limiting factor.

The main distinction between p̂idealε and p̂realisticε is the use of the output of the estimators meanε,δ and
varianceε,δ to estimate σ2

i , ai and bi. Thus, the main component of the proof of Theorem 4.1 is to
show that the conditions stated in the theorem are enough to ensure that σ̂i

2, âi and b̂i are sufficiently
accurate.

Lemma 4.2. Given p̂initialε , σ̂2
p, and ki, define σ̂i

2 = 1
ki
p̂initialε (1 − p̂initialε ) + ki−1

ki
σ̂2
p. Under the

conditions of Theorem 4.1, for all i > log n, we have σ̂i
2 ∈

[
1
2σ

2
i , 9.5σ

2
i

]
and |̂bi − âi| ≤ 4|bi − ai|.

A detailed proof of Lemma 4.2 is presented in Appendix B. Lemma 4.2 implies that the individual
variance estimates used in the weights, and the truncation parameters are accurate up to constant
multiplicative factors. The main ingredient left then is to show that using only a subset of the
population in the final estimate only affects the performance up to a multiplicative factor. Under the
assumption that kmax

kmed
≤ n/2−logn

logn , where σ2
kmax

= Var(p̂1) and σ2
kmed

= Var(p̂n/2) then

σ2
kmed

= 1
kmed

p(1− p) + (1− 1
kmed

)σ2
p ≤ n/2−logn

logn σ2
kmax

. (7)

We use this to show that for any truncation parameter T ,
∑n

i=1 min{ 1
σ2
i
, T
σi
} ≤

4
∑9n/10

i=logn+1 min{ 1
σ2
i
, T
σi
}. Using this, along with the bounds on estimated quantities from Lemma

4.2, we show that with high probability, the variance of the our estimator p̂realisticε is within a constant
factor of Var(p̂idealε ), as given in Equation (5).

We remark that this framework is amenable to being performed in a federated manner if one has
private federated mean and variance estimators. Steps (6) - (8) and Step (12) can be performed locally.
Steps (10) and the final sum in Step (16) would need to be altered to fit the federated framework.

8



We’ll see in Appendix D that it is sufficient to replace Step (10) with an estimate of 1
σlog n

(the inverse
standard deviation of the user with the log n-th most data). The final step is then a simple addition
with output perturbation, which can be performed in a federated manner (e.g., [24, 20]).

In Appendix D, we extend this result to the case where kis are private and unknown to the analyst
(Algorithm 3, Theorem D.1). We’ll need considerably more machinery in this setting where both the
sensitivity of the final estimator and the truncation parameter T are data dependent.

5 Near Optimality and Lower Bounds

In Section 4, we showed that the variance of our realisable private estimator p̂realisticε is within a
constant of that of the complete information estimator p̂idealε . In this section, we will show that in
fact, p̂realisticε performs as well (up to logarithmic factors) as the true optimal private estimator. We’ll
also give a lower bound on the performance of the optimal estimator in terms of the ki. This will give
us some intuition into the types of distributions of ki’s that benefit from this refined analysis.

5.1 Minimax Optimality of p̂realisticε

The goal of this section is to show that the estimator p̂realisticε discussed in Section 4.2 is minimax
optimal up to logarithmic factors. In light of Theorem 4.1, it suffices to show that the estimator
p̂idealε is minimax optimal up to logarithmic factors. Let P be a parameterized family of distributions
p 7→ Dp, where E[Dp] = p and Dp is supported on [0, 1]. For p ∈ [0, 1] and k ∈ N, let φp,k be the
probability density function of Dp(k).

Our lower bound will show that the estimation error must consist of a statistical term and a privacy
term. Such a lower bound thus must generalize a statistical lower bound. We will rely on the
Cramer-Rao approach to proving statistical lower bounds; as we show, it is particularly amenable to
incorporating a privacy term. This approach relates the variance of any unbiased estimator of the
mean of a distribution to the inverse of the Fischer information; the proof naturally extends to the case
where we are given samples from a set of distributions with the same mean but different variances,
as is the case in our setting. For many distributions of interest, e.g., Gaussian and Bernoulli, the
Fischer information of a single sample is the inverse of the variance, and we make that assumption
for Dp. We also assume that the Dp has sub-Gaussian tails. Thus, as long as the set of permissible
meta-distributions includes distributions with this property, e.g., included truncated Gaussians, our
lower bound applies.

Theorem 5.1. Let P be a parameterized family of distributions p 7→ Dp and suppose that for all
p ∈ [0, 1] and k ∈ N, the Fisher information of φp,k is inversely proportional to the variance,
Var(Dp(k)): ∫

( ∂
∂p log φp,k(x))

2φp,k(x)dx = O( 1
Var(Dp(k))

), (8)

and for all p, n > 0, k ∈ N and β ∈ [1/3, 2/3], fk
Dp

(n, σ2
p, β) = Õ(Var(Dp(k))), then

max
p∈[1/3,2/3]

[Var∀i∈[n],xi∼D(ki),M (p̂idealε )] = Õ( min
M , unbiased

max
p∈[1/3,2/3]

[Var∀i∈[n],xi∼D(ki),M (M)]).

Further, under the conditions of Theorem 4.1,

max
p∈[1/3,2/3]

[Var∀i∈[n],xi∼D(ki),M (p̂realisticε )] = Õ( min
M , unbiased

max
p∈[1/3,2/3]

[Var∀i∈[n],xi∼D(ki),M (M)]).

We will prove Theorem 5.1 in three steps. The following class of noisy linear estimators, NLE, will act
as an intermediary in our proof. The notation σi denotes Var(xi), which accounts for the randomness
in generating xi.

NLE = {MNL(x;w) =
∑n

i=1 wixi + Lap(maxi wiσi

ε )
∣∣wi ∈ [0, 1],

∑n
i=1 wi = 1}.

Similar to p̂idealε , this class of estimators is not realizable since we only have access to an estimate of
σi = Var(Dp(ki)). Additionally, the estimators in NLE are not necessarily ε-DP.

The proof Theorem 5.1 has three main steps outlined below. The proof of each Lemma is contained
in Appendix E. The first step is shown in Lemma 5.2, which shows that the weights used in p̂idealε are
optimal (i.e., variance-minimizing) among all estimators in the set NLE.
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Lemma 5.2. Given p̂i ∼ Dp(ki) with variance σ2
i for all i ∈ [n] and w ∈ [0, 1]n such that∑n

i=1 wi = 1, let p̂ =
∑n

i=1 wip̂i+Lap(maxi wiσi

ε ). The variance of p̂ is minimized by the following

weights: w̃i
∗ =

min{1/σ2
i ,T/σi}∑n

j=1
min{1/σ2

j ,T/σj} for some T .

Since the threshold T ∗ in p̂idealε was chosen to minimize Var(p̂idealε ), then we know that the weights
w∗

i in p̂idealε are optimal.

Now, let us turn to the second – and main – component of the proof of Theorem 5.1. Lemma 5.3
formalises the statement that an estimator inside the class NLE is minimax optimal among unbiased
estimators. That is, for any unbiased estimator M , there exists an estimator MNL ∈ NLE with lower
worst-case variance.

Lemma 5.3. Let P be a parameterized family of distributions p 7→ Dp and suppose that M :
[0, 1]n → [0, 1] is an ε-DP estimator such that for all p ∈ [1/3, 2/3], (1) M is unbiased, µM (p) = p,
and (2) the Fisher information of φp,ki

is inversely proportional to the variance Var(Dp(ki)),∫
( ∂
∂p log φp,ki

(xi))
2φp,ki

(xi)dxi = O( 1
Var(Dp(ki))

), then there exists an estimator MNL ∈ NLE such

that
maxp∈[1/3,2/3][Var∀i∈[n],xi∼D(ki),MNL

(MNL)] ≤ O(maxp∈[1/3,2/3][Var∀i∈[n],xi∼D(ki),M (M)]).

The final component needed for the proof of Theorem 5.1 is a translation from the estimators in NLE,
which are not ε-DP to the corresponding ε-DP estimator. For any weight vector w, we can define an
ε-DP estimator by truncating the data point xi and calibrating the noise appropriately:

MTNL(x1, · · · , xn;w) =
∑n

i=1 wi[xi]
p+f

ki
D (n,σ2

p,β)

p−f
ki
D (n,σ2

p,β)
+ Lap(

maxi 2wif
ki
D (n,σ2

p,β)

ε ). (9)

Provided fki

D (n, σ2
p, β) ≈ Var(D(ki)), the estimators MTNL have approximately the same variance as

the corresponding element of NLE, but are slightly biased. This is formalized in the following lemma.

Lemma 5.4. For any distribution D, n > 0 and β ∈ [0, 1], if for all ki, fki

D (n, σ2
p, β) =

Õ(Var(D(ki)) then for any w ∈ [0, 1]n such that
∑n

i=1 wi = 1, we have Var(MTNL(· ;w)) =

Õ(Var(MNL(· ;w))). Further, the bias of MTNL is at most β.

Finally, we have the tools to prove the main theorem in this section, Theorem 5.1:

min
M unbiased

max
p∈[1/3,2/3]

[VarDp(M)] = Ω( min
M∈NLE

max
p∈[1/3,2/3]

[VarDp(M)]) = Ω( max
p∈[1/3,2/3]

[VarDp
(pNLEε )])

= Ω̃( max
p∈[1/3,2/3]

[VarDp
(p̂idealε )])

= Ω̃( max
p∈[1/3,2/3]

[VarDp
(p̂realisticε )])

where pNLEε ∈ NLE has the same weights as p̂idealε . The equalities follow from Lemmas 5.3, 5.2, 5.4,
and Theorem 4.1, respectively.

5.2 Minimax Lower Bound on Estimation Rate

In addition to establishing the near optimality of p̂realisticε , we will also give a lower bound on minimax
rate of estimation in terms of the parameters k1, · · · , kn and σ2

p. Note that we can view the truncation
of the weights wi as establishing an effective upper bound on ki. Given k1, · · · , kn ∈ N, and ε > 0,

let k∗ = argmink
k
ε2 +

∑n
i=1

min{ki,k}
(
∑n

i=1
min{ki,k})2 . Intuitively, in the case that σp = 0, we want to use as many

samples as possible, but one user contributing many samples leads to larger sensitivity and thus
privacy cost. Limiting to kmax the number of samples per user allows us to limit the sensitivity to be
about wmax(1/

√
kmax). Since wi is proportional to the number of samples used, the variance when

using at most k samples per user is the above expression being minimized. Our lower bound below is
close to this value for reasonable ki’s.

Corollary 5.5. Given k1, · · · , kn ∈ N, and σp, there exists a family of distributions Dp such that

min
M , unbiased

max
p∈[1/3,2/3]

Var∀i∈[n],xi∼Dp(ki)[M(x1, · · · , xn)] ≥ Ω̃(min{
k∗

ε2
+
∑n

i=1 min{ki,k
∗}

(
∑n

i=1 min{ki,
√
kik∗})2 ,

σ2
p

n
}).
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