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Abstract

Hydroelectric power (hydropower) is unique in that it can function as both a conventional source of
electricity and as backup storage (pumped hydroelectric storage and large reservoir storage) for
providing energy in times of high demand on the grid (S. Rehman, L M Al-Hadhrami, and M M
Alam), (2015 Renewable and Sustainable Energy Reviews, 44, 586—98). This study examines the impact
of hydropower on system electricity price and price volatility in the region served by the New England
Independent System Operator (ISONE) from 2014-2020 (ISONE, ISO New England Web Services API
v1.1.” https:/ /webservices.iso-ne.com/docs/v1.1/,2021. Accessed: 2021-01-10). We perform a
robust holistic analysis of the mean and quantile effects, as well as the marginal contributing effects of
hydropower in the presence of solar and wind resources. First, the price data is adjusted for
deterministic temporal trends, correcting for seasonal, weekend, and diurnal effects that may obscure
actual representative trends in the data. Using multiple linear regression and quantile regression, we
observe that hydropower contributes to a reduction in the system electricity price and price volatility.
While hydropower has a weak impact on decreasing price and volatility at the mean, it has greater
impact at extreme quantiles (>70th percentile). At these higher percentiles, we find that hydropower
provides a stabilizing effect on price volatility in the presence of volatile resources such as wind. We
conclude with a discussion of the observed relationship between hydropower and system electricity
price and volatility.

1. Introduction

Satistying electricity demand while reducing environmental impact of energy generation is critical in the
growing ambition to combat climate change [1, 2] and has contributed to an increase in renewable energy
deployment [3]. Hydroelectric power (hydropower) is a large contributor to the renewable energy portfolio.
According to the US Energy and Information Administration, 7.3% of utility scale electricity in the United States
is produced from hydropower, representing a substantial contribution to the US renewable electricity mix (all
other forms of renewable generation account for 12.5% with wind and solar representing 8.4% and 2.3%,
respectively) [4]. Globally, hydropower accounts for 60% of all renewable sources and 16% of total electricity
generation, with with this number higher than 90% in countries like Albania, Congo, Ethiopia, Nepal, Norway,
and Paraguay [5]. Hydropower generation has steadily grown in the past two decades, but in some years, e.g.,
2021, the growth could stall due to drought conditions [6].

© 2022 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/2515-7620/ac7b74
https://orcid.org/0000-0002-4379-5718
https://orcid.org/0000-0002-4379-5718
mailto:olukunle.oladipo@gmail.com
mailto:deborah.sunter@tufts.edu
https://webservices.iso-ne.com/docs/v1.1/
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ac7b74&domain=pdf&date_stamp=2022-07-04
https://crossmark.crossref.org/dialog/?doi=10.1088/2515-7620/ac7b74&domain=pdf&date_stamp=2022-07-04
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

I0OP Publishing Environ. Res. Commun. 4 (2022) 075003 O O Owolabi et al

Table 1. Descriptive Statistics Summary. This shows the minimum, maximum, median, and mean statistics for hydro, solar,
and wind generation (in MWh), and detrended system price and price volatility (in $/MWh) for ISONE between 2014-
2020. (Note: std = standard deviation).

Hydro Solar Wind Total Gen Detrended Price Detrended Price Volatility
(MWh) (MWh) (MWh) (GWh) ($/MWh) ($/MWh)

min 185.14 0.00 0.00 5.32 —156.86 0.00

max 2606.33 218.85 1148.80 11.00 2446.71 1140.54

median 826.68 0.25 290.80 23.20 25.85 2.57

mean 864.62 12.22 339.63 1.19 34.43 5.48

std 415.05 26.81 244.10 2.47 36.09 15.16

A unique characteristic of hydropower is that it provides both conventional electricity generation and long-
duration storage [7]. This complementary ability means that it can serve as a back up for variable renewable
energy (VRE) sources (such as wind and solar) [8] and provide some adaptive response to meet electricity
demands. Despite some environmental drawbacks of hydropower, its added value as a storage system, which is
even more necessary in the current global energy transition, has ignited renewed interest in the technology
leading to rehabilitation of old hydropower systems and development of new systems as an economically and
technically viable option to support volatile solar and wind resources [9]. Several studies have explored the
feasibility of such hydro-wind [10-13], hydro-solar [14—19] and hydro-wind-solar [20] systems.

Hydropower may promote electricity price stability. Unlike coal and natural gas, it is not impacted by fossil
fuel market fluctuations [9]. While there are seasonal variations due to the availability of water, large reservoirs
can mitigate this risk [21]. Hydropower provides more stable and predictable generation when compared to
VREs. Some studies demonstrate that wind can contribute to an increase in electricity price volatility [22, 23]. In
contrast, studies on the impact of hydropower on price volatility showed that dispatchable hydropower may
contribute to a reduction in electricity price and price volatility [24, 25]. The effects of price volatility on the
electricity market have also been studied extensively across international markets. For example, Pereira (2017)
[25] showed that solar power increases price volatility while dispatchable hydropower reduces it in the Spanish
market; Suomalainen (2015) studied [24] the impact of hydropower on volatility in New Zealand. In Norway,
one of the largest producers of hydropower in the world, studies show that hydropower benefits from high price
volatility since it is both a consumer and producer of electricity [26].

The extent of these relationships are fairly dynamic and may vary regionally depending on factors such as the
amount of hydropower present, the composition of the market’s energy portfolio, the market and incentive
structure, and seasonal and temporal patterns of electricity demand. Additionally, variations can be caused by
multiple reservoirs on the same river, especially with different owners or purposes (i.e. irrigation or flood
control, as opposed to hydropower). Different types of reservoirs have been shown to exert varied influences on
streamflow, with hydropower dams being among the most difficult to predict [27]. Irrigation water usage has
been shown to have specific seasonal variations, and is related to the crop type, field, and other site-specific
information [28]. Optimization of water usage in hydropower reservoirs is also not completely possible, since a
dam near capacity will be forced to spill water when the forecast calls for significant amounts of rainfall,
regardless of the current or projected future demands for energy.

While hydropower provides a number of benefits, we must also recognize the complicated and sometimes
negative impacts of dams and their reservoirs on the environment, including those storing water for use in
hydropower. They influence water quality indicators such as suspended sediment and dissolved oxygen
concentrations [29], eutrophication[30], and fish population [31], diversity [32], and size [33], among other
impacts [30, 34, 35]. Some dams are argued to have had less impact than anticipated [36] and many smaller
reservoirs will likely have a larger impact than fewer, larger reservoirs [37], although the results may be specific to
the examples tested.

A novel contribution of this study is the analysis of quantile effects between hydropower and price and price
volatility since previous studies have predominantly focused on quantifying mean effects [21, 25, 38]. The
quantification of quantile effects gives us insight into the relationship at extreme electricity prices given the
skewed nature ofits distribution (table 1). Additionally, this study provides an adjustment model that corrects
for deterministic temporal trends (seasonal, hourly, or weekend) in the electricity price which, if uncorrected,
may otherwise lead to erroneous conclusions. These contributions are important for creating a holistic
understanding of the role of hydropower in system electricity price and price volatility, which could inform
policy and decision-making for new and existing hydropower projects to meet ambitious renewable energy
targets. An understanding of existing conditions is critical before additions or modifications are made to streams
with existing hydropower plants, lest the changes negatively impact the generation of the current plants.
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This study also explores the mean and quantile relationship of hydropower on the system electricity price
and price volatility in the presence of other forms of renewable energy like wind and solar. The study leverages
robust statistical methods of Multiple Linear Regression (MLR) and Quantile Regression (QR) for a case study of
the region served by the New England Independent System Operator (ISONE) from 2014-2020 [39]. An
adjustment model is first used to exclude deterministic temporal effects that may obfuscate actual trends in the
data before exploring both the mean and quantile relationships of hydropower, solar power, and wind power
with system electricity price and price volatility. The study provides a robust holistic evaluation of the impact of
hydropower on the wholesale electricity market that may inform the design of energy portfolios, policy
incentives, and plans for new and existing hydropower plants.

2. Study area and data

While there are numerous pricing systems for energy produced by hydropower, for the purposes of this study we
will consider ISONE, which is an independent non-profit company that coordinates grid operation, market
administration, and power system planning for the New England states of Vermont, Connecticut, Rhode Island,
Massachusetts, New Hampshire, and most of Maine [40]. ISONE has undergone substantial changes in terms of
the diversity of its generation mix. In particular, there has been a significant addition of renewables to the grid in
the past few years. Renewables (predominantly wind and solar resources) account for 9%, while hydropower
accounts for an additional 7% of the electric energy generation in ISONE [41]. It should be noted that while
hydropower is classified as a renewable resource, it does not follow that it is a purely benign power source. There
can be major negative impacts, including on local fauna and flora as well as due to the forced relocation of local
populations (especially indigenous peoples), and greenhouse gas emissions and cyanobacteria blooms may be
caused by the deterioration of biomass if not removed properly before the reservoir is filled [30]. Though there is
controversy on the classification of hydropower as a clean renewable source of electricity, it still represents a
stable source of power for the region, and an opportunity to serve as alow cost method of energy storage.
Roughly 2,000 MW of large-scale hydroelectric energy storage is available in ISONE [42]. This offers the
opportunity to balance electricity supply and demand, and reduce the volatility associated with the intermittency
of VRE.

The data used in the study is based on the real-time, hourly, hub electricity price and generation data from
ISONE from 2014-2020. ISONE gives data on the system price of electricity and the amount of electricity that
was generated from various energy sources (e.g., hydro, solar, wind, natural gas, coal, nuclear). The ISONE data
was obtained from the ISONE web services APIv.1.1 [39] that gives a range of public market and energy data.
ISONE reports information on the price paid at different nodes. Due to transmission and congestion costs, the
price at two different nodes can be different. To ensure that the results are interpretable and comparable, we
remove transmission and congestion costs to compute a system price. The system price reflects the cost of
generating one megawatt-hour of electricity. The system price is also known as the Marginal Energy Cost, MEC
(see equation (1)). We collected historical data on the following information:

1. Electricity prices: The hourly price data was obtained for the hub location in hourly resolution alongside the
losses and congestion cost. The data contains information on the Locational Marginal Price, Congestion
Price, and Losses. The system price or MEC, is then obtained as [43]:

MEC = LMP — MCC — MLC 1)

where: LMP = Locational Marginal Price
MEC = Marginal Energy Cost

MCC = Marginal Congestion Cost

MLC = Marginal Loss Cost

2. Generation mix: This includes electricity generation, separated by energy source, used to satisfy demand. The
generation data was obtained at the hub location in resolutions ranging from 5-15 minutes and then
aggregated to hourly resolution.

3. Methods

3.1. Adjustment model: seasonal, diurnal and weekend effects
Electricity price is driven by changes in the characteristics of consumer demand. For example, energy prices
are typically higher in the day (when consumers are awake) than at night, and higher in the summer
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(when consumers use air conditioning) than in the spring. In order to properly analyse the impact of
hydropower on energy prices, we need to take these patterns into account. To do so, we use a linear model with
categorical variables to estimate these temporal effects. Categorical variables for hour of day, season, and
weekend were included in the model. The adjustment model allows for interaction effects between the hour of
day and season, so that each season has its own diurnal pattern. More formally, for the hourly data, the system
electricity price at time ¢ is given by:

Price(t) = (ihour(t) + Fpseason(t) + [Gszhour(t) x season(t) + [Byweekend(t) + ¢ )

where hour (), season (#) give the hour of the day and season at time ¢ respectively, weekend (¢) is a binary
variable indicating whether time f occurs on a weekend, and ¢, is a residual term. We subtract the values of the
predicted effects from the system electricity price to obtain the detrended system electricity price. This detrended
system price was used throughout this study. Also the price volatility calculations in this study is based on the
detrended system price.

3.2. Price volatility and energy penetration calculations

We calculated the volatility of detrended system electricity price as a function of time (temporal price volatility),
using the Exponential Weighted Moving Standard Deviation (EWMSD). Detrended price volatility is the
instantaneous standard deviation of the hourly detrended electricity price. The exponentially weighted moving
standard deviation improves on simple standard deviation by assigning weights to the periodic price.
Specifically, EWMSD helps to account for right positive skew nature of the price distribution. The equation is
usually given as:

EWMSD = (1 — )U? + (1 — ) XRU2, + ..(1 — )XU~, (3)

where U7 is the price variance in the current hour and ) is the weight. We have used a weight of 0.94 since this a
standard weighting factor used in financial risk/volatility analysis [44]).

We also calculated the penetration of each of energy source (hydropower, wind and solar) as a percentage of
the amount of energy generated that hour by each source, respectively, relative to the total energy generated
that hour.

3.3.Mean effects of hydropower penetration on detrended system electricity price and detrended price
volatility

Multiple Linear Regression (MLR) was used to analyse the mean relationship between hydropower penetration
(as calculated in section 3.2) and detrended electricity price and detrended price volatility. Four different models
were built, with VRE penetrations as independent variables: (1) hydropower, (2) hydropower + solar, (3)
hydropower + wind, (4) hydropower + wind + solar. These models provide insight on the average relationship
between hydropower and detrended price and detrended price volatility, as well as the contributing effects in the
presence of these other sources of renewable electricity. By analysing the model coefficients, standard error, and
statistical significance (p-value) we were able to describe the extent of the mean relationship between
hydropower, price, and price volatility. To ascertain that multicollinearity assumptions [45] for MLR were met,
specifically that little or no multicollinearity exist in the predictor variables used in the models, a correlation plot
was used to observe the extent of collinearity between the variables (see figure 4). The equation for the joint
model with hydro, wind, and solar can be expressed as:

Detrended Price (or Detrended Price Volatility) = (B¢ + (1 * hydro + 3, *x wind + 33 * solar (4)

where (3, is the intercept and 3,, 3,, 35 are the coefficients of the MLR model.

3.4. Quantile effects of hydropower penetration on detrended system electricity price and detrended price
volatility

We used Quantile Regression (QR) to understand the quantile effect of hydropower on the system electricity
price and price volatility as well as joint quantile effects in the presence of other renewables, specifically solar and
wind. QR is useful in modelling the conditional relationship between a predictor and a response variable at the
median or conditional points in the distribution [46]. QR is a robust statistical method which is less affected by
outliers in the data set compared to its least-squares regression counterpart [47].

For a given a response variable Y and a predictor X, QR is used to estimate the relationship between X and the
conditional quantile of Y. Mathematically, the 7th (0 < 7 < 1) conditional quantile of Y given X = xis defined as
qy (Tlx) = inf{t: lex (t) > 7}, where fy|, is the conditional cumulative distribution function of Y given X = x.
Interpretation of the conditional quantile is straightforward. For example, given the predictor value X = x and
7= 0.5, 50% of observations of Y with associated x fall below the conditional median, Qyx(0.5).
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Figure 1. A. Violin plots of season and detrended system price (trimmed to inner 99.99% of price). B. Violin plots of season and
percentage of hydropower in the electricity generation mix (trimmed to inner 99.99% of price). C. Bar chart showing seasonal
percentage of generation from hydropower, wind, and solar resources. We see some seasonal effects where there is a reduction in the
spread of the detrended system price as the fraction of hydropower in the energy mix increases.

With this, we were able to describe not just the average relationship (like in MLR), but also the effects at the
extremes of the distribution. This is particularly useful for detrended price and detrended volatility since they
have a skewed distribution as seen in table 1. Effects at the extremes may differ from those at the mean; QR can
reveal patterns that occur at those extremes. Like the mean effects analysis, four models were also built and the
process was repeated at four quantile points in the distribution representing the 25th, 50th, 75th and 90th
percentiles (a total of 16 models). The coefficient estimates, standard error, and p-value were then used to
evaluate each of the models. Details on the quantile regression models can be found in A.1 of the appendix.

4. Results and findings

Initial data visualizations (figure 1) were made to graphically understand the relationship between the
percentage of hydropower present in the generation mix and the detrended electricity price across the seasons of
the year: summer, fall, winter, and spring. To visualize the distribution of the data, violin plots were used. The
widths of the shaded areas in the violin plots indicate the distributions along the y-axes, while the boxes in the
middle of the violin plots show the positions of the 25 percentile, median, and 75 percentile values. It is
important to note that while the adjustment model accounts and excludes deterministic trends in electricity
price data, resulting in figure 1(A) showing no variation in the mean value across the seasons, the hydropower
generation data contains seasonal patterns, as seen in figure 1(B). Also, there are observed residual patterns in the
detrended system price that is left after deterministic seasonal adjustment are corrected for, such as the variation
in the range of the detrended system price for different seasons.

Summer is observed to have a large range of detrended electricity price and a low percentage of electricity
coming from hydropower. In contrast, spring is observed to have a smaller range of detrended electricity prices
while having a higher percentage of electricity coming from hydropower. We can observe a gradual reduction in
the maximum values of detrended system price as hydropower penetration increases. Though solar and wind
also have seasonal patterns (see figure 5 and figure 6), their penetration is less than hydropower, as seen in
figure 1(C).

4.1. Mean effects of hydropower on detrended system price and detrended price volatility
The results of the Multiple Linear Regression (MLR) for hydropower and detrended system price using only the
fraction of hydropower in the energy generation mix as the single feature in the model show that hydropower
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Figure 2. Quantile Coefficient Plot. This shows the coefficient for the joint quantile model (hydro + wind + solar) on price. The solid
red line represents the least square regression estimates while the red dashed line represents the 95% confidence interval. The black
line represent the quantile regression coefficient across each of 25th, 50th, 75th and 90th percentile (represented with the black dots)
while the gray shaded region indicates the corresponding error margin.

Table 2. Average Effects: MLR with detrended system price as the response variable.

Model Coefficients Estimate Std. Error P-value
Bo+ By * hydro Bo 40.07 0.38 0.00
& —0.71 0.04 0.00
Bo + B1 * hydro + 3, * solar Bo 40.26 0.38 0.00
B —0.67 0.04 0.00
8y —4.85 0.56 0.00
Bo + B1 * hydro + (3, * wind 5o 41.89 0.40 0.00
8, —0.60 0.04 0.00
05> —0.85 0.06 0.00
Bo + B1 * hydro + (3, % wind + (35 * solar Bo 41.98 0.40 0.00
8, —0.56 0.04 0.00
05> —0.82 0.06 0.00
B —4.33 0.56 0.00

has a statistically significant negative coefficient, indicating that hydropower decreases the mean detrended
system electricity price (table 2). Additional models of hydropower coupled with either wind or solar (hydro +
wind and hydro + solar) also show significant negative coefficients for hydropower, as well as solar and wind,
indicating that all three contribute to a decrease in detrended system electricity price. However, we observe a
weaker effect for hydropower for reducing the mean detrended system price compared to other forms of
renewables, as seen by the smaller magnitude of the hydropower coefficient. When all three energy variables are
included in the MLR model (hydro + wind + solar), we observe that a 1% increase in the percentage of
hydropower in the energy mix contributes to a reduction in the detrended system electricity price by
$0.56/MWh.

The MLR result for hydropower and detrended price volatility using only the fraction of hydropower in the
energy generation mix as the single feature in the model shows that hydropower has a statistically significant
negative coefficient, thus decreases the detrending price volatility. The models that combine hydropower with
either solar or wind (hydro + wind and hydro + solar) both show that hydropower is a statistically significant
contributor alongside wind and solar to the reduction in electricity price volatility. However, when all three
energy variable are included in the MLR model, wind and solar have statistically significant negative coefficients,
while the hydropower coefficient is negative but not statistically significant. Across all models in table 2, the
reduction in the detrended system price volatility is less from hydropower when compared to solar and wind, as
seen by the smaller magnitude in the coefficient.
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Table 3. Average Effects: MLR with detrended system price volatility as the response variable.

Model Coefficients Estimate Std. Error P-value
Bo + Bu * hydro 8o 6.24 0.15 0.00
05 —0.03 0.02 0.00
Bo + B1 * hydro + 3, = solar Bo 6.21 0.16 0.00
5y —0.04 0.02 0.02
05> —1.60 0.24 0.00
Bo + B1 * hydro + (3, x wind Bo 6.00 0.16 0.00
5y —0.04 0.02 0.03
5> —0.13 0.03 0.00
Bo + B1 * hydro + (3, % wind + (33 = solar Bo 6.24 0.17 0.00
o —0.03 0.02 0.153
5> —0.11 0.03 0.00
B3 —1.53 0.24 0.00

Table 4. Quantile Effects: QR with detrended price as the response variable (7 = 0.9).

Model Coefficients Estimate Std. Error P-value
Bo + By * hydro Bo 74.47 0.88 0.00
o —1.61 0.07 0.00
Bo + B1 * hydro + 3, * solar BGo 74.21 0.87 0.00
5y —1.39 0.08 0.00
o5 —14.03 0.39 0.00
Bo + B1 * hydro + (3, % wind Bo 78.59 0.88 0.00
8 ~155 0.07 0.00
8, ~1.35 0.09 0.00
Bo + By * hydro + (3, * wind + (5 * solar Bo 77.30 0.98 0.00
I —1.36 0.09 0.00
8, ~0.97 0.11 0.00
03 —12.78 0.43 0.00

4.2. Quantile effects of hydropower on price and price volatility

Table 4 shows the QR model result for detrended electricity price at the 90th percentile (7 = 0.9). We see a
significant negative slope when using only the fraction of hydropower in the energy generation mix as the single
feature in the model. For the combination of hydropower with either solar or wind (hydro + solar or hydro +
wind), we observe a negative coefficient for all three energy sources. One may notice that the magnitude of the
coefficients for solar are substantially larger than hydropower or wind. This may be an artifact of the low
presence of utility-scale solar energy in ISONE, as seen in figure 1(C). Itis important to note that the coefficients
found are most valid in the range of values studied. For solar energy the maximum solar generation is only
218.85 MWh as seen in table 1, which is substantially less than either wind or hydropower. Similarly, one should
note that the standard error on the solar coefficients are also substantially larger than either wind or hydropower,
as can be seen in tables 2—11. When all three energy variable are included in the QR model (hydro + wind +
solar), all three energy sources still show statistically significant negative effects (p-value less than 0.05) on
decreasing the 90th percentile of the detrended system price. At the 90th percentile of the detrended system
price, using the joint QR model (hydro + wind + solar), we observe that a 1% increase in the percentage of
hydropower in the energy mix contributes to a reduction in the detrended system electricity price by $1.36/
MWh. Figure 2 is a plot of the coefficient of the joint QR model (hydro + wind + solar) on the detrended
electricity price across quantiles. In general, above the 70th percentile, hydropower tends to have a larger
influence on decreasing electricity price.

Table 5 shows the QR at the 90th percentile of each of the four models tested (hydro, hydro + solar, hydro +
wind, and hydro + wind + solar) against detrended system price volatility. When using only the fraction of
hydropower in the energy generation mix as the single feature in the model, hydropower has a statistically
significant negative coefficient. The hydro + solar model shows a statistically significant negative coefficient for
both hydropower and solar penetration on price volatility. The hydro 4+ wind model, however, shows a
significant negative slope for hydropower penetration but an insignificant negative coefficient for wind. For the
joint model (hydro + wind + solar), we see a statistically significant negative coefficient for both hydropower
and solar but an insignificant positive coefficient for wind penetration. At the 90th percentile, using the joint QR
model (hydro 4 wind + solar), we observe that a 1% increase in the percentage of hydropower in the energy mix
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Table 5. Quantile Effects: QR with detrended price volatility as the response variable (7 = 0.9).

Model Coefficients Estimate Std. Error P-value
Bo + By * hydro Bo 12.21 0.25 0.00
0 —0.12 0.03 0.00
Bo + By * hydro + 3, * solar Bo 12.14 0.22 0.00
0 —0.06 0.03 0.02
05> —3.09 0.09 0.00
Bo + B * hydro + B3, * wind Bo 12.29 0.26 0.00
0 —0.11 0.03 0.00
8, ~0.03 0.04 0.41
Bo + B1 * hydro + (3, % wind + (35 « solar Bo 12.10 0.23 0.00
0 —0.07 0.03 0.01
63 0.03 0.03 0.29
Bs —3.12 0.11 0.00

contributes to a reduction in the detrended system electricity price volatility by $0.07/MWh. Once again the
magnitude of the coefficients for solar may be an artifact of the low presence of utility-scale solar energy in
ISONE, as seen in figure 1(C). Figure 3 shows the joint hydro + wind + solar model in relation to detrended
system price volatility across all quantiles. Above the 70th percentile, we observe a large negative slope in the
quantile coefficient plot for hydropower and solar, while the wind coefficient tends to increase beyond the 70th
percentile. We also observe that the quantile coefficient decreases below the mean values (solid red line) at
extreme quantiles for both hydropower and solar. For wind, however, there is a positive increase in the
coefficient above the mean line as the quantile increases indicating a contribution to increasing volatility at
higher quantiles. In general, we observe that the relation at higher quantiles is not only significant but also shows
astronger effect for hydropower to reduce detrended system price and price volatility as seen by the increased
magnitude of the coefficient. At higher quantiles, hydropower tends to have a strong contribution to reducing
volatility, which may provide a stabilizing effect for volatile wind.

5. Discussion

Increase in the percentage of hydropower in the energy generation mix is found to be correlated with a decrease
in detrended system electricity price both at the mean and upper quantiles. The contributing effect of
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hydropower in the presence of other renewables (wind and solar) also results in a net negative reduction in
detrended electricity price. Hydropower is a contributor to the merit order effect [48] since hydropower plants
have low marginal cost and can supply cheaper electricity in the wholesale market, thus lowering the system
price. Itis important to note that this does not mean that the operating cost of hydropower is lower than the
operating cost of wind and solar power plants. Hydropower is seasonal and the high availability of hydropower
resources (especially run-of-river hydropower) in the winter and spring makes it a net contributor, alongside
solar and wind, to drive down electricity prices [49]. This is consistent with studies on the average (mean effects)
relationship between hydropower and price [21, 25]. While our results confirm the average reduction in system
electricity price with increased generation from hydropower, the reduction is greater when considering extreme
electricity prices. On average (mean effects), hydropower contributes less to reducing the mean detrended
system electricity price relative to solar or wind. At the mean, the marginal contribution of hydropower to a
reduction in the mean system electricity price is 32% less than the contribution from wind. However, at the 90th
percentile, hydropower contributes 41% more to the reduction in detrended system electricity price than wind.
Unlike solar and wind, hydropower has storage capabilities, either through pumped hydropower or large
reservoirs. As such, the value of extreme prices can be reduced, leading to a greater reduction of the detrended
electricity price at higher percentiles.

Increase in the percentage of hydropower in the energy generation mix is found to be correlated with a
decrease in detrended system electricity price volatility at the mean and upper quantiles both independently and
in the presence of wind and solar. However, our results indicate that hydropower’s contribution to reduced
volatility is larger and more significant at extremes (periods of high price volatility). When all three energy
sources are considered, the marginal contribution of hydropower to a reduction in the mean system electricity
price volatility is 73% less than the contribution from wind and statistically insignificant. However, at the 90th
percentile, hydropower contributes to a decrease in detrended system price volatility, while wind increases the
volatility. The magnitude of the contribution to the detrended price volatility reduction from hydropower is
more than twice the contribution from wind to the price volatility increase. The contribution of hydropower to
decreasing volatility may be explained by the storage characteristics of hydropower where water is pumped up
the reservoir at low prices (low demand period) and released at higher prices (higher demand period), thus
producing a smoothing effect.

6. Conclusion

In this study, we conducted an analysis of the role of hydropower on electricity price and price volatility. The
analysis is based on the detrended system electricity price data after adjusting for seasonal, weekend, and hourly
effects. We found that the adjustment model used in this study can help to expose actual trends that may be
dampened by behavioral and temporal characteristics of price, and therefore improve accurate interpretations
of the role of hydropower on price and price volatility. We then built models to explore the mean and quantile
effects of hydropower in the presence of solar and wind. The conditional models were especially useful for
observing patterns at extremes of price and price volatility. Findings on the average (mean effects) reduction in
price as the percentage of hydropower increases in the energy generation mix are consistent with literature
[21,25] and the merit order effect [48]. Additionally, we find that hydropower contributes to a greater reduction
in system price at higher quantiles. For price volatility, hydropower provides a small and sometimes insignificant
reduction to the mean price volatility. However, at the extreme quantiles, hydropower contributes a significant
decrease in price volatility while offsetting the effect from wind which tends to increase volatility.

Our finding that the effect of hydropower on electricity price and price volatility is different at the mean and
upper quantiles is important for making accurate and actionable conclusions. This is particularly useful for
designing policy incentives and plans for new and existing hydropower plants. The storage capabilities of
hydropower allow it to act as a shock absorber for price volatility, reducing extreme energy prices and price
volatility.

While this study has evaluated the effect of hydropower on price and price volatility in ISONE, it is not meant
as a universal conclusion on this relationship. The analysis is dependent on factors that vary regionally, such as
the amount of hydropower present, the composition of the market’s energy portfolio, the market and incentive
structure, and seasonal and temporal patterns of electricity demand. Also, direct interpretation of the results
should be limited to the bounds of the data used in this study. For example, utility-scale solar has a much lower
installed capacity in ISONE relative to hydropower and wind and care must be taken to avoid extrapolation
when interpreting its coefficients. The study results are valid within the studied temporal range (2014-2020) and
the hydropower, wind, and solar penetration levels. Given global and regional ambitious renewable energy
targets, future penetration levels are likely to increase to match these targets and, therefore, the future
relationships may differ from the levels observed in this study. Additionally, further research should incorporate
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quantitative data on hydropower storage, such as reservoir capacity, percentage full, and environmental
constraints, in order to quantify the impact of hydropower as a storage resource on electricity price and price
volatility. While this study has explored linear quantiles, future studies should explore non-linear quantile
analysis, as these might expose non-linear effects in the data.
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Appendix

A.1.Nonparametric quantile regression

Given a response variable Yand a predictor X, quantile regression estimates the effects of X on the conditional
quantile of Y. Formally, the 7th (0 < 7 < 1) conditional quantile of Y given X = xis defined as

Qy (7]x) = inf{t: Fy(t) > T}, where Fyj, is the conditional cumulative distribution function of Y given X = x.
The conditional median corresponds to Qyj.(0.5). Interpretation of the conditional quantile is straightforward.
For example, given the predictor value X = xand 7 = 0.9, 90% of observations of Y with associated x fall below
Qyx(0.9). Givena 0 < 7 < 1, linear quantile regression imposes the model Qy (71X) = X'y (7), where the
coefficient vector 3y(7) may depend on the quantile level of interest. An equivalent way to write the linear
quantile regression model is the following. Let { Y;, X;}, i=1,...,n, be arandom sample from the regression
model Y; = X;'8y + €. Then X;’(, represents the 7th conditional quantile of Y; give X; if the random error ¢;
satisfies the quantile constraint P(¢; < 0|X;) = 7. The most prominent feature of quantile regression is its ability
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to incorporate heterogeneity, which can arise from heteroscedastic variances or other sources beyond the
commonly used location-scale models [50].Quantile regression allows the covariates to influence the location,
dispersion and other aspects of the conditional distribution [50]. We performed linear quantile regression using
the R package quantreg [51]. The goodness-of-fit test for linear quantile regression can be performed using the R
package Qtools [52]. The test is based on the cusum process of the gradient vector.

A.2. Tables

Table 6. Quantile Effects: QR with detrended price as the response variable (7 = 0.25).

Model Coefficients Estimate Std. Error P-value
Bo + By * hydro B 20.78 0.11 0.00
o —-0.23 0.01 0.00
Bo + B1 * hydro + 3, = solar Bo 20.85 0.11 0.00
05 —0.23 0.01 0.00
8, —0.77 0.13 0.00
Bo + B1 * hydro + (3, x wind Bo 21.74 0.12 0.00
05 —0.15 0.01 0.00
5> —0.50 0.02 0.00
Bo + B1 * hydro + (3, % wind + (35 * solar Bo 21.74 0.12 0.00
05 —0.14 0.01 0.00
5> —0.50 0.02 0.00
O —0.36 0.13 0.00

Table 7. Quantile Effects: QR with detrended price as the response variable (7 = 0.5).

Model Coefficients Estimate Std. Error P-value
Bo+ B1 * hydro Bo 28.43 0.19 0.00
05 -0.33 0.02 0.00
Bo + B1 * hydro + (3, * solar Bo 28.52 0.19 0.00
0 —0.30 0.02 0.00
05> —2.00 0.15 0.00
Bo + By * hydro + (3, * wind Bo 29.77 0.20 0.00
0 —0.23 0.02 0.00
05> —0.63 0.03 0.00
Bo + B1 * hydro + (3, % wind + (35 * solar Bo 29.90 0.19 0.00
0 —0.22 0.02 0.00
05> —0.62 0.03 0.00
Bs ~1.63 0.15 0.00

Table 8. Quantile Effects: QR with detrended price as the response variable (7 = 0.75).

Model Coefficients Estimate Std. Error P-value
Bo + By * hydro Bo 44.85 0.37 0.00
J5; —0.68 0.04 0.00
Bo + By * hydro 4 (3, * solar Bo 45.25 0.36 0.00
054 —0.62 0.04 0.00
5> —6.56 0.16 0.00
Bo + By * hydro + (3, * wind Bo 46.71 0.41 0.00
05 —0.54 0.04 0.00
5> —0.96 0.06 0.00
Bo + By * hydro + (3, % wind + (35 « solar Bo 46.65 0.40 0.00
o —0.48 0.04 0.00
5> —0.85 0.05 0.00
Bs 547 0.16 0.00
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Table 9. Quantile Effects: QR with detrended price volatility as the response variable (7 = 0.25).

O O Owolabi et al

Model Coefficients Estimate Std. Error P-value
Bo + Bu * hydro Bo 1.056 0.020 0.000
05 0.004 0.002 0.074
Bo + B1 * hydro + 3, = solar Bo 1.079 0.020 0.000
5y 0.007 0.002 0.003
5> —0.350 0.024 0.000
Bo + By * hydro + (3, * wind Bo 1.095 0.022 0.000
5y 0.007 0.002 0.003
5> —0.019 0.003 0.000
Bo + B1 * hydro + (3, % wind + (33 = solar Bo 1.107 0.022 0.000
o 0.010 0.003 0.000
5> —0.016 0.003 0.000
03 —0.341 0.023 0.000
Table 10. Quantile Effects: QR with detrended price volatility as the response variable (7 = 0.5).
Model Coefficients Estimate Std. Error P-value
Bo + B * hydro Bo 2.49 0.04 0.00
05 0.01 0.00 0.02
Bo + B1 * hydro + 3, = solar Bo 2.53 0.04 0.00
o 0.02 0.00 0.00
05> —0.69 0.04 0.00
Bo + B1 * hydro + (3, x wind Bo 2.52 0.04 0.00
o 0.01 0.00 0.01
5> —0.02 0.01 0.02
Bo + B1 * hydro + (3, % wind + (35 = solar Bo 2.55 0.04 0.00
oA 0.02 0.00 0.00
8, ~0.01 0.01 0.12
53 —0.68 0.04 0.00
Table 11. Quantile Effects: QR with detrended price volatility as the response variable (7 = 0.75).
Model Coefficients Estimate Std. Error P-value
Bo + By * hydro Bo 5.87 0.09 0.00
o —0.02 0.01 0.08
Bo + B1 * hydro + (3, * solar Bo 5.88 0.09 0.00
5y 0.00 0.01 0.70
5, —1.38 0.10 0.00
Bo + B1 * hydro + (3, * wind Bo 5.89 0.10 0.00
5y —0.02 0.01 0.11
8, —0.01 0.02 0.58
Bo + B1 * hydro + 3, * wind + (5 * solar Bo 5.81 0.10 0.00
5y 0.00 0.01 0.79
05> 0.02 0.02 0.14
8, 142 0.09 0.00
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Figure 4. Correlation Plot. The correlation plot was used to diagnose possible multicollinearity issues in the MLR model. There is
minimal correlation between solar, wind, and hydropower generation.
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Figure 5. Violin plot of solar penetration (trimmed to inner 99% of detrended system price).
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