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Abstract
Hydroelectric power (hydropower) is unique in that it can function as both a conventional source of
electricity and as backup storage (pumped hydroelectric storage and large reservoir storage) for
providing energy in times of high demand on the grid (S. Rehman, LMAl-Hadhrami, andMM
Alam), (2015Renewable and Sustainable Energy Reviews, 44, 586–98). This study examines the impact
of hydropower on system electricity price and price volatility in the region served by theNewEngland
Independent SystemOperator (ISONE) from 2014-2020 (ISONE, ISONewEnglandWeb Services API
v1.1.” https://webservices.iso-ne.com/docs/v1.1/, 2021. Accessed: 2021-01-10).We perform a
robust holistic analysis of themean and quantile effects, as well as themarginal contributing effects of
hydropower in the presence of solar andwind resources. First, the price data is adjusted for
deterministic temporal trends, correcting for seasonal, weekend, and diurnal effects thatmay obscure
actual representative trends in the data. Usingmultiple linear regression and quantile regression, we
observe that hydropower contributes to a reduction in the system electricity price and price volatility.
While hydropower has aweak impact on decreasing price and volatility at themean, it has greater
impact at extreme quantiles (>70th percentile). At these higher percentiles, wefind that hydropower
provides a stabilizing effect on price volatility in the presence of volatile resources such aswind.We
concludewith a discussion of the observed relationship between hydropower and system electricity
price and volatility.

1. Introduction

Satisfying electricity demandwhile reducing environmental impact of energy generation is critical in the
growing ambition to combat climate change [1, 2] and has contributed to an increase in renewable energy
deployment [3]. Hydroelectric power (hydropower) is a large contributor to the renewable energy portfolio.
According to theUSEnergy and Information Administration, 7.3%of utility scale electricity in theUnited States
is produced fromhydropower, representing a substantial contribution to theUS renewable electricitymix (all
other forms of renewable generation account for 12.5%withwind and solar representing 8.4% and 2.3%,
respectively) [4]. Globally, hydropower accounts for 60%of all renewable sources and 16%of total electricity
generation, withwith this number higher than 90% in countries like Albania, Congo, Ethiopia, Nepal, Norway,
and Paraguay [5]. Hydropower generation has steadily grown in the past two decades, but in some years, e.g.,
2021, the growth could stall due to drought conditions [6].
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Aunique characteristic of hydropower is that it provides both conventional electricity generation and long-
duration storage [7]. This complementary abilitymeans that it can serve as a back up for variable renewable
energy (VRE) sources (such as wind and solar) [8] and provide some adaptive response tomeet electricity
demands. Despite some environmental drawbacks of hydropower, its added value as a storage system, which is
evenmore necessary in the current global energy transition, has ignited renewed interest in the technology
leading to rehabilitation of old hydropower systems and development of new systems as an economically and
technically viable option to support volatile solar andwind resources [9]. Several studies have explored the
feasibility of such hydro-wind [10–13], hydro-solar [14–19] and hydro-wind-solar [20] systems.

Hydropowermay promote electricity price stability. Unlike coal and natural gas, it is not impacted by fossil
fuelmarketfluctuations [9].While there are seasonal variations due to the availability of water, large reservoirs
canmitigate this risk [21]. Hydropower providesmore stable and predictable generationwhen compared to
VREs. Some studies demonstrate that wind can contribute to an increase in electricity price volatility [22, 23]. In
contrast, studies on the impact of hydropower on price volatility showed that dispatchable hydropowermay
contribute to a reduction in electricity price and price volatility [24, 25]. The effects of price volatility on the
electricitymarket have also been studied extensively across internationalmarkets. For example, Pereira (2017)
[25] showed that solar power increases price volatility while dispatchable hydropower reduces it in the Spanish
market; Suomalainen (2015) studied [24] the impact of hydropower on volatility inNewZealand. InNorway,
one of the largest producers of hydropower in theworld, studies show that hydropower benefits fromhigh price
volatility since it is both a consumer and producer of electricity [26].

The extent of these relationships are fairly dynamic andmay vary regionally depending on factors such as the
amount of hydropower present, the composition of themarket’s energy portfolio, themarket and incentive
structure, and seasonal and temporal patterns of electricity demand. Additionally, variations can be caused by
multiple reservoirs on the same river, especially with different owners or purposes (i.e. irrigation orflood
control, as opposed to hydropower). Different types of reservoirs have been shown to exert varied influences on
streamflow,with hydropower dams being among themost difficult to predict [27]. Irrigationwater usage has
been shown to have specific seasonal variations, and is related to the crop type, field, and other site-specific
information [28]. Optimization of water usage in hydropower reservoirs is also not completely possible, since a
damnear capacity will be forced to spill waterwhen the forecast calls for significant amounts of rainfall,
regardless of the current or projected future demands for energy.

While hydropower provides a number of benefits, wemust also recognize the complicated and sometimes
negative impacts of dams and their reservoirs on the environment, including those storingwater for use in
hydropower. They influencewater quality indicators such as suspended sediment and dissolved oxygen
concentrations [29], eutrophication[30], and fish population [31], diversity [32], and size [33], among other
impacts [30, 34, 35]. Some dams are argued to have had less impact than anticipated [36] andmany smaller
reservoirs will likely have a larger impact than fewer, larger reservoirs [37], although the resultsmay be specific to
the examples tested.

A novel contribution of this study is the analysis of quantile effects between hydropower and price and price
volatility since previous studies have predominantly focused on quantifyingmean effects [21, 25, 38]. The
quantification of quantile effects gives us insight into the relationship at extreme electricity prices given the
skewed nature of its distribution (table 1). Additionally, this study provides an adjustmentmodel that corrects
for deterministic temporal trends (seasonal, hourly, orweekend) in the electricity price which, if uncorrected,
may otherwise lead to erroneous conclusions. These contributions are important for creating a holistic
understanding of the role of hydropower in system electricity price and price volatility, which could inform
policy and decision-making for new and existing hydropower projects tomeet ambitious renewable energy
targets. An understanding of existing conditions is critical before additions ormodifications aremade to streams
with existing hydropower plants, lest the changes negatively impact the generation of the current plants.

Table 1.Descriptive Statistics Summary.This shows theminimum,maximum,median, andmean statistics for hydro, solar,
andwind generation (inMWh), and detrended systemprice and price volatility (in $/MWh) for ISONEbetween 2014-
2020. (Note: std = standard deviation).

Hydro Solar Wind Total Gen Detrended Price Detrended Price Volatility

(MWh) (MWh) (MWh) (GWh) ($/MWh) ($/MWh)

min 185.14 0.00 0.00 5.32 −156.86 0.00

max 2606.33 218.85 1148.80 11.00 2446.71 1140.54

median 826.68 0.25 290.80 23.20 25.85 2.57

mean 864.62 12.22 339.63 1.19 34.43 5.48

std 415.05 26.81 244.10 2.47 36.09 15.16
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This study also explores themean and quantile relationship of hydropower on the system electricity price
and price volatility in the presence of other forms of renewable energy likewind and solar. The study leverages
robust statisticalmethods ofMultiple Linear Regression (MLR) andQuantile Regression (QR) for a case study of
the region served by theNewEngland Independent SystemOperator (ISONE) from2014-2020 [39]. An
adjustmentmodel isfirst used to exclude deterministic temporal effects thatmay obfuscate actual trends in the
data before exploring both themean and quantile relationships of hydropower, solar power, andwind power
with system electricity price and price volatility. The study provides a robust holistic evaluation of the impact of
hydropower on thewholesale electricitymarket thatmay inform the design of energy portfolios, policy
incentives, and plans for new and existing hydropower plants.

2. Study area and data

While there are numerous pricing systems for energy produced by hydropower, for the purposes of this studywe
will consider ISONE,which is an independent non-profit company that coordinates grid operation,market
administration, and power systemplanning for theNewEngland states of Vermont, Connecticut, Rhode Island,
Massachusetts, NewHampshire, andmost ofMaine [40]. ISONEhas undergone substantial changes in terms of
the diversity of its generationmix. In particular, there has been a significant addition of renewables to the grid in
the past few years. Renewables (predominantly wind and solar resources) account for 9%,while hydropower
accounts for an additional 7%of the electric energy generation in ISONE [41]. It should be noted that while
hydropower is classified as a renewable resource, it does not follow that it is a purely benign power source. There
can bemajor negative impacts, including on local fauna andflora as well as due to the forced relocation of local
populations (especially indigenous peoples), and greenhouse gas emissions and cyanobacteria bloomsmay be
caused by the deterioration of biomass if not removed properly before the reservoir isfilled [30]. Though there is
controversy on the classification of hydropower as a clean renewable source of electricity, it still represents a
stable source of power for the region, and an opportunity to serve as a low costmethod of energy storage.
Roughly 2,000MWof large-scale hydroelectric energy storage is available in ISONE [42]. This offers the
opportunity to balance electricity supply and demand, and reduce the volatility associatedwith the intermittency
of VRE.

The data used in the study is based on the real-time, hourly, hub electricity price and generation data from
ISONE from2014-2020. ISONE gives data on the systemprice of electricity and the amount of electricity that
was generated fromvarious energy sources (e.g., hydro, solar, wind, natural gas, coal, nuclear). The ISONEdata
was obtained from the ISONEweb services API v.1.1 [39] that gives a range of publicmarket and energy data.
ISONE reports information on the price paid at different nodes. Due to transmission and congestion costs, the
price at two different nodes can be different. To ensure that the results are interpretable and comparable, we
remove transmission and congestion costs to compute a systemprice. The systemprice reflects the cost of
generating onemegawatt-hour of electricity. The systemprice is also known as theMarginal EnergyCost,MEC
(see equation (1)).We collected historical data on the following information:

1. Electricity prices: The hourly price data was obtained for the hub location in hourly resolution alongside the
losses and congestion cost. The data contains information on the LocationalMarginal Price, Congestion
Price, and Losses. The systemprice orMEC, is then obtained as [43]:

= - -MEC LMP MCC MLC 1( )

where: LMP= LocationalMarginal Price
MEC=Marginal EnergyCost
MCC=Marginal CongestionCost
MLC=Marginal Loss Cost

2. Generationmix: This includes electricity generation, separated by energy source, used to satisfy demand. The
generation datawas obtained at the hub location in resolutions ranging from5-15minutes and then
aggregated to hourly resolution.

3.Methods

3.1. Adjustmentmodel: seasonal, diurnal andweekend effects
Electricity price is driven by changes in the characteristics of consumer demand. For example, energy prices
are typically higher in the day (when consumers are awake) than at night, and higher in the summer
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(when consumers use air conditioning) than in the spring. In order to properly analyse the impact of
hydropower on energy prices, we need to take these patterns into account. To do so, we use a linearmodel with
categorical variables to estimate these temporal effects. Categorical variables for hour of day, season, and
weekendwere included in themodel. The adjustmentmodel allows for interaction effects between the hour of
day and season, so that each season has its own diurnal pattern.More formally, for the hourly data, the system
electricity price at time t is given by:

b b b b= + + ´ + + t t t t t tPrice hour season hour season weekend 2t1 2 3 4( ) ( ) ( ) ( ) ( ) ( ) ( )

where hour (t), season (t) give the hour of the day and season at time t respectively, weekend (t) is a binary
variable indicating whether time t occurs on aweekend, and òt is a residual term.We subtract the values of the
predicted effects from the system electricity price to obtain the detrended system electricity price. This detrended
systemprice was used throughout this study. Also the price volatility calculations in this study is based on the
detrended systemprice.

3.2. Price volatility and energy penetration calculations
Wecalculated the volatility of detrended system electricity price as a function of time (temporal price volatility),
using the ExponentialWeightedMoving StandardDeviation (EWMSD). Detrended price volatility is the
instantaneous standard deviation of the hourly detrended electricity price. The exponentially weightedmoving
standard deviation improves on simple standard deviation by assigningweights to the periodic price.
Specifically, EWMSDhelps to account for right positive skew nature of the price distribution. The equation is
usually given as:

l l l l l= - + - + -- -EWMSD U U U1 1 ... 1 3i i
n

i n
2 2

1
2 2( ) ( ) ( ) ( )

whereUi
2 is the price variance in the current hour andλ is theweight.We have used aweight of 0.94 since this a

standardweighting factor used infinancial risk/volatility analysis [44]).
We also calculated the penetration of each of energy source (hydropower, wind and solar) as a percentage of

the amount of energy generated that hour by each source, respectively, relative to the total energy generated
that hour.

3.3.Mean effects of hydropower penetration on detrended system electricity price and detrended price
volatility
Multiple Linear Regression (MLR)was used to analyse themean relationship between hydropower penetration
(as calculated in section 3.2) and detrended electricity price and detrended price volatility. Four differentmodels
were built, withVREpenetrations as independent variables: (1) hydropower, (2)hydropower+ solar, (3)
hydropower+wind, (4) hydropower+wind+ solar. Thesemodels provide insight on the average relationship
between hydropower and detrended price and detrended price volatility, as well as the contributing effects in the
presence of these other sources of renewable electricity. By analysing themodel coefficients, standard error, and
statistical significance (p-value)wewere able to describe the extent of themean relationship between
hydropower, price, and price volatility. To ascertain thatmulticollinearity assumptions [45] forMLRweremet,
specifically that little or nomulticollinearity exist in the predictor variables used in themodels, a correlation plot
was used to observe the extent of collinearity between the variables (seefigure 4). The equation for the joint
model with hydro, wind, and solar can be expressed as:

b b b b= + * + * + *etrended Price or Detrended Price Volatility hydro wind solarD 40 1 2 3( ) ( )

whereβ0 is the intercept andβ1,β2,β3 are the coefficients of theMLRmodel.

3.4.Quantile effects of hydropower penetration on detrended system electricity price and detrended price
volatility
WeusedQuantile Regression (QR) to understand the quantile effect of hydropower on the system electricity
price and price volatility as well as joint quantile effects in the presence of other renewables, specifically solar and
wind.QR is useful inmodelling the conditional relationship between a predictor and a response variable at the
median or conditional points in the distribution [46]. QR is a robust statisticalmethodwhich is less affected by
outliers in the data set compared to its least-squares regression counterpart [47].

For a given a response variableY and a predictorX, QR is used to estimate the relationship betweenX and the
conditional quantile ofY.Mathematically, the τth (0< τ< 1) conditional quantile ofY givenX= x is defined as

t t=q x t f tinf :Y Y x( ∣ ) { ( ) }∣  , where fY|x is the conditional cumulative distribution function ofY givenX= x.
Interpretation of the conditional quantile is straightforward. For example, given the predictor valueX= x and
τ= 0.5, 50%of observations ofYwith associated x fall below the conditionalmedian,QY|X(0.5).
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With this, wewere able to describe not just the average relationship (like inMLR), but also the effects at the
extremes of the distribution. This is particularly useful for detrended price and detrended volatility since they
have a skewed distribution as seen in table 1. Effects at the extremesmay differ from those at themean;QR can
reveal patterns that occur at those extremes. Like themean effects analysis, fourmodels were also built and the
process was repeated at four quantile points in the distribution representing the 25th, 50th, 75th and 90th
percentiles (a total of 16models). The coefficient estimates, standard error, and p-valuewere then used to
evaluate each of themodels. Details on the quantile regressionmodels can be found inA.1 of the appendix.

4. Results andfindings

Initial data visualizations (figure 1)weremade to graphically understand the relationship between the
percentage of hydropower present in the generationmix and the detrended electricity price across the seasons of
the year: summer, fall, winter, and spring. To visualize the distribution of the data, violin plots were used. The
widths of the shaded areas in the violin plots indicate the distributions along the y-axes, while the boxes in the
middle of the violin plots show the positions of the 25 percentile, median, and 75 percentile values. It is
important to note that while the adjustmentmodel accounts and excludes deterministic trends in electricity
price data, resulting infigure 1(A) showing no variation in themean value across the seasons, the hydropower
generation data contains seasonal patterns, as seen infigure 1(B). Also, there are observed residual patterns in the
detrended systemprice that is left after deterministic seasonal adjustment are corrected for, such as the variation
in the range of the detrended systemprice for different seasons.

Summer is observed to have a large range of detrended electricity price and a lowpercentage of electricity
coming fromhydropower. In contrast, spring is observed to have a smaller range of detrended electricity prices
while having a higher percentage of electricity coming fromhydropower.We can observe a gradual reduction in
themaximumvalues of detrended systemprice as hydropower penetration increases. Though solar andwind
also have seasonal patterns (see figure 5 andfigure 6), their penetration is less than hydropower, as seen in
figure 1(C).

4.1.Mean effects of hydropower on detrended systemprice anddetrended price volatility
The results of theMultiple Linear Regression (MLR) for hydropower and detrended systemprice using only the
fraction of hydropower in the energy generationmix as the single feature in themodel show that hydropower

Figure 1.A.Violin plots of season and detrended systemprice (trimmed to inner 99.99%of price). B. Violin plots of season and
percentage of hydropower in the electricity generationmix (trimmed to inner 99.99%of price). C. Bar chart showing seasonal
percentage of generation fromhydropower, wind, and solar resources.We see some seasonal effects where there is a reduction in the
spread of the detrended systemprice as the fraction of hydropower in the energymix increases.
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has a statistically significant negative coefficient, indicating that hydropower decreases themean detrended
system electricity price (table 2). Additionalmodels of hydropower coupledwith either wind or solar (hydro+
wind and hydro+ solar) also show significant negative coefficients for hydropower, as well as solar andwind,
indicating that all three contribute to a decrease in detrended system electricity price. However, we observe a
weaker effect for hydropower for reducing themean detrended systemprice compared to other forms of
renewables, as seen by the smallermagnitude of the hydropower coefficient.When all three energy variables are
included in theMLRmodel (hydro+wind+ solar), we observe that a 1% increase in the percentage of
hydropower in the energymix contributes to a reduction in the detrended system electricity price by
$0.56/MWh.

TheMLR result for hydropower and detrended price volatility using only the fraction of hydropower in the
energy generationmix as the single feature in themodel shows that hydropower has a statistically significant
negative coefficient, thus decreases the detrending price volatility. Themodels that combine hydropowerwith
either solar orwind (hydro+wind and hydro+ solar) both show that hydropower is a statistically significant
contributor alongsidewind and solar to the reduction in electricity price volatility. However, when all three
energy variable are included in theMLRmodel, wind and solar have statistically significant negative coefficients,
while the hydropower coefficient is negative but not statistically significant. Across allmodels in table 2, the
reduction in the detrended systemprice volatility is less fromhydropower when compared to solar andwind, as
seen by the smallermagnitude in the coefficient.

Table 2.Average Effects:MLRwith detrended systemprice as the response variable.

Model Coefficients Estimate Std. Error P-value

β0+β1 ∗ hydro β0 40.07 0.38 0.00

β1 −0.71 0.04 0.00

β0 + β1 ∗ hydro + β2 ∗ solar β0 40.26 0.38 0.00

β1 −0.67 0.04 0.00

β2 −4.85 0.56 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 41.89 0.40 0.00

β1 −0.60 0.04 0.00

β2 −0.85 0.06 0.00

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 41.98 0.40 0.00

β1 −0.56 0.04 0.00

β2 −0.82 0.06 0.00

β3 −4.33 0.56 0.00

Figure 2.Quantile Coefficient Plot. This shows the coefficient for the joint quantilemodel (hydro+wind+ solar) on price. The solid
red line represents the least square regression estimates while the red dashed line represents the 95% confidence interval. The black
line represent the quantile regression coefficient across each of 25th, 50th, 75th and 90th percentile (representedwith the black dots)
while the gray shaded region indicates the corresponding errormargin.
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4.2.Quantile effects of hydropower on price andprice volatility
Table 4 shows theQRmodel result for detrended electricity price at the 90th percentile (τ= 0.9).We see a
significant negative slopewhen using only the fraction of hydropower in the energy generationmix as the single
feature in themodel. For the combination of hydropowerwith either solar orwind (hydro+ solar or hydro+
wind), we observe a negative coefficient for all three energy sources. Onemay notice that themagnitude of the
coefficients for solar are substantially larger than hydropower orwind. Thismay be an artifact of the low
presence of utility-scale solar energy in ISONE, as seen infigure 1(C). It is important to note that the coefficients
found aremost valid in the range of values studied. For solar energy themaximum solar generation is only
218.85MWhas seen in table 1, which is substantially less than either wind or hydropower. Similarly, one should
note that the standard error on the solar coefficients are also substantially larger than either wind or hydropower,
as can be seen in tables 2–11.When all three energy variable are included in theQRmodel (hydro+wind+
solar), all three energy sources still show statistically significant negative effects (p-value less than 0.05) on
decreasing the 90th percentile of the detrended systemprice. At the 90th percentile of the detrended system
price, using the jointQRmodel (hydro+wind+ solar), we observe that a 1% increase in the percentage of
hydropower in the energymix contributes to a reduction in the detrended system electricity price by $1.36/
MWh. Figure 2 is a plot of the coefficient of the jointQRmodel (hydro+wind+ solar) on the detrended
electricity price across quantiles. In general, above the 70th percentile, hydropower tends to have a larger
influence on decreasing electricity price.

Table 5 shows theQR at the 90th percentile of each of the fourmodels tested (hydro, hydro+ solar, hydro+
wind, and hydro+wind+ solar) against detrended systemprice volatility.When using only the fraction of
hydropower in the energy generationmix as the single feature in themodel, hydropower has a statistically
significant negative coefficient. The hydro+ solarmodel shows a statistically significant negative coefficient for
both hydropower and solar penetration on price volatility. The hydro+windmodel, however, shows a
significant negative slope for hydropower penetration but an insignificant negative coefficient for wind. For the
jointmodel (hydro+wind+ solar), we see a statistically significant negative coefficient for both hydropower
and solar but an insignificant positive coefficient for wind penetration. At the 90th percentile, using the jointQR
model (hydro+wind+ solar), we observe that a 1% increase in the percentage of hydropower in the energymix

Table 3.Average Effects:MLRwith detrended systemprice volatility as the response variable.

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 6.24 0.15 0.00

β1 −0.03 0.02 0.00

β0 + β1 ∗ hydro + β2 ∗ solar β0 6.21 0.16 0.00

β1 −0.04 0.02 0.02

β2 −1.60 0.24 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 6.00 0.16 0.00

β1 −0.04 0.02 0.03

β2 −0.13 0.03 0.00

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 6.24 0.17 0.00

β1 −0.03 0.02 0.153

β2 −0.11 0.03 0.00

β3 −1.53 0.24 0.00

Table 4.Quantile Effects: QRwith detrended price as the response variable (τ = 0.9).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 74.47 0.88 0.00

β1 −1.61 0.07 0.00

β0 + β1 ∗ hydro + β2 ∗ solar β0 74.21 0.87 0.00

β1 −1.39 0.08 0.00

β2 −14.03 0.39 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 78.59 0.88 0.00

β1 −1.55 0.07 0.00

β2 −1.35 0.09 0.00

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 77.30 0.98 0.00

β1 −1.36 0.09 0.00

β2 −0.97 0.11 0.00

β3 −12.78 0.43 0.00
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contributes to a reduction in the detrended system electricity price volatility by $0.07/MWh.Once again the
magnitude of the coefficients for solarmay be an artifact of the low presence of utility-scale solar energy in
ISONE, as seen infigure 1(C). Figure 3 shows the joint hydro+wind+ solarmodel in relation to detrended
systemprice volatility across all quantiles. Above the 70th percentile, we observe a large negative slope in the
quantile coefficient plot for hydropower and solar, while thewind coefficient tends to increase beyond the 70th
percentile.We also observe that the quantile coefficient decreases below themean values (solid red line) at
extreme quantiles for both hydropower and solar. Forwind, however, there is a positive increase in the
coefficient above themean line as the quantile increases indicating a contribution to increasing volatility at
higher quantiles. In general, we observe that the relation at higher quantiles is not only significant but also shows
a stronger effect for hydropower to reduce detrended systemprice and price volatility as seen by the increased
magnitude of the coefficient. At higher quantiles, hydropower tends to have a strong contribution to reducing
volatility, whichmay provide a stabilizing effect for volatile wind.

5.Discussion

Increase in the percentage of hydropower in the energy generationmix is found to be correlatedwith a decrease
in detrended system electricity price both at themean and upper quantiles. The contributing effect of

Figure 3.QuantileCoefficient Plot. This shows the coefficient for the joint quantilemodel (hydro+wind+ solar)onprice volatility. The
solid red line represents the least square regression estimateswhile the reddashed line represents the 95%confidence interval. The black line
represent thequantile regression coefficient across eaachof 25th., 50th, 75th and90thpercentile (representedwith the blackdots)while the
gray shaded region indicates the corresponding errormargin.

Table 5.Quantile Effects: QRwith detrended price volatility as the response variable (τ = 0.9).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 12.21 0.25 0.00

β1 −0.12 0.03 0.00

β0 + β1 ∗ hydro + β2 ∗ solar β0 12.14 0.22 0.00

β1 −0.06 0.03 0.02

β2 −3.09 0.09 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 12.29 0.26 0.00

β1 −0.11 0.03 0.00

β2 −0.03 0.04 0.41

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 12.10 0.23 0.00

β1 −0.07 0.03 0.01

β2 0.03 0.03 0.29

β3 −3.12 0.11 0.00
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hydropower in the presence of other renewables (wind and solar) also results in a net negative reduction in
detrended electricity price. Hydropower is a contributor to themerit order effect [48] since hydropower plants
have lowmarginal cost and can supply cheaper electricity in thewholesalemarket, thus lowering the system
price. It is important to note that this does notmean that the operating cost of hydropower is lower than the
operating cost of wind and solar power plants. Hydropower is seasonal and the high availability of hydropower
resources (especially run-of-river hydropower) in thewinter and springmakes it a net contributor, alongside
solar andwind, to drive down electricity prices [49]. This is consistent with studies on the average (mean effects)
relationship between hydropower and price [21, 25].While our results confirm the average reduction in system
electricity price with increased generation fromhydropower, the reduction is greater when considering extreme
electricity prices. On average (mean effects), hydropower contributes less to reducing themean detrended
system electricity price relative to solar orwind. At themean, themarginal contribution of hydropower to a
reduction in themean system electricity price is 32% less than the contribution fromwind.However, at the 90th
percentile, hydropower contributes 41%more to the reduction in detrended system electricity price thanwind.
Unlike solar andwind, hydropower has storage capabilities, either through pumped hydropower or large
reservoirs. As such, the value of extreme prices can be reduced, leading to a greater reduction of the detrended
electricity price at higher percentiles.

Increase in the percentage of hydropower in the energy generationmix is found to be correlated with a
decrease in detrended system electricity price volatility at themean and upper quantiles both independently and
in the presence of wind and solar. However, our results indicate that hydropower’s contribution to reduced
volatility is larger andmore significant at extremes (periods of high price volatility).When all three energy
sources are considered, themarginal contribution of hydropower to a reduction in themean system electricity
price volatility is 73% less than the contribution fromwind and statistically insignificant. However, at the 90th
percentile, hydropower contributes to a decrease in detrended systemprice volatility, while wind increases the
volatility. Themagnitude of the contribution to the detrended price volatility reduction fromhydropower is
more than twice the contribution fromwind to the price volatility increase. The contribution of hydropower to
decreasing volatilitymay be explained by the storage characteristics of hydropowerwherewater is pumped up
the reservoir at low prices (lowdemand period) and released at higher prices (higher demand period), thus
producing a smoothing effect.

6. Conclusion

In this study, we conducted an analysis of the role of hydropower on electricity price and price volatility. The
analysis is based on the detrended system electricity price data after adjusting for seasonal, weekend, and hourly
effects.We found that the adjustmentmodel used in this study can help to expose actual trends thatmay be
dampened by behavioral and temporal characteristics of price, and therefore improve accurate interpretations
of the role of hydropower on price and price volatility.We then builtmodels to explore themean and quantile
effects of hydropower in the presence of solar andwind. The conditionalmodels were especially useful for
observing patterns at extremes of price and price volatility. Findings on the average (mean effects) reduction in
price as the percentage of hydropower increases in the energy generationmix are consistent with literature
[21, 25] and themerit order effect [48]. Additionally, we find that hydropower contributes to a greater reduction
in systemprice at higher quantiles. For price volatility, hydropower provides a small and sometimes insignificant
reduction to themean price volatility. However, at the extreme quantiles, hydropower contributes a significant
decrease in price volatility while offsetting the effect fromwindwhich tends to increase volatility.

Our finding that the effect of hydropower on electricity price and price volatility is different at themean and
upper quantiles is important formaking accurate and actionable conclusions. This is particularly useful for
designing policy incentives and plans for new and existing hydropower plants. The storage capabilities of
hydropower allow it to act as a shock absorber for price volatility, reducing extreme energy prices and price
volatility.

While this study has evaluated the effect of hydropower on price and price volatility in ISONE, it is notmeant
as a universal conclusion on this relationship. The analysis is dependent on factors that vary regionally, such as
the amount of hydropower present, the composition of themarket’s energy portfolio, themarket and incentive
structure, and seasonal and temporal patterns of electricity demand. Also, direct interpretation of the results
should be limited to the bounds of the data used in this study. For example, utility-scale solar has amuch lower
installed capacity in ISONE relative to hydropower andwind and caremust be taken to avoid extrapolation
when interpreting its coefficients. The study results are validwithin the studied temporal range (2014-2020) and
the hydropower, wind, and solar penetration levels. Given global and regional ambitious renewable energy
targets, future penetration levels are likely to increase tomatch these targets and, therefore, the future
relationshipsmay differ from the levels observed in this study. Additionally, further research should incorporate
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quantitative data on hydropower storage, such as reservoir capacity, percentage full, and environmental
constraints, in order to quantify the impact of hydropower as a storage resource on electricity price and price
volatility.While this study has explored linear quantiles, future studies should explore non-linear quantile
analysis, as thesemight expose non-linear effects in the data.
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Appendix

A.1. Nonparametric quantile regression
Given a response variableY and a predictorX, quantile regression estimates the effects ofX on the conditional
quantile ofY. Formally, the τth (0< τ< 1) conditional quantile ofY givenX= x is defined as

t t=Q x t F tinf :Y Y x( ∣ ) { ( ) }∣  , where FY|x is the conditional cumulative distribution function ofY givenX= x.
The conditionalmedian corresponds toQY|x(0.5). Interpretation of the conditional quantile is straightforward.
For example, given the predictor valueX= x and τ= 0.9, 90%of observations ofYwith associated x fall below
QY|X(0.9). Given a 0< τ< 1, linear quantile regression imposes themodel t b t= ¢Q X XY 0( ∣ ) ( ), where the
coefficient vectorβ0(τ)may depend on the quantile level of interest. An equivalent way towrite the linear
quantile regressionmodel is the following. Let {Yi,Xi}, i=1,K,n, be a random sample from the regression
model b= ¢ + Y Xi i i0 . Then b¢Xi 0 represents the τth conditional quantile ofYi giveXi if the random error òi
satisfies the quantile constraint P(òi� 0|Xi)= τ. Themost prominent feature of quantile regression is its ability
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to incorporate heterogeneity, which can arise fromheteroscedastic variances or other sources beyond the
commonly used location-scalemodels [50].Quantile regression allows the covariates to influence the location,
dispersion and other aspects of the conditional distribution [50].We performed linear quantile regression using
the R package quantreg [51]. The goodness-of-fit test for linear quantile regression can be performed using the R
packageQtools [52]. The test is based on the cusumprocess of the gradient vector.

A.2. Tables

Table 6.Quantile Effects: QRwith detrended price as the response variable (τ = 0.25).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 20.78 0.11 0.00

β1 −0.23 0.01 0.00

β0 + β1 ∗ hydro + β2 ∗ solar β0 20.85 0.11 0.00

β1 −0.23 0.01 0.00

β2 −0.77 0.13 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 21.74 0.12 0.00

β1 −0.15 0.01 0.00

β2 −0.50 0.02 0.00

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 21.74 0.12 0.00

β1 −0.14 0.01 0.00

β2 −0.50 0.02 0.00

β3 −0.36 0.13 0.00

Table 7.Quantile Effects: QRwith detrended price as the response variable (τ = 0.5).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 28.43 0.19 0.00

β1 −0.33 0.02 0.00

β0 + β1 ∗ hydro + β2 ∗ solar β0 28.52 0.19 0.00

β1 −0.30 0.02 0.00

β2 −2.00 0.15 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 29.77 0.20 0.00

β1 −0.23 0.02 0.00

β2 −0.63 0.03 0.00

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 29.90 0.19 0.00

β1 −0.22 0.02 0.00

β2 −0.62 0.03 0.00

β3 −1.63 0.15 0.00

Table 8.Quantile Effects: QRwith detrended price as the response variable (τ = 0.75).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 44.85 0.37 0.00

β1 −0.68 0.04 0.00

β0 + β1 ∗ hydro + β2 ∗ solar β0 45.25 0.36 0.00

β1 −0.62 0.04 0.00

β2 −6.56 0.16 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 46.71 0.41 0.00

β1 −0.54 0.04 0.00

β2 −0.96 0.06 0.00

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 46.65 0.40 0.00

β1 −0.48 0.04 0.00

β2 −0.85 0.05 0.00

β3 −5.47 0.16 0.00
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Table 9.Quantile Effects: QRwith detrended price volatility as the response variable (τ = 0.25).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 1.056 0.020 0.000

β1 0.004 0.002 0.074

β0 + β1 ∗ hydro + β2 ∗ solar β0 1.079 0.020 0.000

β1 0.007 0.002 0.003

β2 −0.350 0.024 0.000

β0 + β1 ∗ hydro + β2 ∗ wind β0 1.095 0.022 0.000

β1 0.007 0.002 0.003

β2 −0.019 0.003 0.000

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 1.107 0.022 0.000

β1 0.010 0.003 0.000

β2 −0.016 0.003 0.000

β3 −0.341 0.023 0.000

Table 10.Quantile Effects: QRwith detrended price volatility as the response variable (τ = 0.5).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 2.49 0.04 0.00

β1 0.01 0.00 0.02

β0 + β1 ∗ hydro + β2 ∗ solar β0 2.53 0.04 0.00

β1 0.02 0.00 0.00

β2 −0.69 0.04 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 2.52 0.04 0.00

β1 0.01 0.00 0.01

β2 −0.02 0.01 0.02

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 2.55 0.04 0.00

β1 0.02 0.00 0.00

β2 −0.01 0.01 0.12

β3 −0.68 0.04 0.00

Table 11.Quantile Effects: QRwith detrended price volatility as the response variable (τ = 0.75).

Model Coefficients Estimate Std. Error P-value

β0 + β1 ∗ hydro β0 5.87 0.09 0.00

β1 −0.02 0.01 0.08

β0 + β1 ∗ hydro + β2 ∗ solar β0 5.88 0.09 0.00

β1 0.00 0.01 0.70

β2 −1.38 0.10 0.00

β0 + β1 ∗ hydro + β2 ∗ wind β0 5.89 0.10 0.00

β1 −0.02 0.01 0.11

β2 −0.01 0.02 0.58

β0 + β1 ∗ hydro + β2 ∗ wind + β3 ∗ solar β0 5.81 0.10 0.00

β1 0.00 0.01 0.79

β2 0.02 0.02 0.14

β3 −1.42 0.09 0.00
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A.3. Figures

Figure 4.Correlation Plot. The correlation plot was used to diagnose possiblemulticollinearity issues in theMLRmodel. There is
minimal correlation between solar, wind, and hydropower generation.

Figure 5.Violin plot of solar penetration (trimmed to inner 99%of detrended systemprice).

13

Environ. Res. Commun. 4 (2022) 075003 OOOwolabi et al



ORCID iDs

OlukunleOOwolabi https://orcid.org/0000-0002-4379-5718

References

[1] Buonocore J J,Hughes E J,MichanowiczDR,Heo J, Allen JG andWilliamsA 2019Climate and health benefits of increasing renewable
energy deployment in the united statesEnviron. Res. Lett. 14 114010

[2] Fräss-Ehrfeld C 2009Renewable energy sources: a chance to combat climate change 1 (Netherlands: Kluwer Law International BV)
[3] U.S. Energy InformationAdministration (EIA), Renewables became the second-most prevalent u.s. electricity source in 2020, 2021.
[4] EIA,What is u.s. electricity generation by energy source?. https://www.eia.gov/tools/faqs/faq.php?id=427&t~=~3, 2021. Accessed:

2021-11-08.
[5] W.B.Group, Electricity production fromhydroelectric sources (%of total), 2015. Data from International Energy Agency, 2014 - iea.

org/stats/index.asp
[6] IEA, Renewables 2021, tech. rep., International EnergyAgency, Paris, France, 2021.
[7] Rehman S, Al-Hadhrami LMandAlamMM2015 Pumped hydro energy storage system: A technological reviewRenew. Sustain.

Energy Rev. 44 586–98
[8] Foley AM, Leahy PG, Li K,McKeogh E J andMorrisonAP 2015A long-term analysis of pumped hydro storage to firmwind power

Appl. Energy 137 638–48
[9] ArdizzonG,Cavazzini G and Pavesi G 2014Anew generation of small hydro and pumped-hydro power plants: Advances and future

challengesRenew. Sustain. Energy Rev. 31 746–61
[10] Kaldellis J K andKavadias KA 2001Optimalwind-hydro solution for aegean sea islands’ electricity-demand fulfilmentAppl. Energy 70

333–54
[11] BakosGC2002 Feasibility study of a hybrid wind/hydro power-system for low-cost electricity productionAppl. Energy 72 599–608
[12] KapsaliM andKaldellis J K 2010Combining hydro and variable wind power generation bymeans of pumped-storage under

economically viable termsAppl. Energy 87 3475–85
[13] KapsaliM, Anagnostopoulos J S andKaldellis J K 2012Wind powered pumped-hydro storage systems for remote islands: A complete

sensitivity analysis based on economic perspectivesAppl. Energy 99 430–44
[14] Glasnovic Z andMargeta J 2009The features of sustainable solar hydroelectric power plant,Renewable Energy 34 1742–51
[15] Margeta J andGlasnovic Z 2010 Feasibility of the green energy production by hybrid solar+ hydro power system in europe and similar

climate areasRenew. Sustain. Energy Rev. 14 1580–90
[16] Margeta J andGlasnovic Z 2012Theoretical settings of photovoltaic-hydro energy system for sustainable energy production Sol. Energy

86 972–82
[17] Zhao J, Graves K,WangC, LiaoG andYehCP 2012Ahybrid electric/hydro storage solution for standalone photovoltaic applications

in remote areas IEEE Power and Energy Society GeneralMeeting
[18] Javanbakht P,Mohagheghi S and SimoesMG2013Transient performance analysis of a small-scale pv-phs power plant fed by a svpwm

drive applied for a distribution system 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013 2013 4532–9
[19] MaT, YangH, Lu L and Peng J 2015 Pumped storage-based standalone photovoltaic power generation system:Modeling and techno-

economic optimizationAppl. Energy 137 649–59
[20] ZhangH, LuZ,HuW,WangY,Dong L andZhang J 2019Coordinated optimal operation of hydro-wind-solar integrated systemsAppl.

Energy 242 883–96
[21] WenL, SuomalainenK, Sharp B, YiM and ShengMS 2022 Impact of wind-hydro dynamics on electricity price: A seasonal spatial

econometric analysis Energy 238 122076
[22] WooCK,Horowitz I,Moore J andPacheco A 2011The impact of wind generation on the electricity spot-market price level and

variance: The texas experience Energy Policy 39 3939–44
[23] Ketterer J C 2014The impact of wind power generation on the electricity price in germany Energy Econ. 44 270–80
[24] SuomalainenK, PritchardG, Sharp B, YuanZ andZakeri G 2015Correlation analysis onwind andhydro resources with electricity

demand and prices in new zealandAppl. Energy 137 445–62
[25] Pereira J P, Pesquita V andRodrigues PM2017The effect of hydro andwind generation on themean and volatility of electricity prices

in spain International Conference on the European EnergyMarket, EEM 7

Figure 6.Violin plot of wind penetration (trimmed to inner 99%of detrended systemprice).

14

Environ. Res. Commun. 4 (2022) 075003 OOOwolabi et al

https://orcid.org/0000-0002-4379-5718
https://orcid.org/0000-0002-4379-5718
https://orcid.org/0000-0002-4379-5718
https://orcid.org/0000-0002-4379-5718
https://doi.org/10.1088/1748-9326/ab49bc
https://www.eia.gov/tools/faqs/faq.php?id=427&t~=~3
http://iea.org/stats/index.asp
http://iea.org/stats/index.asp
https://doi.org/10.1016/j.rser.2014.12.040
https://doi.org/10.1016/j.rser.2014.12.040
https://doi.org/10.1016/j.rser.2014.12.040
https://doi.org/10.1016/j.apenergy.2014.07.020
https://doi.org/10.1016/j.apenergy.2014.07.020
https://doi.org/10.1016/j.apenergy.2014.07.020
https://doi.org/10.1016/j.rser.2013.12.043
https://doi.org/10.1016/j.rser.2013.12.043
https://doi.org/10.1016/j.rser.2013.12.043
https://doi.org/10.1016/S0306-2619(01)00036-8
https://doi.org/10.1016/S0306-2619(01)00036-8
https://doi.org/10.1016/S0306-2619(01)00036-8
https://doi.org/10.1016/S0306-2619(01)00036-8
https://doi.org/10.1016/S0306-2619(02)00045-4
https://doi.org/10.1016/S0306-2619(02)00045-4
https://doi.org/10.1016/S0306-2619(02)00045-4
https://doi.org/10.1016/j.apenergy.2010.05.026
https://doi.org/10.1016/j.apenergy.2010.05.026
https://doi.org/10.1016/j.apenergy.2010.05.026
https://doi.org/10.1016/j.apenergy.2012.05.054
https://doi.org/10.1016/j.apenergy.2012.05.054
https://doi.org/10.1016/j.apenergy.2012.05.054
https://doi.org/10.1016/j.renene.2008.12.033
https://doi.org/10.1016/j.renene.2008.12.033
https://doi.org/10.1016/j.renene.2008.12.033
https://doi.org/10.1016/j.rser.2010.01.019
https://doi.org/10.1016/j.rser.2010.01.019
https://doi.org/10.1016/j.rser.2010.01.019
https://doi.org/10.1016/j.solener.2012.01.007
https://doi.org/10.1016/j.solener.2012.01.007
https://doi.org/10.1016/j.solener.2012.01.007
https://doi.org/10.1016/j.apenergy.2014.06.005
https://doi.org/10.1016/j.apenergy.2014.06.005
https://doi.org/10.1016/j.apenergy.2014.06.005
https://doi.org/10.1016/j.apenergy.2019.03.064
https://doi.org/10.1016/j.apenergy.2019.03.064
https://doi.org/10.1016/j.apenergy.2019.03.064
https://doi.org/10.1016/j.energy.2021.122076
https://doi.org/10.1016/j.enpol.2011.03.084
https://doi.org/10.1016/j.enpol.2011.03.084
https://doi.org/10.1016/j.enpol.2011.03.084
https://doi.org/10.1016/j.eneco.2014.04.003
https://doi.org/10.1016/j.eneco.2014.04.003
https://doi.org/10.1016/j.eneco.2014.04.003
https://doi.org/10.1016/j.apenergy.2014.10.015
https://doi.org/10.1016/j.apenergy.2014.10.015
https://doi.org/10.1016/j.apenergy.2014.10.015


[26] VanHoutMarit, ÖzdemirÖzge andKoutstaal Paul 2017 Large-Scale Balancing withNorwegianHydro Power in the Future European
ElectricityMarketECN-E–17-043

[27] OuyangW, LawsonK, FengD, Ye L, ZhangC and ShenC 2021Continental-scale streamflowmodeling of basinswith reservoirs:
Towards a coherent deep-learning-based strategy J. Hydrol. 599 126455

[28] Shin S, Pokhrel Y andMiguez-MachoG2019High-resolutionmodeling of reservoir release and storage dynamics at the continental
scaleWater Resour. Res. 55 787–810

[29] Baoligao B, Xu F, ChenX,WangX andChenW2016Acute impacts of reservoir sedimentflushing onfishes in the YellowRiver
J. Hydro-environ. Res. 13 26–35

[30] von Sperling E 2012Hydropower in Brazil: Overview of positive andnegative environmental aspects Energy Procedia 18 110–8
[31] FjeldstadH-P, PulgU, Forseth T, FjeldstadH-P, PulgU and ForsethT 2018 Safe two-waymigration for salmonids and eel past

hydropower structures in Europe: a review and recommendations for best-practice solutionsMar. Freshwater Res. 69 1834–47
Publisher: CSIROPUBLISHING

[32] ZhuG, ZhaoR,HuZ andHouX2012 Impacts of water and sand diversion in xiaolangdi reservoir onfish and ecologically sensitive
areas in themiddle yellow river Journal of Hydroecology 33 7–12

[33] Zhang J, Zhang J, ShenH, Lü B,WangX andXing J 2012 Effects of water and sediment regulation at xiaolangdi damon thefish
assemblages fromhukou to sanmenxia section of yellow riverChinese Journal of Ecology 31 2613–8

[34] KongD,MiaoC,Wu J, Borthwick AG,DuanQ andZhangX 2017 Environmental impact assessments of theXiaolangdi Reservoir on
themost hyperconcentrated laden river, YellowRiver, ChinaEnvironmental Science and Pollution Research 24 4337–51

[35] BotelhoA, Ferreira P, Lima F, Pinto LMCand Sousa S 2017Assessment of the environmental impacts associatedwith hydropower
Renew. Sustain. Energy Rev. 70 896–904

[36] Rashad SMand IsmailMA2000 Environmental-impact assessment of hydro-power in EgyptAppl. Energy 65 285–302
[37] BakkenTH,Aase AG,HagenD, SundtH, BartonDNand Lujala P 2014Demonstrating a new framework for the comparison of

environmental impacts from small- and large-scale hydropower andwind power projects J. Environ.Manage. 140 93–101
[38] Somani A et al 2021Hydropower value study: Current status and future opportunities
[39] ISONE, ISONewEnglandWeb Services API v1.1. https://webservices.iso-ne.com/docs/v1.1/, 2021. Accessed: 2021-01-10.
[40] ISONE, About us. https://www.iso-ne.com/about, 2021. Accessed: 2021-11-08.
[41] ISONE, Resourcemix. https://www.iso-ne.com/about/key-stats/resource-mix/, 2021. Accessed: 2021-11-08.
[42] ISONE, 2020Regional ElectricityOutlook. https://www.iso-ne.com/static-assets/documents/2020/02/2020_reo.pdf, 2020.

Accessed: 2021-11-08.
[43] ISONE, Locationalmarginal pricing. https://www.iso-ne.com/participate/support/faq/lmp, 2021. Accessed: 2021-11-08.
[44] Investopedia, ”Exploring the exponentially weightedmoving average,” 2020.
[45] YooW,Mayberry R, Bae S, SinghK,HeQP andLillard JW Jr. 2014A study of effects ofmulticollinearity in themultivariable analysis

International Journal of Applied Science andTechnology 4 9
[46] BernardC andCzadoC 2015Conditional quantiles and tail dependence J.Multivariate Anal. 138 104–26
[47] Lane JonathanW. 2012Robust Quantile RegressionUsing L2ERiceUniversity
[48] Sensfu F, RagwitzM andGenoeseM2008Themerit-order effect: A detailed analysis of the price effect of renewable electricity

generation on spotmarket prices in germany Energy Policy 36 3086–94
[49] Acar B, SelcukO andDastan SA2019Themerit order effect of wind and river type hydroelectricity generation on turkish electricity

pricesEnergy Policy 132 1298–319
[50] Wang L 2017Nonconvex penalized quantile regression: A review ofmethods, theory and algorithmsHandbook ofQuantile Regression

273–92
[51] R. Koenker, quantreg: Quantile regression, http://CRAN.R-project.org/package=quantreg, 2009.
[52] GeraciM2016Qtools: A collection ofmodels and tools for quantile inferenceThe R Journal 8 117

15

Environ. Res. Commun. 4 (2022) 075003 OOOwolabi et al

https://doi.org/10.1016/j.jhydrol.2021.126455
https://doi.org/10.1029/2018WR023025
https://doi.org/10.1029/2018WR023025
https://doi.org/10.1029/2018WR023025
https://doi.org/10.1016/j.jher.2015.11.003
https://doi.org/10.1016/j.jher.2015.11.003
https://doi.org/10.1016/j.jher.2015.11.003
https://doi.org/10.1016/j.egypro.2012.05.023
https://doi.org/10.1016/j.egypro.2012.05.023
https://doi.org/10.1016/j.egypro.2012.05.023
https://doi.org/10.1071/MF18120
https://doi.org/10.1071/MF18120
https://doi.org/10.1071/MF18120
https://doi.org/10.1007/s11356-016-7975-4
https://doi.org/10.1007/s11356-016-7975-4
https://doi.org/10.1007/s11356-016-7975-4
https://doi.org/10.1016/j.rser.2016.11.271
https://doi.org/10.1016/j.rser.2016.11.271
https://doi.org/10.1016/j.rser.2016.11.271
https://doi.org/10.1016/S0306-2619(99)00068-9
https://doi.org/10.1016/S0306-2619(99)00068-9
https://doi.org/10.1016/S0306-2619(99)00068-9
https://doi.org/10.1016/j.jenvman.2014.01.050
https://doi.org/10.1016/j.jenvman.2014.01.050
https://doi.org/10.1016/j.jenvman.2014.01.050
https://webservices.iso-ne.com/docs/v1.1/
https://www.iso-ne.com/about
https://www.iso-ne.com/about/key-stats/resource-mix/
https://www.iso-ne.com/static-assets/documents/2020/02/2020_reo.pdf
https://www.iso-ne.com/participate/support/faq/lmp
https://doi.org/10.1016/j.jmva.2015.01.011
https://doi.org/10.1016/j.jmva.2015.01.011
https://doi.org/10.1016/j.jmva.2015.01.011
https://doi.org/10.1016/j.enpol.2008.03.035
https://doi.org/10.1016/j.enpol.2008.03.035
https://doi.org/10.1016/j.enpol.2008.03.035
https://doi.org/10.1016/j.enpol.2019.07.006
https://doi.org/10.1016/j.enpol.2019.07.006
https://doi.org/10.1016/j.enpol.2019.07.006
http://CRAN.R-project.org/package=quantreg
https://doi.org/10.32614/RJ-2016-037

	1. Introduction
	2. Study area and data
	3. Methods
	3.1. Adjustment model: seasonal, diurnal and weekend effects
	3.2. Price volatility and energy penetration calculations
	3.3. Mean effects of hydropower penetration on detrended system electricity price and detrended price volatility
	3.4. Quantile effects of hydropower penetration on detrended system electricity price and detrended price volatility

	4. Results and findings
	4.1. Mean effects of hydropower on detrended system price and detrended price volatility
	4.2. Quantile effects of hydropower on price and price volatility

	5. Discussion
	6. Conclusion
	Acknowledgments
	Data availability statement
	Funding
	Author Contributions
	Competing Interests
	Appendix
	A.1. Nonparametric quantile regression
	A.2. Tables
	A.3. Figures

	References



