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not suitable for the purpose of inference, because they either have nonstandard
asymptotic distributions or do not necessarily guarantee consistent estimation
of the parameter indexing the Bayes rule due to the use of surrogate loss. We

first study a smoothed robust estimator that directly targets the parameter cor-
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responding to the Bayes decision rule for optimal treatment regimes estimation.
This estimator is shown to have an asymptotic normal distribution. Furthermore,
we verify that a resampling procedure provides asymptotically accurate inference
for both the parameter indexing the optimal treatment regime and the optimal
value function. A new algorithm is developed to calculate the proposed estimator
with substantially improved speed and stability. Numerical results demonstrate
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the satisfactory performance of the new methods.
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1 | INTRODUCTION 2017; Zhu et al., 2017, Zhang et al., 2018), targeted learning

ensembles approach (Diaz et al., 2018), among others.

Applications in medicine, public policy, internet market-
ing, and other scientific areas often require estimating an
individualized treatment rule (or regime, policy) to max-
imize the potential benefit. Several successful methods
have been developed for estimating an optimal treatment
regime, including Q-learning (Watkins and Dayan, 1992;
Murphy, 2005b; Chakraborty et al., 2010; Qian and Murphy,
2011; Song et al., 2015), A-learning (Robins et al., 2000; Mur-
phy, 2003, 2005a; Moodie and Richardson, 2010; Shi et al.,
2018), model-free methods (Robins et al., 2008; Orellana
etal., 2010; Zhang et al., 2012; Zhao et al., 2012, 2015; Athey
and Wager, 2017; Linn et al., 2017; Zhou et al., 2017; Zhu
etal.,2017; Lou et al., 2018; Qi et al., 2018; Wang et al., 2018),
tree or list-based methods (Laber and Zhao, 2015; Cui et al.,

This paper focuses on inference for optimal treatment
regimes. In practice, it is often desirable to have an inter-
pretable treatment regime. Here, we focus on the popu-
lar class of index rules, given by D = {I(x’ 8 > 0) : g € B},
where I(-) is the indicator function and B is a compact sub-
set of RP. We consider two important inference targets:
one is the parameter 8, indexing the theoretically optimal
treatment regime and the other is the theoretically opti-
mal value function V(). The former inference problem
helps understand the importance of different predictors on
making an optimal decision, while the latter aims to quan-
tify the maximally achievable expected performance that
can be used as a gold standard to evaluate alternative treat-
ment regimes.
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Although there exists a rich literature on estimation,
the associated inference problem has not been studied
until recently. For Q-learning, several inference methods
have been investigated. Laber et al. (2014) proposed a
novel locally consistent adaptive confidence interval for
Bo, Chakraborty et al. (2013) proposed a practically conve-
nient adaptive m-out-of-n bootstrap for inference on S,
Chakraborty et al. (2014) introduced a double bootstrap
approach for inference for V(,), Song et al. (2015) consid-
ered inference for 8, based on the asymptotic distribution
theory for penalized Q-learning. Recently, Jeng et al. (2018)
developed Lasso-based procedure for inference on §, in the
A-learning framework. However, accurate inference based
on Q-learning and A-learning needs reliable model specifi-
cation. Luedtke and Van Der Laan (2016) developed inter-
esting theory for inference for V(f,) under exceptional
laws. Their approach requires to estimate the conditional
treatment effect either based on a working model or in a
completely nonparametric fashion.

Different from current state-of-the-art methods that
are mostly model-based, we aim to develop a model-free
approach for making inference for both §, and V(B,). This
would be useful to alleviate the sensitivity of inference with
respect to the underlying generative model, the specifica-
tion of which is often challenging in real data analysis. It
is known that the parameter indexing the optimal treat-
ment regime 3, corresponds to the parameter of the Bayes
rule of a weighted classification problem (Qian and Mur-
phy, 2011; Zhang et al., 2012; Zhao et al., 2012). A substantial
challenge in inference for B lies in the nonsmoothness of
the decision function. A popular approach is to replaces
the 0-1loss by a computationally convenient surrogate loss
such as the hinge loss (Zhao et al., 2012; Zhou et al., 2017;
Lou et al., 2018) or the logistic loss (Jiang et al., 2019). How-
ever, existing theory (eg, Fisher consistency, generalization
error bound) that justifies the use of the surrogate loss
is usually derived when the form of the decision rule is
unconstrained and approximated in a reproducible kernel
Hilbert space. There is no guarantee that when we consider
the class of decision rules D, use of surrogate loss still leads
to a decision function whose sign matches sign(x” §,), see
Lin (2002). On the other hand, robust estimator (Zhang
et al., 2012) that directly estimates the Bayes rule has a
cubic root convergence rate and a nonnormal limiting dis-
tribution, as recently revealed in Wang et al. (2018). Infer-
ence is challenging due to the nonstandard asymptotics as
naive bootstrap procedure is not consistent. Goldberg et al.
(2014) proposed a SoftMax Q-learning approach to allevi-
ate the nonsmoothness problem in Q-learning but have not
explore the associated inference theory.

This paper first proposes a smoothed model-free esti-
mator for the optimal treatment regime and introduce a
proximal algorithm that substantially improves both the

computational speed and the accuracy. We prove that the
smoothed robust estimator has an asymptotic normal dis-
tribution and converges to 8, with a rate that can be made
arbitrarily close to n~'/2. We then rigorously justify the
validity of a resampling approach for inference.

The remaining of the paper is organized as follows. Sec-
tion 2 introduces the new method and algorithm. Sec-
tion 3 carefully studies the statistical properties for esti-
mation and inference. Section 4 reports the results from
Monte Carlo simulations. Section 5 analyzes a clinical data
set from the Childhood Adenotonsillectomy Trial (CHAT).
Section 6 concludes with some discussions. The Appendix
summarizes the technical assumptions. The online sup-
plemental file contains the proofs and additional numer-
ical results.

2 | PROPOSED METHODS

2.1 | Problem setup
Let A be a binary variable (0 or 1) denoting the treat-
ment. For each subject, we observe a vector of covariates
x € RP and an outcome Y € R. Without loss of general-
ity, we assume that larger outcome is preferred. To evalu-
ate the treatment effect, we adopt the potential or counter-
factual outcome framework (Rubin, 1978; Neyman, 1990)
for causal inference. Let Y] and Y] be the potential out-
come had the subject received treatment 1 and 0, respec-
tively. In reality, we observe either Y] or Y, but never both.
It is assumed that the observed outcome is the potential
outcome corresponding to the treatment the subject actu-
ally receives (consistency assumption in causal inference),
thatis, Y = YA + Y (1 — A). Assume A and {Y, Y]} are
independent conditional on x, that is, no unmeasured con-
founding. In addition, we assume that the stable unit treat-
ment value assumption (Rubin, 1986) and the positivity
assumption are both satisfied, where the former requires a
subject’s outcome from receiving a treatment is not influ-
enced by the treatment received by other subjects and the
latter requires that 0 < P(A = a|x) < 1, V x, almost surely.

An individualized treatment rule or a treatment regime,
denoted by d(x), is a mapping from the space of covari-
ates to the set of treatment options {0,1}. Let Y*(d) be
the potential outcome had a subject with covariates x
received the treatment assigned by d(x). We have Y*(d) =
Yid(x) + Y {1 — d(x)}. Given a collection D of treatment
regimes, the optimal regime arg max cp E(Y*(d)) leads to
the maximal average outcome if being implemented in
the population.

For a given 8 € B, we sometimes write the correspond-
ing treatment regime I(x” g > 0) as dg(x) or dg for sim-
plicity. The value function V(B) = E{Y*(dg)} measures the
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effectiveness of the treatment regime dg. We are interested
in estimating the parameter indexing the optimal rule

By = arg max V(p). ®

For identifiability, we assume that there exists a covari-
ate with a nonzero coefficient whose conditional distribu-
tion given the other covariates is continuous and its coef-
ficient is normalized to have absolute value one. Without
loss of generality, we assume X is a predictor that satisfies
the condition. We write 8 = (8, 87) € RP. Correspond-
ingly, we write x = (x;,X")’. More discussions on alterna-
tive identifiability condition can be found in Section 6.2.

2.2 | Challenges of inference based on
existing robust estimators

Qian and Murphy (2011), Zhang et al. (2012), Zhao et al.
(2012), among other, observed that optimal treatment
regime estimation can be reformulated as a weighted clas-
sification problem. Specifically, the value function V()
can be equivalently expressed as

Y

V() =E A

I{A =dg(x)}], )

where 7(A,x) = P(A =1|x) is the propensity score of
the treatment and is equal to 0.5 in a randomized trial.
Expression (2) is the foundation for robust or policy-search
estimators for optimal treatment regime, which aim to alle-
viate the practical difficulty of specifying a reliable gener-
ative regression model.

A robust estimator can be obtained by directly maximiz-
ing an unbiased sample estimator of the expectation in (2),
which was the approach in Zhang et al. (2012). In a ran-
domized trial, based on the observed data {(x;,Y;, 4;),i =
1,...,n}, which are independent copies of (x,Y, A), V(B)
can be consistently estimated by its sample analog

Va(B) = 2 YHATTE > 0)+ (1 - AN B <O, ()
i=1

Leaving out the terms in V,,(8) that do not depend on S,
we can estimate S, by

n
2
arg réléa[éf M,(B) = arg Ilglea%( o ;(ZAi — 1)I(xl.T,3 > 0)Y;.

“4)

However, as revealed in Wang et al. (2018) such a direct esti-
mator for the Bayes rule belongs to a class of nonstandard
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M estimators. It converges at a cubic-root rate to a nonnor-
mal limiting distribution that is characterized by the maxi-
mizer of a centered Gaussian process with a parabolic drift.
The nonstandard asymptotics is a consequence of the so-
called sharp-edge effect (Kim and Pollard, 1990). Inference
based on this approach is challenging due to the nonstan-
dard asymptotics as the naive bootstrap procedure is not
consistent. The smoothed estimator we propose alleviates
the sharp-edge effect caused by the indicator function and
leads to faster convergence rate.

2.3 | Smoothed model-free inference for
optimal treatment regime

To facilitate inference, we study an alternative estimator
that can be considered as a compromise between the two
robust estimation approaches described in Section 2.2. For
clarity of presentation, we assume that the data are col-
lected from a randomized trial. Instead of replacing the
indicator function with the hinge loss function, we replace
it with a smoothed approximation. Formally, we estimate

By by

~

B

M
arg max n(B)

2 < x; B
arg Ilglea[é( - ;(ZA,» - 1)K<h_n Yi, Q)

where K(-) is a smoothed approximation to the indicator
function, and h,, is a sequence of smoothing parameter
that goes to zero as n — oo. The function K(-) is required
to satisfy some general regularity conditions given in the
Appendix, see also Remark 1 in Section 3.1.

The motivation for the above new estimator is three-
fold. First, as h,, goes to zero at an appropriate rate, the
parameter indexing the optimal treatment regime or the
Bayes rule can be estimated at a rate arbitrarily close
to n~1/2, see Section 3.1. Second, smoothing the indica-
tor function circumvents the aforementioned nonstandard
asymptotics and would lead to a feasible bootstrap infer-
ence procedure with theoretical guarantee, see Section 3.2.
Third, it also alleviates the computational challenge due
to nonsmoothness, see Section 2.4 for a new efficient
algorithm.

For inference, we apply a resampling technique called
“weighted bootstrap” that assigns independent and iden-
tically distributed positive random weights to each obser-
vation. This resampling scheme was proposed in Rubin
(1981). Barbe and Bertail (1995) provided a comprehensive
introduction, see also Ma and Kosorok (2005) and Cheng
and Huang (2010) for recent interesting developments. The
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bootstrapped estimate of the smoothed robust estimator is
defined as

B; =arg max M:(B)

n T
2 x; B
= argrélgég - ; ri(2QA; — 1)K<h—n>Y1, (6)

where rq,...,r, are random weights satisfying conditions
given in Section 3.2. To evaluate the distribution of §;; in
practice, we repeatedly generate independent samples of
random weights. Following notation introduced earlier, let
Bi = (B, By ) where |B | = 1and B; = By s Brip) "
For j =2,..,p, let §;:(a/2) and 5;(1_“/2) be the (a/2)-th
and (1 — a/2)-th quantile of the bootstrap distribution of
(nh,)/ 2(5;.‘ — B;), respectively, where a is a small positive

number. We can estimate f;.k(a/ 2 and %’;.ka_a/ ? from a large
number of bootstrap samples. An asymptotic 100(1 — )%
bootstrap confidence interval for By;, j = 2, ..., p, is given

by
{g] _ (nhn)‘l/Zg;‘(l_“/z),Ej —(nhn)_l/zg“;(“/z)}. )

Next, we consider inference for the optimal value. Define
2 n
ViB) =+ 3 rdATGS B> 0) + (1= ADIG] B < 0)}Y.

i=1

®)

Note that V;(8) can be considered as a perturbed version
of the V,, defined in (3). Let d*(*/2) and d*(!=%/2) be the
(a/2)-th and (1 — a/2)-th quantile of the bootstrap distri-
bution of n'/2{V*(B,) — V,(B,)}, respectively. An asymp-
totic 100(1 — )% bootstrap confidence interval for V()
is

{Vn(gn) —n12g=-a/2) (B ) — n—1/2d*(cx/2)}‘ )

2.4 | A proximal algorithm

The smoothed robust estimator largely alleviates the com-
putational challenge due to the nonsmooth indicator func-
tion. However, the objective function is still a nonconvex
function of the parameter. Such nonconvexity is inher-
ent to robust estimation of optimal treatment regime
(Qian and Murphy, 2011). We employ a proximal gradi-
ent descent algorithm, originally proposed in Nesterov
(2007), which applies to a large class of nonconvex prob-
lems. In our setting, this algorithm substantially improves

the computational speed and can accommodate high-
dimensional covariates.

Consider an optimization problem with an objective
function ®(B). Nesterov (2007) assumes that ®(f) has the
decomposition ®(B) = f(B) + ¥(B), over a convex set Q,
where f is a differentiable function but not necessarily
convex, and ¥ is closed and convex on Q. In our setting,
we take —M,,(8) as the f function, and set ¥(8) = 0. Fol-
lowing Nesterov (2007), we generate a sequence of iterates
{B,t =0,1,2,...} such that

B = argmin{~,(8"~Y) — (VI (8*"),§ 64V

+a I~ BUVIIP + W(B)}

n T p(t—1)
B . 2 % B
= argglelg { - Z(2Al~ — 1K (h—n>

i=1

xfgﬁ%fizn+aﬂﬁ—ﬂ“ﬂr},

where (-,-) denotes the inner product between two vec-
tors. Observe that the above minimization problem has a
closed-form solution

" x.Tﬁ(t_l) X;
O = BU=D 4 (na,)™' Y (24, - DK'[ ——— )=V,
ﬁ ﬁ t ; i hn hn i

Hence the algorithm can be wupdated efficiently.
The algorithm stops when M, (8®) < M,(B“ V) +
(VM (B4~1), B0 — BU=D) — o, [|B® — B~V| %, where
a; is a sequence of small positive numbers. To choose «;,
inspired by Fan et al. (2018), we employ an expanding
series, which ensures that the stepsize diminishes during
the update process. Details for this algorithm is provided
in the supplementary material.

It is worth emphasizing that this algorithm can be easily
adapted to the high-dimensional setting by taking ¥(g) as
a regularization function, such as the L; penalty function.

3 | STATISTICAL PROPERTIES

3.1 | Consistency and asymptotic
normality of the smoothed estimator

To lay the foundation for inference, we first present the
statistical properties of the smoothed robust estimator
ﬁn defined in (5). All the regularity conditions are sum-
marized in the Appendix. Theorem 1 shows that 8, is
consistent for the parameter indexing the optimal treat-
ment regime. Comparing with the asymptotic normality
result in Theorem 2, the consistency requires very mild
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conditions and serves as a precursor step for proving
asymptotic normality.

Theorem 1. Under (A1)-(A3) and assume K(-) satisfies
(K1), then B, = By + 0,(1).

Recall that for identification, we write 8, = (801, 1) €
RP where |$y;| = 1. Similarly, we write ,C/i\n = (B\nl, ﬁ,{ 7" e
RP where |,8An1| = 1. With the above consistency result,
we have P(ﬁ\nl =fo1) = 1 as n - . In the following,
we focus on studying the asymptotic distribution of B
To this end, we introduce some additional notations.
Define S(z,%) = E(Y] — Y;|z,X), where z = x” §,. Note
that there is a one-to-one transformation between (z, X)
and x = (x;,¥7)". Hence, S(z, X) is a measure of the con-
ditional treatment effect. Let S()(z, ¥) denote the partial
derivative of S(z,X) with respect to z. Furthermore, we
define

D = q;E {Xx" fOI®)E(Y}* + Y}z =0,%)}, (10)

Q = RE{XX" f(01®)S(0, %)}, (11)

where f(z|Xx) denotes the conditional probability den-
sity function of z given X, a; = 2 [{K'(»)}{’dv, and a, =
[ vK"(v)dv, with K'(-) and K"'(-) denoting the first- and
second-derivative of K(-), respectively. Note that D and Q
both depend on unknown functions, for example, f(z|X),
and are complex to approximate analytically. This moti-
vates us to consider a bootstrap approach for inference
procedure.

Theorem 2. Assume K(-) satisfies (K1)-(K3) for some b >
2, h, = o(n~Y/@+Dy and n='hy;* = o(1). Then under (Al)-
(A5),

) \/nh, (B, — Bo) = N(0,Q'DQ™) in distribution as
n — co.

@  A/nV.(B) -V} — N(O,U) in distribu-
tion as n — oo, where V,(-) is defined in (3) and
U = Var{Y*(dg )} + E{(Y"*(dg,)*}.

Remark 1. Theorem 2 implies that ﬁn achieves a
convergence rate arbitrarily close to n=?/20+1_The cumu-
lative distribution function of N(0, 1) satisfies these reg-
ularity conditions with b = 2, and would produce a con-
vergence rate arbitrarily close to n=2/5. With a care-
fully designed K(-) function that satisfied (K1)-(K3)
with b sufficiently large, the convergence rate can be
105 v

further improved. For example, K(v)=[0.5+ a{g —

2(2)3 + 2(2)5 - %(%)7}]1(—5 <v <5)+I(v>5) satisfies
(K1)-(K3) with b = 4. This choice leads to a convergence
rate of n=*°. This function first appeared in Horowitz

(1992), which dealt with smoothing estimator in a dif-
ferent setting. Our setting and proofs are very differ-
ent. Especially, our proofs substantially simplified the
traditional methods for handling a smoothed objective
function. Example 2 in Section S7 of the supplemen-
tary material demonstrates that the performance of the
smoothed estimator is not sensitive to the choice of K(-)
in finite samples. We would recommend the distribution
function of N(0,1) as the default choice due to its simplic-
ity, which we observe to have satisfactory performance in
a variety of settings.

Remark 2. The key components of the proofs are mod-
ern empirical process techniques. In particular, we intro-
duce some recent empirical process results (Giné and
Sang, 2010; Mason, 2012) on VC classes of functions
that involve smoothing parameters, which were originally
developed for uniform asymptotics with data-driven band-
width selection and have not been applied to the types of
problems considered here. These new techniques lead to
simpler proof and are of independent interest. Our techni-
cal derivation for this and other results in the paper employ
recent techniques developed by Giné and Sang (2010) and
Mason (2012) for VC classes of functions that involve
smoothing parameters, see the Appendix. Carefully han-
dling function classes involving a smoothing parameter
is nontrivial. The literature usually either impose a lower
positive bound on & to avoid the process to blow up or
requires more involved computation on the entropy bound
for such classes. In contrast, the new techniques are based
on a geometric argument and avoid the usually intensive
entropy computation. The asymptotic normality result in
part (2) of the theorem is mostly due to the fact that the
estimated value function V,,(8) is a sample average of func-
tions that enjoy the Donsker property. Furthermore, the
population value function V() has gradient zero at the
true value f3,.

3.2 | Justification for resampling-based
inference

Let ry,...,r, be a random sample from a distribution of a
positive random variable with mean one and variance one.
Assume the random weights ry, ..., 7, are independent of
the data. Recall that

B; = arg %lggﬁz(ﬁ)

n

n T
2 x; B
= argrlglea[é( o ; ri(2A; — 1)K< ]fl )Yl-.
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Hence, two different sources of randomness contribute to
the distribution of /3’\,1‘ in this setup: one due to the random
data and the other due to the random weights.

We next provide a rigorous justification for the validity of
the bootstrap procedures proposed in Section 2.3. We estab-
lish that the bootstrap distribution asymptotically imitates
the distribution of the original estimator. Letr = {rq, ..., 7}
be the collection of the random bootstrap weights and w =
{W,..., W, } be the random sample of observations, where
Wi =(x;, A, Y)).

Given a sequence of random variables R,,, n =1, ..., n,
we write R, = opr(l) if for any € > 0,8 > 0, we have
Py (P w(IR,| > €) > §) = 0asn — oo. In the bootstrap lit-
erature, R, is said to converge to zero in probability, condi-
tional on the data.

Theorem 3. Under (A1)-(A3), (A6) and assume K () satis-
fies (K1), then

@B =B, +0,,(1);
@) Vn{V;i(B,) = V(B = N(0,U) + 0, (1).

Part (2) of Theorem 3 suggests that we can use the per-
turbed value function defined in (8) with the plugged-in
estimator B\n to estimate the asymptotic variance of the esti-
mated optimal value in Theorem 2. This establishes the
asymptotic validity of the confidence interval in (9), which
allows for inference for the value function. The validity of
the confidence interval in (7) for B, is ensured by Theo-
rem 4 below.

Theorem 4. Assume K(-) satisfies (K1)-(K3) for someb > 2,
h, = o(n~"/?*D) and log(n) = o(nh?). Under (A1)-(A6),
\/nh,(B: —B,) =N(0,Q07'DQ!) + 0, (D).

Remark 3. The proofs of Theorems 3 and 4 make use of
the recent results which allow for using an unconditional
argument to derive conditional results. The use of the
unconditional argument can be particularly convenient to
combine with the Donsker class properties.

To better understand the behavior of the proposed
inference procedure, we also study the properties of the
smoothed estimator and its bootstrapped version under a
moving parameter or local asymptotic framework. See Sec-
tion S4 of the online supplementary material.

4 | SIMULATION RESULTS

random data from the model
where € ~ N(0,1),

We  generate
Y = exp(xTn) + AxTB +¢,

x = (xg, X1, %2, %3)T = (x0, ), xo=1 and X follows
a 3-dimensional multivariate normal distribution with
mean zero and identity covariance matrix. We set
7 =(-1,-0.5,0.5,—0.5)", and consider two settings for 3.
In setting 1, we have g = (=2, —2,2,2)"; while in setting
2 we have g = (-2,-2,2,0)" with x; being an inactive
variable for the optimal treatment regime. The optimal
treatment regime is given by I(x”B < 0). As discussed
in Section 2.1, for identifiability, we adopt the normal-
ization |B;| = 1, corresponding to the coefficient of the
continuous covariate x;. Under this normalization, the
population parameter indexing the optimal treatment
regime is pBoP'= (/38pt, fpt, ;pt, ;)pt) =(-1,-1,1,1)
in setting 1, and (—1,—1,1,0) in setting 2. We consider
1000 simulation runs and three different sample sizes
n = 300, 500,1000 in the simulation experiments. The
confidence intervals are constructed based on 500 boot-
strap estimates for each simulation run. That is, for each
simulation run, we generate 500 independent samples of
size n of positive random weights from a distribution with
mean one and variance one and apply them to weight the
original observations according to (6).

We first study the finite sample performance of the
smoothed robust estimator in Section 2.3. The smoothed
robust estimator is computed using the proximal algorithm
in Section 2.4, where we choose K(-) to be the cumulative
distribution function of standard normal distribution and
set h, = 0.9n~"% min{ std(x] 8), IQR(x 8)/1.34}, as sug-
gested in Silverman (1986), where “std” denotes the stan-
dard deviation function, and “IQR” denotes the interquar-
tile range. The initial estimator g° in the proximal algo-
rithm is set as (0, ...,0)". We compare the smoothed esti-
mator with three alternative estimators. The first is the
nonsmoothed estimator in (4), which was computed using
the genetic algorithm, using the “genoud” function in R
package “rgenoud” (Mebane and Sekhon, 2011), as sug-
gested in Zhang et al. (2012). The second is the estimator
based on the hinge loss (Zhao et al., 2012), calculated using
the function owl in the R package DTRIlearn2 (Chen et al,
2019). The third is the estimator using logistic loss, calcu-
lated using the function glmnet in the R package glmnet
(Friedman et al., 2010). Table 1 reports the bias and stan-
dard deviation of the estimate for the parameters index-
ing the optimal treatment regime, the match ratio (per-
centage of times the estimated optimal treatment regime
matches the theoretically optimal treatment regime), and
the bias and standard deviation of the estimated optimal
value.

The results in Table 1 demonstrates that the smoothed
robust estimate has smaller bias and substantially smaller
standard deviation comparing with the other three estima-
tors, particular for the smaller sample size setting. It also
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Monte Carlo estimates of the bias and standard deviation of the estimate for the parameters indexing the optimal treatment

regime, the match ratio (percentage of times the estimated optimal treatment regime matches the theoretically optimal treatment regime),

and the bias and standard deviation of the estimated optimal value

n Method B B

Setting 1

300 Smooth —0.05(0.30) 0(0)
Nonsmooth —0.29 (1.45) 0.00 (0.09)
Hinge —0.46 (0.41) 0(0)
Logistic —0.46 (0.47) 0(0)

500 Smooth —0.01 (0.19) 0(0)
Nonsmooth —0.15(0.41) 0(0)
Hinge —0.37(0.30) 0(0)
Logistic —0.41(0.29) 0(0)

1000 Smooth —0.01(0.14) 0(0)
Nonsmooth —0.07 (0.24) 0(0)
Hinge —0.36 (0.24) 0(0)
Logistic —0.38(0.19) 0(0)

Setting 2

300 Smooth 0.04 (0.26) 0(0)
Nonsmooth —0.26 (0.76) 0.00 (0.06)
Hinge —3.33(79.42) 0(0)
Logistic —0.67 (5.13) 0.00 (0.06)

500 Smooth 0.02 (0.19) 0(0)
Nonsmooth —0.16 (0.52) 0(0)
Hinge —0.64 (1.11) 0(0)
Logistic —0.43(0.29) 0(0)

1000 Smooth —0.01(0.14) 0(0)
Nonsmooth —0.08 (0.21) 0(0)
Hinge —0.56 (0.24) 0(0)
Logistic —0.43 (0.20) 0(0)

B B Match ratio v,
0.01(0.27) 0.04 (0.31) 99.35% —0.02 (0.17)
0.12 (1.21) 0.24 (1.43) 96.67% 0.06 (0.17)
0.04 (0.27) —0.04 (0.29) 91.85% —0.05 (0.18)
0.06 (0.42) 0.26 (0.57) 94.17% —0.02 (0.18)
0.01 (0.20) 0.02 (0.22) 99.73% 0.00 (0.13)
0.06 (0.36) 0.13(0.42) 98.19% 0.05 (0.13)
0.01 (0.18) —0.06 (0.20) 92.93% —0.03 (0.13)
0.04 (0.30) 0.23(0.36) 94.61% —0.01(0.13)
0.00 (0.13) 0.01(0.15) 99.88% —0.01 (0.09)
0.02(0.22) 0.06 (0.25) 99.04% 0.03 (0.09)
0.01 (0.13) —0.07 (0.14) 92.95% —0.04 (0.09)
0.02 (0.19) 0.18 (0.23) 94.61% —0.02 (0.09)
0.02 (0.24) 0.02 (0.18) 99.35% —0.01(0.15)
0.11 (0.71) 0.11 (0.37) 95.78% 0.07 (0.15)
0.01(0.22) —0.09 (0.16) 76.19% —0.06 (0.16)
0.18 (3.33) 0.23 (2.96) 90.20% —0.02(0.16)
0.02(0.18) 0.00 (0.13) 99.65% —0.01(0.11)
0.06 (0.42) 0.06 (0.24) 97.37% 0.05 (0.11)
0.02 (0.16) —0.10 (0.12) 88.59% —0.07 (0.12)
0.03 (0.30) 0.12 (0.20) 92.08% —0.03 (0.12)
0.01(0.13) 0.00 (0.09) 99.79% —0.01 (0.08)
0.03 (0.22) 0.04 (0.17) 98.55% 0.03 (0.08)
0.01(0.12) —0.10 (0.08) 89.69% —0.06 (0.09)
0.03 (0.20) 0.11 (0.15) 92.13% —0.03 (0.09)

leads to higher match ratio. Estimators using hinge loss
and logistic loss are even not consistent when the sam-
ple size increases. For n = 300, we observe that in one or
two of the 100 simulation runs the nonsmooth estimator
converges to the negative of the true value of ﬁ(l)pt (ie, the
algorithm converges to 1 when the true value is —1), which
causes the nonzero variance. This is probably due to the
fact nonsmooth estimation is less stable when the sam-
ple size is relatively small. In addition, the expected value
functions with the true parameter g°P' and random policy
are simulated via Monte Carlo simulation with 107 repli-
cates; for Setting 1, the optimal value turns out to be 1.14,
and the value function with random policy is —0.47; and for
Setting 2, the true optimal value is 0.93, and the value func-
tion with random policy is —0.29. When taking the compu-
tation time into consideration, the nonsmoothed estimator
requires about 4 s for each run, while the smoothed estima-
tor only needs 0.002 s. This suggests a substantial reduc-
tion in computational costs.

We next investigate the bootstrap confidence interval in
Section 2.3. We construct 95% bootstrap confidence inter-
vals for the parameters indexing the optimal treatment
regime. Table 2 summarizes the empirical coverage prob-
abilities and average interval lengths. We observe that the
coverage probabilities are above 92.2% for sample sizes 500
and 1000, and above 91% for sample size 300. Despite the
slight under coverage, the lengths of the confidence inter-
vals are reasonable. As sample size increases, the length
of the confidence interval decreases significantly. Accu-
rate finite-sample coverage is harder to achieve due to the
model-free, nonparametric nature of our approach. See
similar observations in simulations focusing on nonregu-
larity settings for dynamic treatment regimes, for instance,
Laber et al. (2014) and Chakraborty et al. (2013). As for com-
putation time, on average one bootstrap run takes less than
0.2s.

Finally, we explore several nonregular settings, where
the optimal treatment regimes may be nonunique,

d ‘T 10T ‘0THO1ST

:sdny woxy papeoy

QSUAIIT suowo)) danear) aqearjdde ayy Aq pauraroS ale sa[o1IE Y (asn JO SN 10J AIeIqIT dUIUQ AB[IAN UO (SUOIIPUOI-PUE-SULIA)/ W00 Ko[1m  KIeIqI[aul[uo//:sd)y) SUOnIpuo)) pue Sud |, Ay 23S *[£702/10/6¢] U0 K1eiqi aurjuQy L[Ipy ‘SaLIRIqIT IRl JO ANSIoAIUN) £q £E€€ ] WOoIq/[ [ [ [°0[/10p/woo Kojim  Kreiqijauly



WU AND WANG

= | \wiLey Dmelris

TABLE 2 Empirical coverage probabilities and average interval
lengths of the 95% bootstrap confidence intervals for §°F*
7 531” ﬁ:pt ﬁ;lpt 5;>pt
Setting 1
300 Coverage rate 92.6% 100% 93.2% 91.0%
Average length 1.36 0 1.26 1.38
500 Coverage rate 92.2% 100% 93.0% 92.6%
Average length 0.81 0 0.79 0.84
1000 Coverage rate 92.6% 100% 94.0% 93.4%
Average length 0.54 0 0.53 0.56
Setting 2
300 Coverage rate 93.4% 100% 92.6% 95.8%
Average length 112 0 1.01 0.71
500 Coverage rate 94.2% 100% 93.8% 94.6%
Average length 0.75 0 0.72 0.51
1000 Coverage rate 94.0% 100% 93.0% 95.4%
Average length 0.50 0 0.48 0.35

motivated by Laber et al. (2014). In these cases, the
parameter indexing the optimal treatment regime is not
uniquely identifiable but inference for the optimal value
may still be feasible. We focus here on the bootstrap
confidence interval for the optimal value. In setting 3,
the same data generative model as before is used with
B =(1,2,0.02,0)". For setting 4 and 5, § = (—1,1,0,0)7,
however, the first random covariate x; is generated from
the discrete uniform distribution on the set {—1,0,1, 2}
and {1, 2}, respectively, instead of the standard normal
distribution. For completeness, the bootstrap confidence
intervals for the optimal value in setting 1 and setting 2 are
also studied.

Let p denote the probability of generating a covari-
ate vector x such that x”8 = 0. This is a useful mea-
sure of the nonregularity of the model (Laber et al., 2014).
According to this measurement, setting 1-3 are regular
(R) cases with p = 0; while setting 4 and 5 are nonreg-
ular (NR) with p = 0.25 for setting 4 and p = 0.5 for
setting 5.

Table 3 summarizes the empirical coverage rate and
average length for the 95% bootstrap confidence intervals
for the optimal value functions. The results demonstrate
that the bootstrap confidence intervals for the optimal
value have desirable coverage rates with reasonable inter-
val lengths, even in the nonregular cases. For compari-
son, we also report the percentage of times these boot-
strap confidence would cover the value function from
a random policy. The percentage is really low, which
implies that the proposed method performs much bet-
ter than random assignment even in the nonregular
cases.

TABLE 3 Empirical coverage probabilities and average interval
lengths of the 95% confidence intervals for V(B°P")
1 2 3 4 5
n Setting type R R R NR NR

300 Coverage rate 93.0% 92.6% 96.4% 97.2% 95.4%
Average length  0.67 0.61 0.78 040 041
CR for random 0% 0% 0% 0% 31.2%
policy
500 Coverage rate 93.8% 94.0% 96.0% 952% 94.4%
Average length  0.52 0.47 0.62 031 031
CR for random 0% 0% 0% 0% 12.4%
policy
1000 Coverage rate 93.6% 954% 97.0% 96.0% 96.0%
Average length  0.37 0.33 0.43 022 022

CR for random 0% 0% 0% 0% 0.8%
policy

5 | A REAL DATA EXAMPLE

We analyze a clinical data set from the Childhood Adeno-
tonsillectomy Trial (CHAT). This is a randomized study
designed to test whether early adenotonsillectomy (eAT,
denoted as treatment 1) is helpful to improve neurocog-
nitive functioning, behavior, and quality of life for chil-
dren with mild to moderate obstructive sleep apnea, com-
pared with watchful waiting plus supportive care (WWSC,
denoted as treatment 0), see Marcus et al. (2013). In this
trial, 464 children with mild to moderate obstructive sleep
apnea syndrome, ages 5-9.9 years, were randomly assigned
to eAT and WWSC. Some biochemical and neurocogni-
tive test results were recorded before the treatment and 7
months after the treatment.

We consider the baseline Apnea-Hypopnea Index (AHI),
with a natural log-transformation as recommended by
Marcus et al. (2013), as an explanatory variable. AHI is the
number of apneas or hypopneas recorded during the study
per hour of sleep. It is an important measurement of the
quality of sleep and is commonly used by doctors to classify
the severity of sleep apnea. Marcus et al. (2013) suggested
that black children tend to experience different improve-
ments with eAT comparing with children from other races.
We hence include race (binary, 1=African American, 0 for
others) as another covariate. For the outcome variable,
to balance the benefits and adverse effects from eAT, we
adopt a composite score. The composite score uses the ratio
of the follow-up AHI and baseline AHI (both with natu-
ral log-transformations) as an effective measure of benefit.
On the other hand, it takes into account the adverse events
documented according to the CHAT study manual of pro-
cedures as penalty.

We estimate the optimal treatment regime in the class
of treatment regimes D = {I(8, + §;AHI + ,race > 0) :
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|B1] = 1}. The kernel function K(-) and the bandwidth
selection are the same as in Section 4. The smoothed
estimator for the baseline AHI is normalized to 1, the
race is 0.56, with (0.34,0.97) as the 95% bootstrap confi-
dence interval, and the intercept is 0.39, with confidence
interval (0.22,0.65). The confidence intervals suggest that
the coefficients are all significantly different from 0. The
analysis suggests that it is reasonable to assign WWSC
to those children with milder symptoms (lower AHI). It
also suggests that black children display more improve-
ment in the AHI scale with eAT. The results are con-
sistent with those observed empirically in Redline et al.
(2011), Marcus et al. (2013), and Dean et al. (2016). The
average outcome with randomized treatment is 0.288.
The estimated average outcome corresponding to the esti-
mated optimal treatment regime is 0.063, with a 95% boot-
strap confidence interval (—0.126,0.260). This suggested
a significant reduction of the composite outcome score
when applying the optimal treatment regime. To com-
pare with the smoothed estimator, we also calculate the
nonsmoothed estimator, whose coefficients are 1 for base-
line AHI, —0.19 for the race, and —0.40 for the intercept.
Its estimated optimal value is —0.034. The nonsmoothed
estimators are significantly different from the smoothed
ones. In Example 4 of Section S7 in the supplementary,
we demonstrate based on fivefold cross-validation that for
this real data example, the nonsmoothed estimator is quite
unstable.

6 | DISCUSSIONS

6.1 | Extension to other settings

The method we propose can be extended to observational
studies using the inverse probability weighting approach.
Assume the propensity score 7(x) = P(A = 1|x) can be
modeled as 7(x, §) where £ is a finite-dimensional param-
eter (eg, via logistic regression). Let fbe an estimate of £.
Under the commonly adopted assumption of no unmea-
sured confounding, a smoothed robust estimator for §, can
be constructed as

o [AiK<
S An D+ -A)(1 - 7(x,§)
(12)

) oK)y

n

argmaxn-
peB

Example 3 in Section S7 of the supplementary material
confirms that this smoothed estimator provides accurate
estimation for the optimal treatment regime when the
propensity score model is correctly specified. The estima-
tor in (12) can also be extended to be doubly robust simi-

Dlometrics wyy gy -1+

larly as in Zhang et al. (2012). Due to the presence of nui-
sance parameter, the theory of asymptotic normality and
inference is more technically involved. This will be a future
research topic.

It is worth pointing out that our method is applica-
ble to binary response, as binary random variable is sub-
Gaussian after centering. Example 1 in Section S7 of the
supplementary materiel demonstrates that our estima-
tion and inference procedures work effectively for binary
responses. For survival outcome under random censoring,
our method can be extended to obtain a robust procedure
for estimating the optimal treatment regime maximizing
the restricted mean survival time, similarly as in Zhao et al.
(2015). Let T denote the survival time. Let T = min{T, 7} be
the outcome of interest, where 7 is the time till the end of
the study. Let C denote the censoring time and A = I(T <
C) be the censoring indicator. We observe Y = min{T, C}.
Based on the observed data{Y;,x;,A;, A;}, i = 1,...,n from
a randomized trial, the smoothed estimator can be con-
structed as

. [AK(f—f) +A-4){1 —K<"*T’3)}]

hn

argmax — AY;,

e o Ge(Yilx, A)
where G-(t|x,A) = P(C > t|x, A) is the conditional sur-
vival function of the censoring time C given (X, A), and
Go(-|x, A) is an estimator of G- (-|x, A).

6.2 | On the identifiability condition

The asymptotic normality results can be established under
alternative identifiability constraint such as the require-
ment that the L, /L, norm of g is 1, or identifiability of 8
up to a scale. However, this usually leads to more techni-
cally involved proof as f is constrained to be the boundary
point of a unit sphere and V(8) does not have a derivative at
B. This issue was often ignored in the theory development
in many existing literature, which only adjust for the con-
straint in an ad hoc way in the numerical implementation.
See Zhu and Xue (2006) for more discussions in an index
model setting and a careful delete-one-component method
to handle this rigorously.

For identifiability, we assume that there exists a covari-
ate whose conditional distribution given the other covari-
ates is absolutely continuous. This is a common assump-
tion for index model and is satisfied in many real appli-
cations. In practice, domain experts may help suggest
such a candidate continuous covariate and the statisti-
cians can run confirmatory analysis (eg, comparing the
conditional treatment effect conditional on this covariate)
to verify if this is a viable choice. In the case when all
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relevant covarites are discrete (eg, gender and race), the
problem reduces to comparing a finite number of deci-
sion rules and the main target of inference is arguably
the optimal value. Our simulation settings 4 and 5 only
include discrete variables in the optimal regime. The sim-
ulation results in Table 3 show that our proposed boot-
strap confidence interval still provides reasonable empir-
ical coverage probability for the optimal value in discrete
cases.

6.3 | Nonregular settings

The optimal treatment regime may not be unique if there
exists a subpopulation who responds similarly to the two
treatment options. In such a setting, the complexity of
nonregularity arises, see the discussions in Robins (2004),
Moodie and Richardson (2010), Laber et al. (2014), Song
et al. (2015), and Luedtke and Van Der Laan (2016). Uni-
form inference under nonregularity or exceptional laws is
a challenging problem.

Although our theory does not apply to this scenario,
our simulation results show that our bootstrap confi-
dence interval for the optimal value function displays a
fair degree of robustness in the two examples where non-
regularity occurs. As an example, in simulation setting
5, if x; =1, then the subject responds the same to the
two treatment options; while if x; = 2, the subject ben-
efits from treatment 1. There are four decision rules of
interest for this example. The optimal treatment rule is
nonunique as one may assign either treatment 0 (say no
treatment or a standard, less expensive treatment) or treat-
ment 1 to those subjects with x; = 1. A relative simple
approach to breaking the nonuniqueness is to introduce
a secondary criterion. For example, one may argue that
under the principle of avoiding over-treatment, there exists
a unique optimal decision rule of interest, in this case
I(x; = 2), which would not assign treatment 1 when ambi-
guity exists in order to reduce costs and avoid potential
risks. Based on the sample, this unique optimal treat-
ment regime can be consistently estimated by selecting
the decision rule that maximizes the sample average treat-
ment effect while treating the smallest proportion of the
population.

There are additional inference targets that have rarely
been discussed in the literature, that is, inference about the
linear combination in the rule x” 8 or about the rule itself
I(x" B > 0). These two quantities are of interest in clinical
practice as they indicate how much confidence we can put
on the prescribed optimal decision. We are currently study-
ing these inference problems and will report the results in
a future article.
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able with this paper at the Biometrics website on Wiley
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APPENDIX: REGULARITY CONDITIONS

We first state some regularity conditions, where (K1)-(K3)
are assumptions imposed on K(-), while (Al)-(A6) are
assumptions imposed on the data.

(K1) K(-) is twice differentiable, K(-), K'(-), and K"'(-)
all bounded variation on the real line. Furthermore,
lim, . K(®»)=0, lim, K@) =1; [{K'(»)}dv
and [{K"(v)}*dv are both finite.

(K2) For some integer b>2, and any 1<i<b,
[ WK (v)|dv < oo; /_OZO VK'(v)dv =0 for
1<i< b—landf_ozova’(v)dv =d#0.

(K3) For any integer i between O and b, any
7 >0, and any sequence {h,} converging to
0, lim,_ hi™? /| holoy [VK'(»)|dv =0, and

lim,_ o k! hvlon K" (v)|dv = 0.

(A1) u(a,x)isbounded foralmostallx,anda =0,1;Y} —
u(a,x), a = 0,1, has a sub-Gaussian distribution for
almost every x.

(A2) The support of the distribution of x is not contained
in any proper linear subspace of R?. For almost every
X, the distribution of x; conditional on X has every-
where a positive density. The components of X are
bounded by M,,.

(A3) Let S(z,X) = E{Y] —Y;|z,X}, where z=x',.
For almost every X, S(0,X)=0. And for every
€>0,  SUP|5_g5e E{I(x"B > 0)S(z,X)f (z|X)} <
E{I(x" B, > 0)S(z, X)f (z|%)}.

(A4) Given any integer 0 <i < b — 1, for all z in a neigh-
borhood of 0, f ®(z|%) is a continuous function of
z and satisfies | fO(z|X)| < M ¢ for almost every X,
where M > 0 is a constant.

(A5) Let $©(0,%), i=0,1,..,b, denote the ith par-
tial derivative of S(z,X) with respect to z. For
0<i<b, for all z in a neighborhood of 0,
SW(z, %) is a continuous function of z and satisfies
|SD(z,%)| < Mg for almost every X, where M, > 0
is a constant. The matrices E{x% f(0|%)S™(0, %)}
and —E{x% (%7 B,)f(0|%)SM(0,%)} are negative
definite.

(A6) The random weights ry, ..., 7, form a random sam-
ple from a distribution of a positive random variable
with mean one and variance one. Assume that r; —
E(7;) has a sub-Gaussian distribution, i = 1, ..., n.

Remark 4. The bounded variation assumption on K(-),
K'(+),and K" (-) are relatively weak (Apostol (1974, chapter
6)). This and other assumptions in (K1)-(K2) are satisfied
if K(-) is taken to be the distribution function of standard
normal distribution (b = 2) or the function in Remark 1
(b =4). However, K(-) is not required to be a cumula-
tive distribution function. The bounded variation assump-
tion implies that K(-), |K'(-)|, and |K"'(-)| are uniformly
bounded. Our assumptions on the data are also relatively
mild. Condition (Al) imposes mild assumption on the tail
distribution of Y}, — u(a,x), a = 0,1, and allows for both
normal distribution and many other nonnormal distribu-
tions. Condition (A3) is a margin type condition to ensure
identification of .
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