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Abstract. A coupled path-planning and sensor con�guration method is proposed. The path-planning
objective is to minimize exposure to an unknown, spatially-varying, and temporally static scalar �eld
called the threat �eld. The threat �eld is modeled as a weighted sum of several scalar �elds, each
representing a mode of threat. A heterogeneous sensor network takes noisy measurements of the threat
�eld. Each sensor in the network observes one or more threat modes within a circular �eld of view
(FoV). The sensors are con�gurable, i.e., parameters such as location and size of �eld of view can be
changed. The measurement noise is assumed to be normally distributed with zero mean and a variance
that monotonically increases with the size of the FoV, emulating the FoV v/s resolution trade-o� in
most sensors. Gaussian Process regression is used to estimate the threat �eld from these measurements.
The main innovation of this work is that sensor con�guration is performed by maximizing a so-called
task-driven information gain (TDIG) metric, which quanti�es uncertainty reduction in the cost of
the planned path. Because the TDIG does not have any convenient structural properties, a surrogate
function called the self-adaptive mutual information (SAMI) is considered. Sensor con�guration based
on the TDIG or SAMI introduces coupling with path-planning in accordance with the dynamic data-
driven application systems paradigm. The bene�t of this approach is that near-optimal plans are found
with a relatively small number of measurements. In comparison to decoupled path-planning and sensor
con�guration based on traditional information-driven metrics, the proposed CSCP method results in
near-optimal plans with fewer measurements.

Keywords: sensor networks · trajectory- and path-planning · bayesian methods · sensor con�guration

1 Introduction

Consider applications where an autonomous mobile agent learns about its unknown environment using data
collected by an exteroceptive sensor network. For example, we envision a situation where the mobile agent
- henceforth called an actor - needs to �nd a minimum-threat path in an adverse environment. The nature
of the threat is multimodal and correlated, e.g., �re, smoke, and heat. A network of mobile sensors, e.g.,
unmanned aerial vehicles (UAVs), is available to collect data about the threat, but each sensor may be limited
in its ability to detect the di�erent threat modalities, e.g., one UAV may carry a camera that visually detect
�re and smoke, whereas another UAV may carry a temperature sensor. In this situation, it may be: (1)
possible to con�gure the sensors, e.g., send di�erent types of sensors to di�erent locations, and (2) crucial
for the actor to �nd a plan with high con�dence but with as few measurements as possible. To this end
we ay ask: how do we optimally con�gure sensors to �nd a near-optimal plan with a minimal number of
measurements?

We study the problem of �nding a path of minimum threat exposure in an unknown environment. The
unknown threat is a sum of multiple scalar �elds representing modes. Information about the threat is gained
through data collected by a heterogeneous sensor network, where each sensor is able to detect one or more
modes of threat.

Related Work: Optimal path-planning and the related �eld of motion-planning are well studied for metrics
such as minimum path length, maximum traversal utility, and obstacle avoidance [1,2]. Classical approaches
include arti�cial potential �elds, probabilistic roadmaps, and cell decomposition. Discrete-space methods
such as Dijkstra's algorithm [3], A*, and its variants [4] are well-known for path-planning. Probabilistic
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techniques are used for planning under uncertainty [5], including dynamic programming and its variants. [6].
Partially observable Markov Decision process models are typically used in uncertain planning tasks when
the agent has active onboard sensing [7].

The sensor con�guration literature is focused on sensor placement. Optimal sensor placement addresses,
for example, minimizing uncertainty, or maximizing spatial coverage and communication reachability [8].
Optimization metrics include set coverage and information theoretical criteria such as Kullback-Leibler di-
vergence, Fisher information, and mutual information [9]. Sensor placement applications include placement
for estimation of gaseous plumes [10], cooperative tracking of forest �res [11], and observing dynamics of
volcanic ash [12]. Near-optimal sensor placement for linear inverse problems are studied by [13]. Clustering-
based algorithms such as k-means [14] and density-based clustering [15] are studied for sensor placement in
o�ce spaces.

A comparison of task-driven versus information-driven sensor placement in tracking applications is dis-
cussed [16]. The literature cited above represents information-driven approaches. Task-driven approaches
include recent works, for example, on optimal sensor selection for linear quadratic Gaussian feedback control
systems [17], and hierarchical path-replanning concurrently with multi-agent data fusion [18]. Target tracking
UAVs with limited �eld of view are studied in applications where the UAVs �nd optimal paths and optimal
sensing position simultaneously [19].

The authors' previous work has addressed coupled sensor con�guration and path-planning [20,21,22]. In all
of these works, we assumed that the network of extroceptive sensors is homogeneous and that the underlying
threat environment is unimodal. In practice, heterogeneous sensor types can be utilized to capture various
modalities of an environment that can be measured observable by a particular sensor type. In this work, we
address heterogeneous sensor networks that observe multimodal threat.

There are many situations in which a sensing agent (e.g., a UAV) could have a payload with multiple
heterogeneous sensor types, allowing for simultaneous sensing of variably correlated threat modalities in
an environment. In what follows, we address situations in which a sensor network can be comprised of
heterogeneous sensing agents with the following scenarios: (1) every sensing agent payload is equipped with
every sensor modality, (2) each the sensing agent's payload is de�cient in at least one modality, and (3) the
sensing agent payloads each contain a sensor modality.

The details of the threat and sensor models, and the proposed coupled sensing and path-planning tech-
nique are provided next.

2 Problem Formulation

We denote by R and N the sets of real and natural numbers, respectively, and by {N} the set {1, 2, . . . , N}
for any N ∈ N. For any a ∈ RN , a[i] is its ith element, diag(a) is the N × N diagonal matrix with the
elements of a on the principal diagonal, and a◦(−1) denotes the vector with reciprocal elements of a. For any
matrix A ∈ RM×N , A[i, j] is the element in the ith row and jth column. For A ∈ RN×N and for the indicator
vector a ∈ {0, 1}N , diag(A) is the diagonal vector and A[a] is the submatrix of rows and columns indicated
by a. Similarly, A[i,a] denotes elements in the ith row and columns indicated by a. I(N) denotes the identity
matrix of size N. For µ, σ ∈ R, N (µ, σ2) denotes the normal distribution with mean µ and variance σ2.

The agent operates in a compact square planar region called the workspace W ⊂ R2. Consider a uniformly-
spaced square grid of points i = 1, 2, . . . , Ng and a graph G = (V,E) whose vertices V = {Ng} are uniquely
associated with these grid points. The set of edges E of this graph consist of pairs of geometrically adjacent
grid points. In a minor abuse of notation, we label the vertices the same as grid points. We denote by
pi = (pix, piy) the coordinates of the ith grid point and by ∆p the distance between adjacent grid points.
Without loss of generality we consider �4-way� adjacency of points (i.e., adajcent points are top, down, left,
and right).

A threat �eld c : W → R>0 is a strictly positive temporally static scalar �eld. A path π = (π[0],π[1], . . . ,π[λ])
between prespeci�ed initial and goal vertices v0, vL ∈ V is a �nite sequence, without repetition, of succes-
sively adjacent vertices such that π[0] = v0 and π[λ] = vL for some λ ∈ N. When the meaning is clear
from the context, we also denote by π the unordered set of vertices in a path. A path incidence vector
vπ ∈ {0, 1}Ng has vπ[i] = 1 if i = π[j] for j ∈ {λ}\0 and vπ[i] = 0 otherwise. The cost of a path π is the

total threat exposure calculated as J (π) := ∆p
∑λ

j=1c(pπ[j]). The main problem of interest is to �nd a path
π∗ of minimum cost.
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(a) Multimodal threat �eld. (b) Sensor FoVs and points of obser-
vations (red dots).

Fig. 1. Illustration of the threat and sensor models considered in this work.

We cannot solve this problem as stated because the threat �eld is unknown. The threat �eld can be
measured by sensors, but each sensor may not be able to measure all of the modalities that constitute the
threat. For the sake of a tangible example, sensor modalities may include (1) electro-optical (EO) imaging,
(2) infrared (IR) imaging, and (3) a lidar (LI) point cloud. Fusion of these sensors could occur at the sensor
level as raw data passes through circuitry, at the data level as the analog data acquisition becomes digitized,
at the feature level where the data is combined through a latent embedded space, at the decision level which
fuses independent output decisions from each sensor type, or at the mission level which fuses data with
respect to spatial or task relevant correlations. In this work, we attempt to emulate mission level fusion via
a statistical �eld estimation formulation. In terms of the aforementioned sensors, this would mean fusion
occurs after the EO, IR, and LI sensor data is digitized, a context-based decision about the data is performed,
including spatial association.

The context of the multimodal data fusion is of signi�cant importance to how fusion is performed. We
de�ne each ith threat �eld modality as c(i) : W → R>0 as a strictly positive temporally static scalar �eld, as
illustrated in Fig. 1(a). We then de�ne a fused threat �eld as č := m[1]c(1) +m[2]c(2) + · · ·+m[Nm]c(Nm),
where m is a user speci�ed weighted fusion vector. The values prescribed to m de�ne the context in which
the fusion occurs. The path cost is then calculated as J (π) := ∆p

∑λ
j=1č(pπj

). Lastly, in what follows we

make use of a multimodal vertex set Ṽ := {NgNm} to represent the vertex indices scaled to Nm modalities.

Each sensor measures the threat in a circular FoV as shown in Fig. 1(b). The center sk ∈ W and radius
ϱk ∈ R>0 of this circular FoV are parameters that we can choose for each k ∈ {Ns}. Maximum and minimum
FoV radius constraints are speci�ed as ϱmax and ϱmin, respectively. The set of all sensor parameters is called
a con�guration, which we denote by C = {s1, ϱ1, s2, . . . , ϱNs}.

We introduce an observability incidence vector for each kth sensor where ok ∈ {0, 1}Nm , which charac-
terizes if the kth sensor can view a threat modality and is speci�ed by the user given each sensing agent's
payload. We create an observed cover incidence matrix for each kth sensor as ν̃k := vec(νkok) ∈ RNgNm×1,
where we de�ne vec(·) := RNg×Nm → RNgNm×1. Finally, the combined observed covered incidence vector
becomes ν̃ := (ν̃1 ∨ ν̃2 ∨ ... ∨ ν̃Ns).

We update the sensor observations notation as follows. The collection of sensor data locations for a

particular ith sensor type is denoted as X(i) = {x(i)
11 , . . . ,x

(i)
km, . . . ,x

(i)
NsMNs

} ∀ i ∈ Nm. We denote by,

X = {X(1),X(2), . . . ,X(Nm)}, the set of sensor data locations for each sensing modality which is aggregated
or updated with each iteration ℓ. The training matrix of the training set augmented by the corresponding
modality index is formulated as follows:

X̃ :=

[
X(1) X(2) . . . X(Nm)

0 1 . . . Nm

]⊺
(1)
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Similarly, we de�ne the collection of vectorized noisy threat �eld observations and observation noise as
z̃ =

[
z⊺
1 z⊺

2 . . . z⊺
Nm

]⊺
and σ̃ =

[
σ1

⊺ σ2
⊺ . . . σNm

⊺
]⊺
, respectively. We say that each of the observations for

each ith modality is modeled as z
(i)
km = c(i)(xkm) + η

(i)
km. The measurement error η increases monotonically

with the sensor FoV.

3 Multimodal Field Estimation

We use Gaussian Process regression (GPR) to construct an estimate of the multimodal threat �eld. Basic
details regarding the GPR approach to unimodal threat estimation are provided in our previous work [22].
The joint posterior distribution is modi�ed as follows to account for the multimodal vectorized output and
multimodal threat �eld estimates: [

z̃

f̃

]
∼ N

(
0,

[
K z̃ K∗
K⊺

∗ K∗∗

])
, (2)

where K is the kernel function. We modify the kernel structure to enable learning of the cross-correlation
between modalities. Namely, we utilize the intrinsic model of coregionalization (ICM) kernel KX de�ned as:

KX = (ΘwΘ
⊺
w + diag(θv)) (3)

The ICM kernel is a matrix of size Nm × Nm and has learnable parameters Θw and θv. The matrix of
parameters is of size Nm × r, where r ∈ N is a small value to emulate low-rank positive de�nite correlation
between modalities. The parameter vector θv is of size Nm × 1 and models the independent scaling factor
of each modality. For threat �eld modeling, we utilize the kernel Kij = KR

ij · K
X [i, j] ∀ i, j ∈ Nm. The

resulting kernel has the form:

K := K(X̃, X̃) =


K11 K12 · · · K1Nm

K21
. . .

...
...

...
...

. . .
...

KNm1 · · · · · · KNmNm


The collection of hyperparameters to optimize are θ = (Θr,Θw,θv). The multimodal input kernel with
heteroscedastic noise vector is formulated as K z̃ := K +diag(σ̃). The diagonal elements of K represent the
auto-covariance of points within a modality, whereas the o�-diagonal elements represent the cross-covariance
which models the latent relationship between modalities.

From the joint distribution, we can obtain the current iteration multimodal threat �eld estimate and
multimodal threat error covariance matrix as:

f̃ ℓ = K⊺
∗K

−1
z̃ z̃, P̃ ℓ = K∗∗ −K⊺

∗K
−1
z̃ K∗.

We note that the multimodal threat �eld estimate and multimodal threat �eld error covariance matrix are
constructed as:

f̃ ℓ =
[
f
(1)⊺
ℓ f

(2)⊺
ℓ . . . f

(Nm)⊺
ℓ

]⊺
, P̃ ℓ =


P

(11)
ℓ P

(12)
ℓ · · · P

(Nm)
ℓ

P
(21)
ℓ

. . .
...

...
...

...
. . .

...

P
(Nm1)
ℓ · · · · · · P (NmNm)

ℓ

 .

The fused threat �eld estimate and fused threat �eld error covariance matrix can then be computed using
the weighted fusion vector m ∈ RNm as:

f̌ ℓ =

Nm∑
i=1

m[i]f̃
(i)

ℓ , P̌ ℓ =

Nm∑
i=1

m2[i]P̃
(ii)

ℓ + 2

Nm∑
j=2

j−1∑
k=1

m[j]m[k]P̃
(jk)

ℓ . (4)

We may then use the fused threat �eld and fused threat error covariance matrix to �nd the estimated optimal
path-plan and the estimated path-plan variance.
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4 Coupled Sensor Con�guration

The coupled sensor con�guration and path-planning (CSCP) method for unimodal threats was introduced
in our previous works, and is summarized in Fig. 2. The key step in the CSCP approach to con�gure sensors
by maximizing what is called the task-driven information gain (TDIG). Informally, TDIG is a measure of
entropy reduction in a region of interest �near� the currently optimal path. Further details are in our previous
works. In [23], we introduced a function called self-adaptive mutual information (SAMI), which approximates
the TDIG, but has the added bene�t of being submodular.

1: Initialize: ℓ := 0, set initial mean threat estimate to zero, and covariance arbitrarily large
2: Find initial estimated optimal path π∗

0 := argminJ 0(π)
3: while Varℓ(π

∗
ℓ ) > ε do

4: Find optimal sensor con�guration C∗
ℓ (as discussed in this section)

5: Record new measurements with the new sensor con�guration
6: Increment iteration counter ℓ := ℓ+ 1
7: Update mean threat estimate and estimation error covariance P ℓ (see �3)
8: Find π∗

ℓ := argminJ ℓ(π)

Fig. 2. Proposed iterative CSCP method.

The introduction of heterogeneous sensors presents some additional nuances. Since each sensor network
can have multiple modalities, we consider three separate situations in which the sensor con�guration problem
can be formalized. In what follows, we describe situations in which every sensor is equipped with every
modality, a mixture of modalities, or only a single modality.

First, we say that a multimodal region of interest is de�ned as the collection of region of interest vertices
with index values biased by the appropriate mode index as R̃ := {∪Nm−1

i=0 R+ iNg}. The multimodal region

of interest is used for indexing in the SAMI formulation. The entropy of any vertex i ∈ Ṽ as:

h(i) :=
1

2
ln(2πeP̃ ℓ[i, i]) (5)

In certain cases the conditional entropy computations can be batched and computed in parallel. For any
i /∈ R, the batched conditional entropy vector h(·|R̃\i) is computed as:

h(·|R̃\i) =
1

2
ln((2πe)diag(P̃ ℓ − P̃ ℓ[·, R̃]P̃ ℓ[R̃, R̃]−1P̃ ℓ[R̃, ·])) (6)

We note that the matrix inverse only needs to be computed once. However, for any i ∈ R, the conditional
entropy of any vertex i ∈ {NgNm} given R̃\i can be computed in parallel as:

h(i|R̃\i) =
1

2
ln((2πe)(P̃ ℓ[i, i]− P̃ ℓ[R̃\i, i]

⊺P̃ ℓ[R̃\i, R̃\i]
−1P̃ ℓ[R̃\i, i])) (7)

Given these equations, we can calculate the mutual information I between the multimodal region of
interest and any vertex for a particular mode i ∈ Ṽ as:

I(R̃\i; i) := h(i)− h(i|R̃\i). (8)

The SAMI reward term for multimodal threat �elds is then:

R(i) := (1− α)I(R̃\i; i) + αI(R̃c
\i; i) (9)

In (9), the ROI complement is taken as R̃c := Ṽ \R̃ and i ∈ Ṽ . We also update the mutual information reward
vector to be γ :=

[
γ(1) γ(2) . . . γ(Ng) . . . γ(NgNm)

]⊺
. The reward function given the sensor con�guration

is Γ (Cℓ) = ν̃⊺γ.
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The SAMI penalty function is calculated as:

Υ (Cℓ) := −1

2

∑
i∈F

(
1

2
ln(2πe)− ln

∑
k∈Ns

(νk ⊙ σ−2
k )[F̃]

)
(10)

In (10), the ⊙ operator is the Hadamard product, which is used to perform element-wise multiplication
between the cover incidence vector and the inverse noise vector σk

−2. The entries are indexed by [F̃] to
ensure only covered vertices are accounted for prior to taking the natural logarithm of each element. The
SAMI is the sum of the reward and penalty terms.

Sensors with all modalities ok = 1∀k ∈ Ns: this problem reduces to maximizing the SAMI surrogate
objective function directly over multimodal SAMI surrogate values. Because the SAMI is submodular, we
can sequentially optimize sensor con�guration for each set of kth sensor parameters {sk, ϱk} to �nd C∗

ℓ :=
argmaxS(Cℓ).

Sensors with overlapping modalities: To illustrate this situation, suppose that we have available
three sensors S = {S1,S2,S3} with the following modalities: S1 = {EO, IR}, S2 = {EO, LI}, and S3 =
{IR, LI}. To determine the sequence in which a sensing agent in the sensor network is optimized to adhere
to the submodularity property, we need to calculate the total reward for each modality as γ̄i =

∑
j∈Ng

(1−
ν̃(i))γ(i) prior to each sequential sensor con�guration optimization. We denote the ν̃(i) as the partition of
the multimodal sensor cover incidence for the ith modality. Similarly, the ith modality partition of the SAMI
reward vector is denoted γ(i). The total rewards is then γ̄ =

[
γ̄1 γ̄2 . . . γ̄Nm

]⊺
. We may then calculate

the total potential reward for each kth sensor as γ̄(k) = okγ̄. Therefore, each iteration of sequential sensor
con�guration, we choose Sk = argmax γ̄(k), optimize it with the SAMI objective function, and remove it
from the set S (just for that round of optimization). In our example, if R̄(2) was the maximum value, we
would perform sensor con�guration optimization with S2 and remove it from the set of optimizable sensing
agents, leaving only S1 and S3 to be optimized. We proceed to score the sensing agents again until they have
all been optimized.

Sensors with unique modalities: This is a special observability case which has unique sensor con�g-
uration optimization implications. We no longer require ranking the sensor modalities as they are entirely
separable and additive. Due to this, the sensor con�guration for uniquely observable sensor payloads allows
for parallelization of sequential sensor con�guration for each modality. In fact, each mode reduces to solving
independent sensor con�guration optimization Nm times in parallel, allowing for computational savings.

5 Results and Discussion

We conducted a study with four various sensor networks in an environment of area 9km2, workspace resolu-
tion of 212, and a desired termination threshold ε = 1. We considered a multimodal threat �eld with Nm = 3
correlated threat modalities. All mobile sensing agents were constrained to ϱmin = 0.05 and ϱmax = 0.5. The
region of interest for the experiments was found with Na = 3 alternate path plans.

We considered four various sensor network scenarios for the experiments. The �rst sensor network SA

was comprised of 3 sensors with all modalities. SB had three sensors each with two modalities such that each
threat modality was observable by at least 2 sensors. It also included one sensor with all modalities totaling
Ns = 4. Sensor network SC had the same pairs of modalities as SB , but instead of the single full-modal
sensor, it had three unimodal sensors (one for each modality) totaling Ns = 6. Finally, we considered a sensor
network SD which was comprised of Ns = 9 unimodal sensors such that each modality equally had 3 sensors
which could make observations. These networks were chosen to study the e�ect of modifying the degrees
of freedom of the sensor network on convergence and sensor con�guration optimization search time. The
average iterations for convergence and the average sensor con�guration optimization time for each sensor
network are recorded in Table 1. We make the following observations from the collected results. In summary,
the parallel optimization of sensor networks with unique modalities, by way of the separable nature of the
multimodal formulation of the SAMI surrogate function, are able to quickly �nd sensor con�gurations whilst
providing good convergence performance.

Increasing sensor network �exibility improves convergence performance. We may characterize
network �exibility in context of the constraint of having multiple modalities with identical FoVs to optimize
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Table 1. Comparative study for various sensor payload con�gurations.

Sensor Network Iterations Con�guration Time

Network SA 16.331± 4.163 2.313± 0.683
Network SB 16.033± 3.436 3.068± 0.995
Network SC 15.667± 4.619 4.900± 1.472
Network SD 14.330± 4.041 2.878± 1.004

on a single sensor. The �exibilities for the experiment sensor networks are in increasing order SA < SB <
SC < SD. The results show that adding the increased �exibility by not con�ning multiple multimodal sensor
payloads to a single sensing agent proportionally decreases the average iterations for path-plan convergence.
This answers a typical quandary between, say, uying an expensive UAV equipped with many heterogeneous
sensors versus buying multiple inexpensive UAVs each with a single modality. For coupled sensing and path-
planning problems the additional �exibility by distributing the sensors across sensing agents within the
network is more valuable.

Parallel optimization of unimodal sensor payloads yields low con�guration times. Somewhat
unsurprisingly, the parallel sequential optimization of sensor network SD which had sensing agents with
unimodal observability, was able to be optimized faster than sensor networks SB and SC . We note that
the reason it still takes longer to con�gure these sensors over sensor network SA is that there are more
potential con�gurations and globally optimizing is made more di�cult. However, we note how close the
runtime performance is for sensor con�guration between SA and SD and note that the time di�erence is
negligible in comparison to the average iterations until convergence performance gain.

5.1 Demonstrative Example

We demonstrate the MM-CSCP algorithm on an example randomly generated multimodal threat �eld with
Nm = 3. The problem de�nition remains the same as the numerical experiments from the previous section,
but we increase the environment area to 25km2. The individual threat �eld modalities and the fused threat
�eld along with the optimal path-plan are shown in Figure 3. We considered a sensor network with 3 sensing
agents with unique pairings of observability and 2 sensing agents with unimodal observability for the �rst
two threat modes. Therefore, the �rst two threat modes have up to three FoV covers per iteration while the
third only has two. The initial sensor network con�guration is depicted overlaying the SAMI reward function
for each vertex in Figure 4.

Fig. 3. Ground truth threat �eld modalities and the fused threat �eld (right) along with the optimal path-plan.

The data collected from the �rst iteration sensor con�guration is then utilized to determine the multi-
modal threat �eld estimate and subsequently the fused threat �eld estimate as shown in Fig. 5. The resultant
estimated path-plan is shown in this �gure, and Fig. 6 shows the corresponding multimodal threat error co-
variance values for each vertex and the fused covariance values. The algorithm proceeds until convergence at
iteration ℓ = 22. Figures 7�18 show the SAMI reward functions and sensor con�gurations, the multimodal
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Fig. 4. Initial iteration sensor network con�gurations overlaying the multimodal SAMI reward values for each mode.

and fused threat �eld estimates with the estimated path-plan, and the multimodal and fused threat variances
at select iterations.

The SAMI reward examples show that in some cases sensing agents with paired observability are con-
�gured such that the reward of one modality is considered in conjunction with a potentially low reward
modality. We also note that the multimodal threat �eld estimation and fusion visually does a good job at
learning the environment. We also observe from the �nal fused threat error variance in Fig. 18 that the
MM-CSCP still emphasizes learning task-driven regions of interest, rather than the entire environment, in
order to plan the path. Ultimately, the estimated path plan is near-optimal.

Fig. 5. Initial multimodal threat estimates and fused threat �eld estimate (right) along with the estimated optimal
path plan (green) and the true optimal path plan (yellow).

Fig. 6. Initial multimodal threat �eld error covariance vertex values and fused vertex covariance values.

6 Conclusion

A coupled path-planning and sensor con�guration method was proposed. This work was based on the authors'
previous work on CSCP in unimodal threats. To extend CSCP to multimodal threats, we introduced di�erent
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Fig. 7. Sensor network con�gurations overlaying the multimodal SAMI reward values for each threat mode at ℓ = 3.

Fig. 8. Multimodal threat �eld estimates and fused threat �eld estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration ℓ = 3.

Fig. 9. Multimodal threat �eld error covariance vertex values and fused vertex covariance values at iteration ℓ = 3.

Fig. 10. Sensor network con�gurations overlaying the multimodal SAMI reward values for each threat mode at ℓ = 7.
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Fig. 11. Multimodal threat �eld estimates and fused threat �eld estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration ℓ = 7.

Fig. 12. Multimodal threat �eld error covariance vertex values and fused vertex covariance values at iteration ℓ = 7.

Fig. 13. Sensor network con�gurations overlaying the multimodal SAMI reward values for each threat mode at ℓ = 13.

Fig. 14. Multimodal threat �eld estimates and fused threat �eld estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration ℓ = 13.
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Fig. 15. Multimodal threat �eld error covariance vertex values and fused vertex covariance values at iteration ℓ = 13.

Fig. 16. Sensor network con�gurations overlaying the multimodal SAMI reward values for each threat mode at ℓ = 22,
the �nal iteration.

Fig. 17. Multimodal threat �eld estimates and fused threat �eld estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration ℓ = 22, the �nal iteration.

Fig. 18. Multimodal threat �eld error covariance vertex values and fused vertex covariance values at iteration ℓ = 22.
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ways of calculating and optimizing the SAMI for di�erent cases where each sensor in the network is able
to all, some, or one unique modality of the threat. Numerical simulation results were discussed for one
demonstrative example and for more thorough studies comparing sensor networks with di�erent levels of
�exibilities. Future work includes extension to time-varying multimodal threat �elds.
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