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Abstract. A coupled path-planning and sensor configuration method is proposed. The path-planning
objective is to minimize exposure to an unknown, spatially-varying, and temporally static scalar field
called the threat field. The threat field is modeled as a weighted sum of several scalar fields, each
representing a mode of threat. A heterogeneous sensor network takes noisy measurements of the threat
field. Each sensor in the network observes one or more threat modes within a circular field of view
(FoV). The sensors are configurable, i.e., parameters such as location and size of field of view can be
changed. The measurement noise is assumed to be normally distributed with zero mean and a variance
that monotonically increases with the size of the FoV, emulating the FoV v/s resolution trade-off in
most sensors. Gaussian Process regression is used to estimate the threat field from these measurements.
The main innovation of this work is that sensor configuration is performed by maximizing a so-called
task-driven information gain (TDIG) metric, which quantifies uncertainty reduction in the cost of
the planned path. Because the TDIG does not have any convenient structural properties, a surrogate
function called the self-adaptive mutual information (SAMI) is considered. Sensor configuration based
on the TDIG or SAMI introduces coupling with path-planning in accordance with the dynamic data-
driven application systems paradigm. The benefit of this approach is that near-optimal plans are found
with a relatively small number of measurements. In comparison to decoupled path-planning and sensor
configuration based on traditional information-driven metrics, the proposed CSCP method results in
near-optimal plans with fewer measurements.
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1 Introduction

Consider applications where an autonomous mobile agent learns about its unknown environment using data
collected by an exteroceptive sensor network. For example, we envision a situation where the mobile agent
- henceforth called an actor - needs to find a minimum-threat path in an adverse environment. The nature
of the threat is multimodal and correlated, e.g., fire, smoke, and heat. A network of mobile sensors, e.g.,
unmanned aerial vehicles (UAVs), is available to collect data about the threat, but each sensor may be limited
in its ability to detect the different threat modalities, e.g., one UAV may carry a camera that visually detect
fire and smoke, whereas another UAV may carry a temperature sensor. In this situation, it may be: (1)
possible to configure the sensors, e.g., send different types of sensors to different locations, and (2) crucial
for the actor to find a plan with high confidence but with as few measurements as possible. To this end
we ay ask: how do we optimally configure sensors to find a near-optimal plan with a minimal number of
measurements?

We study the problem of finding a path of minimum threat exposure in an unknown environment. The
unknown threat is a sum of multiple scalar fields representing modes. Information about the threat is gained
through data collected by a heterogeneous sensor network, where each sensor is able to detect one or more
modes of threat.

Related Work: Optimal path-planning and the related field of motion-planning are well studied for metrics
such as minimum path length, maximum traversal utility, and obstacle avoidance [1,2]. Classical approaches
include artificial potential fields, probabilistic roadmaps, and cell decomposition. Discrete-space methods
such as Dijkstra’s algorithm [3], A*, and its variants [4] are well-known for path-planning. Probabilistic
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techniques are used for planning under uncertainty [5], including dynamic programming and its variants. [6].
Partially observable Markov Decision process models are typically used in uncertain planning tasks when
the agent has active onboard sensing [7].

The sensor configuration literature is focused on sensor placement. Optimal sensor placement addresses,
for example, minimizing uncertainty, or maximizing spatial coverage and communication reachability [§].
Optimization metrics include set coverage and information theoretical criteria such as Kullback-Leibler di-
vergence, Fisher information, and mutual information [9]. Sensor placement applications include placement
for estimation of gaseous plumes [10], cooperative tracking of forest fires [11], and observing dynamics of
volcanic ash [12]. Near-optimal sensor placement for linear inverse problems are studied by [13]. Clustering-
based algorithms such as k-means [14] and density-based clustering [15] are studied for sensor placement in
office spaces.

A comparison of task-driven versus information-driven sensor placement in tracking applications is dis-
cussed [16]. The literature cited above represents information-driven approaches. Task-driven approaches
include recent works, for example, on optimal sensor selection for linear quadratic Gaussian feedback control
systems [17], and hierarchical path-replanning concurrently with multi-agent data fusion [18]. Target tracking
UAVs with limited field of view are studied in applications where the UAVs find optimal paths and optimal
sensing position simultaneously [19].

The authors’ previous work has addressed coupled sensor configuration and path-planning [20,21,22]. In all
of these works, we assumed that the network of extroceptive sensors is homogeneous and that the underlying
threat environment is unimodal. In practice, heterogeneous sensor types can be utilized to capture various
modalities of an environment that can be measured observable by a particular sensor type. In this work, we
address heterogeneous sensor networks that observe multimodal threat.

There are many situations in which a sensing agent (e.g., a UAV) could have a payload with multiple
heterogeneous sensor types, allowing for simultaneous sensing of variably correlated threat modalities in
an environment. In what follows, we address situations in which a sensor network can be comprised of
heterogeneous sensing agents with the following scenarios: (1) every sensing agent payload is equipped with
every sensor modality, (2) each the sensing agent’s payload is deficient in at least one modality, and (3) the
sensing agent payloads each contain a sensor modality.

The details of the threat and sensor models, and the proposed coupled sensing and path-planning tech-
nique are provided next.

2 Problem Formulation

We denote by R and N the sets of real and natural numbers, respectively, and by {N} the set {1,2,..., N}
for any N € N. For any a € RY a[i] is its i*"'" element, diag(a) is the N x N diagonal matrix with the
elements of @ on the principal diagonal, and a®(—1) denotes the vector with reciprocal elements of a. For any
matrix A € RM*N A, j] is the element in the i*" row and j** column. For A € RV*¥ and for the indicator
vector @ € {0,1}V, diag(A) is the diagonal vector and Ala] is the submatrix of rows and columns indicated
by a. Similarly, A[i, a] denotes elements in the i'" row and columns indicated by a. I (v denotes the identity
matrix of size N. For p,0 € R, N(u1,0?) denotes the normal distribution with mean p and variance o2.

The agent operates in a compact square planar region called the workspace YW C R2. Consider a uniformly-
spaced square grid of points i = 1,2,..., N, and a graph G = (V, E) whose vertices V' = {N,} are uniquely
associated with these grid points. The set of edges E of this graph consist of pairs of geometrically adjacent
grid points. In a minor abuse of notation, we label the vertices the same as grid points. We denote by
P; = (Piz, Piy) the coordinates of the it grid point and by Ap the distance between adjacent grid points.
Without loss of generality we consider “4-way” adjacency of points (i.e., adajcent points are top, down, left,
and right).

A threat field ¢ : W — R is a strictly positive temporally static scalar field. A path © = (w[0], w[1],..., 7[A])
between prespecified initial and goal vertices vy, vy, € V is a finite sequence, without repetition, of succes-
sively adjacent vertices such that w[0] = vo and w[A\] = vy, for some A € N. When the meaning is clear
from the context, we also denote by 7 the unordered set of vertices in a path. A path incidence vector
v € {0,1}Me has vg[i] = 1 if i = w[j] for j € {A\}\0 and v,[i] = 0 otherwise. The cost of a path  is the
total threat exposure calculated as J(m) := ApZ?:lc(p,,[j]). The main problem of interest is to find a path
7* of minimum cost.
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(a) Multimodal threat field. (b) Sensor FoVs and points of obser-
vations (red dots).

Fig. 1. Nllustration of the threat and sensor models considered in this work.

We cannot solve this problem as stated because the threat field is unknown. The threat field can be
measured by sensors, but each sensor may not be able to measure all of the modalities that constitute the
threat. For the sake of a tangible example, sensor modalities may include (1) electro-optical (EQ) imaging,
(2) infrared (IR) imaging, and (3) a lidar (LI) point cloud. Fusion of these sensors could occur at the sensor
level as raw data passes through circuitry, at the data level as the analog data acquisition becomes digitized,
at the feature level where the data is combined through a latent embedded space, at the decision level which
fuses independent output decisions from each sensor type, or at the mission level which fuses data with
respect to spatial or task relevant correlations. In this work, we attempt to emulate mission level fusion via
a statistical field estimation formulation. In terms of the aforementioned sensors, this would mean fusion
occurs after the EQ, IR, and LI sensor data is digitized, a context-based decision about the data is performed,
including spatial association.

The contezt of the multimodal data fusion is of significant importance to how fusion is performed. We
define each i*" threat field modality as ¢(¥) : W — R, as a strictly positive temporally static scalar field, as
illustrated in Fig. 1(a). We then define a fused threat field as ¢ := m/[1]c(V) +m[2]c® + - - + m[N,,]cNm)|
where m is a user specified weighted fusion vector. The values prescribed to m define the context in which
the fusion occurs. The path cost is then calculated as J () := ApZ;‘:lé(p,rj). Lastly, in what follows we

make use of a multimodal vertex set V := {NgN,,} to represent the vertex indices scaled to NN,, modalities.

Each sensor measures the threat in a circular FoV as shown in Fig. 1(b). The center s; € VW and radius
ok € Ry of this circular FoV are parameters that we can choose for each k € {Ns}. Maximum and minimum
FoV radius constraints are specified as ¢™** and o™, respectively. The set of all sensor parameters is called
a configuration, which we denote by C = {s1, 01, S2,..., 0N, }-

We introduce an observability incidence vector for each k' sensor where oy € {0,1}¥ which charac-
terizes if the k' sensor can view a threat modality and is specified by the user given each sensing agent’s
payload. We create an observed cover incidence matrix for each k" sensor as Dy, := vec(vpoy) € RNeNmX1/
where we define vec(:) := RNe*Nm — RNoNmX1 Finally, the combined observed covered incidence vector
becomes U 1= (U1 VDo V...V Dy,).

We update the sensor observations notation as follows. The collection of sensor data locations for a

particular i*" sensor type is denoted as X0 = {acg?,...,sc,(c%,...,w%iMN }V i € N,,. We denote by,

X = {X(l), X(z), . ,X(N’”)}, the set of sensor data locations for each sensing modality which is aggregated
or updated with each iteration ¢. The training matrix of the training set augmented by the corresponding
modality index is formulated as follows:

- xW x@ x®n)]T
X=1"9 1 N (1)
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Similarly, we define the collection of vectorized noisy threat field observations and observation noise as
z=[z] 2] ... z}\,m]T and ¢ = [01T 027 ... oN,,T] T, respectively. We say that each of the observations for
() (4)

each i'" modality is modeled as z;") = D (X)) + M- Lhe measurement error 1 increases monotonically

with the sensor FoV.

3 Multimodal Field Estimation

We use Gaussian Process regression (GPR) to construct an estimate of the multimodal threat field. Basic
details regarding the GPR approach to unimodal threat estimation are provided in our previous work [22].
The joint posterior distribution is modified as follows to account for the multimodal vectorized output and

multimodal threat field estimates:
z K: K,
HEQES) @

where K is the kernel function. We modify the kernel structure to enable learning of the cross-correlation
between modalities. Namely, we utilize the intrinsic model of coregionalization (ICM) kernel K X defined as:

K = (0,0, + diag(6.)) (3)

The ICM kernel is a matrix of size N, X N,, and has learnable parameters @,, and 6,. The matrix of
parameters is of size N,,, X , where r € N is a small value to emulate low-rank positive definite correlation
between modalities. The parameter vector 8, is of size N, X 1 and models the independent scaling factor
of each modality. For threat field modeling, we utilize the kernel K;; = KZ KX [i,5] ¥ 4, € Np,. The
resulting kernel has the form:

K K-+ Kin,
K>

Ky - - Ky N
The collection of hyperparameters to optimize are 8 = (©,.,0,,,0,). The multimodal input kernel with
heteroscedastic noise vector is formulated as Kz := K +diag(&). The diagonal elements of K represent the
auto-covariance of points within a modality, whereas the off-diagonal elements represent the cross-covariance
which models the latent relationship between modalities.

From the joint distribution, we can obtain the current iteration multimodal threat field estimate and
multimodal threat error covariance matrix as:

fi=KIK.'z P,=K..- KIK'K..

* z

We note that the multimodal threat field estimate and multimodal threat field error covariance matrix are
constructed as:

Péll) Pé12) . PgNm)

(21)
~ T ~ P
fg _ gl)T fEQ)T . ngrn,)T , PZ — Z

R

The fused threat field estimate and fused threat field error covariance matrix can then be computed using
the weighted fusion vector m € R¥m as:

N, N Np, j—1

7 2 () - = (i) . ~ (jk)

fo= E mlif, P, = E m?[i| Py +2 m/[jlm[k] P, (4)
i=1 i=1 =2 k=1

We may then use the fused threat field and fused threat error covariance matrix to find the estimated optimal
path-plan and the estimated path-plan variance.
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4 Coupled Sensor Configuration

The coupled sensor configuration and path-planning (CSCP) method for unimodal threats was introduced
in our previous works, and is summarized in Fig. 2. The key step in the CSCP approach to configure sensors
by maximizing what is called the task-driven information gain (TDIG). Informally, TDIG is a measure of
entropy reduction in a region of interest “near” the currently optimal path. Further details are in our previous
works. In [23], we introduced a function called self-adaptive mutual information (SAMI), which approximates
the TDIG, but has the added benefit of being submodular.

1: Initialize: £ := 0, set initial mean threat estimate to zero, and covariance arbitrarily large
2: Find initial estimated optimal path 7§ := arg min J ()

3: while Var,(7}) > ¢ do

Find optimal sensor configuration C; (as discussed in this section)

Record new measurements with the new sensor configuration

Increment iteration counter ¢ := ¢+ 1

Update mean threat estimate and estimation error covariance Py (see §3)

Find 7} := arg min J ()

Fig. 2. Proposed iterative CSCP method.

The introduction of heterogeneous sensors presents some additional nuances. Since each sensor network
can have multiple modalities, we consider three separate situations in which the sensor configuration problem
can be formalized. In what follows, we describe situations in which every sensor is equipped with every
modality, a mixture of modalities, or only a single modality.

First, we say that a multimodal region of interest is defined as the collection of region of interest vertices
with index values biased by the appropriate mode index as R := {Ui]i"é_lR + iNg}. The multimodal region
of interest is used for indexing in the SAMI formulation. The entropy of any vertex i € V as:

h(i) == %1n(27rel~:’g[i,i]) (5)

In certain cases the conditional entropy computations can be batched and computed in parallel. For any
i ¢ R, the batched conditional entropy vector h(-|R\;) is computed as:

R(IR\) = 5 In((2re)diag(Ps — Pol- RIPUR, R PAIR, ) (©)

We note that the matrix inverse only needs to be computed once. However, for any i € R, the conditional
entropy of any vertex i € {NyN,,} given R\; can be computed in parallel as:

h(i|Ry;) = %ln((%e)(f’z[i, i] = Pe[Roi, il TPe[Rys, Rug] ™' PelRy,])) (7)

Given these equations, we can calculate the mutual information I between the multimodal region of
interest and any vertex for a particular mode i € V' as:

I(Ryi i) := h(i) — h(i|Ryy). (8)
The SAMI reward term for multimodal threat fields is then:
R(i) := (1 — a)[(Rys; ) + ol (RS;; 4) (9)

In (9), the ROI complement is taken as R® := V\R and i € V. We also update the mutual information reward
vector to be v := [y(1) ¥(2) ... ¥(Ng) ... ¥(NgNm)]". The reward function given the sensor configuration
is I'(Cy) = DTH.
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The SAMI penalty function is calculated as:

== Z ( In(27e) — In Z Z2%0) 0',;2)[.7:]> (10)

16.7: keNg

In (10), the ® operator is the Hadamard product, which is used to perform element-wise multiplication
between the cover incidence vector and the inverse noise vector o 2. The entries are indexed by [F] to
ensure only covered vertices are accounted for prior to taking the natural logarithm of each element. The
SAMI is the sum of the reward and penalty terms.

Sensors with all modalities o, = 1V k € Ng: this problem reduces to maximizing the SAMI surrogate
objective function directly over multimodal SAMI surrogate values. Because the SAMI is submodular, we
can sequentially optimize sensor configuration for each set of k' sensor parameters {sy, ox} to find C; :=
arg max S(Cy).

Sensors with overlapping modalities: To illustrate this situation, suppose that we have available
three sensors S = {51, 82,83} with the following modalities: S; = {EO, IR}, S; = {EO, LI}, and S§3 =
{IR, LI}. To determine the sequence in which a sensing agent in the sensor network is optimized to adhere
to the submodularity property, we need to calculate the total reward for each modality as 7; = > je Ng(l —

D(i))'y(i) prior to each sequential sensor configuration optimization. We denote the 7% as the partition of
the multimodal sensor cover incidence for the i** modality. Similarly, the i** modality partition of the SAMI
reward vector is denoted ~(". The total rewards is then 7 = [ﬁ/l Yo ... WNW]T. We may then calculate
the total potential reward for each k" sensor as 5*) = 0,7. Therefore, each iteration of sequential sensor
configuration, we choose S, = argmax7*), optimize it with the SAMI objective function, and remove it
from the set S (just for that round of optimization). In our example, if R was the maximum value, we
would perform sensor configuration optimization with Sy and remove it from the set of optimizable sensing
agents, leaving only S; and S to be optimized. We proceed to score the sensing agents again until they have
all been optimized.

Sensors with unique modalities: This is a special observability case which has unique sensor config-
uration optimization implications. We no longer require ranking the sensor modalities as they are entirely
separable and additive. Due to this, the sensor configuration for uniquely observable sensor payloads allows
for parallelization of sequential sensor configuration for each modality. In fact, each mode reduces to solving
independent sensor configuration optimization N, times in parallel, allowing for computational savings.

5 Results and Discussion

We conducted a study with four various sensor networks in an environment of area 9km?, workspace resolu-
tion of 212, and a desired termination threshold ¢ = 1. We considered a multimodal threat field with N,,, = 3
correlated threat modalities. All mobile sensing agents were constrained to o™* = 0.05 and ¢™* = 0.5. The
region of interest for the experiments was found with N, = 3 alternate path plans.

We considered four various sensor network scenarios for the experiments. The first sensor network S4
was comprised of 3 sensors with all modalities. Sg had three sensors each with two modalities such that each
threat modality was observable by at least 2 sensors. It also included one sensor with all modalities totaling
Ng = 4. Sensor network S¢ had the same pairs of modalities as Sg, but instead of the single full-modal
sensor, it had three unimodal sensors (one for each modality) totaling Ny = 6. Finally, we considered a sensor
network Sp which was comprised of Ny = 9 unimodal sensors such that each modality equally had 3 sensors
which could make observations. These networks were chosen to study the effect of modifying the degrees
of freedom of the sensor network on convergence and sensor configuration optimization search time. The
average iterations for convergence and the average sensor configuration optimization time for each sensor
network are recorded in Table 1. We make the following observations from the collected results. In summary,
the parallel optimization of sensor networks with unique modalities, by way of the separable nature of the
multimodal formulation of the SAMI surrogate function, are able to quickly find sensor configurations whilst
providing good convergence performance.

Increasing sensor network flexibility improves convergence performance. We may characterize
network flexibility in context of the constraint of having multiple modalities with identical FoVs to optimize
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Table 1. Comparative study for various sensor payload configurations.

Sensor Network‘ Iterations ‘ Configuration Time

Network Sa 16.331 £4.163 | 2.313 £ 0.683
Network Sp 16.033 £ 3.436 | 3.068 £ 0.995
Network S¢ 15.667 £ 4.619 | 4.900 = 1.472
Network Sp 14.330 £ 4.041 | 2.878 £ 1.004

on a single sensor. The flexibilities for the experiment sensor networks are in increasing order Sy < Sp <
Sc < Sp. The results show that adding the increased flexibility by not confining multiple multimodal sensor
payloads to a single sensing agent proportionally decreases the average iterations for path-plan convergence.
This answers a typical quandary between, say, uying an expensive UAV equipped with many heterogeneous
sensors versus buying multiple inexpensive UAVs each with a single modality. For coupled sensing and path-
planning problems the additional flexibility by distributing the sensors across sensing agents within the
network is more valuable.

Parallel optimization of unimodal sensor payloads yields low configuration times. Somewhat
unsurprisingly, the parallel sequential optimization of sensor network Sp which had sensing agents with
unimodal observability, was able to be optimized faster than sensor networks Sp and S¢. We note that
the reason it still takes longer to configure these sensors over sensor network S4 is that there are more
potential configurations and globally optimizing is made more difficult. However, we note how close the
runtime performance is for sensor configuration between S4 and Sp and note that the time difference is
negligible in comparison to the average iterations until convergence performance gain.

5.1 Demonstrative Example

We demonstrate the MM-CSCP algorithm on an example randomly generated multimodal threat field with
N,,, = 3. The problem definition remains the same as the numerical experiments from the previous section,
but we increase the environment area to 25km?. The individual threat field modalities and the fused threat
field along with the optimal path-plan are shown in Figure 3. We considered a sensor network with 3 sensing
agents with unique pairings of observability and 2 sensing agents with unimodal observability for the first
two threat modes. Therefore, the first two threat modes have up to three FoV covers per iteration while the
third only has two. The initial sensor network configuration is depicted overlaying the SAMI reward function
for each vertex in Figure 4.

Fig. 3. Ground truth threat field modalities and the fused threat field (right) along with the optimal path-plan.

The data collected from the first iteration sensor configuration is then utilized to determine the multi-
modal threat field estimate and subsequently the fused threat field estimate as shown in Fig. 5. The resultant
estimated path-plan is shown in this figure, and Fig. 6 shows the corresponding multimodal threat error co-
variance values for each vertex and the fused covariance values. The algorithm proceeds until convergence at
iteration ¢ = 22. Figures 7-18 show the SAMI reward functions and sensor configurations, the multimodal
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Fig. 4. Initial iteration sensor network configurations overlaying the multimodal SAMI reward values for each mode.

and fused threat field estimates with the estimated path-plan, and the multimodal and fused threat variances
at select iterations.

The SAMI reward examples show that in some cases sensing agents with paired observability are con-
figured such that the reward of one modality is considered in conjunction with a potentially low reward
modality. We also note that the multimodal threat field estimation and fusion visually does a good job at
learning the environment. We also observe from the final fused threat error variance in Fig. 18 that the
MM-CSCP still emphasizes learning task-driven regions of interest, rather than the entire environment, in

order to plan the path. Ultimately, the estimated path plan is near-optimal.

Fig. 5. Initial multimodal threat estimates and fused threat field estimate (right) along with the estimated optimal
path plan (green) and the true optimal path plan (yellow).
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Fig. 6. Initial multimodal threat field error covariance vertex values and fused vertex covariance values.

6 Conclusion

A coupled path-planning and sensor configuration method was proposed. This work was based on the authors’
previous work on CSCP in unimodal threats. To extend CSCP to multimodal threats, we introduced different
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Fig. 8. Multimodal threat field estimates and fused threat field estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration £ = 3.
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at iteration ¢ = 3.

Fig. 10. Sensor network configurations overlaying the multimodal SAMI reward values for each threat mode at ¢ = 7.
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Fig. 11. Multimodal threat field estimates and fused threat field estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration £ = 7.
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Fig. 13. Sensor network configurations overlaying the multimodal SAMI reward values for each threat mode at ¢ = 13.
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Fig. 14. Multimodal threat field estimates and fused threat field estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration £ = 13.
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Fig. 16. Sensor network configurations overlaying the multimodal SAMI reward values for each threat mode at £ = 22,
the final iteration.

Fig. 17. Multimodal threat field estimates and fused threat field estimate (right) along with the estimated optimal
path-plan (green) and the true optimal path-plan (yellow) at iteration ¢ = 22, the final iteration.
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Fig. 18. Multimodal threat field error covariance vertex values and fused vertex covariance values at iteration ¢ = 22.
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ways of calculating and optimizing the SAMI for different cases where each sensor in the network is able
to all, some, or one unique modality of the threat. Numerical simulation results were discussed for one
demonstrative example and for more thorough studies comparing sensor networks with different levels of
flexibilities. Future work includes extension to time-varying multimodal threat fields.
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