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—— Abstract

We study boolean constraint satisfaction problems (CSPs) Max-CSP, for all predicates f : {0,1}" —
{0,1}. In these problems, given an integer v and a list of constraints over n boolean variables, each
obtained by applying f to a sequence of literals, we wish to decide if there is an assignment to the
variables that satisfies at least v constraints. We consider these problems in the streaming model,
where the algorithm makes a small number of passes over the list of constraints.

Our first and main result is the following complete characterization: For every predicate f, the
streaming space complexity of the Max-CSP, problem is ©(n¢)), where deg(f) is the degree of f
when viewed as a multilinear polynomial. While the upper bound is obtained by a (very simple)
one-pass streaming algorithm, our lower bound shows that a better space complexity is impossible
even with constant-pass streaming algorithms.

Building on our techniques, we are also able to get an optimal Q(n?) lower bound on the
space complexity of constant-pass streaming algorithms for the well studied Max-CUT problem,
even though it is not technically a Max-CSP{, problem as, e.g., negations of variables and repeated
constraints are not allowed.
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1 Introduction

Constraint satisfaction problems (CSPs) are used extensively in mathematics as they give a
unified framework that allows the expression of a wide variety of computational optimization
problems. An instance of a (boolean) CSP is a list of constraints (or clauses) ¥ = (Cy,...,Cy,)
over n boolean variables x1,...,x,. Here, each constraint C; is obtained by applying a
boolean function to a sequence of variables. The value of ¥ is the maximum number of
constraints that can be satisfied by an assignment to the variables.

CSPs received a lot of attention in the computational setting, where the holy grail is
to classify all CSPs according to their hardness. A surprising classical result from the
1970’s, known as the dichotomy theorem, shows that the problem of deciding if all the
constraints of a given CSP can be satisfied is either in P or is NP-complete [31, 16, 10, 36].
Another very successful line of research studies the hardness of approzimating the value of
a CSP instance (or, equivalently, solving the corresponding gap problems), culminating in
a complete characterization of “approximation-resistant” CSPs, at least under the unique
games conjecture [29] (also see [27, 5, 6] and the survey of [24]).
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Streaming Exact Solutions for Boolean CSPs

The space complexity required to solve general CSPs was only recently studied in the
context of streaming algorithms [18, 14, 13, 12, 9, 32]. Streaming algorithms are a restricted
set of algorithms where the input is assumed to be given as a stream of objects that is only
scanned once or a few times by the algorithm. In the framework of streaming CSPs, the
objects in the stream are constraints (with repeated constraints allowed).

Recently, [13] showed that CSPs are never very easy in the streaming setting. In particular,
they give a simple argument showing an (n) lower bound on the space complexity of any
streaming algorithm that solves Max-CSP{;, for any non-constant f. Here, Max—CSP{l is the
problem where on input (¥, v), we need to decide whether or not the value of ¥ is at least v,
where v € N and W is a CSP instance over n variables with constraints that are applications
of the predicate f : {0,1}* — {0,1} to a sequence of literals (variables and negations of
variables) and constants!Z.

Are there Max-CSP problems that require substantially more than linear space? We
mention that for other streaming problems where the size of the input is potentially much
larger than n, e.g., graph streaming problems, linear or almost linear space algorithms are
often considered efficient (“semi-streaming”), and Q(n?) lower bounds are desired3.

1.0.0.1 This paper.

In this paper we give a characterization of the space complexity of multi-pass streaming
algorithms that solve Max—CSPi, for arbitrary f. For the rest of this section, assume that
the length of the stream is at most polynomial in n. It is easy to see that for every f, the
Max—CSPfl problem can be solved by a one-pass streaming algorithm with at most O(nk)
space: Observe that the number of different constraints is only O(n*).# By counting the
number of appearances of each clause in the stream, which only requires storing O(n*)
counters, we essentially store the entire input and can even compute the exact value of the
instance.

Is Q(n*) space always required? Clearly no, as f may not even depend on all k of its
variables. So, what exactly determines the space complexity of Max—CSPfL ?

1.1 Our Results

We start by observing that, in fact, the Max—CSPfL problem admits an O(nd)—space, one-pass
streaming algorithm, where d = deg(f) < k is the degree of f when written as a multilinear
polynomial over the reals®. This follows because, for any instance ¥ with n variables, there
exists a degree d polynomial P over the same variables such that the values of ¥ and P on
any assignment x € {0,1}" are the same. Moreover, this polynomial can easily be maintained
using an O(n?)-space streaming algorithm, as it has at most O(n?) coefficients and is just
the sum of the multilinear polynomials corresponding to each individual clause®. Thus, an

E.g., the constraint C; can be f(1,Zs,Zs,x2).

We mention that the setting of [13] is more general: it does not allow the constraints to use negation of
variables, but does allow them to apply any predicate out of a set of predicates F.

For instance, an ©(n) multi-pass lower bound for directed reachability and related graph problems is
simple, and recent work focused on improving the bound to Q(n?~¢) [17, 3, 11].

A constraint corresponds to an element of X*, where X = {x1,Z1,...,Zn, Tn,0, 1}k, and |X| =2n+ 2.
For instance, if f(y1,y2,y3) = y1 A y2 A g3, then the corresponding polynomial is y1y2(1 — y3).

For instance, if f(y1,y2,93) = y1y2(1 — y3) = y1y2 — y1y2ys and C; = f(ZTs, 1, z2), then multilinear
polynomial corresponding to C; is (1 —@5)-1-(1 —x2) =1 — 22 — x5 — x2s5.



79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu

algorithm that maintains this polynomial using O(nd)—space and outputs its largest value
(over all x) also solves Max-CSP .
However, is there yet another, better, streaming algorithm for Max-CSP{;, for any f7

1.1.1 Lower Bounds for Max-CSP

Our main result answers this question in the negative, showing that the above algorithm is
essentially optimal, even if constantly many passes are allowed. This means that the degree
of a predicate fully characterizes the streaming space complexity of the associated Max-CSP
problem.

» Theorem 1 (cf. Theorem 7). Let k € N be a constant and let f : {0,1}* — {0,1}. For
n,p € N, the p-pass streaming space complezity of Max—CSPfL is at least Q(ndeg(f)/p).

We mention that with 2™ passes, the space complexity of Max—CSPfL drops down
to O(log n), for every f. The reason is that, in each pass, the algorithm can count the
number of constraints satisfied by a certain assignment. We also mention that the formal
version (see Theorem 7) of Theorem 1 shows a lower bound on the communication complex-
ity of Max—CSPﬁi, and is therefore stronger. The same holds for the stronger version (see
Theorem 10) of Theorem 2 below.

The proof of Theorem 1 consists of two key results. The first result, given in Theorem 4,
shows that any instance of l\/Iax—CSP’,Al'\“:)‘Jl7 where ANDy is the d-bit conjunction function,
can be expressed as a l\/Iax—CSPfL instance for any f that has deg(f) = d.” Therefore, to
prove Theorem 1, it suffices to show an ©(n?) lower bound on the streaming complexity
of Max—CSPﬁNDd, which is done by our second key result, Lemma 8. Lemma 8, in turn, is
proved using a novel communication complexity reduction from set disjointness. We mention
that our proofs are generally quite simple.

Theorem 4 may be of independent interest, as it gives a general way of converting lower
bounds for Max-CSPﬁNDd to lower bounds for Max-CSPi. Indeed, in Appendix A, we show
that it can also be used to obtain a lower bound on the space complexity of multi-pass
streaming algorithms that approrimate Max-CSP problems arbitrarily well. We mention that
the space complexity of streaming and sketching algorithms that approximate, within any
constant factor, the value of a given CSP instance was the main interest of [13] (also see
[12]), and that they prove beautiful dichotomy (or partial dichotomy) results.® See [33] for a
recent and great survey.

1.1.2 Lower Bound for Max-CUT

One of the most studied CSPs in the streaming literature is the Max-CUT problem, cor-
responding to the XOR predicate [25, 21, 22, 8, 23, 2, 4]. Note that Max-CUT,, is not a
proper Max—CSPfl problem, as constraints cannot be repeated nor use constants or negations

Reductions of this form were used in the study of CSPs in the computational setting. For instance,
the XOR of two bits can be expressed using a set of f-clauses, for many different functions f, see e.g.
Lemma 5.36 in [15]. However, such reductions do not preserve the degree (reducing it to 2), and would
not give us better than quadratic bounds. Indeed, our proofs are very different from theirs and preserve
the degree of f.

We note that the space regime in their dichotomies is different than the one we consider in Theorem 7: As
the value of any CSP instance can be approximated within any constant factor by a one-pass O(n)-space
streaming algorithm, an “easy” CSP for [13] admits an O(poly logn)-space one-pass streaming algorithm,
and a “hard” CSP requires Q(n®) space (a < 1), also see [12]. In the exact version, however, an Q(n)
lower bound is known [13] and so, our main result (Theorem 7) concerns super-linear space complexities.
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Streaming Exact Solutions for Boolean CSPs

of variables. Nevertheless, our techniques can be used to prove an §2(n?) lower bound on
the space complexity of multi-pass Max-CUT,, streaming algorithms for unweighted graphs.
Observe that, indeed, deg(XOR) = 2.

» Theorem 2 (cf. Theorem 10). For n,p € N, the p-pass streaming space complezity of
Max-CUT,, is at least Q(n?/p).

Prior to our work, an €2(n?) lower bound was only known for one-pass streaming algorithms
that solve Max-CUT,, [35] and for weighted graphs [7]?. Multi-pass streaming lower bounds
were recently shown for the much more general case of approximation algorithms, but these
only obtained sub-linear lower bounds on the space [2, 4]. Quadratic multi-pass lower bounds
for other graph problems are shown in [1].

2 Models and Preliminaries

2.1 Notation

We use N = {1,2,3,...} to denote the set of natural numbers (note that 0 ¢ N). We denote
vectors in bold letters (e.g., x and C). Let £ > 1 and let x be a vector with £ coordinates. For
i € [¢], we use the notation z; to address coordinate i of x. Let S C [£], we use the notation
xgs to address the vector with |S| coordinates obtained by deleting from x coordinates that
are not in S. We often use the notation (-,-) to denote vector concatenation, e.g., if each
of x and y is either a vector or an element, then (x,y) denotes the vector obtained by
concatenating y to x.

Let £ > 0. We use 0° and 1° to denote the all-Os and all-1s vectors (respectively) of ¢
coordinates. For a vector x € {0, 1}4, we denote the Hamming weight of x by ||x||. That is,

[ = 2icq @i

2.2 Constraint Satisfaction Problems

2.2.0.1 CSPs.
Let k € N be a natural number and f : {0,1}* — {0,1} be a boolean function. Let n € N
and consider n boolean variables z1,...,2,. Let X,, = {0,1,21,%1,...,2Zp, T, } be the set

of all literals and constants. An instance of the Max-CSP{ problem is defined as a list of
clauses ¥ = (Cy, ..., C,,), for some m € N, where C; € X* for all i € [m)].

Observe that if C € X* then an assignment x € {0,1}", fixes the value of f(C;). We
define the value of ¥ on an assignment x € {0,1}" to be the number of clauses that it
satisfies:

The value of V¥ is defined as the maximum number of clauses that are satisfied by a single
assignment:

Max-CSP/ (¥) = max  ¥(x). (1)
x€{0,1}™

The problem of Max—CSPfl is a decision problem that on input (U, v), where ¥ is as above
and v € N, outputs 1 if Max-CSP{ (¥) > v and 0 otherwise.

9 We thank the anonymous reviewer for telling us that this theorem follows from [7].



151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu

2.2.0.2 Approximate CSPs.

We will also be interested in the approximation version of Max—CSPﬁ. For € > 0, the problem
of Max—CSwa on instance ¥ is to output a value v that satisfies

(1 —€) - Max-CSP/ (¥) < v < Max-CSP/ (). (2)

2.2.0.3 Positive CSPs.

It will be useful to consider CSPs with a restricted set of possible clauses, where variables
are only used positively (meaning that the negations of variables cannot be used). Formally,
as before, we define an instance of the Max-Pos-CSP{ problem as a list of clauses ¥ =

(Cy,...,Cp). However, now each C; is in the set {0,1,z1,... ,xn}k.lo

2.2.0.4 Predicate degree.

Let k € Nand f : {0, 1}]C — {0, 1} be a boolean function. We define the degree of f, denoted
deg(f), to be the minimum degree of a (multilinear) polynomial g : R¥ — R that satisfies
v € {0, l}k : f(z) = g(x). We mention that it can be assumed, without loss of generality,
that the coefficients of g are integers. Indeed, if not, fixing the smallest degree term with a
non-integer coefficient and setting all the variables in this term to 1 and all other variables
to 0 results in a non-integral value.

2.2.0.5 Max-AND.

Let k € N. We denote ANDy(z1,...,2x) = N\;cp zi- We use Max-AND” to denote the
Max-CSPANPE problem.

2.2.0.6 Max-CUT.

Let n € N and consider a simple, undirected graph G on n vertices. We define Max-CUT,,(G)
to be the maximum size of a cut (partitioning of the vertices) in G. Here, the size of a cut is
the number of edges in G that cross the cut. Let v € N. We define Max-CUT,,(G,v) =1 if
Max-CUT,,(G) > v, and otherwise Max-CUT,,(G,v) = 0.

2.3 Communication Complexity

For a two-party communication task 7'(z,y), we use CC(T") to denote the randomized
communication complexity of T' with success probability at least 2/3.

2.3.0.1 Max-CSP as a communication task.

We denote by CC(Max—CSPfL) the communication complexity of solving Max-CSP£ instances
where the clauses are partitioned between two parties. Formally, the input to the communic-
ation task is (¥, v) = ((\I/A, \IJB),U), where Alice gets as input ¥4 and Bob gets as input
UEB and v is known to both parties. We will assume throughout that 4 and W# are of the
same size. This technical assumption will be useful for us as it implies that both Alice and
Bob know the total number of clauses. We define CC( Max—Pos—CSP-,’;) similarly.

10We note that we do want to allow constants: consider, for example, the case where flz1,x2,23) =

z1 ® x2 @ x3. When not allowing constants, any instance of Max-Pos-CSP?, is trivially maximized by
the all-1s vector.

94:5

ITCS 2023



94:6

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

Streaming Exact Solutions for Boolean CSPs

2.3.0.2 Max-CUT as a communication task.

We denote by CC(Max-CUT,,) the communication complexity of solving Max-CUT,, instances
where the edges of the graph are partitioned between two parties. Formally, there is a set V'
of n vertices and both Alice and Bob are given disjoint sets of edges F4 and Ep over the
vertices in V. Both of them also know a value v and need to determine whether or not the
maximum cut in the graph G = (V, E4 U E) is at least v.

2.3.0.3 Set disjointness.

We will use a lower bound on the communication complexity of the following version of the set
disjointness problem: For u,m € N with u > m, an instance of the DISJ,, ,, problem is a pair
(y,z), where y,z € {0,1}" with |ly|| = ||z|| = m. The problem is to compute whether or not
the sets indicated by y and z intersect or not, i.e., DISJy 1, (y,2) = 1(Vi € [u] : y; - z; = 0).

» Lemma 3 ([30]). Let m € N. We have that CC(DISJam41.m) > Q(m).

2.4 Streaming Algorithms

We say that p-pass streaming algorithm solves a streaming task if it scans the input p
times and outputs a correct solution with probability at least 2/3. The problems Max-CSP,
Max-CUT have a natural streaming task associated with where the list of clauses/edges are
given in a stream and the target value v is hard-coded in the algorithm.

3 Reducing Max-AND to Max-CSP
The goal of this section is to show the following theorem:

» Theorem 4. Let k> d e N. Let f:{0,1}" — {0,1} be such that deg(f) = d. There exist
non-negative rational numbers {O‘C}Cexj; and o, such that for every x € {0, 1}d it holds that

AND4(x) = Y acf(C)—a.

Cexk

Proof. To start, note that the non-negativity of « is without loss of generality (given the
other claims), as can be seen by setting x = 0%. We use the following notation: Given
a function j : {0,1}" — {0,1}, we write it as the polynomial j(x) = >_scig JsTs, where
TS = HieS Zj.

Let S C [k] be a set of size d with fg # 0. We assume without loss of generality that
S = [d]. We define the function h : {0,1}% — {0,1} by h(x) = f(x,0*~%) if fia) > 0, and by
f(Zy,m0,... xq,08d) if fia) < 0. Observe that hig = | fig| > 0.

If h is of the form h(x) = hig) - Tq + hg, we are done, as this implies Tjg = AND4(x) =
ﬁ(h(x) — hg) and as hyg) > 0 (also recall that, for every S C [d], the coefficient hg can be
assumed to be an integer). Otherwise, let 0 < d* < d be the maximum size of a set S such
that hs # 0, and assume without loss of generality that hyg«) # 0.

Let 1/, g : {0,1}% — {0,1} be given by h/(x) = h(Z1,zs,...,24-,0°%) and g(x) =
h(x) + h/(x). We next prove the following three properties about the coefficients of g:

1. gid) = h[d] > 0.
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3. Let S be the set of subsets S C [d] with |S| > d* and hg = 0. Then, for every S € S, it
holds that gg = 0.

Before proving the above three properties, we show that they suffice in order to prove the
theorem. We use the following observation that is implied by the second and third properties:
Recall that d* is the maximum size of a set S C [d] with hg # 0, and let ¢ be the number of
sets S C [d] of size d* with hg # 0. Then, either the maximum size of a set S C [d] with
gs # 0 is strictly smaller than d*, or the maximum size of such set is d* but there are strictly
less than t sets S of size d* with gg # 0.

The theorem follows from the observation by repeatedly “zeroing out” a leading coefficient.

In more detail, consider the sequence of functions h',h?,..., where A = h and R'T! =
ht + (h*)’;}! and where the sequence ends after the function h™ if and only if it is of the
form h™(x) = h[rg] - Tig) + hg'- By the observation, the sequence indeed ends. Let h™ be
the last function in the sequence. Observe that h™ is of the form Zce){; ac f(C) with the
coefficients o being non-negative integers, and that, by the first property, hﬁ] > 0. This
concludes the proof as we have Tjg = ANDg(x) = ﬁ(hm(x) — hg')-

It remains to prove the three above properties. We first calculate the coefficients of h':

W (x) = h(Zy,x2,..., 20,07 ) = > hsTs + hsuay(1— 21)Ts
SC{2,...,d*}
= Z (hs + hsupiy)Ts — Z hsTs.
SC[d*]: 1¢8 SC[d*]: 1€8

Therefore, for S C [d*],if 1 € S then hly = —hg, and if 1 ¢ S, then h'g = hg+hgu(1y. Observe

that if S is not a subset of [d*], it holds that h'y = 0, and therefore gg = hg+h/y = hg+0 = hsg.

Since d* < d, this implies gjq) = h[q), proving the first property.

To prove the second property, note that for any set S C [d*] with 1 € S, we have
gs = hs + hls = hs — hls = 0. This implies gj4-) = 0.

To prove the third property, let S € S. Recall hg = 0, and thus S # [d*]. Also recall
that |S| > d*, and since S # [d*], this means that S is not contained in [d*]. By the above,
gs = hg =0. <

Our proofs use the following corollaries of Theorem 4 to communication complexity and
streaming space complexity.

» Corollary 5. Let k € N and f : {0,1}" — {0,1}. For alln € N, we have:
cc(Max-ANfog<f>) <cC (Max-CSPfL).

Proof. Let d = deg(f). We prove the theorem by reduction. Given an input (¥,v) =
((\I/A, \I/B),v) for the Max-AN Dfll communication problem over variables x = (z1,...,z,),
we construct an input ® = ((<I>A7 oB), u) for l\/lax—CSP£ over the same variables. To this end,
we generate a set of f-clauses for every AND clause using Theorem 4.

In more detail, Alice goes over all the clauses in ¥*. Suppose that clause i is C € xd.

Alice generates the f-clauses corresponding to this clause as follows: View C as the vector of
formal variables (X1,...,Xy) and let X; = {0,1, X1, X4, ..., X4, X4} be the corresponding

1 The function (h')’ is obtained from h’ by negating one of the variables. However, for a general i, the
negated variable may not be x;.
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set of formal literals and constants. By Theorem 4, there exist wer € NU {0} for every
C' e (Xé)k7 an integer w, and w’ € N, such that

w -AND4(C) = Y we f(C') - w.
cre(xy)”

For every C' € (X’d)k, Alice adds wer copies of the clause C’ to ®4. Here, we view C’ as an
element in X, as each of its coordinates X/, i € [k], is either a bit or is of the form X or X
for some j € [d], and X itself is either a bit or of the form z, or z, for some ¢ € [n] (e.g., if
X! = X; and X; = &y, then we identify X/ with X! = X; = (¥;) = x¢). Bob constructs &
similarly.

Observe that both Alice and Bob generate the same number of f-clauses for every AND
clause in U. Since we assume that ¥4 and U® has the same number of clauses, ®4 and ®F
have the same number of clauses. Let m be the number of clauses in V¥, 7.e., m is the sum
of the lengths of ¥4 and W5. Observe that since Alice and Bob have the same number of
clauses, they both know m. Also observe that

w' - Max-AND2e() (1) = Max-CSPZ(®) — w - m.

Now, set u = w’ - v + w - m, and note that both Alice and Bob can compute u. To finish the
proof we observe that Max-CSPZ (®) > w if and only if Max-AND() (@) > 4,
|

» Corollary 6. Let k € N and f : {0, l}k —{0,1}. Forall €' > 0, there exists € > 0 such that
for all p,n € N, any p-pass streaming algorithm for Max—CSP{L’e, implies a p-pass streaming

algorithm for Max-ANfof(f) with the same space complexity, up to constant factors.

Proof. Let d = deg(f). Given an instance ¥ of Max-AND? over variables x = (z1,...,2»),
presented as a stream of clauses, we can use the same construction as in the proof of
Corollary 5 to generate an instance ® of Max-CSPfl over the same variables. Note that this
construction can be implemented in a streaming manner.

Let wer € NU{0} for every C' € (Xé)k, w € NU{0}, and w’ € N be such as in the proof
of Corollary 5, let a = - be as in Theorem 4, and let m be the number of clauses in V.
Note that as before,

w' - Max-ANDZ (¥) = Max-CSPZ (®) — w - m.

Now, let € = 28t (a + 1)¢’, and suppose that there existed a p-pass streaming algorithm
A’ which, given an instance ® of Max—CSPﬁ;E, returned a value v’ such that (1 —¢') -
Max-CSP/ (@) < v/ < (1 + ¢) - Max-CSPI(®) with probability at least 2/3. Then we
could create a p-pass streaming algorithm A for Max-AN D/

n.c Which turns an instance ¥ of
Max-AND? into an instance ® of Max-CSP! as above, runs A’ on the resulting stream ® to

obtain some v’ as above, and then outputs - (v/ — (1 —€') - w - m).

3.0.0.1 Upper bounding the space complexity of A:

A requires only O(logm) additional bits over A’ in order to compute m. However, without
loss of generality, we may assume that every clause of ¥ is satisfied by some assignment
of variables, by simply ignoring all clauses which are not satisfied by any assignment of
variables. By a probabilistic argument, this then ensures that Max-AND(¥) > m/2*, so
logm = O(logv’). As A’ has to output v’, it requires at least log v’ bits of memory, implying
that the space required by A and A’ are within a constant factor.
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3.0.0.2 Proving the correctness of A:

Consider v = L (v/ — (1 — ¢) - w - m), the value returned by the algorithm. With probability
2/3, it holds that (1 —¢') - Max-CSPY (®) < v/ < (1 +¢) - Max-CSP/ (®). As such, suppose
that this happens.

We claim that v > (1 — €) - Max-AND? (®¥). This follows directly as ¢ > €, v/ >
(1 —€) - Max-CSP! (®), and w’ - Max-AND? (¥) = Max-CSP! (&) — w - m.

Next, we claim that v < (1 + ¢€) - Max-AND® (¥) using the fact that v/ < (1 + €) -
Max-CSP/ (®). Recalling our assumption that each clause in W is satisfied by some assignment
of variables, we get that Max-AND (%) > m/2*. Thus,

"—(1—=¢€) -w-m)

IN
S\‘ HS\‘ —

(14 ¢€)-Max-CSP! (®) — (1 —€) - w - m)

(

+¢) - Max-AND? (1) 4 2¢ - “°
w

+

+

—

IN

¢') - Max-AND® (¥) 4 2¢' - a2% - Max-AND ()
(1+a2")€') - Max-ANDY ()
€) - Max-AND? ().

1
1
1+

(
(
(
(1+

IN

Thus, (1 — €) - Max-ANDZ () < v < (1 + ¢€) - Max-AND? (¥) with probability at least 2/3.

<

4 Communication Lower Bound for Max-CSP

In this section we prove Theorem 1. By standard argument, Theorem 1 is implied by the
following communication lower bound:

» Theorem 7. Let k € N and f: {0,1}* — {0,1}. For all n € N, we have
CC(Max-CSP{) > Q(ndeg<f>).

In turn, Theorem 7 follows directly from Lemma 8 below and Corollary 5:

» Lemma 8. Let k € N. For all n € N, we have
CC(Max-AND} ) = Q(n").

Observe that Lemma 8 follows from an €2(n*) lower bound on CC(Max-CSP%) for any
function gj : {0,1}* — {0,1}. The reason is that any g can be written in DNF form,
by looking at its truth table and writing it as an OR of a set of AND clauses, such that
any satisfying assignment satisfies exactly one of the AND clauses (and a non-satisfying

assignment satisfies none). Now, given an instance of Max-CSPJ*, we convert it to an

n
instance of Max—ANDZ by replacing each constraint with the corresponding set of AND
clauses. Observe that the values of the two instances are the same and therefore, a lower
bound for Max-CSP¥* implies a lower bound for Max-AND¥. Thus, the following lemma

implies Lemma 8:

» Lemma 9. Let k € N and let gp(x1,...,21) = 25 D (\/ie[kjl I,) For alln € N, we have:

CC(Max-Pos-CSP¥) > Q(n").
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As mentioned above, a weaker version of Lemma 9, that shows a lower bound on the
communication complexity of Max-CSPJ* (instead of that of Max-Pos-CSP?") suffices to
prove Lemma 8. Nevertheless, we chose to prove the stronger version as it can be shown
to also imply Theorem 2 for weighted graphs, as gs(x1,z2) = XOR(21,z2), and that this is
also part of the reason for selecting these specific g, functions. In Section 5, we give an
alternative proof that also works for unweighted graphs. The rest of this section is devoted
to proving Lemma 9.

4.1 Proof of Lemma 9

In this section we prove Lemma 9. Fix n,k € N. Let U be the set of all subsets of [n] of
size exactly k and let u = |U| = (7). When we take a set S € U, we denote its elements
by s1 < s < ... < s and use the notation S_j to denote the set S\ {si} (the set of all
elements but the largest).

We prove the assertion by reducing DISJ, ., to Max-Pos-CSP% | for m = L%J — 1. Note
that by Lemma 3, since 4m +1 < w it holds that CC(DISJ,, ) > CC(DISJam41,m) > Q(m) =
Q(n*). Therefore, such a reduction indeed gives the claimed CC(Max-Pos-CSPY*) > Q(n*).

4.1.1 The Reduction

Let (y,z) be an instance of DISJ, ,,,. Recall that ||y|| = ||z|| = m. We view y and z as
elements in {0, 1}U7 vectors indexed by elements of U (for S € U, we write, e.g., ys, to mean
coordinate S of y). We construct an instance (¥, C') = ((0¥, ¥%), C) for Max-Pos-CSPJ* over
the variables x = (x1,...,x,) as follows. Let C' = 4u — 4m + k. For every S € U, if ys = 0,
Alice adds to ¥ the following three clauses: xs, (xs_,,0), and (07* z,). Intuitively,
these clauses allow us to embed an OR clause, as can be seen in the following equality: Let
w e {0,1}* and let b = Viepg—1 wi- Then,

gk(W) + gk(wl, A ,wk_l,O) —|—gk(0k71,wk) =

(b@wk)+b+wk=2(b\/wk):2~(\/ wi>. (3)
i€[k]

Likewise, Bob constructs an analogous set of clauses ¥*, using z in place of y.

Additionally, Alice adds the following clauses to U¥: For i € {1,...,n/2}, the clause
(11@717%)' Bob adds the following clauses to ¥%: For i € {n/2 + 1,...,n}, the clause
(1*',z;) (we assume that n is even here). Observe that since ||y| = ||z||, we get that U
and ¥? have the same number of clauses.

4.1.2 Analysis

We next prove that the reduction works. Let (y,z) be an instance of DISJ, ,, and let
(T,C) = ((Y,9%),C) be the instance of Max-Pos-CSPJ* resulting from the reduction. We
next show that Max-Pos-CSP%:(¥) < C' if and only if DISJ, ,,(y,z) = 1.

Let x € {0,1}" be an assignment. We denote Up(x) = {S € U: \/,c.gx; =0}. Now, let
us calculate ¥(x) using Equation (3) (observe that ys = 0 means 1 — yg = 1):

U(x) =Y (2—ys—25)(gr(xs) + g (x5_,,0) + gx (0 7" 2,)) + D gu(1¥1,29)

Seu i€[n]
QZ(QZ/SZS)(\/%) + Z(I*zi)
Seu i€s i€[n]
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=du—2|yl—-2llz| -2 >  (2-ys—zs5)+n—|x|
SeUp(x)

—du—dm—2 Y (2-ys—zs)+n— x| (1)
SeUy(x)

4.1.2.1 1y and z intersect.

First, suppose that DISJ, ,,(y,z) = 0 and let S* € U be such that yg« = zg» = 1. Consider

the assignment x € {0,1}" with z; = 0 if and only if ; € S*. We will show that ¥(x) = C.

To this end, observe that Up(x) = {S*}, that 2 — yg« — zg« = 0, and that ||x|| =n — k. By
Equation (4), ¥(x) =4u—4m -0+ k= C.

4.1.2.2 1y and z are disjoint.

Now suppose that DISJ, ,,(y,z) = 1. Thus, for every S € U, ys = 0 or zg = 0, implying
2 — ys — zg > 1. We will show that Max-Pos-CSP% (¥) < C.

Let x € {0,1}" be an assignment. We consider two cases. The first is the case where
Up(x) # 0. Note that in this case, ||x| < n — k and also |Up(x)| = (”lex”). Also note that
since k > 1, for all £ > k, it holds that (f;) > ¢ — k. Thus, by Equation (4), we have

U(x) < 4u —dm = 2[Us(x)| + (n — |[x[))

n— x|

4u4m2< B )+(nIIX|I)

n— x|

<4u—4m—< p >—|—(n—|x|)
<4u—4m+k

=C.

Now consider the case where Uy(x) = ). Note that this implies that ||x|| > n — k + 1. By
Equation (4), we get ¥U(x) <4du—4m+ (k—1) < C.

5 Communication Lower Bound for Max-CUT

In this section, we prove Theorem 2. By a standard argument, Theorem 2 is implied by the
following communication lower bound:

» Theorem 10. CC(Max-CUT,,) > Q(n?).

Theorem 10 is proved in two steps. We first show a lower bound on the related problem
3IND-SET, and then show how to convert this lower bound to a communication lower bound
for Max-CUT.

5.1 Lower Bound for 3IND-SET

In this section, we prove a lower bound on the communication complexity necessary to solve
the independent set problem 3IND-SET,,. In this problem, both Alice and Bob are given
(disjoint) sets of edges over the same set of n vertices and their goal is to output whether or
not the graph formed by the union of their sets has an independent set of size 3.
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» Theorem 11 (see [28]'%). CC(3IND-SET,,) > Q(n?).

Proof. We prove this result by a reduction. Let m = "24_1. Recall by Lemma 3 that
CC(DISanm) > Q(nQ) Given an instance x,y of DISJ,2 ,,, where Alice’s and Bob’s inputs

X [n]

are viewed as vectors x,y € {0, 1}[n] respectively, Alice and Bob create an instance of
3IND-SETj3,, as follows: They view the 3n vertices as 3 disjoint sets Vg, Va, and Vg of n
vertices each and construct the following edges:

1. The vertices in the set V; are all connected to each other to form a clique. The same for
the sets Va and Vg. Finally, for all j # j' € [n], vertex j in Vj is connected to vertex j’
in Vg. Note that these edges are known to both Alice and Bob as they are independent
of their input.

2. For all (j,5") € [n] x [n], Alice (respectively, Bob) adds an edge between vertex j in Vp
and vertex j' in Va (respectively, Vg) if and only if 2(; ;) = 0 (resp. y(; ;) = 0). These
edges are functions of the input and are only known to one of the parties. Moreover,
Alice’s and Bob’s edges are disjoint.

We claim that the above graph has an independent set of size 3 if and only if Alice’s
and Bob’s inputs for disjointness are intersecting. Indeed, as Item 1 implies that the sets
Vo, Va, Vg all form cliques, any independent set of size 3 must have exactly one vertex from
each of these sets. Moreover, due to edges between Vp and Vg defined above, we get that an
independent set of size 3 exists if and only if there exists (j,j') € [n] x [n] such that vertex
j in Vg, vertex j' in Va, and vertex j’ in Vg form an independent set. Due to the edges in
Item 2, this happens if and only if there exists (j,j') € [n] x [n] such that z(; ;) = y(; ;1) = 1,
as desired. |

5.2 Lower Bound for Max-CUT
We now reduce 3IND-SET to Max-CUT and prove Theorem 10.

Proof of Theorem 10. We prove this result by a reduction from 3IND-SET,. Given an
instance G = (V, E = E4 U Ep) of 3IND-SET,,, where Alice has edges E4 and Bob has
edges Ep, Alice and Bob create an instance G’ of Max-CUT5y,, as follows: They view the
21n vertices as 3 disjoint sets Vg, Vo, and V; of n, 10n, and 10n vertices respectively and
construct the following edges:

1. The set V5 and V; are made to form a complete bipartite graph by connecting every
vertex in V with every vertex in Vj. Also, for all j € [n], we connect vertex j in Vg
to vertex j in V3. Note that these edges are known to both Alice and Bob as they are
independent of their input.

2. For each edge (4, ') € Ea, Alice creates the corresponding edge in Vg and also connects
vertex j in Vg to vertex 7/ in V4 and connects vertex j’ in Vg to vertex j in Vy. We call
these three edges the “frame” of (j,j’) and note that these edges are functions of Alice’s
input and are only known to her. We construct Bob’s edges analogously. Observe that
Alice’s and Bob’s edges are disjoint (as they were disjoint in the 3IND-SET instance).

We now claim that the constructed instance has a maximum cut size of at least C =
(10n)* + 2|E| + 3 if and only if G has a 3-independent set'®. To see the “if” direction, let

12 We thank the anonymous reviewer for telling us that this theorem follows from [28].
3 Note that both the parties can compute C' by computing |E| which requires only O(logn) bits of
communication. This communication can be ignored as we are proving an Q(nQ) lower bound.



451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu

{4, 7, k} be an independent set of size 3 in G and consider the cut formed by putting V5 and
vertices 4, j, k of Vg on one side and every other vertex on the other. This cut has (10n)2 +3
edges of Item 1 above ((10n)? between Vj and V3 and 3 edges between Vg and Vi) and also
has 2|E| of Item 2 above (as {i, 7, k} is an independent set, 2 out of 3 edges in all the frames
are in the cut). Thus, there exists a cut of size at least C, as desired.

It remains to show the “only if” direction. Suppose that G has no independent set of
size 3 and suppose for the sake of contradiction that the largest (breaking ties arbitrarily) cut
(5,5) in the instance G’ has size at least C. As there are only 3|E| + n < 3 - n? other edges
in the graph, the cut (S, S) must have at least C' — % -n? > 90n? of the edges between Vj
and V7 in Item 1. Observe that this is possible only if at least 9n of the vertices in V; are

on one side of the cut and at least 9n of the vertices in V; are on the other side of the cut.

Without loss of generality, we assume that S has at least 9n of the vertices in V5 (and at
most n of the vertices in V7).

We claim that, in fact, S has all the vertices in Vj and none of the vertices in V3. Indeed,
suppose that there is a vertex in V5 \ S and consider the cut obtained by moving this vertex
to S. As 9n of the vertices in V4 are in S, we have by Items 1 and 2 that moving this vertex
to S cuts at least 9n new edges and “uncuts” at most 6n edges, thereby increasing the size
of the cut, and contradicting the fact that (S,S) was the largest cut. A similar argument
applies if there is a vertex in V3 N S and we are done.

Defining T = S \ Vp and using the above claim, we get that T C Vg and (S,S) =
(T UV), (Ve \T)UV4)). Letting Er be the set of edges with both endpoints in 7" and
using a calculation similar to that in the “if” direction above, we get that the size of
the cut (S,5) is at most (10n)> 4 |T| +2- (|E| — |Er|). Now, we claim (proved later) that
|Er| > @—%, implying that the size of the cut (S, S) is at most (10n)*+2-|T|+2-|E|—
Setting z = |T'| in the identity (z—2)2 = 22 —4z+4 > 0, this is at most (10n)°+2+2-|E| < C,
a contradiction.

It remains to prove the claim. As T' C Vg, we can identify T with a subset of the vertices
in G. With this identification, Ep is just the subgraph of G induced by those vertices, and
does not have an independent set of size 3. It follows that the complement of this subgraph

does not have a triangle and therefore, has at most @ edges by Turdn’s Theorem [26, 34].

As the maximum number of edges is (u;'), we get that:

iT-(T -1 |1 |7 |T|
il Nl B o N e N
Er = 2 4 4 2
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A Streaming Lower Bound for Approximate Max-CSP

In this section, we will show a multi-pass lower bound for arbitrarily good approximations of
Max-CSP.

» Theorem 12. Let k,n € N and [ : {O,I}k — {0,1} with deg(f) > 1. Then, for
all € > 0,p € N, any p-pass streaming algorithm for I\/Iax—CSF‘fL,€ has space complezity

Q(nlfo(epz)),

Theorem 12 is tight in two respects: First, recall from Section 1 that the space lower
bound cannot be improved beyond O(n), as there is an O(n)-space upper bound for any
function f. Additionally, for the case where deg(f) < 1, there is in fact an O.(logn)-space,
one-pass streaming algorithm for Max—CSP,];E. The reason is that the only way deg(f) <1
is if f is constant (in which case an algorithm is trivial), or there exists i € [n] such that
f(x) = z; or f(x) =T=T;, in which case Max—CSP{;,€ is the same as approximating an ¢;-norm,
algorithms for which can be found in, e.g., [19, 20].

Proof of Theorem 12. Proof by contradiction. Suppose that there exists a p-pass streaming
algorithm A for Max-CSPﬁi}6 with a better space complexity. As deg(f) > 1, we have by
Corollary 6 that there exists ¢ > 0 and a streaming algorithm A’ for Max-AN the, with the
same space complexity, up to constant factors.

We now claim that there exists ¢’ > 0 and a streaming algorithm A" for Max—CSPﬁ?j2

with the same space complexity. Indeed, we can expand any XOR constraint a & b as the
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sequence of two constraints a A b and @ A b and observe that at most one of these two
constraints can be satisfied by any assignment and is satisfied if and only if the assignment
satisfies the constraint a @ b. The algorithm A" is obtained by running A’ on the expanded
constraints. Finally, as the problem I\/Iax—CSPiif)ﬁ2 subsumes Max-CUT,, ¢, this contradicts
Result 2 in [4].
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