
Characterizing the Multi-Pass Streaming1

Complexity for Solving Boolean CSPs Exactly2

Gillat Kol3

Princeton University4

Dmitry Paramonov5

Princeton University6

Raghuvansh R. Saxena7

Microsoft8

Huacheng Yu9

Princeton University10

Abstract11

We study boolean constraint satisfaction problems (CSPs) Max-CSPf
n for all predicates f : {0, 1}k →12

{0, 1}. In these problems, given an integer v and a list of constraints over n boolean variables, each13

obtained by applying f to a sequence of literals, we wish to decide if there is an assignment to the14

variables that satisfies at least v constraints. We consider these problems in the streaming model,15

where the algorithm makes a small number of passes over the list of constraints.16

Our first and main result is the following complete characterization: For every predicate f , the17

streaming space complexity of the Max-CSPf
n problem is Θ̃(ndeg(f)), where deg(f) is the degree of f18

when viewed as a multilinear polynomial. While the upper bound is obtained by a (very simple)19

one-pass streaming algorithm, our lower bound shows that a better space complexity is impossible20

even with constant-pass streaming algorithms.21

Building on our techniques, we are also able to get an optimal Ω(n2) lower bound on the22

space complexity of constant-pass streaming algorithms for the well studied Max-CUT problem,23

even though it is not technically a Max-CSPf
n problem as, e.g., negations of variables and repeated24

constraints are not allowed.25

2012 ACM Subject Classification Theory of computation → Streaming models26

Keywords and phrases Streaming algorithms, Constraint Satisfaction Problems27

Digital Object Identifier 10.4230/LIPIcs.ITCS.2023.9428

1 Introduction29

Constraint satisfaction problems (CSPs) are used extensively in mathematics as they give a30

unified framework that allows the expression of a wide variety of computational optimization31

problems. An instance of a (boolean) CSP is a list of constraints (or clauses) Ψ = (C1, . . . , Cm)32

over n boolean variables x1, . . . , xn. Here, each constraint Ci is obtained by applying a33

boolean function to a sequence of variables. The value of Ψ is the maximum number of34

constraints that can be satisfied by an assignment to the variables.35

CSPs received a lot of attention in the computational setting, where the holy grail is36

to classify all CSPs according to their hardness. A surprising classical result from the37

1970’s, known as the dichotomy theorem, shows that the problem of deciding if all the38

constraints of a given CSP can be satisfied is either in P or is NP-complete [31, 16, 10, 36].39

Another very successful line of research studies the hardness of approximating the value of40

a CSP instance (or, equivalently, solving the corresponding gap problems), culminating in41

a complete characterization of “approximation-resistant” CSPs, at least under the unique42

games conjecture [29] (also see [27, 5, 6] and the survey of [24]).43

© Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, and Huacheng Yu;
licensed under Creative Commons License CC-BY 4.0

14th Innovations in Theoretical Computer Science Conference (ITCS 2023).
Editor: Yael Tauman Kalai; Article No. 94; pp. 94:1–94:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

94:2 Streaming Exact Solutions for Boolean CSPs

The space complexity required to solve general CSPs was only recently studied in the44

context of streaming algorithms [18, 14, 13, 12, 9, 32]. Streaming algorithms are a restricted45

set of algorithms where the input is assumed to be given as a stream of objects that is only46

scanned once or a few times by the algorithm. In the framework of streaming CSPs, the47

objects in the stream are constraints (with repeated constraints allowed).48

Recently, [13] showed that CSPs are never very easy in the streaming setting. In particular,49

they give a simple argument showing an Ω(n) lower bound on the space complexity of any50

streaming algorithm that solves Max-CSPf
n, for any non-constant f . Here, Max-CSPf

n is the51

problem where on input (Ψ, v), we need to decide whether or not the value of Ψ is at least v,52

where v ∈ N and Ψ is a CSP instance over n variables with constraints that are applications53

of the predicate f : {0, 1}k → {0, 1} to a sequence of literals (variables and negations of54

variables) and constants12.55

Are there Max-CSP problems that require substantially more than linear space? We56

mention that for other streaming problems where the size of the input is potentially much57

larger than n, e.g., graph streaming problems, linear or almost linear space algorithms are58

often considered efficient (“semi-streaming”), and Ω(n2) lower bounds are desired3.59

1.0.0.1 This paper.60

In this paper we give a characterization of the space complexity of multi-pass streaming61

algorithms that solve Max-CSPf
n, for arbitrary f . For the rest of this section, assume that62

the length of the stream is at most polynomial in n. It is easy to see that for every f , the63

Max-CSPf
n problem can be solved by a one-pass streaming algorithm with at most Õ(nk)64

space: Observe that the number of different constraints is only O(nk).4 By counting the65

number of appearances of each clause in the stream, which only requires storing O(nk)66

counters, we essentially store the entire input and can even compute the exact value of the67

instance.68

Is Ω(nk) space always required? Clearly no, as f may not even depend on all k of its69

variables. So, what exactly determines the space complexity of Max-CSPf
n?70

1.1 Our Results71

We start by observing that, in fact, the Max-CSPf
n problem admits an Õ(nd)-space, one-pass72

streaming algorithm, where d = deg(f) ≤ k is the degree of f when written as a multilinear73

polynomial over the reals5. This follows because, for any instance Ψ with n variables, there74

exists a degree d polynomial P over the same variables such that the values of Ψ and P on75

any assignment x ∈ {0, 1}n
are the same. Moreover, this polynomial can easily be maintained76

using an Õ(nd)-space streaming algorithm, as it has at most O(nd) coefficients and is just77

the sum of the multilinear polynomials corresponding to each individual clause6. Thus, an78

1 E.g., the constraint Ci can be f(1, x̄5, x̄8, x2).
2 We mention that the setting of [13] is more general: it does not allow the constraints to use negation of

variables, but does allow them to apply any predicate out of a set of predicates F .
3 For instance, an Ω(n) multi-pass lower bound for directed reachability and related graph problems is

simple, and recent work focused on improving the bound to Ω(n2−ǫ) [17, 3, 11].
4 A constraint corresponds to an element of X k, where X = {x1, x̄1, . . . , xn, x̄n, 0, 1}k, and |X | = 2n + 2.
5 For instance, if f(y1, y2, y3) = y1 ∧ y2 ∧ ȳ3, then the corresponding polynomial is y1y2(1 − y3).
6 For instance, if f(y1, y2, y3) = y1y2(1 − y3) = y1y2 − y1y2y3 and Ci = f(x̄5, 1, x2), then multilinear

polynomial corresponding to Ci is (1 − x5) · 1 · (1 − x2) = 1 − x2 − x5 − x2x5.

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu 94:3

algorithm that maintains this polynomial using Õ(nd)-space and outputs its largest value79

(over all x) also solves Max-CSPf
n.80

However, is there yet another, better, streaming algorithm for Max-CSPf
n, for any f?81

1.1.1 Lower Bounds for Max-CSP82

Our main result answers this question in the negative, showing that the above algorithm is83

essentially optimal, even if constantly many passes are allowed. This means that the degree84

of a predicate fully characterizes the streaming space complexity of the associated Max-CSP85

problem.86

◮ Theorem 1 (cf. Theorem 7). Let k ∈ N be a constant and let f : {0, 1}k → {0, 1}. For87

n, p ∈ N, the p-pass streaming space complexity of Max-CSPf
n is at least Ω

(

ndeg(f)/p
)

.88

We mention that with 2n passes, the space complexity of Max-CSPf
n drops down89

to Õ(log n), for every f . The reason is that, in each pass, the algorithm can count the90

number of constraints satisfied by a certain assignment. We also mention that the formal91

version (see Theorem 7) of Theorem 1 shows a lower bound on the communication complex-92

ity of Max-CSPf
n, and is therefore stronger. The same holds for the stronger version (see93

Theorem 10) of Theorem 2 below.94

The proof of Theorem 1 consists of two key results. The first result, given in Theorem 4,95

shows that any instance of Max-CSPANDd

n , where ANDd is the d-bit conjunction function,96

can be expressed as a Max-CSPf
n instance for any f that has deg(f) = d.7 Therefore, to97

prove Theorem 1, it suffices to show an Ω(nd) lower bound on the streaming complexity98

of Max-CSPANDd

n , which is done by our second key result, Lemma 8. Lemma 8, in turn, is99

proved using a novel communication complexity reduction from set disjointness. We mention100

that our proofs are generally quite simple.101

Theorem 4 may be of independent interest, as it gives a general way of converting lower102

bounds for Max-CSPANDd

n to lower bounds for Max-CSPf
n. Indeed, in Appendix A, we show103

that it can also be used to obtain a lower bound on the space complexity of multi-pass104

streaming algorithms that approximate Max-CSP problems arbitrarily well. We mention that105

the space complexity of streaming and sketching algorithms that approximate, within any106

constant factor, the value of a given CSP instance was the main interest of [13] (also see107

[12]), and that they prove beautiful dichotomy (or partial dichotomy) results.8 See [33] for a108

recent and great survey.109

1.1.2 Lower Bound for Max-CUT110

One of the most studied CSPs in the streaming literature is the Max-CUT problem, cor-111

responding to the XOR predicate [25, 21, 22, 8, 23, 2, 4]. Note that Max-CUTn is not a112

proper Max-CSPf
n problem, as constraints cannot be repeated nor use constants or negations113

7 Reductions of this form were used in the study of CSPs in the computational setting. For instance,
the XOR of two bits can be expressed using a set of f -clauses, for many different functions f , see e.g.
Lemma 5.36 in [15]. However, such reductions do not preserve the degree (reducing it to 2), and would
not give us better than quadratic bounds. Indeed, our proofs are very different from theirs and preserve
the degree of f .

8 We note that the space regime in their dichotomies is different than the one we consider in Theorem 7: As
the value of any CSP instance can be approximated within any constant factor by a one-pass Õ(n)-space
streaming algorithm, an “easy” CSP for [13] admits an O(poly log n)-space one-pass streaming algorithm,
and a “hard” CSP requires Ω(nα) space (α ≤ 1), also see [12]. In the exact version, however, an Ω(n)
lower bound is known [13] and so, our main result (Theorem 7) concerns super-linear space complexities.

ITCS 2023

94:4 Streaming Exact Solutions for Boolean CSPs

of variables. Nevertheless, our techniques can be used to prove an Ω(n2) lower bound on114

the space complexity of multi-pass Max-CUTn streaming algorithms for unweighted graphs.115

Observe that, indeed, deg(XOR) = 2.116

◮ Theorem 2 (cf. Theorem 10). For n, p ∈ N, the p-pass streaming space complexity of117

Max-CUTn is at least Ω(n2/p).118

Prior to our work, an Ω(n2) lower bound was only known for one-pass streaming algorithms119

that solve Max-CUTn [35] and for weighted graphs [7]9. Multi-pass streaming lower bounds120

were recently shown for the much more general case of approximation algorithms, but these121

only obtained sub-linear lower bounds on the space [2, 4]. Quadratic multi-pass lower bounds122

for other graph problems are shown in [1].123

2 Models and Preliminaries124

2.1 Notation125

We use N = {1, 2, 3, . . .} to denote the set of natural numbers (note that 0 /∈ N). We denote126

vectors in bold letters (e.g., x and C). Let ℓ ≥ 1 and let x be a vector with ℓ coordinates. For127

i ∈ [ℓ], we use the notation xi to address coordinate i of x. Let S ⊆ [ℓ], we use the notation128

xS to address the vector with |S| coordinates obtained by deleting from x coordinates that129

are not in S. We often use the notation (·, ·) to denote vector concatenation, e.g., if each130

of x and y is either a vector or an element, then (x, y) denotes the vector obtained by131

concatenating y to x.132

Let ℓ ≥ 0. We use 0ℓ and 1ℓ to denote the all-0s and all-1s vectors (respectively) of ℓ133

coordinates. For a vector x ∈ {0, 1}ℓ
, we denote the Hamming weight of x by ‖x‖. That is,134

‖x‖ =
∑

i∈[ℓ] xi.135

2.2 Constraint Satisfaction Problems136

2.2.0.1 CSPs.137

Let k ∈ N be a natural number and f : {0, 1}k → {0, 1} be a boolean function. Let n ∈ N138

and consider n boolean variables x1, . . . , xn. Let Xn = {0, 1, x1, x̄1, . . . , xn, x̄n} be the set139

of all literals and constants. An instance of the Max-CSPf
n problem is defined as a list of140

clauses Ψ = (C1, . . . , Cm), for some m ∈ N, where Ci ∈ X k
n for all i ∈ [m].141

Observe that if C ∈ X k
n , then an assignment x ∈ {0, 1}n

, fixes the value of f(Ci). We142

define the value of Ψ on an assignment x ∈ {0, 1}n
to be the number of clauses that it143

satisfies:144

Ψ(x) =

m
∑

i=1

f(Ci).145

The value of Ψ is defined as the maximum number of clauses that are satisfied by a single146

assignment:147

Max-CSPf
n(Ψ) = max

x∈{0,1}n
Ψ(x). (1)148

The problem of Max-CSPf
n is a decision problem that on input (Ψ, v), where Ψ is as above149

and v ∈ N, outputs 1 if Max-CSPf
n(Ψ) ≥ v and 0 otherwise.150

9 We thank the anonymous reviewer for telling us that this theorem follows from [7].

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu 94:5

2.2.0.2 Approximate CSPs.151

We will also be interested in the approximation version of Max-CSPf
n. For ǫ ≥ 0, the problem152

of Max-CSPf
n,ǫ on instance Ψ is to output a value v that satisfies153

(1 − ǫ) · Max-CSPf
n(Ψ) ≤ v ≤ Max-CSPf

n(Ψ). (2)154

2.2.0.3 Positive CSPs.155

It will be useful to consider CSPs with a restricted set of possible clauses, where variables156

are only used positively (meaning that the negations of variables cannot be used). Formally,157

as before, we define an instance of the Max-Pos-CSPf
n problem as a list of clauses Ψ =158

(C1, . . . , Cm). However, now each Ci is in the set {0, 1, x1, . . . , xn}k
.10

159

2.2.0.4 Predicate degree.160

Let k ∈ N and f : {0, 1}k → {0, 1} be a boolean function. We define the degree of f , denoted161

deg(f), to be the minimum degree of a (multilinear) polynomial g : Rk → R that satisfies162

∀x ∈ {0, 1}k
: f(x) = g(x). We mention that it can be assumed, without loss of generality,163

that the coefficients of g are integers. Indeed, if not, fixing the smallest degree term with a164

non-integer coefficient and setting all the variables in this term to 1 and all other variables165

to 0 results in a non-integral value.166

2.2.0.5 Max-AND.167

Let k ∈ N. We denote ANDk(x1, . . . , xk) =
∧

i∈[k] xi. We use Max-ANDk
n to denote the168

Max-CSPANDk

n problem.169

2.2.0.6 Max-CUT.170

Let n ∈ N and consider a simple, undirected graph G on n vertices. We define Max-CUTn(G)171

to be the maximum size of a cut (partitioning of the vertices) in G. Here, the size of a cut is172

the number of edges in G that cross the cut. Let v ∈ N. We define Max-CUTn(G, v) = 1 if173

Max-CUTn(G) ≥ v, and otherwise Max-CUTn(G, v) = 0.174

2.3 Communication Complexity175

For a two-party communication task T (x, y), we use CC(T) to denote the randomized176

communication complexity of T with success probability at least 2/3.177

2.3.0.1 Max-CSP as a communication task.178

We denote by CC(Max-CSPf
n) the communication complexity of solving Max-CSPf

n instances179

where the clauses are partitioned between two parties. Formally, the input to the communic-180

ation task is (Ψ, v) =
((

ΨA, ΨB
)

, v
)

, where Alice gets as input ΨA and Bob gets as input181

ΨB , and v is known to both parties. We will assume throughout that ΨA and ΨB are of the182

same size. This technical assumption will be useful for us as it implies that both Alice and183

Bob know the total number of clauses. We define CC(Max-Pos-CSPf
n) similarly.184

10 We note that we do want to allow constants: consider, for example, the case where f(x1, x2, x3) =

x1 ⊕ x2 ⊕ x3. When not allowing constants, any instance of Max-Pos-CSP
f
n is trivially maximized by

the all-1s vector.

ITCS 2023

94:6 Streaming Exact Solutions for Boolean CSPs

2.3.0.2 Max-CUT as a communication task.185

We denote by CC(Max-CUTn) the communication complexity of solving Max-CUTn instances186

where the edges of the graph are partitioned between two parties. Formally, there is a set V187

of n vertices and both Alice and Bob are given disjoint sets of edges EA and EB over the188

vertices in V . Both of them also know a value v and need to determine whether or not the189

maximum cut in the graph G = (V, EA ∪ EB) is at least v.190

2.3.0.3 Set disjointness.191

We will use a lower bound on the communication complexity of the following version of the set192

disjointness problem: For u, m ∈ N with u ≥ m, an instance of the DISJu,m problem is a pair193

(y, z), where y, z ∈ {0, 1}u
with ‖y‖ = ‖z‖ = m. The problem is to compute whether or not194

the sets indicated by y and z intersect or not, i.e., DISJu,m(y, z) = 1(∀i ∈ [u] : yi · zi = 0).195

◮ Lemma 3 ([30]). Let m ∈ N. We have that CC(DISJ4m+1,m) ≥ Ω(m).196

2.4 Streaming Algorithms197

We say that p-pass streaming algorithm solves a streaming task if it scans the input p198

times and outputs a correct solution with probability at least 2/3. The problems Max-CSP,199

Max-CUT have a natural streaming task associated with where the list of clauses/edges are200

given in a stream and the target value v is hard-coded in the algorithm.201

3 Reducing Max-AND to Max-CSP202

The goal of this section is to show the following theorem:203

◮ Theorem 4. Let k ≥ d ∈ N. Let f : {0, 1}k → {0, 1} be such that deg(f) = d. There exist204

non-negative rational numbers {αC}C∈X k

d

and α, such that for every x ∈ {0, 1}d
it holds that205

ANDd(x) =
∑

C∈X k

d

αCf(C) − α.206

Proof. To start, note that the non-negativity of α is without loss of generality (given the207

other claims), as can be seen by setting x = 0d. We use the following notation: Given208

a function j : {0, 1}ℓ → {0, 1}, we write it as the polynomial j(x) =
∑

S⊆[ℓ] jSTS , where209

TS =
∏

i∈S xi.210

Let S ⊆ [k] be a set of size d with fS 6= 0. We assume without loss of generality that211

S = [d]. We define the function h : {0, 1}d → {0, 1} by h(x) = f(x, 0k−d) if f[d] > 0, and by212

f(x̄1, x2, . . . , xd, 0k−d) if f[d] < 0. Observe that h[d] = |f[d]| > 0.213

If h is of the form h(x) = h[d] · T[d] + h∅, we are done, as this implies T[d] = ANDd(x) =214

1
h[d]

(h(x) − h∅) and as h[d] > 0 (also recall that, for every S ⊆ [d], the coefficient hS can be215

assumed to be an integer). Otherwise, let 0 < d∗ < d be the maximum size of a set S such216

that hS 6= 0, and assume without loss of generality that h[d∗] 6= 0.217

Let h′, g : {0, 1}d → {0, 1} be given by h′(x) = h(x̄1, x2, . . . , xd∗ , 0d−d∗

) and g(x) =218

h(x) + h′(x). We next prove the following three properties about the coefficients of g:219

1. g[d] = h[d] > 0.220

2. g[d∗] = 0.221

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu 94:7

3. Let S be the set of subsets S ([d] with |S| ≥ d∗ and hS = 0. Then, for every S ∈ S, it222

holds that gS = 0.223

Before proving the above three properties, we show that they suffice in order to prove the224

theorem. We use the following observation that is implied by the second and third properties:225

Recall that d∗ is the maximum size of a set S ([d] with hS 6= 0, and let t be the number of226

sets S ([d] of size d∗ with hS 6= 0. Then, either the maximum size of a set S ([d] with227

gS 6= 0 is strictly smaller than d∗, or the maximum size of such set is d∗ but there are strictly228

less than t sets S of size d∗ with gS 6= 0.229

The theorem follows from the observation by repeatedly “zeroing out” a leading coefficient.230

In more detail, consider the sequence of functions h1, h2, . . . , where h1 = h and hi+1 =231

hi + (hi)′,11 and where the sequence ends after the function hm if and only if it is of the232

form hm(x) = hm
[d] · T[d] + hm

∅ . By the observation, the sequence indeed ends. Let hm be233

the last function in the sequence. Observe that hm is of the form
∑

C∈X k

d

α′
Cf(C) with the234

coefficients α′
C being non-negative integers, and that, by the first property, hm

[d] > 0. This235

concludes the proof as we have T[d] = ANDd(x) = 1
hm

[d]

(hm(x) − hm
∅).236

It remains to prove the three above properties. We first calculate the coefficients of h′:237

h′(x) = h(x̄1, x2, . . . , xd∗ , 0d−d∗

) =
∑

S⊆{2,...,d∗}

hSTS + hS∪{1}(1 − x1)TS238

=
∑

S⊆[d∗]: 1/∈S

(hS + hS∪{1})TS −
∑

S⊆[d∗]: 1∈S

hSTS .239

240

Therefore, for S ⊆ [d∗], if 1 ∈ S then h′
S = −hS , and if 1 /∈ S, then h′

S = hS +hS∪{1}. Observe241

that if S is not a subset of [d∗], it holds that h′
S = 0, and therefore gS = hS +h′

S = hS +0 = hS .242

Since d∗ < d, this implies g[d] = h[d], proving the first property.243

To prove the second property, note that for any set S ⊆ [d∗] with 1 ∈ S, we have244

gS = hS + h′
S = hS − h′

S = 0. This implies g[d∗] = 0.245

To prove the third property, let S ∈ S. Recall hS = 0, and thus S 6= [d∗]. Also recall246

that |S| ≥ d∗, and since S 6= [d∗], this means that S is not contained in [d∗]. By the above,247

gS = hS = 0. ◭248

Our proofs use the following corollaries of Theorem 4 to communication complexity and249

streaming space complexity.250

◮ Corollary 5. Let k ∈ N and f : {0, 1}k → {0, 1}. For all n ∈ N, we have:251

CC
(

Max-ANDdeg(f)
n

)

≤ CC
(

Max-CSPf
n

)

.252

Proof. Let d = deg(f). We prove the theorem by reduction. Given an input (Ψ, v) =253

((

ΨA, ΨB
)

, v
)

for the Max-ANDd
n communication problem over variables x = (x1, . . . , xn),254

we construct an input Φ =
(

(ΦA, ΦB), u
)

for Max-CSPf
n over the same variables. To this end,255

we generate a set of f -clauses for every AND clause using Theorem 4.256

In more detail, Alice goes over all the clauses in ΨA. Suppose that clause i is C ∈ X d
n .257

Alice generates the f -clauses corresponding to this clause as follows: View C as the vector of258

formal variables (X1, . . . , Xd) and let X ′
d = {0, 1, X1, X̄1, . . . , Xd, X̄d} be the corresponding259

11 The function (hi)′ is obtained from hi by negating one of the variables. However, for a general i, the
negated variable may not be x1.

ITCS 2023

94:8 Streaming Exact Solutions for Boolean CSPs

set of formal literals and constants. By Theorem 4, there exist wC′ ∈ N ∪ {0} for every260

C′ ∈ (X ′
d)

k
, an integer w, and w′ ∈ N, such that261

w′ · ANDd(C) =
∑

C′∈(X ′

d
)

k

wC′f(C′) − w.262

For every C′ ∈ (X ′
d)

k
, Alice adds wC′ copies of the clause C′ to ΦA. Here, we view C′ as an263

element in X k
n , as each of its coordinates X ′

i, i ∈ [k], is either a bit or is of the form Xj or X̄j264

for some j ∈ [d], and Xj itself is either a bit or of the form xℓ or x̄ℓ for some ℓ ∈ [n] (e.g., if265

X ′
i = X̄j and Xj = x̄ℓ, then we identify X ′

i with X ′
i = X̄j = (x̄ℓ) = xℓ). Bob constructs ΦB

266

similarly.267

Observe that both Alice and Bob generate the same number of f -clauses for every AND268

clause in Ψ. Since we assume that ΨA and ΨB has the same number of clauses, ΦA and ΦB
269

have the same number of clauses. Let m be the number of clauses in Ψ, i.e., m is the sum270

of the lengths of ΨA and ΨB. Observe that since Alice and Bob have the same number of271

clauses, they both know m. Also observe that272

w′ · Max-ANDdeg(f)
n (Ψ) = Max-CSPf

n(Φ) − w · m.273

Now, set u = w′ · v + w · m, and note that both Alice and Bob can compute u. To finish the274

proof we observe that Max-CSPf
n(Φ) ≥ u if and only if Max-ANDdeg(f)

n (Ψ) ≥ v.275

◭276

◮ Corollary 6. Let k ∈ N and f : {0, 1}k → {0, 1}. For all ǫ′ ≥ 0, there exists ǫ ≥ 0 such that277

for all p, n ∈ N, any p-pass streaming algorithm for Max-CSP
f
n,ǫ′ implies a p-pass streaming278

algorithm for Max-ANDdeg(f)
n,ǫ with the same space complexity, up to constant factors.279

Proof. Let d = deg(f). Given an instance Ψ of Max-ANDd
n over variables x = (x1, . . . , xn),280

presented as a stream of clauses, we can use the same construction as in the proof of281

Corollary 5 to generate an instance Φ of Max-CSPf
n over the same variables. Note that this282

construction can be implemented in a streaming manner.283

Let wC′ ∈ N∪ {0} for every C′ ∈ (X ′
d)

k
, w ∈ N∪ {0}, and w′ ∈ N be such as in the proof284

of Corollary 5, let α = w
w′

be as in Theorem 4, and let m be the number of clauses in Ψ.285

Note that as before,286

w′ · Max-ANDd
n(Ψ) = Max-CSPf

n(Φ) − w · m.287

Now, let ǫ = 2k+1(α + 1)ǫ′, and suppose that there existed a p-pass streaming algorithm288

A′ which, given an instance Φ of Max-CSP
f
n,ǫ′ returned a value v′ such that (1 − ǫ′) ·289

Max-CSPf
n(Φ) ≤ v′ ≤ (1 + ǫ′) · Max-CSPf

n(Φ) with probability at least 2/3. Then we290

could create a p-pass streaming algorithm A for Max-ANDf
n,ǫ which turns an instance Ψ of291

Max-ANDd
n into an instance Φ of Max-CSPf

n as above, runs A′ on the resulting stream Φ to292

obtain some v′ as above, and then outputs 1
w′

(v′ − (1 − ǫ′) · w · m).293

3.0.0.1 Upper bounding the space complexity of A:294

A requires only O(log m) additional bits over A′ in order to compute m. However, without295

loss of generality, we may assume that every clause of Ψ is satisfied by some assignment296

of variables, by simply ignoring all clauses which are not satisfied by any assignment of297

variables. By a probabilistic argument, this then ensures that Max-ANDd
n(Ψ) ≥ m/2k, so298

log m = O(log v′). As A′ has to output v′, it requires at least log v′ bits of memory, implying299

that the space required by A and A′ are within a constant factor.300

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu 94:9

3.0.0.2 Proving the correctness of A:301

Consider v = 1
w′

(v′ − (1 − ǫ′) · w · m), the value returned by the algorithm. With probability302

2/3, it holds that (1 − ǫ′) · Max-CSPf
n(Φ) ≤ v′ ≤ (1 + ǫ′) · Max-CSPf

n(Φ). As such, suppose303

that this happens.304

We claim that v ≥ (1 − ǫ) · Max-ANDd
n(Ψ). This follows directly as ǫ ≥ ǫ′, v′ ≥305

(1 − ǫ′) · Max-CSPf
n(Φ), and w′ · Max-ANDd

n(Ψ) = Max-CSPf
n(Φ) − w · m.306

Next, we claim that v ≤ (1 + ǫ) · Max-ANDd
n(Ψ) using the fact that v′ ≤ (1 + ǫ′) ·307

Max-CSPf
n(Φ). Recalling our assumption that each clause in Ψ is satisfied by some assignment308

of variables, we get that Max-ANDd
n(Ψ) ≥ m/2k. Thus,309

v =
1

w′
(v′ − (1 − ǫ′) · w · m)310

≤
1

w′

(

(1 + ǫ′) · Max-CSPf
n(Φ) − (1 − ǫ′) · w · m

)

311

= (1 + ǫ′) · Max-ANDd
n(Ψ) + 2ǫ′ ·

wm

w′
312

≤ (1 + ǫ′) · Max-ANDd
n(Ψ) + 2ǫ′ · α2k · Max-ANDd

n(Ψ)313

=
(

1 +
(

1 + α2k+1
)

ǫ′
)

· Max-ANDd
n(Ψ)314

≤ (1 + ǫ) · Max-ANDd
n(Ψ).315

316

Thus, (1 − ǫ) · Max-ANDd
n(Ψ) ≤ v ≤ (1 + ǫ) · Max-ANDd

n(Ψ) with probability at least 2/3.317

◭318

4 Communication Lower Bound for Max-CSP319

In this section we prove Theorem 1. By standard argument, Theorem 1 is implied by the320

following communication lower bound:321

◮ Theorem 7. Let k ∈ N and f : {0, 1}k → {0, 1}. For all n ∈ N, we have322

CC(Max-CSPf
n) ≥ Ω

(

ndeg(f)
)

.323

In turn, Theorem 7 follows directly from Lemma 8 below and Corollary 5:324

◮ Lemma 8. Let k ∈ N. For all n ∈ N, we have325

CC
(

Max-ANDk
n

)

≥ Ω
(

nk
)

.326

Observe that Lemma 8 follows from an Ω
(

nk
)

lower bound on CC(Max-CSPgk

n) for any327

function gk : {0, 1}k → {0, 1}. The reason is that any gk can be written in DNF form,328

by looking at its truth table and writing it as an OR of a set of AND clauses, such that329

any satisfying assignment satisfies exactly one of the AND clauses (and a non-satisfying330

assignment satisfies none). Now, given an instance of Max-CSPgk

n , we convert it to an331

instance of Max-ANDk
n by replacing each constraint with the corresponding set of AND332

clauses. Observe that the values of the two instances are the same and therefore, a lower333

bound for Max-CSPgk

n implies a lower bound for Max-ANDk
n. Thus, the following lemma334

implies Lemma 8:335

◮ Lemma 9. Let k ∈ N and let gk(x1, . . . , xk) = xk ⊕
(

∨

i∈[k−1] xi

)

. For all n ∈ N, we have:336

CC(Max-Pos-CSPgk

n) ≥ Ω
(

nk
)

.337

ITCS 2023

94:10 Streaming Exact Solutions for Boolean CSPs

As mentioned above, a weaker version of Lemma 9, that shows a lower bound on the338

communication complexity of Max-CSPgk

n (instead of that of Max-Pos-CSPgk

n) suffices to339

prove Lemma 8. Nevertheless, we chose to prove the stronger version as it can be shown340

to also imply Theorem 2 for weighted graphs, as g2(x1, x2) = XOR(x1, x2), and that this is341

also part of the reason for selecting these specific gk functions. In Section 5, we give an342

alternative proof that also works for unweighted graphs. The rest of this section is devoted343

to proving Lemma 9.344

4.1 Proof of Lemma 9345

In this section we prove Lemma 9. Fix n, k ∈ N. Let U be the set of all subsets of [n] of346

size exactly k and let u = |U | =
(

n
k

)

. When we take a set S ∈ U , we denote its elements347

by s1 < s2 < . . . < sk and use the notation S−k to denote the set S \ {sk} (the set of all348

elements but the largest).349

We prove the assertion by reducing DISJu,m to Max-Pos-CSPgk

n , for m =
⌊

u
4

⌋

− 1. Note350

that by Lemma 3, since 4m + 1 ≤ u it holds that CC(DISJu,m) ≥ CC(DISJ4m+1,m) ≥ Ω(m) =351

Ω
(

nk
)

. Therefore, such a reduction indeed gives the claimed CC(Max-Pos-CSPgk

n) ≥ Ω
(

nk
)

.352

4.1.1 The Reduction353

Let (y, z) be an instance of DISJu,m. Recall that ‖y‖ = ‖z‖ = m. We view y and z as354

elements in {0, 1}U
, vectors indexed by elements of U (for S ∈ U , we write, e.g., yS , to mean355

coordinate S of y). We construct an instance (Ψ, C) = ((Ψy, Ψz), C) for Max-Pos-CSPgk

n over356

the variables x = (x1, . . . , xn) as follows. Let C = 4u − 4m + k. For every S ∈ U , if yS = 0,357

Alice adds to Ψy the following three clauses: xS ,
(

xS−k
, 0
)

, and
(

0k−1, xsk

)

. Intuitively,358

these clauses allow us to embed an OR clause, as can be seen in the following equality: Let359

w ∈ {0, 1}k
and let b =

∨

i∈[k−1] wi. Then,360

gk(w) + gk(w1, . . . , wk−1, 0) + gk

(

0k−1, wk

)

=361

(b ⊕ wk) + b + wk = 2(b ∨ wk) = 2 ·
(

∨

i∈[k]

wi

)

. (3)362

363

Likewise, Bob constructs an analogous set of clauses Ψz, using z in place of y.364

Additionally, Alice adds the following clauses to Ψy: For i ∈ {1, . . . , n/2}, the clause365

(

1k−1, xi

)

. Bob adds the following clauses to Ψz: For i ∈ {n/2 + 1, . . . , n}, the clause366

(

1k−1, xi

)

(we assume that n is even here). Observe that since ‖y‖ = ‖z‖, we get that Ψy
367

and Ψz have the same number of clauses.368

4.1.2 Analysis369

We next prove that the reduction works. Let (y, z) be an instance of DISJu,m and let370

(Ψ, C) = ((Ψy, Ψz), C) be the instance of Max-Pos-CSPgk

n resulting from the reduction. We371

next show that Max-Pos-CSPgk

n (Ψ) < C if and only if DISJu,m(y, z) = 1.372

Let x ∈ {0, 1}n
be an assignment. We denote U0(x) =

{

S ∈ U :
∨

i∈S xi = 0
}

. Now, let373

us calculate Ψ(x) using Equation (3) (observe that yS = 0 means 1 − yS = 1):374

Ψ(x) =
∑

S∈U

(2 − yS − zS)
(

gk(xS) + gk

(

xS−k
, 0
)

+ gk

(

0k−1, xsk

))

+
∑

i∈[n]

gk

(

1k−1, xi

)

375

= 2
∑

S∈U

(2 − yS − zS)

(

∨

i∈S

xi

)

+
∑

i∈[n]

(1 − xi)376

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu 94:11

= 4u − 2‖y‖ − 2‖z‖ − 2
∑

S∈U0(x)

(2 − yS − zS) + n − ‖x‖377

= 4u − 4m − 2
∑

S∈U0(x)

(2 − yS − zS) + n − ‖x‖. (4)378

379

4.1.2.1 y and z intersect.380

First, suppose that DISJu,m(y, z) = 0 and let S∗ ∈ U be such that yS∗ = zS∗ = 1. Consider381

the assignment x ∈ {0, 1}n
with xi = 0 if and only if i ∈ S∗. We will show that Ψ(x) = C.382

To this end, observe that U0(x) = {S∗}, that 2 − yS∗ − zS∗ = 0, and that ‖x‖ = n − k. By383

Equation (4), Ψ(x) = 4u − 4m − 0 + k = C.384

4.1.2.2 y and z are disjoint.385

Now suppose that DISJu,m(y, z) = 1. Thus, for every S ∈ U , yS = 0 or zS = 0, implying386

2 − yS − zS ≥ 1. We will show that Max-Pos-CSPgk

n (Ψ) < C.387

Let x ∈ {0, 1}n
be an assignment. We consider two cases. The first is the case where388

U0(x) 6= ∅. Note that in this case, ‖x‖ ≤ n − k and also |U0(x)| =
(

n−‖x‖
k

)

. Also note that389

since k ≥ 1, for all ℓ ≥ k, it holds that
(

ℓ
k

)

≥ ℓ − k. Thus, by Equation (4), we have390

Ψ(x) ≤ 4u − 4m − 2|U0(x)| + (n − ‖x‖)391

= 4u − 4m − 2

(

n − ‖x‖

k

)

+ (n − ‖x‖)392

< 4u − 4m −

(

n − ‖x‖

k

)

+ (n − ‖x‖)393

≤ 4u − 4m + k394

= C.395
396

Now consider the case where U0(x) = ∅. Note that this implies that ‖x‖ ≥ n − k + 1. By397

Equation (4), we get Ψ(x) ≤ 4u − 4m + (k − 1) < C.398

5 Communication Lower Bound for Max-CUT399

In this section, we prove Theorem 2. By a standard argument, Theorem 2 is implied by the400

following communication lower bound:401

◮ Theorem 10. CC(Max-CUTn) ≥ Ω(n2).402

Theorem 10 is proved in two steps. We first show a lower bound on the related problem403

3IND-SET, and then show how to convert this lower bound to a communication lower bound404

for Max-CUT.405

5.1 Lower Bound for 3IND-SET406

In this section, we prove a lower bound on the communication complexity necessary to solve407

the independent set problem 3IND-SETn. In this problem, both Alice and Bob are given408

(disjoint) sets of edges over the same set of n vertices and their goal is to output whether or409

not the graph formed by the union of their sets has an independent set of size 3.410

ITCS 2023

94:12 Streaming Exact Solutions for Boolean CSPs

◮ Theorem 11 (see [28]12). CC(3IND-SETn) ≥ Ω(n2).411

Proof. We prove this result by a reduction. Let m = n2−1
4 . Recall by Lemma 3 that412

CC
(

DISJn2,m

)

≥ Ω
(

n2
)

. Given an instance x, y of DISJn2,m, where Alice’s and Bob’s inputs413

are viewed as vectors x, y ∈ {0, 1}[n]×[n]
respectively, Alice and Bob create an instance of414

3IND-SET3n as follows: They view the 3n vertices as 3 disjoint sets V0, VA, and VB of n415

vertices each and construct the following edges:416

1. The vertices in the set V0 are all connected to each other to form a clique. The same for417

the sets VA and VB. Finally, for all j 6= j′ ∈ [n], vertex j in VA is connected to vertex j′
418

in VB. Note that these edges are known to both Alice and Bob as they are independent419

of their input.420

2. For all (j, j′) ∈ [n] × [n], Alice (respectively, Bob) adds an edge between vertex j in V0421

and vertex j′ in VA (respectively, VB) if and only if x(j,j′) = 0 (resp. y(j,j′) = 0). These422

edges are functions of the input and are only known to one of the parties. Moreover,423

Alice’s and Bob’s edges are disjoint.424

We claim that the above graph has an independent set of size 3 if and only if Alice’s425

and Bob’s inputs for disjointness are intersecting. Indeed, as Item 1 implies that the sets426

V0, VA, VB all form cliques, any independent set of size 3 must have exactly one vertex from427

each of these sets. Moreover, due to edges between VA and VB defined above, we get that an428

independent set of size 3 exists if and only if there exists (j, j′) ∈ [n] × [n] such that vertex429

j in V0, vertex j′ in VA, and vertex j′ in VB form an independent set. Due to the edges in430

Item 2, this happens if and only if there exists (j, j′) ∈ [n] × [n] such that x(j,j′) = y(j,j′) = 1,431

as desired. ◭432

5.2 Lower Bound for Max-CUT433

We now reduce 3IND-SET to Max-CUT and prove Theorem 10.434

Proof of Theorem 10. We prove this result by a reduction from 3IND-SETn. Given an435

instance G = (V, E = EA ∪ EB) of 3IND-SETn, where Alice has edges EA and Bob has436

edges EB, Alice and Bob create an instance G′ of Max-CUT21n as follows: They view the437

21n vertices as 3 disjoint sets VG, V0, and V1 of n, 10n, and 10n vertices respectively and438

construct the following edges:439

1. The set V0 and V1 are made to form a complete bipartite graph by connecting every440

vertex in V0 with every vertex in V1. Also, for all j ∈ [n], we connect vertex j in VG441

to vertex j in V1. Note that these edges are known to both Alice and Bob as they are442

independent of their input.443

2. For each edge (j, j′) ∈ EA, Alice creates the corresponding edge in VG and also connects444

vertex j in VG to vertex j′ in V0 and connects vertex j′ in VG to vertex j in V0. We call445

these three edges the “frame” of (j, j′) and note that these edges are functions of Alice’s446

input and are only known to her. We construct Bob’s edges analogously. Observe that447

Alice’s and Bob’s edges are disjoint (as they were disjoint in the 3IND-SET instance).448

We now claim that the constructed instance has a maximum cut size of at least C =449

(10n)
2

+ 2|E| + 3 if and only if G has a 3-independent set13. To see the “if” direction, let450

12 We thank the anonymous reviewer for telling us that this theorem follows from [28].
13 Note that both the parties can compute C by computing |E| which requires only O(log n) bits of

communication. This communication can be ignored as we are proving an Ω(n2) lower bound.

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu 94:13

{i, j, k} be an independent set of size 3 in G and consider the cut formed by putting V0 and451

vertices i, j, k of VG on one side and every other vertex on the other. This cut has (10n)
2

+ 3452

edges of Item 1 above ((10n)
2

between V0 and V1 and 3 edges between VG and V1) and also453

has 2|E| of Item 2 above (as {i, j, k} is an independent set, 2 out of 3 edges in all the frames454

are in the cut). Thus, there exists a cut of size at least C, as desired.455

It remains to show the “only if” direction. Suppose that G has no independent set of456

size 3 and suppose for the sake of contradiction that the largest (breaking ties arbitrarily) cut457

(S, S) in the instance G′ has size at least C. As there are only 3|E| + n ≤ 3
2 · n2 other edges458

in the graph, the cut (S, S) must have at least C − 3
2 · n2 > 90n2 of the edges between V0459

and V1 in Item 1. Observe that this is possible only if at least 9n of the vertices in V0 are460

on one side of the cut and at least 9n of the vertices in V1 are on the other side of the cut.461

Without loss of generality, we assume that S has at least 9n of the vertices in V0 (and at462

most n of the vertices in V1).463

We claim that, in fact, S has all the vertices in V0 and none of the vertices in V1. Indeed,464

suppose that there is a vertex in V0 \ S and consider the cut obtained by moving this vertex465

to S. As 9n of the vertices in V1 are in S, we have by Items 1 and 2 that moving this vertex466

to S cuts at least 9n new edges and “uncuts” at most 6n edges, thereby increasing the size467

of the cut, and contradicting the fact that (S, S) was the largest cut. A similar argument468

applies if there is a vertex in V1 ∩ S and we are done.469

Defining T = S \ V0 and using the above claim, we get that T ⊆ VG and (S, S) =470

((T ∪ V0), ((VG \ T) ∪ V1)). Letting ET be the set of edges with both endpoints in T and471

using a calculation similar to that in the “if” direction above, we get that the size of472

the cut (S, S) is at most (10n)
2

+ |T | + 2 · (|E| − |ET |). Now, we claim (proved later) that473

|ET | ≥ |T |2

4 − |T |
2 , implying that the size of the cut (S, S) is at most (10n)

2
+2·|T |+2·|E|− |T |2

2 .474

Setting z = |T | in the identity (z−2)2 = z2 −4z+4 ≥ 0, this is at most (10n)
2
+2+2·|E| < C,475

a contradiction.476

It remains to prove the claim. As T ⊆ VG, we can identify T with a subset of the vertices477

in G. With this identification, ET is just the subgraph of G induced by those vertices, and478

does not have an independent set of size 3. It follows that the complement of this subgraph479

does not have a triangle and therefore, has at most |T |2

4 edges by Turán’s Theorem [26, 34].480

As the maximum number of edges is
(

|T |
2

)

, we get that:481

ET ≥
|T | · (|T | − 1)

2
−

|T |2

4
=

|T |2

4
−

|T |

2
.482

◭483

References484

1 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts, higher lower485

bounds. ACM Transactions on Algorithms (TALG), 17(4):1–40, 2021.486

2 Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. Multi-pass graph487

streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In488

Symposium on Foundations of Computer Science (FOCS), 2020.489

3 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming490

algorithms. In Symposium on Foundations of Computer Science (FOCS), pages 342–353, 2020.491

4 Sepehr Assadi and N Vishvajeet. Graph streaming lower bounds for parameter estimation and492

property testing via a streaming xor lemma. In Symposium on Theory of Computing (STOC),493

pages 612–625. Association for Computing Machinery, 2021.494

5 Per Austrin. Balanced max 2-sat might not be the hardest. In David S. Johnson and Uriel495

Feige, editors, Symposium on Theory of Computing (STOC), pages 189–197, 2007.496

ITCS 2023

94:14 Streaming Exact Solutions for Boolean CSPs

6 Per Austrin. Towards sharp inapproximability for any 2-csp. SIAM J. Comput., 39(6):2430–497

2463, 2010.498

7 Nir Bacrach, Keren Censor-Hillel, Michal Dory, Yuval Efron, Dean Leitersdorf, and Ami499

Paz. Hardness of distributed optimization. In Proceedings of the 2019 ACM Symposium on500

Principles of Distributed Computing, pages 238–247, 2019.501

8 Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear algorithms for502

maxcut and correlation clustering. In International Colloquium on Automata, Languages, and503

Programming (ICALP), 2018.504

9 Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy.505

Closed-form expressions for the sketching approximability of (some) symmetric boolean csps.506

arXiv preprint arXiv:2112.06319, 2021.507

10 Andrei A. Bulatov. A dichotomy theorem for nonuniform csps. In Symposium on Foundations508

of Computer Science (FOCS), pages 319–330, 2017.509

11 Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R Saxena, Zhao Song, and Huacheng510

Yu. Almost optimal super-constant-pass streaming lower bounds for reachability. In Symposium511

on Theory of Computing (STOC), pages 570–583, 2021.512

12 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini513

Velusamy. Linear space streaming lower bounds for approximating csps. In Symposium on514

Theory of Computing (STOC), pages 275–288. ACM, 2022.515

13 Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approximab-516

ility of all finite csps with linear sketches. In Symposium on Foundations of Computer Science517

(FOCS), pages 1197–1208. IEEE, 2021.518

14 Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal streaming approx-519

imations for all boolean max-2csps and max-ksat. In Symposium on Foundations of Computer520

Science (FOCS), pages 330–341. IEEE, 2020.521

15 Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity classifications of Boolean522

constraint satisfaction problems. SIAM, 2001.523

16 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP524

and constraint satisfaction: A study through datalog and group theory. SIAM J. Comput.,525

28(1):57–104, 1998.526

17 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph527

processing. Algorithmica, 76(3):654–683, 2016.528

18 Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games. Approximation,529

Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-530

DOM), 2019.531

19 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream532

computation. Journal of the ACM (JACM), 53(3):307–323, 2006.533

20 Daniel M Kane, Jelani Nelson, and David P Woodruff. On the exact space complexity of534

sketching and streaming small norms. In Symposium on Discrete Algorithms (SODA), pages535

1161–1178. SIAM, 2010.536

21 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for ap-537

proximating MAX-CUT. In Symposium on Discrete Algorithms (SODA), pages 1263–1282,538

2015.539

22 Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1+ ω (1))-540

approximation to max-cut requires linear space. In Symposium on Discrete Algorithms541

(SODA), pages 1703–1722, 2017.542

23 Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approximating543

max-cut. In Symposium on Theory of Computing (STOC), pages 277–288, 2019.544

24 Subhash Khot. On the unique games conjecture (invited survey). In Conference on Computa-545

tional (CCC), pages 99–121. IEEE Computer Society, 2010.546

G. Kol, D. Paramonov, R. R. Saxena, and H. Yu 94:15

25 Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In547

Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pages548

367–376, 2015.549

26 W. Mantel. Vraagstuk XXVIII. Wiskundige Opgaven, 10:60–61, 1907.550

27 Elchanan Mossel. Gaussian bounds for noise correlation of functions. In Geometric and551

Functional Analysis, volume 19(6), pages 1713–1756, 2010.552

28 Christos H Papadimitriou and Michael Sipser. Communication complexity. In Proceedings of553

the fourteenth annual ACM symposium on Theory of computing, pages 196–200, 1982.554

29 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In555

Symposium on Theory of Computing (STOC), pages 245–254, 2008.556

30 Alexander A Razborov. On the distributional complexity of disjointness. In International557

Colloquium on Automata, Languages, and Programming (ICALP), pages 249–253. Springer,558

1990.559

31 Thomas J. Schaefer. The complexity of satisfiability problems. In Symposium on Theory of560

Computing (STOC), pages 216–226, 1978.561

32 Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation resistance562

of every ordering CSP. In Approximation, Randomization, and Combinatorial Optimization.563

Algorithms and Techniques (APPROX/RANDOM), volume 207 of LIPIcs, pages 17:1–17:19,564

2021.565

33 Madhu Sudan. Streaming and sketching complexity of csps: A survey (invited talk). In566

International Colloquium on Automata, Languages, and Programming (ICALP), volume 229567

of LIPIcs, pages 5:1–5:20, 2022.568

34 Paul Turán. On an external problem in graph theory. Mat. Fiz. Lapok, 48:436–452, 1941.569

35 Mariano Zelke. Intractability of min- and max-cut in streaming graphs. Inf. Process. Lett.,570

111(3):145–150, 2011.571

36 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM (JACM),572

67(5):30:1–30:78, 2020.573

A Streaming Lower Bound for Approximate Max-CSP574

In this section, we will show a multi-pass lower bound for arbitrarily good approximations of575

Max-CSP.576

◮ Theorem 12. Let k, n ∈ N and f : {0, 1}k → {0, 1} with deg(f) > 1. Then, for577

all ǫ > 0, p ∈ N, any p-pass streaming algorithm for Max-CSPf
n,ǫ has space complexity578

Ω
(

n1−O(ǫp2)
)

.579

Theorem 12 is tight in two respects: First, recall from Section 1 that the space lower580

bound cannot be improved beyond O(n), as there is an O(n)-space upper bound for any581

function f . Additionally, for the case where deg(f) ≤ 1, there is in fact an Oǫ(log n)-space,582

one-pass streaming algorithm for Max-CSPf
n,ǫ. The reason is that the only way deg(f) ≤ 1583

is if f is constant (in which case an algorithm is trivial), or there exists i ∈ [n] such that584

f(x) = xi or f(x) = xi, in which case Max-CSPf
n,ǫ is the same as approximating an ℓ1-norm,585

algorithms for which can be found in, e.g., [19, 20].586

Proof of Theorem 12. Proof by contradiction. Suppose that there exists a p-pass streaming587

algorithm A for Max-CSPf
n,ǫ with a better space complexity. As deg(f) > 1, we have by588

Corollary 6 that there exists ǫ′ > 0 and a streaming algorithm A′ for Max-AND2
n,ǫ′ with the589

same space complexity, up to constant factors.590

We now claim that there exists ǫ′′ > 0 and a streaming algorithm A′′ for Max-CSPXOR2

n,ǫ′′591

with the same space complexity. Indeed, we can expand any XOR constraint a ⊕ b as the592

ITCS 2023

94:16 Streaming Exact Solutions for Boolean CSPs

sequence of two constraints a ∧ b̄ and ā ∧ b and observe that at most one of these two593

constraints can be satisfied by any assignment and is satisfied if and only if the assignment594

satisfies the constraint a ⊕ b. The algorithm A′′ is obtained by running A′ on the expanded595

constraints. Finally, as the problem Max-CSPXOR2

n,ǫ′′ subsumes Max-CUTn,ǫ′′ , this contradicts596

Result 2 in [4].597

◭598

	1 Introduction
	1.1 Our Results
	1.1.1 Lower Bounds for Max-CSP
	1.1.2 Lower Bound for Max-CUT

	2 Models and Preliminaries
	2.1 Notation
	2.2 Constraint Satisfaction Problems
	2.3 Communication Complexity
	2.4 Streaming Algorithms

	3 Reducing Max-AND to Max-CSP
	4 Communication Lower Bound for Max-CSP
	4.1 Proof of lemma:exact:lb:gencut
	4.1.1 The Reduction
	4.1.2 Analysis

	5 Communication Lower Bound for Max-CUT
	5.1 Lower Bound for 3IND-SET
	5.2 Lower Bound for Max-CUT

	A Streaming Lower Bound for Approximate Max-CSP

