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Abstract

We establish a connection between sampling and optimization on discrete domains. For a family of
distributions y defined on size k subsets of a ground set of elements, that is closed under external fields,
we show that rapid mixing of natural local random walks implies the existence of simple approximation
algorithms to find max u(-). More precisely, we show that if {-step down-up random walks have spectral
gap at least inverse polynomially large, then t-step local search finds max j(-) within a factor of kO%). As
the main application of our result, we show that 2-step local search achieves a nearly-optimal k®*)-factor
approximation for MAP inference on nonsymmetric k-DPPs. This is the first nontrivial multiplicative
approximation algorithm for this problem.

In our main technical result, we show that an exchange inequality, a concept rooted in discrete convex
analysis, can be derived from fast mixing of local random walks. We further advance the state of the art
on the mixing of random walks for nonsymmetric DPPs and more generally sector-stable distributions, by
obtaining the tightest possible bound on the step size needed for polynomial-time mixing of random walks.
We bring the step size down by a factor of 2 compared to prior works, and consequently get a quadratic
improvement on the runtime of local search steps; this improvement is potentially of independent interest
in sampling applications.
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1 Introduction

Sampling and optimization are fundamental computational tasks. In continuous settings, sampling
and optimization are known to be intimately connected; convex sets, and more generally log-concave
distributions, are the natural domains where either task is algorithmically tractable. For a survey of
sampling and optimization in continuous settings see [ ; 1.

On discrete/combinatorial domains, the relationship between sampling and optimization is less clear. For
example, optimization over independent sets of a bipartite graph is easy, but it is not known how to sample
them [see, e.g., ]. The opposite holds for determinantal point processes, which are easy to sample
from [see, e.g., ] and hard to optimize [ 1.

In this work, we establish a new connection between sampling and optimization in discrete settings.
Informally, we show that rapid mixing of natural local random walks that sample from a family of
distributions y, implies that local search algorithms are able to approximately find max y(-), within a
nearly-optimal approximation factor.

In our setup, we have a weight function y on k-sized subsets of a ground set [1], that we denote by
e ([']:]) — Rx¢.! Our goal is to approximately find

oo (1)}

We study a family of natural local search algorithms (Algorithm 2) for this optimization problem. Formally,
each local search algorithm is defined with a parameter r > 0 which specifies the “radius of the local

neighborhood” the algorithm searches over in each iteration. The r-neighborhood of 5 € ([Z}) are all the
sets that can be reached by swapping at most r elements:

N(S) = {TG C’IZ]) ‘ oy §r}.

Each iteration of local search goes from a set S to the S’ € NV, (S) which maximizes u(S’). If we reach a local
optimum, i.e., S = §’, then we stop and return S as our approximate solution. Despite the simplicity and
practical popularity of local search algorithmes, it is often challenging to obtain theoretical approximation
guarantees for them.

We show that rapid mixing of natural local random walks designed to sample from a family of distributions
u, implies that local maxima of y are approximate global maxima.

Definition 1 (Down-Up Random Walk). For a density y : ([ ]) — R, and an integer ¢ < k, the k < ¢
down-up random walk is the sequence of random sets Sy, S1, ... generated as follows:

fort=0,1,... do
Select T; uniformly at random from subsets of size ¢ of S;.
Select S;1 with probability o« p(S11) from supersets of size k of T;.

Down-up random walks are time-reversible, always have y as their stationary measure, and have been
widely studied as part of the emergmg area of analyzing Markov chains via high-dimensional-expanders
[see, e.g., ; ; ; ]. Down-up walks generalize other well-known local
random walks hke the Glauber dynamics [ ]. Note that the down-up random walk is local in the sense
that S;11 € Ny_;(S¢). Naturally, we tie mixing of these random walks to local search with neighborhoods
of radius r = k — £.

IThe restriction of the domain to size k subsets of a ground set should be thought of as a “canonical form”; other discrete domains,
including product spaces can be naturally transformed into this domain [ 1.



To state our main result, we need to define the notion of an external field. For a distribution y : ([Z]) — R>g

and A = (Aq,...,Ay) €
A * u, defined as follows:

the A-external field applied to p is another distribution on ([z]), denoted by

IP/\*y 1__[ /\

i€S

>O’

In this work we consider families of distribution that are closed under external fields, and tie rapid mixing
of local random walks on such a family to approximation guarantees of local search. External fields are
well-studied operations and often preserve algorithmic tractability of sampling and/or mixing of random
walks [see, e.g., ; ; ].

Theorem 2. Consider a distribution y : ([ ]) — ]R>0 Suppose that for some r = O(1), the k <> (k — r) down-up
random walk on A * u has spectral gap at least k=O0) for all external fields A € RY, 2 Then any approximate local

maximum, that is a set S € ([k]) such that
u(S) > Q1) -max {u(T) | T € N;(S)}

is a kOK)-gpproximate global maximum, i.e.,

1(S) > k~O® . max {y(T) ’ T e <[Z]) } .

Moreover, such an approximate local maximum can be found efficiently given oracle access to y and a starting point
in the support of .

1.1 Applications to Determinant Maximization

The main application of Theorem 2 that we highlight in this work is to the problem of MAP inference on
nonsymmetric determinantal point proceesses. Determinantal point processes (DPPs) have found many

applications in machine learning, such as data summarization [ ; ], recommender systems
[ ; ], neural network compression [ ], kernel approximation [ ], and multi-modal
output generation [ 1.

A DPP on a set of items [n] = {1,...,n} is a probability distribution over subsets S C [n| parameterized
by a matrix L € R"*" where S is chosen with probability proportional to the determinant of the principal
submatrix Lg whose columns and rows are indexed by S:

P[Y] « det(Ls).

A related and more widely used model, is a k-DPP, where the size of S is constrained to be exactly k. In
applications, usually k is much smaller than n. We study k-DPPs in this work [see , for a survey on
fixed-size DPPs and their applications].

The fundamental optimization problem associated with probabilistic models, including DPPs, is to find the
maximum a posteriori (MAP) configuration [see, e.g., ], that is max {IP[S]}. The main application of
our results is to the problem of MAP inference on DPPs.

Most of the literature on DPPs assumes the matrix L is symmetric, but such symmetric matrices can only
encode repulsive (negatively correlated) interactions between items [ ]. This limits their modeling
power. To remedy this, more recent works have considered the more general class of nonsymmetric
DPPs (NDPPs) which can additionally capture positive correlations [ ; ]. Gartrell, Brunel,
Dohmatob, and Krichene [ ] observed that for nonsymmetric positive semidefinite (nPSD) matrices
L, the principal minors are still nonnegative and therefore the distribution is well-defined.

2We remark that the spectral gap of k(1) can be replaced with n~°(1) as long as we take # to mean the number of elements in the
ground set with a nonzero external field. However, we do not emphasize this relaxed assumption, as in our applications we always
have inverse poly (k) spectral gap.



Definition 3. A matrix L € R"*" is nonsymmetric positive semidefinite (nPSD) if L + LT > 0.

Throughout, we will consider only NDPPs with nPSD kernels and refer to them simply as NDPPs or
nonsymmetric DPPs. Alimohammadi, Anari, Shiragur, and Vuong [ ] showed how to efficiently
sample from fixed-size NDPPs using down-up random walks.

Theorem 4 ([ D). The k <> (k — 4) down-up random walk on a nonsymmetric k-DPP has spectral gap Q(k=*).

k-NDPPs are closed under external fields, because applying an external field L is equivalent to multiplication
of the kernel matrix on the left and the right with a diagonal matrix [see, e.g., ]. This immediately
gives a corollary of Theorem 2: 4-step local search can approximately find the maximum of a k-NDPP
within a factor of k°%), This corollary would already give the first nontrivial unconditional multiplicative
approximation for MAP inference on NDPPs. However, we go even beyond the results of Alimohammadi,
Anari, Shiragur, and Vuong [ ], and show that the k <+ (k —4) down-up walk can be replaced by the
k <+ (k —2) down-up walk.

Theorem 5. The k <+ (k — 2) down-up random walk on a k-NDPP has spectral gap Q(k=O(),

Remark 6. Note that we only improve the step size, actually at the expense of a worse (but still inverse-
polynomially large) spectral gap. Nevertheless, we conjecture the k <+ (k — 2) down-up walk should have
spectral gap Q(k~2) and leave this as an open question. The importance of this question is mostly in
sampling applications; in the optimization problems we study here, the improvement in step size directly
results in much faster local search algorithms, while still maintaining a k°*) approximation factor.

More generally, we obtain the tightest possible step size for rapid mixing of down-up random walks for all
sector-stable (see Section 2.5 for definition) distributions. The proof of Theorem 5 is deferred to Appendix A.
As a corollary, we obtain the following result for optimization.

Corollary 7. Any (approximate) 2-local optimum of a k-NDPP is a global optimum within an approximation factor
of kKO,

To appreciate the importance of the improvement from 4 to 2, note that in 2-local search, in each step we
have to search over ~ (kn)? many possible sets, which is significantly smaller than ~ (kn)*. Theorem 5 is
potentially of independent interest in sampling applications. We state concrete runtimes below, but we
emphasize that we did not attempt to optimize the runtime of the algorithm; it is likely that by employing
linear-algebraic tricks one can further shave polynomial factors.

Theorem 8. There is a polynomial time algorithm that on input L € R"*" that is nPSD, outputs a set of indices
Se ([Z]) quaranteeing

det(Lg) > k=% . max {det(Ls) ‘ Se <[Z]> } .
Moreover, the algorithm runs in O(n*k + n?k> log n) time given the entries of L, and O(n?d*k + n?d*k® log n) time
given a rank-d decomposition of L, i.e., L = BCBT with B € R"*%,C € R¥*%

Remark 9. We remark that the approximation factor of k°() is nearly optimal amongst efficient algorithms.
The special case of symmetric determinantal point processes was shown to be hard to approximate within
a factor of c* for some constant ¢ > 1 [ ]. Further, the factor of kOWK) g tight for local search, even in
the special case of symmetric determinantal point processes [ ]. Additionally, the step size of 2 for
local search is also optimal, as we demonstrate in Appendix C.

1.2 Related Work

For continuous distributions/functions defined on the Euclidean space IR", there is a rich history connecting
sampling and optimization. Bertsimas and Vempala [ ] and Lovész and Vempala [ ] show how
to solve convex programs by performing random walks. Besides general black-box reductions, popular
algorithms for sampling such as Langevin dynamics are known to be intimately connected to popular
algorithms for optimization such as gradient descent [ 1.



The relationship between optimization and sampling is not as well understood in discrete settings. For
example, the problem of sampling independent sets from bipartite graphs, equivalent to the so-called #BIS
problem is believed to be hard and is often used as a hardness assumption [ ], whereas maximum
independent sets in bipartite graphs are easy to find due to connections with bipartite maximum matching.
On the other hand, for DPPs, sampling is known to be easy [ ], but optimization is NP-hard within
subexponential factors [ ]. We are not aware of prior works that study the optimization algorithms
derived from sampling in general discrete settings, but in many specific cases, optimization and sampling
are studied hand-in-hand. For some recent examples on the Ising model and the Sherrington-Kirkpatrick
spin glass, which correspond to the optimization problem of Max-Cut, see [ ; I

Our main application is the optimization problem of MAP inference for NDPPs. Earlier, the work
of Gartrell, Han, Dohmatob, Gillenwater, and Brunel [ ] studied the greedy algorithm for MAP
inference on NDPPs, as greedy was previously used successfully for symmetric DPPs. The greedy algorithm
(Algorithm 1) runs for k iterations, in each iteration adding the item that most increases the DPP score.
Unfortunately, the greedy algorithm does not achieve any finite approximation guarantees for NDPPs.
As such, Gartrell, Han, Dohmatob, Gillenwater, and Brunel [ ], put extra, potentially limiting,
assumptions on the matrix L, in order to be able to analyze the performance of greedy.

Algorithm 1: Standard greedy for DPPs
Initialize S < @.
while |S| < k do
L Pick i ¢ S that maximizes det(Lg y;3), and update S <= SU {i}.

Although greedy obtains a k°)-approximation for symmetric DPPs | ], it cannot achieve even a finite
approximation factor for NDPPs. For example, on a skew-symmetric matrix L, i.e., L = —LT, since all odd-
sized principle minors of X are zero, Algorithm 1 would necessarily resort to picking an arbitrary /random
item at every other iteration, which can result in an arbitrarily bad final answer. Many variants of the
greedy algorithm, including 1-step local search, fail as well. For more details see Appendix C.

Our work gives the first nontrivial multiplicative approximation algorithm for MAP inference on NDPPs, and
we do not put any assumptions on L. Prior related work [ ] obtained multiplicative approximations
for log det(Lg) under further assumptions on L; this is often a weaker approximation guarantee when OPT
is sufficiently large — roughly super-exponentially large in k. The assumptions behind prior works implicitly
imply that OPT is at least exponentially large in k, making the unconditional factor k°*)-approximation
guarantee of this work attractive.

The kO approximation factor matches that of the standard greedy heuristic on symmetric DPPs, as well
as the guarantee of other simple heuristics proposed for symmetric DPPs [ ; ]. As mentioned
earlier, Civril and Magdon-Ismail [ I’s greedy and Kathuria and Deshpande [ I’s local search
algorithm do not achieve any finite approximation factor for NDPPs. Our result is incomparable to Gartrell,
Han, Dohmatob, Gillenwater, and Brunel [ ] as (i) multiplicative approximations for maximizing
log det(Lg) do not imply similar results for det(Lg), and (ii) we place no additional assumption on L. As
demonstrated in Appendix C, our approximation guarantees hold for matrices L where Algorithm 1 fails
to achieve even a finite approximation factor.

Our local search algorithm for NDPPs searches over 2-neighborhoods, unlike most prior related works
which typically use 1 neighborhoods; using 2-neighborhoods is necessary, and is compatible with intuition
from prior work of Anari and Vuong [ ] who first studied 2-neighborhood local search for the related
problem of finding the maximum k x k subdeterminant of a rectangular matrix. Unlike [ ], our analysis
of local search is not based on algebraic identities, which we believe do not have a counterpart in the world
of NDPPs, but rather we resort to mixing properties of random walks.



1.3 Techniques

Our main tool for proving Theorem 2 is a form of (approximate) exchange inequality. Exchange inequalities
have been traditionally been studied in discrete convex analysis [ ], but have recently been extended
and used in sampling [ ] and optimization [ ] problems beyond the reach of traditional discrete
convex analysis. Unlike prior works, here we go in the opposite direction and show that efficient sampling
implies a form of exchange inquality. To prove Theorem 2, we set the external field A appropriately to focus
the distribution on the two sets found by local search and the global optimum, and use the lower bound on
the spectral gap of the down-up walk on A * y to derive our approximate exchange property Lemma 30.

We then show that approximate exchange implies the desired approximation factor for local search
(Proposition 31). Since nonsymmetric DPPs are 1/4-fractionally log-concave [ ], Theorem 2 already
implies an efficient algorithm (Algorithm 2 with r = 4) to get k°)-approximation factor for the MAP
inference problem on nonsymmetric DPPs. We can further improve the the local search radius r to 2, and
get a faster algorithm that matches the runtime stated in Theorem 8 by showing a stronger approximate
exchange property (2?).

As a tangential implication of our techniques, in the appendix, Appendix D, we demonstrate how to
construct core-sets for optimization for log-concave polynomials, a slight generalization of earlier techniques
of Mahabadi, Indyk, Gharan, and Rezaei [ ].
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2 Preliminaries

We use [n] to denote the set {1,...,n} and ([Z]) to denote the family of size k subsets of [n]. We use 1 to
denote the all 1 vector. When # is clear from context, we use g € R” to denote the indicator vector of the
set S C [n], having a coordinate of 0 everywhere except for elements of S, where the coordinate is 1. For
sets S, T of the same size we define their distance to be d(S,T) := |SAT|/2 = |S\ T| = |T \ S|. With this
notion of distance, we can define neighborhoods:

Definition 10. For r > 0 the r-neighborhood of S € ([Z}) is
Ny(S) = {T € (“;]) ’ d(S,T) < r}.

2.1 Determinantal Point Processes (DPPs)

A DPP on a set of n items is a probability distribution over subsets Y C [n]. It is parameterized by a
matrix L € R"*": P;[Y] « det(Ly), where Ly denote the principle submatrix whose columns and rows are
indexed by Y. We call L the kernel matrix.

ForY C [n}, if we condition the distribution [P}, on the event that items in Y are included in the sample,
we still get a DPP; the new kernel is given by the Schur complement LY = Ly — LyyLy 1YLY,Y where
Y=[n]\Y.

Given a cardinality constraint k, the k-DPP paremeterized by L is a distribution over subsets of size k of Y

: kryl — _ det(Ly)
defined by P} [Y] = Ty ety
To ensure that I’ defines a probability distribution, all principal minors of L must be non-negative:
det(Lg) > 0. Matrices that satisfy this property are called Py-matrices [ , Definition 1]. Any nonsym-
metric (or symmetric) PSD matrix is automatically Py [ , Lemma 1].



We say a NDPP kernel L € R"*" has a low-rank decomposition [ ; ] if L can be written as
L = BCBT for some d < n, B € R"*4,C € R¥*4, Clearly, rank(L) = d, and we say L = BCBT is a rank-d
decomposition of L. We will need the following identity, which is derived from Schur complements; it has
previously appeared in [ ]. For S C [n], let Bs denote the sub-matrix of B consisting of rows in S;
then Lg = BsCB! and

det(Lyup) = det(Ly) det(Lp — LpyLy'Ly,p)

1
= det(Ly) det(LD — BDC(B;L;lBY)CBlg)' w

Given det(Ly) and L;l, we can compute det(Ly_p) in O(|D|d? + |D|*d + |D|3) time.

2.2 MAP Inference

Given a density p : ([Z]) — R>, optimization with respect to 1 or MAP inference on y is to find

§* = argmax{y(S) ‘ Se <[Z]> }

Throughout the paper, we let OPT := max {(S) }. We say that an algorithm gives a factor c-approximation
for MAP inference on y if it outputs S € ([Z]) such that ¢ - 4#(5) > OPT. When y is defined by a DPP, i.e.,
#(S) = det(Lgs) for a n x n matrix L, MAP inference on y is also called the determinant maximization
problem [e.g., see 1.

2.3 Markov Chains and Spectral Gap

A Markov chain on a state space () is defined by a row-stochastic matrix P € R?*. We view distributions
u on () as row vectors, and as such yP would be the distribution after one transition according to P, if
we started from a sample of p. A distribution y is stationary if P = p. Under mild assumptions on P
(ergodicity), stationary distributions are unique and vP* converges to this stationary distribution as t — co
for any starting v [ I

We will only consider reversible Markov chain. A Markov chain P is (time-)reversible if

u(x)P(x,y) = u(y)P(y,x) Vx,y € Q.

Reversible Markov chains have only real eigenvalues, and we call the difference between the top two
eigenvalues 1 — A, (P) the spectral gap. The spectral gap is intimately connected to the mixing time and
convergence properties of a Markov chain.

The conductance® of a subset S of states in a Markov chain is

05,015
®G) =706

where Q(S, 1\ S) = Lresyeq\s #(x)P(x,y) is the ergodic flow between S and 2\ S, and p(S) = Yyes p(x).
The conductance of a Markov chain is defined as the minimum conductance over all subsets S with
u(S) <1/2,ie,

P =min{P(S) | SCQ,u(S) <1/2}.

Theorem 11 (Cheeger’s Inequality [see, e.g., , Thm. 13.10]). Let A be the second largest eigenvalue of the

transition matrix P. Then
P?/2<1— Ay <20,

3also known as bottleneck ratio in [ ]



24 The Down-Up Random Walk

Consider a distribution yu : ([’Z]) — R>g. The down-up walk is given by the composition of two row-
stochastic operators, known as the down and up operators.

Definition 12 (Down Operator). For a ground set (), and )] > k > ¢, define the down operator
D, e RO as
A dfTCS,
Di_e(S,T) = ()

0 otherwise.

Definition 13 (Up Operator). For a ground set Q, || > k > ¢, and density y : () — Rxo, define the up
operator U,_; € R(D) (%) as

_8__ ¥TCsS
U, (T,S) = {ZS/DT?‘(S') HE=

0 otherwise.

If we define py = p and more generally y, as yDy_,¢, then the down and up operators satisfy

#k(S)Dy—e(S, T) = pe(T)Up 1 (T, S).

This property ensures that the composition of the down and up operators have the appropriate u as a
stationary distribution, are reversible, and have nonnegative real eigenvalues [see, e.g., ; 1.

Definition 14 (Down-Up Walk). For a ground set Q, |Q)] > k > ¢, and density y : (?) — Ryp, the k ¢
down-up walk is defined by the row-stochastic matrix Dy_,,Uy_.x.

2.5 Geometry of Polynomials

For a density y : 2l — R>o, the generating polynomial of y is defined as

gu(z1,...,zn) = Z ,M(S)Hzi.

Sealr] ieS

We use ]F[zl,. . .,zn] to denote n-variate polynomials with coefficients from [F, where we usually take IF
to be R or C. We denote the degree of a polynomial g by deg(g). We call a polynomial homogeneous of
degree k if all nonzero terms in it are of degree k.

Definition 15 (Stability). For an open subset U C C", we call a polynomial § € C[zy,...,z,] U-stable if
(z1,...,zn) €U = g(z1,...,24) #0.

For convenience, we also call the identically 0 polynomial U-stable. This ensures that limits of U-stable
polynomials are U-stable. For convenience, when # is clear from context, we abbreviate stability w.r.t.
regions of the form U x U x --- x U where U C C simply as U-stability.

Our choice of the region U in this work is the product of open sectors in the complex plane.

Definition 16 (Sectors). The open sector of aperture a7t centered around the positive real axis is:

Iy :={exp(x+iy) | x e R,y € (—am/2,am/2)}.

Note that I'; is the right-half-plane, and I';-stability is the same as the more well-studied notion of Hurwitz-
stability [see, e.g., ]. Another closely related notion is that of real-stability where the region U is the
upper-half-plane {z | Im(z) > 0} [see, e.g., ]. For homogeneous polynomials, stability w.r.t. U is the
same as stability w.r.t. any rotation/scaling of U; so Hurwitz-stability and real-stability are the same for



homogeneous polynomials. Real-stability of the generating polynomial of a distriution is also known as
being strongly Rayleigh, and we use the two notions interchangeably.

We use a-sector-stable as a shorthand for I'y-stable. Naturally, we call a distribution a-sector-stable if its
generating polynomial is a-sector-stable.

Proposition 17 ([ 1). These operations preserve I y-sector-stability on homogeneous multi-affine polynomials:
1. Specialization: g — g(a,za,...,zy), for a € Ty, where T is the closure of T in C.
2. Derivative: g — %g(zh cee L, Zn).
3. Scaling: g = g(Mz1,..., Anzn), for A € RL.

We state some examples of sector stable distributions.

Lemma 18 ([ 1). Consider L € R™" that is nPSD, i.e., L+ LT 3= 0, then u : ([Z}) — R defined by
u(S) = det(Ls) is 1/2-sector-stable.

Lemma 19 ([ 1). Given a density y : ([I’?) — R and a partition Ty UT, U - - - U Ts = [n], and numbers

1,...,Cs € Z>q, let the partition-constrained density ut . be y restricted to sets S € ([Z]) where SN T;| = ¢;.
When y is strongly Rayleigh, ut . is 1/2°-sector-stable.

We next define log-concavity for distributions over size-k subsets of n elements, and its direct generalization,
fractional log-concavity.

Definition 20. We say a probability distribution u : ([']:]) — R is log-concave if its generating polynomial
is a log-concave function over R, i.e., if log gy(zl, ...,zy) is concave over R>o.

The notion of fractional log-concavity [ ] generalizes the above.

Definition 21 (| I). A probability distribution y : ([z]) — R is a-fractionally-log-concave if g, (z{, . . ., z};)
is log-concave for z1,...,z, € ]R’%O.

Garding showed that for homogeneous multiaffine polynomials, real-stability implies log-concavity. A
similar relationship holds for sector stability and fractional log-concavity.

Lemma 22. (Lemma 67 from [ D) If a polynomial g is a-sector-stable, then it is 5-fractionally-log-concave.

We note that scaling preserves a-log-concavity of homogeneous distributions [ ], ie, if pis a-
fractionally-log-concave, then so is A * y for all A € RY,,.

Theorem 23 ([ ; 1). Suppose i : ([Z]) — R>g is a-fractionally log-concave. The k <+ (k — [1/a])-
down-up-walk on y has spectral gap > Q(k=1/%).

3 Local Search Algorithms

In this section, we show how to efficiently find a local optima® of a given distribution y#. We run a two stage
algorithm:

1. First, we find some “good” initial subset Sy € ([Z]), i.e., one such that the ratio OPT/u(Sy) is bounded
by 2poly(nk) (see Lemma 26).
2. Then, for a suitably chosen radius r, we run a simple local search (Algorithm 2) that starts with

S < Sp, and finds better and better solutions by swapping at most r elements in S for elements outside
of S until no more improvement in terms of y(S) can be found.

To ensure that our algorithm terminates within polynomial time, we will only take improvements that
increase the value by at least a factor of 1/, which can we set to a constant like 2.

4More precisely, we show how to find an approximate local optima, which is sufficient for our purpose.



Algorithm 2: Local-Search-r (LS;)

input: improvement factor ¢ € [0,1] and starting point Sy € ([Z]) with u(Sg) > 0.
Initialize S < Sy.
while u(S) < - u(T) for some T € N,(S) do

| Update S < argmax {u(T) | T € N;(S)}.

We prove the algorithmic part of Theorem 2, that with a suitable choice for Sy, Algorithm 2 runs in
polynomial time.

Proposition 24. The number of steps taken by Algorithm 2 with r = O(1) is at most
log; ;- (OPT/pu(So)) -
Each step can be implemented using O((nk)") oracle queries to p.
Proof. Each iteration improves j(S) by a factor of at least 1/a. On the other hand, this value can never

exceed OPT, and it starts as 1(Sp) > 0.

Clearly, to perform local search in the r-neighborhood of a set S, we only need to query u((S\ Uy) U Uy)
for U; € (gsr) and U, € ([énr) The total number of such queries is O((nk)"). O

Definition 25. For y : (["]) — Rspand { > 0, we say S € ([Z}) is a (r,{)-local maximum w.r.t. p if
#(S) > ¢ - u(T) forall T € N,(S).

Clearly, when Algorithm 2 terminates, the output is a (r, {)-local maximum.

Next, we show how to obtain a “good” initialization Sp by a simple greedy algorithm, which we call
Induced-Greedy, that is based on maximizing the marginal gain defined by the distribution on size < k
subsets. This gain is induced by the distribution y, as defined below.

For this algorithm, we extend the domain of our distribution u from subsets of size k to all subsets of size
at most k as follows: For subset T of [n] of size < k, let u(T) = ZSE(["])-SDT u(S).
§ )52

Algorithm 3: Induced-Greedy
Initialize S < @.
while |S| < k do
| Picki ¢ S that maximizes 3(S U {i}) and update S «+— SU {i}.

Lemma 26. Algorithm 3 returns S with
O(n*) - u(S) > OPT.

Proof. For j € [k], let i; be the element added to S at the j-th iteration of the while loop. Let Sy = @,
Sj=S;_1U{ij} . Observe that |S;| = j and for each j > 0

H(s;) = k_lsﬂ; (S U4 < F=dulsi).

Thus (2)1(Sk) > (So) = #(@) = g, ) 1(S') = OPT. O

n
k

10



Remark 27. In Algorithm 3, it is enough to find i that approximately maximizes u(S U1i), i.e., for some
constant { € (0,1), u(SUi) > Cu(SUj) for all j € S. In that case, Lemma 26 still holds, and Algorithm 3
can be efficiently implemented given access to efficient algorithms that approximately sample from A * u
for A € R%;,. Indeed, note that (S Ui)/u(S) is the marginal of A * 4 where

A= oo fories,
1 else.

Thus, Induced-Greedy can be implemented by a sampling algorithm for our family of distributions.

4 From Sampling to Optimization

In this section, we prove Theorem 2.

Definition 28 (r-exchange). For i : ([Z]) — R>o,r€Nand S, T € ([Z]), we let
E'(S,T):={UCSAT | |[UNS|=|UNT|=r}

be the set of all r-exchanges between S and T.

Definition 29 (Weak (7, B)-approximate exchange). We say a distribution y : ([Z]) — R satisfies weak
(r, B)-approximate exchange if for any S, T € ([Z}), there exists s € {1,--- ,r} and U € £5(S, T) such that

S/d(S,T)
u(S) < B u(SAL) (;‘E%)

Lemma 30. Consider p : ([Z]) — R>q such that for all external field A € RZ, the conductance of the k <+ (k —r)-

down-up walk on A x i is at least Q (k™). Then u satisfies weak (r, O(k"*¢))-approximate exchange.

Proposition 31. If j : ([Z]) — R satisfies weak (r, B)-approximate exchange then any (r,{)-local max with
respect to u is also an O((B/{)F)-approximate global max.
In particular, when p is a-fractionally log-concave, Lemma 30 and Proposition 31 hold with r = [1/a] and

¢ =1/a and B = O(k""°). The local search guarantee in Theorem 2 follows from Theorems 11 and 23,
Lemma 30, and Proposition 31, and the runtime bound follows from Remark 27 and Proposition 24.

Proof of Lemma 30. If d(S,T) < r then the lemma holds trivially by setting U = SAT. In what follows,
we assume d(S,T) > r. W.lo.g. we can assume that S = {1,...,t} UCand T = {t+1,...,2t} UC with
C={2t+1,...,t+k}and t =4d(S,T).
1 if1<i<t
(u(S)/u(T))t ift+1<i<2t

if2t+1<i<t+k
0 else

Consider distribution p/ = A x y with A; =

Note that y’ is supported on W € ([Z}) where (SNT)=C C W C (SUT). Let ® be the conductance of
the k <+ (k — r)-down-up walk on y/, then ® > Q (k™). On the other hand, since y/(S) = y/(T) = u(S) <
M, we have that by definition of @,

Q(S,0\S) _ Q({S} 0\ {S})

b = min
W<z w(S) W(S)

11



where we can rewrite Q({S},Q\ {S}) as

_ s L _HW)
AL =r G L X s

" Wesupp(p')\{S}

where 15\ 1) = Fyy_ (1) gy, # (V)
Note that
(W esupp()\ (5} [ w2 s\ € {s\unu [ ue (T )
thus
U {(Wesupp(')\{S} | WD S\Ui} C {SAU uelJ SS(S,T)}.
()

Moreover, |(3)| = (];) and for each U; € (3), the cardinality of {W € supp(¢’) \ {S} | W 2 S\ U;} is at
most < (kjr) —1 < k". Hence, there must exist s € [r] and U € £°(S, T) such that

Thus
u(S) =p'(S) < p'(S\U) < Ok )/ (SAU) = O(k’“)#(SAU)(ZES;)S/t'
O
Proof of Proposition 31. Apply Lemma 30 for S being a (r,{)-local max and T := argmax u(W). Let f =
d(S,T). For some s € [r]and U € £5(S, T)
(S) < O T (saU) (30" < O /() ()
where the inequality follows from definition of (7, {)-local max. Divide both sides by y(S) > 0, we get
H(T) <O(K™*</2)!*u(S) < Ok /) u(S).
where we use the fact that t/s < k. O
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A Improved Step Size for Down-Up Random Walks

In this section we prove Theorem 5. More generally we prove that for any distribution y : ([Z}) — R>p
whose generating polynomial is sector-stable, the step size of the down-up random walks can be improved
by a factor of 2 compared to Lemma 22 and Theorem 23, while preserving an inverse-polynomially large

spectral gap.
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Theorem 32. Suppose that u : ([I’?) — R has a generating polynomial g, that is T'y-stable for some & = Q)(1).
Then the k < (k — [1/a]) down-up random walk on y has spectral gap 1/poly (k).

Directly plugging « = 1/2 in the above, combined with Lemma 18 yields a proof of Theorem 5.

Proof of Theorem 32. Note that w.l.o.g., we can assume that 1/« is an integer (by perhaps decreasing «
slightly). We use the same strategy as in all prior works on high-dimensional expanders to establish a
spectral gap for the down-up random walks, namely we use the local-to-global theorem of Alev and Lau

[ .

Consider a family of distributions p that are closed under conditioning and removal of elements (a.k.a.
links [ 1): That is if we condition y on sets S that contain some element i, and then remove i from

all the sets, the new distribution obtained on ([”,](:Iii}) is part of the family. Sector-stable distributions are
closed under this operation [ ].

For each distribution y in this family on ([Z]) we can consider a local weighted graph on 7 nodes defined
by the edge weights:

wij = ]PSNy [Z,] S S]
Suppose that the simple random walk on the graph defined by w has spectral gap J;. Then Alev and
Lau [ ] showed that the spectral gap of the k <+ £ is at least Q(% Hi‘{:k— 041 ;). Alimohammadi, Anari,

Shiragur, and Vuong [ ] managed to bound all such spectral gaps ¢; by roughly max(0,1—2/« - i),
which is only nonzero for i > 2/a. As a result £ could be taken to be only as large as k —2/«.

Our strategy is to prove a crude bound for ¢;. Already by the analysis of Alimohammadi, Anari, Shiragur,
and Vuong [ ], we know that the product of §; for all i > 2a is inverse-polynomially large. If we
show a 1/poly(k) bound for each ¢; fori € {1/a+1,...,2/a}, we can combine the product of these crude
bounds to still get a 1/poly(k) lower bound on the spectral gap of the k <+ (k —1/a) random walk.

Now consider a I'y-stable distribution i on ([Z]) with k > 1/, and consider the n-node graph defined by
the weights w;; = Ps.,[i,j € S]. We will show a 1/poly(k) lower bound on the Cheeger constant of this
graph. Together with the Cheeger inequality (Theorem 11), this implies a 1/poly(k) lower bound on the
spectral gap.

Consider a partition of the graph defined by some set S C [n] and [n] — S which achieves the Cheeger
constant. Let z be a variable and define
4 z i€es,
ozt igs.

Define the univariate function f(z) = g(z1,...,2x). Note that this function can be written as

ckzk + ck,zzk_z +--- c,kz_k.

We claim that to lower bound the Cheeger constant, it is enough to show that there is at least one coefficient
i € (—k, k) such that ¢; > min {c_g, ¢} /poly(k). This is because for any set T € ([Z}) in the support of y, if
T is neither a subset of S nor a subset of [1] — S, then at least some of the edges w;; that T contributes to
cross the cut (S, [n] — S). So, up to poly(k) factors, the weight of such sets T lower bounds w(S, [n] — S).
The weight of all such sets T is exactly the sum of ¢; for i # k, —k. On the other hand, sets that are
completely inside T or [n] — T contribute to the degrees of the two sides of the cut (S, [n] — S) without
contributing anything to the crossing edges. The weight of such sets on the S side is ¢, and the weight on
the [n] — S side is ¢_j. So it is enough to lower bound one of the middle ¢;s by min {cy, c_}.

Now consider the polynomial h(z) = cxzX + cx_pz" 1 + -+ 4+ c_;z0. Since the value of f is never 0 on
the sector I'y, it is easy to see that the value of h is never zero on I'y,. We write h as hy + hy, where
h(z) = ez 4+ c_42%, and hy is defined as the sum of the remaining terms. Note that /1; has a complex root
w whose argument is 7t/k, which means that this root completely lies inside I'y. Now by elementary results
in complex analysis, we know that if on the boundary of a region U that contains this root w, we always
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have |hy| < |h], then hy and h = hy + hy would have the same number of roots inside U. In other words, if
we find a region U C I'y,, where this condition happens, we get a contradiction. We let this region U be
the sector whose sides bisect the angle between the roots of /1; with the smallest arguments. For any z on
the rays defining the boundaries of this region we have |y (z)| ~ ¢ |z|* + c_; > min {c}, c_;} max {1, |z|*}.
On the other hand by the triangle inequality, we have that hy(z) < (¥ ¢;) max {1, |z|¥}. This means
one of the middle c; has to be large enough and this completes the proof. O

B Implementation of Local Search for Determinant Maximization

Now, we are ready to prove Theorem 8.

Proof of Theorem 8. We let u(S) = det(Lg) and run the two stage algorithm in Section 3 with r = 2. The
approximation guarantee is a direct consequence of Lemmas 18 and 30 and Theorem 32.

Suppose we are given access to the entries of L. Each iteration of Algorithm 2 clearly runs in O(n?k>) time,
since A3 (S) has at most O(k?*n?) elements and computing the determinant of k x k matrices costs O(k>)
time. The cost of LS, can be reduced to O(n%k*) time using Schur complements to compute all det(Lyyp)
for each fixed Y and all D of size < r in O(k® + n?k?) time [see Eq. (1) or , for example]. If we are
only given B, C, then each of these submatrices and their determinant can be computed in O(d?) time, so
that each iteration takes O(n%dk?) time.

Now, we bound the runtime of Algorithm 3. To implement each iteration of Algorithm 3, we need to
compute u(Y) = Y, det(Ly) , which is the coefficient of A% in g(A) = det(L + A - diag(1y))

where Y = [n] \ Y.

se(i):soy

There are several ways to compute u(Y). To compute the coefficients of polynomial g(A) of degree < n,
we can evaluate g at n + 1 distinct points A and use polynomial interpolation, i.e., solve a linear system of
equations involving the the Vandermonde matrix. A more efficient way, which costs O(n%) per computation
of u(T), for a total runtime of O(n*k), is as follow:

1. Let D = diag(]ly). We use the QZ decomposition algorithm [ , Section 7.7, p. 313] to compute

unitary matrices Q, Z such that 5
L=QAZ*,D=QDz*

where A, D are both upper triangular. Note that deg(g) < n — |T|.

Compute the roots of g(A) = det(L + AD), which are exactly the generalized eigenvalues Ay, ..., Ageg(y)
defined by A; = % where we may assume w.l.o.g. that D;; # 0 fori = 1,...,deg(g), and is zero
otherwise. Let ¢ := ITicn):8,,0 Dii ITicin):0, =0 Aii- Then

g =c JI A=A

i€[deg(g)]

2. We then compute the (k — 1 + n')-symmetric polynomial of Ay, .. ., A7) Where e; = Ywe G [Tiew A;
t
using the recursion [ ]
tey = e;—1p1 —er—ap2 +ep—3p3 — - L pi

with p; = Z)\Jt-, and output p(Y) = [cex_ (n—deg(s))-

Given the low-rank decomposition L = BCBT, we can further optimize by reducing the cost of step (i) to
O(nd?). Then the total runtime will be O(n?kd?).

Let LY be the kernel of IP; conditioned on the inclusion of items in Y. The eigenvalues of LY are exactly
the roots of g(A). By Eq. (1), LY can be rewritten as product of two matrices of rank < d, thus the
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nonzero eigenvalues of LY can be computed in O(d%) time. Indeed, let Dy := B}(ByCBJ]) !By then
LY = By(C - CDyC)BlI/ and rank(Dy) < k and Dy can be computed in O(kd?) time (see Eq. (1)).

The matrix Fy := ((C — CDyC)B}T/) By has the same characteristic polynomial and nonzero eigenvalues as

LY. Clearly, rank(Fy) < rank(B) < d, so Fy and its eigenvalues can be computed in O(nd?) time. O

C Lower Bound on Step Size for NDPPs

In this section we provide an example of an NDPP, which helps explain why greedy and even 1-step
local search fail to achieve a meaningful approximation factor. This example also shows that local search
greedy [ ]°, another candidate MAP inference algorithm with theoretical performance guarantees for
symmetric DPPs, also used by Gartrell, Han, Dohmatob, Gillenwater, and Brunel [ ] as a baseline to
compare their greedy method, fails to achieve a meaningful approximation factor.

Example 33. Consider L composed of 2 x 2 blocks D; = [_C;C QCC’] where ¢; > 1:
1 1
D, 0 ... 0
0 D ... O
Le=1. . . .
0 0 ... Dy

We further assume thatcy > ¢y > -+ > ¢y, 61 < xp < --- < x and x; > ¢ Vi, j. It is easy to check that
Algorithm 1 (greedy) on input k = 2t will select S = {1,2,...,2t — 1,2t} . Indeed, Algorithm 1 first picks
item 1 since det(Ly;y) = ¢1 is maximum among all Ly, then picks item 2 since det(L{;2)) = 2+ x2>>
det(Ly1;)) = c1¢;Vi # 1, and so on. On the other hand, the optimal subset is {n —2t+1,...,n} by our
choice of x, and this could be arbitrarily better than Algorithm 1’s solution. We may think of items 2i — 1
and 2i as complementary items, say, e.g., toothpaste and toothbrush proposed in a recommender system.
The conditions on ¢;’s and x;’s mean that the degree of complementarity between these pairs increases
with i. So 2n — 1 and 2#n are the most likely pair to appear together, but each one of 2n — 1 and 2n is most
unlikely to appear as a singleton, and the opposite holds for item 1 and 2; for example, think of 2n — 1 and
2n as a tea cup and tea cup lid, which are almost always bought together, but 1 and 2 as toothpaste and
toothbrush, which are sometimes purchased separately.

Furthermore, switching out any item 2i — 1 or 2i in S for an item 2j — 1 or 2j outside of S reduces the
determinant by (c? + x7)/ cicj > ¢; > 1,50 S is also maximum among its 1-neighborhood. Thus local search
greedy, or equivalently, local search initialized at S, will simply output S itself.

We remark that it is easy to construct an example where Algorithm 1 produces a subset with zero
determinant, whereas the optimal subset can have arbitrarily large determinant. E.g., in Example 33, we
can make all diagonal entries except for L; ; zero; then, Algorithm 1 with even k will necessarily produces
a zero determinant.

D Composable Core-Sets via Local Search

As further application of our methods, we extend prior work of Mahabadi, Indyk, Gharan, and Rezaei

[ ] on the construction of composable core-sets for maximizing symmetric DPPs to the more general
class of distributions that satisfy the strongly Rayleigh property [ ] or have a log-concave generating
polynomial [ 1.

5This algorithm starts with the output S of Algorithm 1, then continuously swaps out an element in S with one outside S to
increase the DPP score, until either a local maximum is reached or k? log k swaps have been performed.

17



Definition 34 ([ , Definition 2.2]). A function ¢(P) that maps the input set P C R” to one of

its subsets is called an a-composable core-set for a function f : oR" L R if, for any collection of sets
Py,...,P, C RY we have f(C) > f(P)/a where P = U;<, P; and C = U;<,, ¢(P).

Composable core-sets are a tool [ ] to handle computational problems involving large amounts of
data. Roughly speaking, a core-set is a summary of a dataset that is enough to solve the computational
problem at hand; a composable core-set has the additional property that the union of summaries for multiple
datasets is itself a good summary for union of all datasets. More precisely, in the context of the optimization
problem on yu : ([Z}) — R, a function ¢ that maps any set P C [n] to one of its subsets is called an
x-composable core-set ([ ]) if it satisfies the following condition: given any integer m and any
collection of sets Py, - -+, Py, C [n]

5C

zx~max{y(5)

TCs

c(Pl-)} > max {y(S)

m
Sc UPZ}.
i=1

We also say c is a core-set of size t if [c(P)| < t for all sets P. Composable core-sets are very versatile; when
a composable core-set is designed for a task, they automatically imply efficient streaming and distributed
algorithms for the same task.

1

One strategy for constructing composable core-sets is local search. Mahabadi, Indyk, Gharan, and
Rezaei [ ] showed that for k-DPP parameterized by symmetric PSD matrix L, (1-step)-local search
(Algorithm 2 with r = 1) gives a k°)-composable core-sets of size k. The approximation factor of k) is
nearly optimal.

Recall that k-DPP parameterized by symmetric PSD matrix L belongs to the family of homogeneous strongly
Rayleigh distributions, i.e., distributions p whose generating polynomial g, is nonvanishing on the upper
half plane [ ]. An even more general family of distributions is the family of log-concave distributions

[ ]. We extend [ ]’s result to any distribution y : ([Z]) — R>¢ that is strongly Rayleigh or has
a log-concave generating polynomial.

Theorem 35. Given a distribution y : ([Z]) — R>, let ¢ be a map that takes P C [n] to some ¢(P) € (1,:) that is an
{-approximate local maximum in the 1-neighborhood with respect to y, for some fixed constant € (0,1):

p(c(P)) = T-max {u(S) | S € Ni(c(P))}.

Then c is an a-composable core-set of size k for the MAP-inference problem on p with & = kO®) for strongly Rayleigh

u, and o = 200°) when u has a log-concave generating polynomial.

Here we prove that (1-step)-local search yields composable core-sets for distributions that satisfy a strong
form of exchange.

Definition 36 (B-strong approximate basis exchange). For > 1, we say y : ([Z]) — R satisfy B-strong

approximate basis exchange if, for S, T € ([Z]) and j € T\ S, there exists i € S\ T such that:

u(S)u(T) < Bu(S —i+j)u(T +i—j) )

Lemma 37. Suppose y : ([Z]) — R satisfies B-strong approximate basis exchange, then the Local Search algorithm®
achieves an O(B)¥-composable core-set of size k for the MAP-inference problem for .

Proof. Consider a partition Py U---U P, of [n], and let C; € (I;’) be a (1,()-local optimum in P; with
#(C;) > 0. We want to show

(?)kOPT(C) > OPT(LrJ P)

i=1

6 Algorithm 2 with r = 1
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where C := J_; C;.
Let S$* be such that u(5*) = OPT(U/_; P;). We need the following fact.

Proposition 38. For any W € ([I’?) with non-empty (W \ C;), there exists W' € ([Z]) st [W\G|=|W\GC|—1
and Ep(W') > pu(W).

Proof of Proposition 38. Take an arbitrary j € (W N P;) \ C;. There exists e € C; \ W s.t.

u(CHp(W) < Bu(Ci—e+j)u(W+e—j) < gy(q)y(w te—j)
Setting W = W + e — j and dividing both sides by 1(C;) > 0 gives the desired inequality, since |[W'\ C;| =
W\ G| - 1. O

We can iteratively apply Proposition 38 for up to k times to obtain the desired inequality. Indeed, let
Wp := S*, and for j > 1leti; € [r] and W; € ([Z]) be such that u(W;_1) < g - (W) and |Wj\Cij| =
[Wi_1\ Cl-],| — 1. Proposition 38 guarantees the existence of such i; and W, as long as W;_; Z C. Let s be
the minimum index such that W; C C. Note that s < k and p(Ws) < OPT(C). We have

2
OPT([n]) = u(Wo) < £ - u(wy) < (/g) (W) < -

BY’ B\*
<(£) -mowy < (£) -orri
G &
O
Theorem 35 is a direct consequence of Lemma 37 and the fact that strongly Rayleigh (respectively log con-

cave) distributions satisfy k?-strong approximate basis exchange (2°)-strong approximate basis exchange
respectively) [Ana+21b].
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