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Abstract

We consider a challenging theoretical problem
in offline reinforcement learning (RL): obtaining
sample-efficiency guarantees with a dataset lacking
sufficient coverage, under only realizability-type
assumptions for the function approximators. While
the existing theory has addressed learning under
realizability and under non-exploratory data sep-
arately, no work has been able to address both si-
multaneously (except for a concurrent work which
we compare in detail). Under an additional gap
assumption, we provide guarantees to a simple pes-
simistic algorithm based on a version space formed
by marginalized importance sampling (MIS), and
the guarantee only requires the data to cover the
optimal policy and the function classes to real-
ize the optimal value and density-ratio functions.
While similar gap assumptions have been used in
other areas of RL theory, our work is the first to
identify the utility and the novel mechanism of
gap assumptions in offline RL with weak function
approximation.

1 INTRODUCTION AND RELATED
WORKS

In offline reinforcement learning (RL), the learner searches
for a good policy purely from historical (or offline) data,
without direct interactions with the real environment. The
lack of intervention with the system makes offline RL a
promising paradigm for learning sequential decision-making
strategies in many important real-world applications.

Early research in offline RL focused on analyzing approx-
imate value and policy iteration algorithms and had sig-
nificant overlap with the approximate dynamic program-
ming literature (Munos, 2003, 2007; Munos and Szepesvári,

2008; Antos et al., 2008; Farahmand et al., 2010). These
algorithms and their guarantees typically require relatively
strong assumptions on both the expressivity of the function
class and the exploratoriness of the dataset. For example, the
analyses of Fitted Q-Iteration (Ernst et al., 2005; Antos et al.,
2007) require the function class to be closed under Bellman
updates (also known as Bellman-completeness), and the of-
fline data distribution to provide coverage (in some technical
sense) over all candidate policies (Chen and Jiang, 2019).
The former requirement is non-monotone in the function
class, which shatters the standard machine-learning intuition
that a richer function class should always have better (or
at least no worse) approximation power; it is also closely
related to the instability of RL training and the infamous
“deadly triad” (Sutton and Barto, 2018; Wang et al., 2021a).
The latter requirement is very likely violated in practice
since we have no control over how the historical data is
collected (Fujimoto et al., 2019).

Given these considerations, it is desirable to come up with
novel algorithms and/or analyses to relax these assumptions.
In particular, the ideal assumption on the function class
is realizability, that there is a target function of interest
(such as the optimal value function) and we only require the
function class to (approximately) capture such a function.
The ideal assumption on the data distribution is single-policy
coverage, that it is ok for the data to not cover all policies, as
long as an optimal (or sufficiently good) policy is covered.

In recent years, significant progress has been made towards
providing provable guarantees in offline RL under these re-
laxed assumptions. In particular, the principle of pessimism
in face of uncertainty proves to be useful in designing algo-
rithms that work under single-policy coverage (Liu et al.,
2020; Jin et al., 2021; Xie et al., 2021a; Yin et al., 2021;
Rashidinejad et al., 2021), but most of the existing pes-
simistic algorithms require Bellman completeness on the
function class. On the other hand, relaxing Bellman com-
pleteness to realizability has been difficult: there is merely
one existing result that requires only the realizability of op-
timal value function (Xie and Jiang, 2021), yet their data

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), PMLR 180:378–388.



assumption is even stronger than all-policy coverage. In fact,
a recent information-theoretic lower bound by Foster et al.
(2021) confirms that even with a strong notion of all-policy
coverage called (all-policy) concentrability, plus the realiz-
ability of value functions for all policies, offline RL is still
fundamentally intractable.

Despite the lower bound, not all hope is lost. A promising
way of breaking the lower bound is to assume the realiz-
ability of other functions beyond value functions. Indeed,
positive results that are analogues to what we want are es-
tablished in off-policy evaluation (OPE)—where the goal is
to estimate the performance of a target policy from offline
data—when additional realizability of density-ratio func-
tions is assumed. In particular, Liu et al. (2018); Uehara
et al. (2020) show that, as long as the data covers the target
policy, and we are given function classes that can represent
both the value function and the density-ratio function (or
marginalized importance weights) of the target policy, it
is possible to estimate the performance of the target pol-
icy in a sample-efficient manner. One way of using such
results for policy learning is to use OPE as a subroutine
and optimize a policy using OPE’s assessment of the pol-
icy’s performance. Unfortunately, such a direct application
introduces prohibitive expressivity assumptions we wanted
to avoid beginning with, such as the realizability of value
functions for all candidate policies (Jiang and Huang, 2020).

In this paper, we provide sample-efficiency guarantees for
offline RL under the desired assumptions, that data is only
guaranteed to cover the optimal policy, and the function
classes only represent the optimal value function and den-
sity ratio, respectively. Our algorithms have a simple pro-
cedure that combines marginalized importance sampling
(MIS) with pessimism in a novel fashion. The key enabler
of our guarantees is an additional gap assumption, that there
is a nontrivial gap between the values of the (unique) greedy
action and the second-best for every state. Similar gap as-
sumptions are common in RL theory to characterize easy
problems in which stronger-than-usual guarantees can be
obtained. They are often used to achieve logarithmic or con-
stant regret in bandits and tabular online RL (Bubeck and
Cesa-Bianchi, 2012; Ok et al., 2018; Slivkins et al., 2019;
Lattimore and Szepesvári, 2020; He et al., 2021; Papini et al.,
2021), and similar guarantees in offline RL under Bellman-
completeness and additional structural assumptions on the
value-function class (Hu et al., 2021). They are also used in
online RL with function approximation to block exponential
error amplification (Du et al., 2019). To our knowledge, our
work is the first one to identify the utility of gap assumptions
in offline RL with weak function approximation and offer
interesting insights into novel aspects and mechanisms of
gaps (see Section 5).

Paper Organization The rest of the paper is organized as
follows: Section 2 introduces preliminary concepts and the

problem setting. Section 3 describes the algorithm. Section 4
provides the core analysis. We further extend our results to
the setting where the function classes are misspecified (Sec-
tion 5), and when the gap parameter is unknown but we have
access to a small amount of online interactions (Section 6).
We conclude the paper with further discussions in Section 7,
including a detailed comparison to the concurrent work of
Zhan et al. (2022) on the same problem.

2 PRELIMINARIES

Markov Decision Processes (MDPs) We consider finite
horizon episodic MDPs defined in the form of M =
(X ,A, P,R,H, x0), where X = X0

⋃
. . .

⋃
XH−1 is the

layered state space with Xh denoting the state space at
timestep h, A is the action space, P = (P0, . . . , PH−1)
is the transition function with Ph : Xh × A → ∆(Xh+1),
R = (R0, . . . , RH−1) is the reward function with Rh :
Xh × A → [0, 1], H is the length of horizon, and x0

is the fixed initial distribution.1 We assume the state and
action spaces are finite but can be arbitrarily large, and
∆(·) denotes the probability simplex over a finite set. We
define a policy π = {π0, . . . , πH−1}, where for each
h ∈ [H], πh : Xh → ∆(A) is the policy at timestep h
and we use [H] to denote {0, . . . , H − 1}. With a slight
abuse of notation, when πh(·) is a deterministic policy,
we assume πh(·) : Xh → A. Policy π induces a distri-
bution over trajectories from the initial state distribution,
which we denote as Prπ(·) and can be described as start-
ing with x0 and ah ∼ π(·|xh), rh = Rh(xh, ah), xh+1 ∼
Ph(·|xh, ah), ∀h ∈ [H]. As a convention, we will use
xh, ah, rh to refer the state, action, and reward at timestep h
(thus xh ∈ Xh). The performance of a policy is measured by
its expected return, defined as vπ := Eπ[

∑H−1
h=0 rh], where

the expectation is taken with respect to Prπ(·). For any
fh ∈ RXh×A, we use πfh(xh) := argmaxah∈A fh(xh, ah)
to denote its greedy policy at timestep h. Among all poli-
cies, there always exists a policy, denoted as π∗, that maxi-
mizes the return from all starting states simultaneously. This
policy is the greedy policy of the optimal action-value (or
Q-) function, Q∗ = (Q∗

0, . . . , Q
∗
H−1), i.e., π∗ = πQ∗ :=

(πQ∗
0
, . . . , πQ∗

H−1
). Q∗ is the unique solution to the Bell-

man optimality equations Q∗
h = ThQ∗

h+1, where Th :

RXh+1×A → RXh×A is the Bellman optimality operator:
∀fh+1 ∈ RXh+1×A, (Thfh+1)(xh, ah) := Rh(xh, ah) +
Exh+1∼Ph(·|xh,ah)[maxah+1

fh+1(xh+1, ah+1)]. We can
similarly define policy-specific Q-functions Qπ and their
state-value function counterparts, namely V ∗ and V π. An-
other useful concept is the notion of state-action occupancy
of a policy π, dπh(x

′
h, a

′
h) := Prπ(xh = x′

h, ah = a′h). As a
shorthand, we define d∗h := dπ

∗

h and use ai:j to refer actions
ai, . . . , aj .

1We consider fixed initial state and deterministic reward func-
tion. They can be easily generalized to the stochastic case.
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Offline RL We consider a standard theoretical setup
for offline RL, where we are given a dataset D =

D0

⋃
. . .

⋃
DH−1 with the form Dh = {x(i)

h , a
(i)
h , r

(i)
h ,

x
(i)
h+1}ni=1 and Dh consists of {xh, ah, rh, xh+1} tuples

sampled i.i.d. from the following generative process:
(xh, ah) ∼ dDh , rh = Rh(xh, ah), xh+1 ∼ Ph(·|xh, ah).
Note that rh and xh+1 are generated according to the MDP
reward and transition functions, and dDh fully determines
the quality and coverage of the data distribution. For a given
policy π, wπ

h(xh, ah) := dπh(xh, ah)/d
D
h (xh, ah) measures

how well dDh covers the occupancy induced by π at timestep
h and is often known as the density-ratio function or the
marginalized importance weight. It plays an important role
in offline RL algorithms and analyses. As another shorthand,
we use notation wπ = (wπ

0 , . . . , w
π
h) to denote the density-

ratio function over all timesteps and notation w∗ := wπ∗
to

denote the density ratio of the optimal policy.

Function Approximation We consider the function ap-
proximation setting, where we are given a function class
F = F0×. . .×FH−1 with Fh ⊆ (Xh×A → R), ∀h ∈ [H]
and a weight function class W = W0 × . . .×WH−1 with
Wh ⊆ (Xh ×A → R), ∀h ∈ [H]. We assume these are fi-
nite classes and use log(|F|) and log(|W|) to measure their
statistical capacities. The extension to continuous or infinite
classes with a covering argument is standard. By default,
for any f ∈ F , we assume fH = 0 for technical simplicity
and use Vf to denote its induces state-value function, i.e.,
Vf (xh) = maxah∈A fh(xh, ah). We will also use πf (xh)
instead of πfh(xh) for simplicity since only fh operates on
xh ∈ Xh and there is no confusion.

3 ALGORITHM

In this section, we introduce our algorithm PABC (Pes-
simism under Average Bellman error Constraints), whose
pseudo-code is given in Algorithm 1. The algorithm takes
two steps: a prescreening step (line 1), followed by the main
step (line 2). We first give an intuition for the main step,
deferring the explanation of the prescreening step and the
related gap definitions to the later part of this section.

The main step (line 2) runs a constrained optimization to
select a function f̂ ∈ F , whose greedy policy is the output.
The objective of the optimization minimizes the value at the
initial state, which is a form of initial-state pessimism (Xie
et al., 2021a; Zanette et al., 2021) and proved to be useful
in handling insufficient data coverage. The constraints elim-
inate functions with large average Bellman errors (Jiang
et al., 2017; Xie and Jiang, 2020).

Average Bellman Error Constraints To provide intu-
ition, we know that Q∗ has 0 average Bellman errors for
all state-action pairs, that is, ∀h ∈ [H], xh ∈ Xh, ah ∈ A,
(Q∗

h − ThQ∗
h+1)(xh, ah) = 0. Thus it also has 0 average

Algorithm 1 PABC (Pessimism under Average Bellman
error Constraints)

Input: threshold α > 0, gap parameter Cgap, function class
F , weight function class W , and dataset D.

1: Perform prescreening according to input Cgap:

F(Cgap) := {f ∈ F : gap(f) ≥ Cgap}. (1)

2: Find the pessimism value function in F(Cgap) subject
to average Bellman error constraints

f̂ = argmin
f∈F(Cgap)

f0(x0, πf (x0))

s.t. max
w∈W,h∈[H]

|LD(f, w, h)| ≤ α, (2)

where the empirical loss LD(f, w, h) is defined as

LD(f, w, h) =
1

n

n∑
i=1

[wh(x
(i)
h , a

(i)
h )(fh(x

(i)
h , a

(i)
h )

− r
(i)
h − fh+1(x

(i)
h+1, πf (x

(i)
h+1)))]. (3)

Output: policy πf̂ and return estimation f̂0(x0, πf̂ (x0)).

Bellman errors under any distribution νh at timestep h:

E(xh,ah)∼νh
[(Q∗

h − ThQ∗
h+1)(xh, ah)] = 0.

This holds even if νh is an unnormalized distribution. There-
fore, we can safely eliminate any candidate function f ∈ F ,
if it has a large average Bellman error Eνh

[fh − Thfh+1]
under any (possibly unnormalized) distribution νh. Un-
like the more standard versions of Bellman errors such as
Eνh

[(fh − Thfh+1)
2], which squares the Bellman error in

each state before taking expectation and cannot be directly
estimated due to the infamous double-sampling difficulty
(Baird, 1995; Farahmand and Szepesvári, 2011), the average
Bellman error can be easily estimated. In the algorithm, we
consider a variety of (possibly unnormalized) distributions
νh = wh · dDh for w ∈ W , h ∈ [H]. Since the average
Bellman error can only be empirically approximated (see
Eq. (3)), we relax the constraints and allow a threshold α to
incorporate the statistical errors. We note that the constraint
alone is similar to the MABO algorithm by Xie and Jiang
(2020), but they do not use pessimism and cannot handle
insufficient data coverage. They also assume that W is suffi-
ciently rich to approximate wπf for all f ∈ F , and a main
goal of our work is to avoid such “for all” assumptions.

Gap and Prescreening As mentioned in the introduction,
a key assumption that enables our results is a gap assumption
on value functions. To prepare for the discussion, we define
the gap of a function as follows:
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Definition 1 (Gap). For any f = (f0, . . . , fH−1), we de-
fine its gap at timestep h ∈ [H] and state xh ∈ Xh

as follows: If argmaxah∈A fh(xh, ah) is unique, then we
define gap(f ;h, xh) := minah 6=πf (xh) fh(xh, πf (xh)) −
f(xh, ah). Otherwise, we define gap(f ;h, xh) := 0.

The gap of f is then defined as

gap(f) := min
h∈[H],xh∈Xh

gap(f ;h, xh).

As we see, this definition of the gap is similar to the one
used in prior works (Simchowitz and Jamieson, 2019; Mou
et al., 2020; Du et al., 2019; He et al., 2021; Yang et al.,
2021; Hu et al., 2021; Wang et al., 2021b; Papini et al., 2021;
Wu et al., 2021), except that we require a unique optimal
action for the gap to be non-zero. A motivating example of
similar gap assumptions in other areas of RL theory can be
found in Wu et al. (2021). With Definition 1, we can now
define the minimum gap of a function class:

Definition 2 (Gap of a function class). Given a function
class G = G0 × . . . × GH−1, where Gh ⊆ (Xh × A →
R), ∀h ∈ [H], we define its gap as

gap(G) := min
g∈G

gap(g).

Prior theoretical results relying on similar gap assumptions
often make such assumptions on the true optimal value func-
tion Q∗ (Simchowitz and Jamieson, 2019; Yang et al., 2021).
As we will see in our analyses, however, what is really im-
portant for us is that the learned function f̂ has a large gap,
not the true Q∗. Since we have no control over which f in
the function class will be finally chosen, we perform the pre-
screening step in line 1 to eliminate functions with the gap
lower than a pre-defined threshold Cgap ≥ 0. It is immedi-
ate to see that gap(F(Cgap)) ≥ Cgap. Of course, this runs
into the risk of eliminating Q∗, and if we do not want any
misspecification, we need to ensure Q∗ ∈ F(Cgap), which
requires that Cgap ≤ gap(Q∗). For clarity, in Section 4.3
we will assume that we have the knowledge of gap(Q∗) and
can set Cgap accordingly, while later in Section 6 we show
how to handle unknown gap(Q∗). Moreover, as we will see
in Section 5, when we allow misspecification errors in the
analysis, gap(Q∗) and Cgap become disentangled, which
leads to some interesting implications.

4 MAIN GUARANTEES

In this section, we present the main sample complexity
results of our algorithms. We start with a weak version
of guarantee by showing that our algorithm can identify
v∗, the optimal expected return at the initial state, with
polynomial samples under realizability and single-policy
coverage assumptions, even without any gap assumption
(Section 4.1). Such a result will also be useful when we

handle the unknown gap setting later in Section 6. Then,
Section 4.2 provides an algorithm-specific counterexample
to show that our algorithm fails to find a near-optimal policy
under these assumptions, motivating the necessity of the gap
assumption. Finally, Section 4.3 provides the main result of
this paper under the additional gap assumption.

4.1 ESTIMATING THE OPTIMAL EXPECTED
RETURN

We first show how to identify v∗, the optimal expected
return of the problem, without needing the gap assumption.
In this case, we will run Algorithm 1 with Cgap = 0, that
is, without the prescreening step. To our knowledge, there
is no prior work that can achieve this goal under our weak
assumptions.2 Despite not producing a near-optimal policy,
this procedure and guarantee allows us to check whether any
given policy is close to optimal, assuming we can evaluate
the policy’s performance by off-policy evaluation or a small
amount of online interactions. This capability can be very
useful especially in certain model selection scenarios (see
e.g., Modi et al., 2020, Section 5). Indeed, we will reuse this
result later in Section 6 to handle the unknown gap setting.

We start by introducing the assumptions. The first two are
the standard realizability assumptions.

Assumption 1 (Realizability of F). We assume Q∗ =
(Q∗

0, . . . , Q
∗
H−1) ∈ F .

Assumption 2 (Realizability of W). We assume w∗ =
(w∗

0 , . . . , w
∗
H−1) ∈ W .

We make these assumptions exact for now to allow for a
clean presentation of the main results and core proof ideas,
and defer the handling of misspecification errors to Sec-
tion 5. Also, following the arguments in Uehara et al. (2020);
Xie and Jiang (2020), Assumption 2 can be further relaxed
such that w∗ only needs to lie in the convex hull of W .

Next, we introduce the standard boundedness assumptions.

Assumption 3 (Boundness of F). For any f ∈ F , we
assume fh ∈ (Xh ×A → [0,H − h]), ∀h ∈ [H].

Assumption 4 (Boundness of W). For any w ∈ W , we
assume ‖wh‖∞ ≤ C, ∀h ∈ [H].

Assumption 2 and Assumption 4 together immediately im-
ply that our data covers π∗:

d∗h(xh, ah)

dDh (xh, ah)
≤ C, ∀h ∈ [H], xh ∈ Xh, ah ∈ A.

This version of coverage is often called π∗-concentrability
(Scherrer, 2014; Xie et al., 2021b; Rashidinejad et al., 2021;

2We note that under Zhan et al. (2022)’s assumptions, their
algorithm, with regularization removed, can also identify v∗.
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x0

xA xB

xC xD

+1 +1

π∗,L1 πf ,R1

π∗, πf ,L2 R2

Figure 1: Algorithm-specific counterexample without the
gap assumption.

Zhan et al., 2022). As we will see when we consider mis-
specification errors in Section 5, we do not really need our
data to satisfy π∗-concentrability, and the definition of cov-
erage can be relaxed using the structure and generalization
effects of F similarly to Jin et al. (2021); Xie et al. (2021b).

With all the above assumptions, we are ready to state our
first result formally below. The proof is deferred to Ap-
pendix A.2.

Theorem 1 (Sample complexity of estimating v∗). Sup-
pose Assumptions 1, 2, 3, 4 hold and the total samples nH
satisfies

nH ≥ 8C2H5 log(2|F||W|H/δ)

ε2
.

Then with probability at least ≥ 1− δ, running Algorithm 1
with Cgap = 0 and α = ε/(2H) guarantees

|Vf̂ (x0)− v∗| ≤ ε.

4.2 ALGORITHM-SPECIFIC
COUNTEREXAMPLE

Despite being able to identify v∗, we show that Algorithm 1
cannot be guaranteed to learn a near-optimal policy without
further assumptions, even with infinite data. As we will see,
a key aspect of the construction is a tie between the values of
different actions, so such counterexamples can be effectively
excluded by assuming a unique optimal action.

The counterexample is given in Figure 1. Circles denote
states and arrows denote actions with deterministic transi-
tions, and states without arrows have a default null action.
There are only +1 rewards at states xC and xD, while the
rewards are 0 everywhere else. Taking L1 at x0 deterministi-
cally transits to xA and we omit the remaining specifications
as they are clearly indicated in the figure.

It is easy to see that the optimal policy π∗ takes action L1

at state x0. By adversarial tie breaking, we assume π∗ takes

action L2 at state xA. We construct a bad function f , which
only differs from Q∗ at (x0,R1) and (xB , null) by setting
f0(x0,R1) = 1 and f1(xB , null) = 1. By adversarial tie
breaking, we assume πf (x0) = R1 and πf (xA) = L2. We
immediately have a realizable class F = {Q∗, f}. It is easy
to verify that πf is not ε-optimal for any ε < 1 because
it deviates from the optimal branch at x0. In addition, we
let data dD covers (x0,L1), (xA,L2), (xC , null). For the
weight function, we define an invalid weight function wbad
that puts all weight on (x0,R1), (xA,L2), (xC , null) in each
level respectively. Then we also have a realizable class W =
{w∗, wbad}.

As gap(Q∗) = 0 in this counterexample, no function will
be ruled out in the prescreening step (line 1). Since both f
and Q∗ have zero population average Bellman error under
W , and f0(x0, πf (x0)) = Q∗

0(x0, πQ∗(x0)) = 1, either of
them can be the f̂ learned in Algorithm 1, but returning
πf leads to failure of learning. We note that the reason for
failure is that no data covers the state πf visits.

Additional Consistency Constraints In our setting,
there are additional constraints that one can add to ensure
some form of consistency. For example, for any f ∈ F ,
we can additionally require that there exists w ∈ W
that is consistent with πf , since w∗ ∈ W should only
give non-zero weight to actions chosen by πf (i.e., ∀h ∈
[H], wh(xh, ah) = 0 if ah 6= πf (xh)). In addition, as we
can estimate v∗ with the assumptions in Theorem 1 and we
know EdD [w∗ · R] = v∗, we can eliminate any w ∈ W
that violates this condition. While these constraints are rea-
sonable (or at least harmless) and may be of independent
interest, we can verify that they do not help with this coun-
terexample, which implies our algorithm fails even under
these additional consistency checks.

4.3 LEARNING A NEAR-OPTIMAL POLICY

As mentioned above, a key aspect of the counterexample
is a tie between the values of actions. In this section, we
show that a positive gap assumption not only excludes the
counterexample, but enables a general guarantee for learning
near-optimal policies with our Algorithm 1.

Assumption 5 (Gap of Q∗). The gap of Q∗ satisfies

gap(Q∗) > 0.

Here the implicit assumption is that we want gap(Q∗) to be
sufficiently large, as our later sample complexity guarantees
will scale inversely with gap(Q∗). Note that Assumption 5
is stronger than the standard gap assumption in the litera-
ture (Simchowitz and Jamieson, 2019; Yang et al., 2021; Hu
et al., 2021). Compared with their definition, we additionally
assume the optimal action is unique at each state. On the
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other hand, these papers require additional strong assump-
tions (e.g., linear MDPs, Bellman-completeness, or point-
wise convergence) or focus on the tabular setting, whereas
we handle general function approximation in offline RL un-
der weak realizability-type assumptions. Plus, the technical
mechanisms under which the gap plays a role in the anal-
yses are very different, so the assumptions are not really
comparable.

For now, we assume gap(Q∗) is known and will later handle
the case of an unknown gap Section 6. Plus, as a side effect
of handling misspecification errors, Section 5 will lift the
stringent gap assumption in a novel and interesting manner.

We now state the guarantee of learning a near-optimal policy
under the gap assumption. A sketch of proof is provided
after the theorem statement, while the complete proof is
deferred to Appendix A.3.

Theorem 2 (Sample complexity of learning a near-optimal
policy). Suppose Assumptions 1, 2, 3, 4, 5 hold and the total
number of samples nH satisfies

nH ≥ 8C2H7 log(2|F||W|H/δ)

ε2gap(Q∗)2
.

Then with probability at least ≥ 1− δ, running Algorithm 1
with α = εgap(Q∗)/(2H2) and Cgap = gap(Q∗) guaran-
tees

vπf̂ ≥ v∗ − ε.

Proof sketch of Theorem 2 As standard, all our re-
sults depend on a high-probability concentration event,
that |LD(f, w, h)− E[LD(f, w, h)]| ≤ εstat,n holds for all
f ∈ F , w ∈ W , h ∈ [H] with high probability; the detailed
expression of εstat,n is given in Lemma 1. From Lemma 1,
for any f ∈ F that satisfies all constraints in Algorithm 1,
we can guarantee the population loss to be small, that is,
|E [LD(f, w, h)]| ≤ εstat,n + α.

The central step of our proof is to use a telescoping argument
and the gap assumption to establish the following inequality:

V ∗
0 (x0) ≥ Vf̂ (x0) ≥ V ∗

0 (x0)−H(εstat,n + α)

+ gap(Q∗)E

[
H−1∑
h=0

1{πf̂ (xh) 6= π∗(xh)} | π∗

]
.

This implies the policy deviation can be bounded as

E

[
H−1∑
h=0

1{πf̂ (xh) 6= π∗(xh)} | π∗

]
≤ H(εstat,n + α)

gap(Q∗)
.

The LHS of this inequality is the probability that the learned
policy πf̂ disagrees with the optimal policy π∗, along the
distribution induced by π∗. From here, we can apply the RL-
to-supervised-learning (SL) reduction in imitation learning
(e.g., Theorem 2.1 in Ross and Bagnell (2010)) to translate
it to the final performance difference bound between πf̂
and π∗. We also provide a different proof in Appendix A.3,
which itself may be of independent interest.

5 ROBUSTNESS TO
MISSPECIFICATION

We now consider the case when Q∗ and w∗ may not exactly
belong to F and W , but can be reasonably approximated up
to small errors. More often than not, such robustness results
in RL theory are nothing but routine exercises where the
proofs are largely straightforward extensions of those for
the exact case. In our case, however, the misspecification
analyses reveal an interesting phenomenon of disentangling
the true gap of Q∗ and that of F , and how our gap and
coverage assumptions can be relaxed in nontrivial ways.

We start with defining the approximation errors of our func-
tion classes. Inspired by Xie and Jiang (2020), we define the
approximation error of W as

εW = min
w∈W

max
f∈F

max
h∈[H]

|EdD
h
[wh · (fh − Thfh+1)]

− Ed∗
h
[fh − Thfh+1]| (4)

and use w̃∗ to denote the best approximator in W that ob-
tains the minimum. The expression inside the min-max-
max measures the difference between dDh · wh and d∗h,
using fh − Thfh+1 for f ∈ F as discriminators. When
w∗ ∈ W (Assumption 2), dDh · w∗

h = d∗h (because w∗
h

is defined as d∗h/d
D
h ), so we have εW = 0. However, the

opposite direction is not always true: it is entirely possi-
ble to achieve εW = 0 when w∗ /∈ W (or even when
d∗h(xh, ah)/d

D
h (xh, ah) = ∞ for some (xh, ah) and w∗

does not exist), as long as dDh · w̃∗
h and d∗h can not be dis-

tinguished by fh − Thfh+1 for f ∈ F as discriminators.3

We also provide an example in Appendix E. Note that since
our data coverage assumption is implicitly made through
the realizability and boundedness of W (see the discussion
below Assumption 4), this means that our data coverage as-
sumption is also relaxed using the information of F , which
is a common characteristics of recent results in offline RL
(e.g., Xie et al. (2021a) also use the Bellman error class
induced by the value function class as discriminators, which
is similar to our definition at a high level), but not enjoyed
by the concurrent work of Zhan et al. (2022).

For function class F , we define the approximation error
in a way that uses W as discriminators, plus a term that
measures the difference under the initial state x0:

εF =min
f∈F

max
w∈W

max
h∈[H]

(|EdD
h
[wh · (fh − Thfh+1)]|

+ |f0(x0, πf (x0))−Q∗
0(x0, π

∗(x0))|) (5)

and use Q̃∗
F to denote the best approximator that achieves

the minimum value. Under mild regularity assumptions on

3The idea of using discriminators has also been explored in
Farahmand et al. (2017); Sun et al. (2019); Modi et al. (2020,
2021), but the application is different here.
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W ,4 it is straightforward to show that εF is weaker than `∞
error up to multiplicative constants:

εF ≤ 3min
f∈F

max
h∈[H]

‖fh −Q∗
h‖∞, (6)

and a more detailed discussion can be found in Lemma 4.
Similarly, we can define the function class F(Cgap) related
approximation error εF(Cgap) and its best approximator
Q̃∗

F(Cgap)
by replacing F with F(Cgap) in Eq. (5).

5.1 ESTIMATING THE OPTIMAL EXPECTED
RETURN

With the approximation error defined above, we now ex-
tend Theorem 1 to the approximate case. Assuming the
approximation error εF (or a reasonably tight upper bound
of it) is known, we can relax the constraint to ensure that
Q̃∗

F(Cgap)
is not eliminated and obtain the sample complex-

ity guarantee as in Theorem 3. The full proof is deferred to
Appendix B.2. As before, we do not need the gap assump-
tion to identify v∗ approximately and can run the algorithm
with Cgap = 0.

Theorem 3 (Robust version of Theorem 1). Suppose As-
sumptions 3, 4 hold and the total number of samples nH
satisfies

nH ≥ 8C2H5 log(2|F||W|H/δ)

ε2
.

Then with probability 1− δ, running Algorithm 1 with α =
ε/(2H) + εF and Cgap = 0 guarantees

|Vf̂ (x0)− v∗| ≤ ε+HεF +HεW .

While we need the knowledge of εF to set α, we do not
need to know εW , which shows a difference between the
behaviors of F and W . This is also the case in the next
subsection where we try to learn a near-optimal policy.

5.2 LEARNING A NEAR-OPTIMAL POLICY

Similarly, we can also extend Theorem 2 to the misspeci-
fied case. Our guarantee is established with a user-specified
Cgap parameter and the approximation error related to pre-
screened class F(Cgap). We provide the sample complex-
ity guarantee in Theorem 4 and the complete proof in Ap-
pendix B.3.

Theorem 4 (Robust version of Theorem 2). Suppose As-
sumptions 3, 4 hold and the total number of samples nH
satisfies

nH ≥ 8C2H7 log(2|F||W|H/δ)

ε2C2
gap

.

4Namely, w ≥ 0 and EdD [w] = 1. The former is trivial and
the latter can be easily verified approximately on data.

Then with probability 1−δ, running Algorithm 1 with a user-
specified Cgap and α = εCgap/(2H

2) + εF(Cgap) guaran-
tees

vπf̂ ≥ v∗ − ε−
(H2 +H)εF(Cgap) +H2εW

Cgap
.

Theorem 4 gives us a convenient way to set the gap parame-
ter Cgap. We also provide a sample complexity guarantee
(Corollary 5) in Section B.4 for the case that gap(Q∗) and
the `∞ approximation error of F are known.

Unknown Approximation Errors Notice that in the ro-
bustness results (Theorem 3 and Theorem 4) we require the
knowledge of approximation errors εF or εF(Cgap) to set
the threshold α in PABC (Algorithm 1). In Appendix D we
show a variant of PABC based on Lagrangians (PABC-L;
Algorithm 1) does not require such knowledge, and still
enjoys the same sample complexity guarantees. In PABC-L,
the original constraints in Eq. (2) are moved to the objective,
thus the threshold α is no longer needed as the input. We
refer the reader to Appendix D for the formal description of
PABC-L and its results and proofs.

Relaxed Gap Assumption An outstanding characteris-
tic of Theorem 4 is that it no longer depends on gap(Q∗)
explicitly, and only depends on Cgap, a parameter of our
choice. Therefore, it may seem to have lifted Assumption 5
that gap(Q∗) > 0, as we can choose Cgap to be sufficiently
large. However, below we show that this issue is more com-
plicated than it may seem, and while our result does relax
Assumption 5 in significant ways, it does so in a very nu-
anced manner.

First of all, in the worst-case scenario, Assumption 5 is still
needed to provide non-vacuous guarantees. This is because,
if Q∗ has no gap, yet we artificially create a large Cgap in
our prescreened function class F(Cgap), we could eliminate
all the good approximations of Q∗. Among the remaining
functions, the best `∞ approximation of Q∗ must have an
`∞ error no less than Cgap, and if we plug that into the
εF(Cgap) term in the approximation guarantee, the Cgap on
the numerator and the denominator will cancel out, leaving
a constant suboptimality gap which makes the guarantee
vacuous.

Having said that, the nuance here is that we do not use
the most stringent `∞ norm to define εF(Cgap), but rather
use an average notion of error (Eq. (5)), which is possibly
much smaller than the `∞ error (Eq. (6)). Therefore, there
are still cases where gap(Q∗) = 0 yet our result yields
nontrivial guarantees. As a concrete example, imagine a
Q∗ that has large gaps in most states, but the gap is 0 in
a few “bad” states. In this case, gap(Q∗) is 0. However,
there can still exist Q̃∗

F(Cgap)
that approximates Q∗ well

everywhere except on those bad states, and as long as no
w ∈ W puts significant probabilities on the bad states, we
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have εF(Cgap) � Cgap and hence Theorem 4 will provide
meaningful guarantees.

6 HANDLING THE UNKNOWN GAP
PARAMETER WITH ONLINE ACCESS

In this section, we extend the main algorithm and analy-
ses in Section 4 in a different direction than Section 5. In
particular, we are concerned about the fact that Theorem 2
assumes the knowledge of gap(Q∗). While it is common
for offline RL algorithms to have hyperparameters that need
to be tuned separately (and this is particularly the case for
version-space-based algorithms (Jiang et al., 2017; Xie et al.,
2021a)), here we show that we can address the unknown
gap(Q∗) issue by a small amount of additional online in-
teractions for Monte-Carlo policy evaluation. This is par-
ticularly interesting as our result provides an example of
how one can use a small amount of online interactions to
mitigate limitations in purely offline learning, a practically
relevant problem that is also of great interest to the RL
theory community (Xie et al., 2021b).

Algorithm 2 PABC-OA (PABC with Online Access)

1: Input: function class F , weight function class W , and
dataset D (with size |Dh| = n, ∀h ∈ [H]).

2: for t = 0, 1, . . . do
3: Set gapguesst = H/2t.
4: Use n and gapguesst to calculate εt =√

8C2H6ι(t)/(n(gapguesst )2), where ι(t) =
log(24|F||W|H · 2t/δ).

5: Run Algorithm 1 with α = εt/(2H) and get scalar
estimation v̂∗t .

6: Run Algorithm 1 with α = εtgap
guess
t /(2H2) and

Cgap = gapguesst , and get policy π̂t.
7: Estimate vπ̂t by running Monte Carlo algorithm with

Õ(H3 log(1/δ)/ε2t ) online samples and denote the
estimate as v̂π̂t .

8: if v̂π̂t ≥ v̂∗t − 3εt then
9: Output π̂t and terminate.

10: end if
11: end for

As shown in Algorithm 2, the algorithm PABC-OA (PABC
with Online Access) proceeds iteration by iteration. We start
with the maximum possible value of the unknown gap(Q∗).
For simplicity, we choose H here, and alternatively we
can also use maxf∈F gap(f) which is tighter. In iteration
t, we use gapguesst = H/2t as the guess of gap(Q∗) and
calculate the desired α according to Theorem 1 to estimate
v∗ (line 5), or calculate the desired α and Cgap according to
Theorem 2 to find a near-optimal policy (line 6). Finally we
conduct Monte-Carlo policy evaluation with online samples
(line 7). If the stopping condition (line 8) is satisfied, we are
guaranteed to learn a near-optimal policy and can terminate

(line 9). Otherwise, we proceed to the next iteration, shrink
our guessed value of gapguesst , and continue the routine. We
can observe an interesting connection between Theorem 1
and Theorem 2, and identifying v∗ is indeed useful.

It can be shown that Algorithm 2 will terminate once the
guessed value gapguesst = H/2t drops below the true value
gap(Q∗), which leads to the sample complexity result in
Theorem 5. The formal proof can be found in Appendix C.

Theorem 5 (Sample complexity of learning a near-optimal
policy with unknown gap(Q∗)). Suppose Assumptions 1,
2, 3, 4, 5 hold but gap(Q∗) is unknown. Assume we have
a dataset D with size n for each Dh and additional online
access to collect

Õ

(
n log(1/δ)

C2H

)
samples. Then with probability at least 1 − δ, the output
policy π̂ from Algorithm 2 satisfies

vπ̂ ≥ v∗ − 5

√
32C2H6ι(log(2H/gap(Q∗)))

ngap(Q∗)2
, (7)

where ι(t) = log(24|F||W|H · 2t/δ).

The suboptimality in Eq. (7) has the same order (up to
polylog terms) as that of running Algorithm 1 with known
gap(Q∗) in Theorem 2. If we set this value to be ε′, i.e.,

ε′ := 5
√

32C2H6ι(log(2H/gap(Q∗)))
ngap(Q∗)2 , then the number of re-

quired online samples is Õ
(

H5 log(1/δ)
(ε′gap(Q∗))2

)
, which does not

depend on the complexity of the function classes F and W .

7 DISCUSSION AND CONCLUSION

We conclude the paper with a detailed discussion of how
our work compares to the closely related concurrent work
of Zhan et al. (2022), which also provides a good summary
of our contributions and promising future directions.

The very recent work of Zhan et al. (2022) aims at solv-
ing the same problem:5 offline RL under only single-policy
coverage and realizability assumptions. Similar to our coun-
terexample in Section 4.2, they also realize the difficulties
in the setting where the optimal weight and value functions
are realizable in a straightforward manner. Instead of mak-
ing a gap assumption like we do, they attack the problem
from a different angle by introducing regularization into the
Lagrangian of the linear program for MDPs.

Despite that the two approaches have some fundamental
differences (which we will elaborate further below), it is

5Their results are in the discounted setting whereas ours in
the finite horizon setting, but this is a superficial difference and
translating each of the results into the other setting is not difficult.
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still worth comparing the nature of the two results. To this
end, our approach has several advantages:

1. Regularization changes the definition of the value func-
tion in Zhan et al. (2022). In fact, the function they need
to realize does not obey any form of Bellman equations,
and probably should not be called value functions any-
more. This makes their realizability assumption some-
what difficult to interpret and connect to the existing
literature. In contrast, we work with the most standard
notion of Q∗.

2. Due to regularization, the policy learned by Zhan et al.
(2022) is generally suboptimal even with infinite data,
so the strength of regularization needs to be carefully
controlled for the bias-variance trade-off. As a result,
when competing with π∗, their sample complexity rate
is O(1/ε6), which is much slower than our O(1/ε2).

3. Our coverage assumption can be significantly relaxed
using the structure of F ; see discussion in Section 5.
While this is standard in recent offline RL works based
on Bellman-completeness assumptions (Jin et al., 2021;
Xie et al., 2021a), Zhan et al. (2022)’s guarantee relies
on the boundedness of the raw density ratios and does
not enjoy such a relaxation.

That said, Zhan et al. (2022)’s result is also attractive in
several aspects:

1. They do not require gap assumptions. While similar gap
assumptions are standard in RL theory literature, it is
unclear how prevalent it is in real problems and how
algorithms that depend on gap assumptions perform in
problems when the assumption is violated.

2. Our guarantees only hold if the data covers π∗ (though
the notion of coverage can be relaxed using a struc-
ture of F , as mentioned above). In comparison, Zhan
et al. (2022) can still provide meaningful guarantees
even when π∗ is not covered by data, in which case they
compete with the best policy under data coverage.

3. Regarding computation, their algorithm is a convex-
concave minimax optimization problem when the func-
tion classes are convex. In comparison, the computational
characteristics of our method are less clear, though we
note that a Lagrangian form of our main step (line 2) (see
Appendix D for details) is similar to the kind of mini-
max optimization commonly found in the MIS literature
(Nachum et al., 2019; Uehara et al., 2020; Yang et al.,
2020; Jiang and Huang, 2020).

We reiterate that these comparisons are made only on the
results themselves. The two works take fundamentally dif-
ferent approaches and are of independent interests. For
example, despite that both works use density-ratio func-
tions, Zhan et al. (2022)’s method is based on the linear
programming (LP)-formulation of MDPs where the optimal

state-value function V ∗ is modeled, whereas we model the
optimal Q-function Q∗. This difference is more significant
than it may seem, as the LP formulation and the Bellman
optimality equations for Q∗ are very different foundations
for designing learning algorithms, and the gap assumption
only makes sense for Q-functions and cannot be used in
state-value functions. That said, it will be interesting to in-
vestigate if the two works can borrow each other’s ideas
to address their own weaknesses, which we leave to future
investigation.
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