Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Towards Multi-Pass Streaming Lower Bounds
for Optimal Approximation of Max-Cut

Lijie Chen* Gillat Kol' Dmitry Paramonov? ~ Raghuvansh R. Saxena! Zhao Song?
Huacheng Yul

Abstract

We consider the Max-Cut problem, asking how much space is needed by a streaming algorithm in order to
estimate the value of the maximum cut in a graph. This problem has been extensively studied over the last
decade, and we now have a near-optimal lower bound for one-pass streaming algorithms, showing that they
require linear space to guarantee a better-than-2 approximation [50, 52]. This result relies on a lower bound
for the cycle-finding problem, showing that it is hard for a one-pass streaming algorithm to find a cycle in a
union of matchings.

The end-goal of our research is to prove a similar lower bound for multi-pass streaming algorithms that
guarantee a better-than-2 approximation for Max-Cut, a highly challenging open problem. In this paper, we

take a significant step in this direction, showing that even o(log n)-pass streaming algorithms need ™ space
to solve the cycle-finding problem. Our proof is quite involved, dividing the cycles in the graph into “short”
and “long” cycles, and using tailor-made lower bound techniques to handle each case.

1 Introduction

How well can the value of the maximum cut (Max-Cut) in a graph be approximated with a polynomial time
algorithm? This question was studied for decades, culminating in the celebrated Goemans-Williamson algorithm
[39] that gives a 1.138 approximation, that was later shown to be optimal under the Unique Games Conjecture
[63]. The Max-Cut question has also been of special interest to the streaming community [1], and after extensive
research efforts, the space complexity of one-pass streaming algorithms for Max-Cut is now well understood.

A recent effort by the streaming community is to devise lower bounds against multi-pass algorithms. This
paper is a part of this effort, with the end goal of showing that streaming algorithms that compute a better-
than-2 approximation of Max-Cut require at least n*(!) space, even if w(1) passes are allowed. Note that a
2-approximation is trivial, as a random cut contains at least half of the edges in the graph. However, such a lower
bound is likely to be very challenging as it would subsume technically complex lower bounds in the streaming
literature (surveyed below). In this paper, we take a significant step towards this goal and give a lower bound for
an associated search problem.

(14 ¢)-approximation and the BHM problem. The Boolean Hidden Matching (BHM) is a popular two-
party communication problem [14, 37]. Here, Alice’s input is a uniformly random cut over n vertices, and Bob’s
input is obtained by sampling a uniformly random matching and dropping all the edges that do not cross Alice’s
cut in the “yes” case', and dropping each edge independently with probability half in the “no” case. The goal of
the parties is to determine which is the case. In their influential work, [37] showed a lower bound saying that any
one-way protocol that solves the BHM problem must have Alice sending at least Q(y/n) bits to Bob.

The seminal work of Verbin and Yu [63] uses this lower bound, together with novel “gadget-based” reductions,
to prove lower bounds on the space required by graph streaming algorithms. More reductions were discovered
by subsequent works [24, 55, 6, 22, 32, 44], including reductions from the Max-Cut problem [54, 50]. These lower

~ *UC Berkeley.
TPrinceton University.
tPrinceton University.
§ Microsoft
9T Adobe Research.
I Princeton University.
LAs Alice’s cut is uniformly random, this means that Bob drops half of his edges in expectation.

Copyright © 2023
878 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

bounds have also been extended to multi-pass streaming algorithms by recent works [8, 10]. However, the gadget
based reductions in this line of work only rule out small constant factor approximations for Max-Cut by streaming
algorithms.

2-approximation and the distribution G. Kapralov, Khanna, and Sudan [50] (and subsequent works
[61, 52]) devised an improved reduction that can also rule out any streaming algorithm guaranteeing any
approximation factor better-than-2. The best way to understand this result is to view their graph as a union of
many matchings, with each matching resembling an instance of the BHM problem?.

In more detail, let G = G,, v be the distribution over n-vertex graphs whose edge set is a union of 7" matchings,
selected independently and uniformly at random. Let GY be the “yes” distribution obtained by sampling a graph
from G, then sampling a uniformly random cut and deleting all the edges that are not in the cut. Let GV be
the “no” distribution obtained by sampling a graph from G and randomly deleting each edge with probability %
Observe that by construction, graphs in the support of G¥ have a cut that consists of all the edges, and that, as T
increases, the maximum cut of graphs in the support of GV has roughly half of the edges (with high probability).
Therefore, a lower bound on algorithms distinguishing between these two distributions is also a lower bound on
getting a better-than-2 approximation of Max-Cut.

As in other works in the streaming literature that give lower bounds for Max-Cut [8, 10], this is done through
the following perspective of a cycle problem (see also [27]): Graphs in the support of G¥ are bipartite, and therefore
have no odd cycles, whereas graphs in the support of GV have many (short) odd cycles with high probability. In
this perspective, [50] show that:

THEOREM 1.1. ([50], INFORMAL) Any one-pass streaming algorithm that decides if an input graph has an odd
cycle, under the promise that the graph was either sampled from G¥ or G, must use Q(\/n) space.

At a very high level, to prove Theorem 1.1, [50] use the BHM lower bound® to argue that even if the streaming
algorithm knew the sampled cut, any given matching cannot help the algorithm distinguish between the two cases,
and a hybrid argument over all matchings then yields the desired lower bound.

The cycle-finding problem. As Theorem 1.1 gives a lower bound for a decision problem, it also trivially
implies a lower bound for the associated search problem of finding an odd cycle in a graph sampled from GV.
Going back to the Max-Cut problem, this corresponds to finding a cycle-based certificate for proving that the
graph has a small maximum cut. The proof of [50] even shows the following slightly stronger search lower bound:

THEOREM 1.2. ([50], INFORMAL) Any one-pass streaming algorithm that outputs a cycle* in a graph sampled
from G with constant probability must use Q(y/n) space.

1.1 Our Result Theorems 1.1 and 1.2 above are restricted to one-pass streaming algorithms. This is because
they crucially rely on the hardness of the BHM problem, and the BHM problem can be solved using only O(logn)
bits of communication if Bob is allowed to send one of his edges to Alice. Our main result in this paper is
removing this restriction and showing a multi-pass analogue of Theorem 1.2. Getting a similar analogue of
Theorem 1.1 would mean getting a lower bound against multi-pass streaming algorithms computing a better-
than-2 approximation of Max-Cut, and is an outstanding problem that we hope to see resolved soon.

THEOREM 1.3. (MAIN, SEE FORMAL STATEMENT AS THEOREM 4.1) Any o(logn)-pass streaming algorithm that
outputs a cycle in a graph sampled from G with constant probability must use n®*1) space.

We mention that [8, 10] implicitly show theorems akin to Theorem 1.3, proving that multi-pass streaming
algorithms cannot find a cycle in the input graph, albeit with a different distribution G. Specifically, [8, 10]
worked with a distribution over graphs that (roughly) are a union of vertex disjoint cycles of length &, for some

2In their original work, [50] worked with sparse random graphs instead of matchings. This was done to show a lower bound for
randomly-ordered streams but is not crucial for our purposes.

3The BHM lower bound is a one-way communication lower bound, but it is well known that such lower bounds imply streaming
lower bounds.

4Ruling out algorithms outputting any cycle (not necessarily odd), as is done by [50] and by our work (see Theorem 1.3), is not
a huge overkill, at least if one wants to generalize the lower bound to only marginally more general constraint satisfaction problems,
such as Max-2XOR. Recall that Max-2XOR is the same as Max-Cut except that each edge has a 0/1-label and the goal is to output a
cut with as many 1 edges and as few 0 edges as possible.

Copyright © 2023
879 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

constant length & > 0. However, requiring that the cycles are vertex disjoint implies that there is always a cut
that contains all but one of the edges in every cycle, and therefore [8, 10] only obtain a lower bound against
algorithms that (roughly) guarantee a strong (1 + %)—approximation to Max-Cut.

In fact, the argument above applies to any distribution where the cycles are “more-or-less-disjoint”, and the
only way to get the optimal 2-approximation lower bound from a theorem like Theorem 1.3, is to work with a
distribution where the cycles are unstructured and entangled with one another (like the distribution G used by
[50, 51, 52] and also used in this work). While proving Theorem 1.3 using such an entangled distribution is crucial,
it is also the main source of hardness, as analyzing such distributions poses several challenges, as explained next.

1.2 Our Techniques We now provide a very brief overview of our techniques. For a detailed exposition, see
Section 2.

Recall that unlike previous lower bounds on multi-pass algorithms for cycle problems [8, 10], our Theorem 1.3
imposes very little structure on the graph instances that it works with. This makes our proof very different from
the proofs found in these works. Specifically, as [8, 10] deal with graphs that are a union of vertex disjoint cycles
of the same length, algorithms in their settings, roughly speaking, have only one way to output a cycle, which
is to pick a start vertex and chase one of its edges till it loops back. This makes such algorithms amenable to
“pointer chasing techniques”, roughly saying that a small space algorithm can only advance by one edge in one
pass, and implying that the number of passes must be comparable to the length of the cycles.

In contrast, our Theorem 1.3 shows a multi-pass lower bound for an extremely unstructured instance, with
no guarantee on the length or the structure of the cycles it contains. In particular, our instances are likely to have
extremely short cycles, even cycles of length 2, and an algorithm may just try to find one such short cycle in the
graph and output it. As we allow the streaming algorithm to have up to o(logn) passes, it has enough passes to
explore this short cycle and standard pointer chasing techniques will not apply.

To deal with such algorithms, we divide the cycles in the graph into short cycles, with length at most xlogn,
for some k > 0, and long cycles that are longer than xlogn. We then separately show that there is no low-space,
o(log n)-pass streaming algorithm that outputs a short cycle, and that there is no such algorithm that outputs a
long cycle, and apply a union bound. Both of these proofs actually classify the respective cycles further to various
patterns, where the pattern for a cycle says which of the T" matchings each of its edges come from, and bound the
probability of outputting a cycle following a given pattern (see Definition 3.0.2).

Short cycles. For a short cycle with a fixed pattern, we are able to show that finding such a cycle is
equivalent to solving set-intersection, and use the set-intersection lower bounds from the literature [11, 60, 48].
As an example, consider algorithms that output cycles following the pattern (1,2), i.e., cycles with two edges,
where the first edge comes from the first matching and the second edge comes from the second matching. Observe
that an algorithm can only output such a cycle if it finds an edge that is contained in the intersection of the first
and second matchings, and thus, we can reduce to an instance of set-intersection. Of course, complications arise
when dealing with other, more complicated patterns, but this underlying idea remains valid.

Long cycles. For a long cycle with a fixed pattern, we use the pointer-chasing techniques described above,
carefully adapting them to our setting. The key difference is that in standard pointer chasing, the graph is a
union of vertex disjoint paths and the goal is to chase one of these paths given its start vertex. For us, the various
cycles that follow a pattern may not be vertex disjoint, and, moreover, it is okay to output any one of these cycles.
For the former, we prove combinatorial lemmas showing that it is possible to carefully select a large set of vertex
disjoint cycles with high probability, and embed a pointer chasing instance on these cycles. For the latter, we use
a direct product result to show that outputting any specific such cycle is only possible with negligible probability,
and then use a union bound over all cycles.

1.3 Additional Related Work

Boolean Hidden Matching. The BHM problem [14, 37], was originally studied in order to get a separation
between quantum and classical communication complexity. The communication complexity of BHM is ©(y/n) in
the one-way setting [37], and ©(logn) in the two-way and quantum settings. BHM is truly versatile and has found
surprising applications in various settings, such as distribution testing [4], distributed computing [35], property
testing [13], and sketching [46].

Streaming algorithms. Streaming algorithms, first studied by [3], is now one of the main algorithmic
models used to study large graphs that arise in modern day applications [33, 34]. Several graph problems are

Copyright © 2023
880 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

being actively pursued in this context, making it impossible to list all of them (see [57] for a survey). These
include streaming algorithms for finding maximum matchings [56, 38, 49, 7, 2, 5, 36, 8, 10], shortest paths and
reachability [34, 41, 16, 9, 25], subgraph counting [15, 23, 16, 58, 31, 17, 47], and random walks [61, 45, 26].

Beyond Max-Cut. General constraint satisfaction problems (including and beyond Max-Cut) have also
received a lot of attention in the streaming model. These include extending and generalizing the [50] work
to lower bounds for more problems [42, 30, 29, 28, 19, 62] and also finding novel and interesting upper bounds
[43, 18].

1.4 Acknowledgments The authors would like to thank Sepehr Assadi for useful discussions.

2 Overview of Techniques

2.1 Setup and high-level overview As already discussed in Section 1.2, finding short cycles and long cycles
is hard due to totally different reasons. Roughly speaking, finding short cycles is hard because we need to find
an intersection between two matchings, and finding long cycles is hard because we have to chase many edges®.
Below we discuss our approach in more detail. We begin with some notation and observations.

2.1.1 Two Cases: Short Simple Cycles and Long Simple Path Let n € N>; be the number of vertices
and T' € N>; be a large constant. We will always assume that n is even. Let x € (0,1) be a small constant. We
say a cycle is short, if it has at most « - log n many edges, and is long otherwise. We first make two simple but
useful observations below:

1. Any cycle contains a simple cycle (i.e., a cycle that visits any vertex at most once), meaning that if an
algorithm finds a cycle, it also finds a simple cycle. So it suffices to upper bound the probability of finding
a simple cycle.

2. If an algorithm finds a long simple cycle with more than s - logn many edges, it also finds a simple path
of length x - logn (i.e., a path that visits any vertex at most once). This means that, to upper bound the
probability of finding a long simple cycle, it suffices to upper bound the probability of finding a simple path
of length & - logn.

Based on the above observations, given a low-pass streaming algorithm A, it suffices to upper bound the
probability of the following two events:

1. A finds a simple cycle of length at most « - logn.

2. A finds a simple path of length exactly « - logn.

2.1.2 Patterns Next, we introduce the concept of patterns, which helps us to find some structure in the graph
distribution G,, 7. Let G = ([n], M1oMso---oMr) be a graph® that is a union of T perfect matchings My, - -+ , Mr.
A pattern 7 € [T]" for some integer L € N tells you how to chase a path from a fixed starting point u: first
traverse the edge incident on u in matching M, to reach vertex wu;, then traverse the edge incident on u; in
matching M, to reach vertex ug, and so on, until the last matching M, .

We use Path(G, u, T) to denote the resulting path (see Definition 3.0.2 for a formal definition). We first note
that for the path to be simple, we must have 7; # 741 for every j € [L — 1], and for the cycle to be simple,
we should additionally ensure that 7 # 7. We call such patterns valid path patterns and wvalid cycle patterns,
respectively; see Section 3.2 for formal definitions.

Now, to upper bound the probability that the algorithm A finds a simple cycle of length at most x - logn,
we will instead upper bound the probability of A finding a simple cycle with a fixed pattern ¥ € [T]% for some
L < klogn, and apply a union bound over all O(T*'°e") = O(n*1°¢T) many such patterns. Similarly we will
upper bound the probability of A finding a simple path with a fixed pattern 7 € [T]%1°¢" and apply a union
bound.

°We mention that a combination of set intersection and pointer chasing lower bounds was also used by the (otherwise unrelated)
works [12, 40].
SFor two elements or vectors u, v, we use u o v to denote the concatenation of u and v.

Copyright © 2023
881 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

2.1.3 Our Strategy: Hiding a Hard Search Problem in Cycle/Path-Finding For both short cycles
and long paths, we show that finding a cycle/path is hard by embedding a hard communication problem P into
an instance of the cycle/path finding problem. This means that any algorithm that outputs a cycle/path can also
be used to solve the hard communication problem P, giving us a lower bound.

2.2 Lower Bounds for Short Cycles via Set-Intersection

2.2.1 Toy Case: 7= (1,2) Let us first consider the simple case when 7 = (1,2). As explained in Section 1.2,
in this case, we wish to find an edge common to two uniformly random perfect matchings M; and Ms. By a
standard connection between streaming algorithms and communication protocols, it suffices to prove that any
short two-party protocol where Alice’s and Bob’s inputs are uniformly random perfect matchings M; and Ms,
cannot output an edge in the intersection of M; and M, with probability more than n~%(1),

Starting point: set-intersection lower bounds with low success probability. Viewing the set of all
potential edges as the universe U = (@),7 the aforementioned problem is exactly set-intersection, in which two
players are given two sets S,T C U with size |S| = |T| = n/2, and wish to find an element in S N7T. There are
however two complications: (1) standard lower bounds for distributional set-intersection start from the uniform
distribution over all possible (S,T) such that |SNT| =1 and |S| = |T| = n/2, while in our case, Alice and Bob
are holding independently chosen subsets such that the edges in those subsets form a matching, and (2) we will
need a lower bound showing that the success probability is at most n~%(1) | instead of “merely” a small constant.

The second difficulty is easier to resolve, and we do it by invoking the strong lower bound on set intersection in
[9]. Specifically, [9] say that, for all k, N € N such that N > 4k, if Alice and Bob’s input are uniformly distributed
over all possible pairs of sets S,T € ([]Z]) such that |S N T| = 1, any protocol with communication complexity
at most k'/? can only find the unique element in S N7 with probability at most O(k~'/3) (see Corollary 5.1.1).
Thus, if we have k = n*(1)| then we will have the required success probability bound. Henceforth, we will use
Dy i to denote the distribution above and use Sly j; to denote instances sampled from this distribution.

Embedding set-intersection into cycle finding. We still have to resolve the first difficulty. We set
N = (Z) so that the universe corresponds to the set of all possible edges. Our idea is to embed an instance
of Sly ; into the problem of finding intersection of random matchings as follows: Alice and Bob get the input
(S,T) < Dn i, each of them first interprets their set S (resp. T') as a set of edges from U, and then extends this
set into a matching uniformly at random®. Alice and Bob can then run the algorithm A that finds a cycle in the
graph G = ([n], M7 o M) with the pattern (1,2) to find a collision between the generated matchings.

However, the reduction above has a couple of problems. Recall that we want to show that an algorithm
that finds a cycle with pattern (1,2) over the distribution G, 1 can be used to solve set intersection over the
distribution Dy . The first problem is that starting from the distribution Dy j, the reduction above will not
generate the distribution G, r. One obvious issue is that with inputs (5,7") drawn from Dy, the set S (resp.
T) may not correspond to a set of vertex-disjoint edges, and then there is no way to extend them into perfect
matchings. The solution is to notice that if we set k = n'/3, then the probability of this bad event happening is
low (in fact, n~?(")), and we can condition on it not happening.

However, even with this fix, the distribution generated by the reduction is very far from the target distribution
Gn 7. In particular, in the above reduction, since |S NT| = 1, the resulting two matchings M; and M, always
have at least one common edge, while in G, 7, the matchings M; and M, are disjoint (with constant probability).
Nevertheless, these differences between G,, v and the distribution generated are always in the “right” direction,
in the sense that algorithms that find cycles over G,, v will also find a cycle over the distribution generated by
the reduction. For example, as the generated distribution does not have graphs where the matchings M; and M,
are disjoint, a cycle finding algorithm would not fail because there are no (1,2)-pattern cycles in the graph. See
Claim 5.1.1 for details.

The second problem in the reduction is that, given A’s solution to the cycle finding problem, it is unclear
if one can obtain a solution to the set intersection instance. This is because, if there are many (1,2)-pattern
cycles in the generated graph G = (n, M7 o M), there is no guarantee that the cycle found by the cycle-finding

"For a set S and an integer k € N>, we use (2) to denote the collection of all k-size subsets of S.
8That is, if interpreting S gives Alice the edges e1,--- , e, and V’ is the set of vertices that are not touched by any of these edges,
then, Alice adds a uniformly random perfect matching on V’ to her input. Bob does the same.

Copyright © 2023
882 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

algorithm A corresponds to the solution of the embedded Sl j, instance. Rather, it could just be a cycle formed by
edges that are added by Alice and Bob during in the reduction. Our key observation here is that the cycle-finding
algorithm A does not know whether a (1, 2)-pattern cycle in the generated graph G is “genuine” (i.e., coming from
the embedded Sly j, instance) or “fake” (i.e., involving edges that are added later by Alice and Bob during the
reduction). So, intuitively, the worst thing A can do is output a random (1, 2)-pattern cycle in the graph. We then
prove a concentration inequality saying that for any short pattern 7 of length at most « - logn, with probability
1—n"“W agraph G + Gn,r has at most log3 n cycles with pattern 7; see Lemma 5.1.2 for more details. This
helps us show that the probability of A finding a (1,2)-pattern cycle is at most k~/3 . log® n < n=(1) by our
choice of k.

2.2.2 Generalization to Arbitrary Patterns 7 Now we discuss how to embed set-intersection into cycle
finding with a fixed pattern 7, for a general 7 of length L < k -logn, which is much more challenging. For
simplicity, we assume that 7 has at least one occurrence of 1 (i.e., the matching M is involved in the cycle).?

First, since we wish that the found cycle with length L corresponds directly to the common element in the
starting Sly j problem, we should set N = nl so that the universe [N] corresponds to all possible length-L
cycles'®.

Second, we still wish to use the standard connection between streaming algorithms and communication
protocols, and give all matchings My, -+, Mr in the graph G = ([n], My o---o Mr) to two players Alice and Bob.
We will simply give M; to Alice, and the rest M>o to Bob.

Our key idea is that, given a sequence @ € [n]F, if for every ¢ € [L] such that 7, = 1, Alice adds (s, us41)
to her set of edges (we use ur41 to denote uq, for notational convenience), and for every ¢ € [L] such that
T¢ € {2,---,T}, Bob adds (ug,ues1) to his set of edges. Then, in the combined graph of Alice and Bob, @ is a
cycle with pattern 7, and thus can potentially be detected by the cycle-finding algorithm A.

Our reduction from Sly j over distribution Dy i to finding a pattern-7 cycle then works as follows:

1. Alice and Bob get S,T € (UZ]) distributed according to Dy x. Alice (resp. Bob) interprets S (resp. T') as k
vectors 51,52 ... 58 (resp. #1 #12) ... #F) from [n]".

2. Initially, Alice lets M; be the empty set, and Bob lets Ms,--- , M be empty sets too.

3. For every 5, for every ¢ € [L] such that 7, = 1, Alice adds (sgi), 8&21) to M;.

4. For every t9), for every £ € [L] such that 7, # 1, Bob adds (tgi),tle) to M,,.

5. At the end, Alice extends M; to a perfect matching uniformly at random, and Bob extends Mo, - - , M to
perfect matchings uniformly at random as well.

Crucially, by previous discussions, the common element SNT is going to be a cycle with pattern 7 in the joint
graph G = ([n], My o M>3). So this reduction makes sense. Still, the three issues in the toy example occur here
as well. First, it is possible that for some S, T, Step (2) and (3) above do not generate valid partial matchings.
However, by setting k small enough (say k = nt/ 3), we can show that the probability of this event happening is
small, and we can condition on this event not happening.

Second, the resulting graph G may contain more than one cycle with pattern 7. Similarly to the toy case,
we make use of the observation that A does not know which 7-pattern cycle is genuine or fake, and derive the
lower bound using the concentration inequality we proved regarding the number of 7-pattern cycles in a graph
G < G, 7. See Section 5.1.2 for more details of the proof and how the third issue is addressed in a way similar
to the toy example.

2.3 Lower Bounds for Paths via Pointer-Chasing In the long simple path case, for a fixed pattern 7 € [T]F
where L = k-log n, we will prove that an o(logn)-pass streaming algorithm A cannot find a simple path of pattern
7 with probability at least n=«(1),

9See the proof of Lemma 4.0.1 for the general case.

10Here we interpret a length-L cycle as a sequence of L vertices from [n], and we allow non-simple cycles and even self-loops.

Copyright © 2023
883 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

As already discussed in Section 1.2, the reason finding a long simple path in G < G, r is difficult is that
this requires the streaming algorithm A to chase from a vertex u € [n] for L steps, following the pattern 7, and
pointer chasing is well-known to be hard for low-pass streaming algorithms. Hence, our strategy here is to reduce
a certain pointer chasing instance into the problem of finding a simple path with pattern 7.

To simplify the discussions, we will focus on the case that 7' = 3 and 7 is a repetition of (1,2,3). Again, we
wish to study a related communication problem, in which there are three players Py, P», P3 such that P; holds the
matching M;, and their goal is to output a simple path with pattern 7 in the joint graph G = ([n], My o My o M3).

For simplicity, we assume that L is a multiple of 3. Our starting point is the following search version of
the pointer chasing problem that is defined over a graph with L + 1 layers Vi,--- ,Vp 1 each consisting of m
vertices, and L matchings Wy, --- , W, such that for every i € [L], W; is a perfect bipartite matching between
the layers V; and V;yi: Player P; gets matchings W;, W13, W, ¢4,--- as input, and their goal is to output a
length-L path from any verter in Vi to any vertex in Vii1. Since L = Q(logn), using direct product theorem
for communication protocols, we are able to prove that communication protocols with o(logn) round complexity
and m® communication complexity for some constant € € (0,1) can solve this problem with probability at most
m~“M) . We will set m = n? for some small constant v € (0,1), so that a success probability upper bounded by
m~<™) = n=“0) is good enough. For simplicity, we let V; = {(i —1)-m +1,--- ,i-m}. Then the whole vertex
set Vis [(L+1)-m].

We can then embed the pointer-chasing instance above into a path-finding problem as follows:

1. Using public randomness, P;, Py, P; jointly sample a random injective function ¢: [(L + 1) - m] — [n]. For
i € [3], player P; also initializes M; be the empty set.

2. For each player P;, for every edge (u,v) from its input W;, W3, Wiig, -+, P; adds (¢(u), ¢(v)) into M;.
3. Finally, each player P; extends M; into a perfect matching uniformly at random.

First, we observe that the above procedure gives a valid partial matching for each player P; after Step (2),
so that they can always extend their inputs into perfect matchings at Step (3). Second, one can see that for
every u € V3 = [m], the generated graph contains a simple T-pattern path starting from ¢(u). Hence, our hope
is to show that if the streaming algorithm A finds a simple 7-pattern path in the resulting graph G, then, with a
reasonable probability, the path starts from vertices in the set {¢(u) : u € [m]}. This means that any streaming
algorithm A that finds a simple 7-pattern path in G < G, r with probability n~°M contradicts the hardness of
the pointer-chasing problem, as required for our lower bound.

The key observation, again, is that A does not know which 7-pattern path in G is genuine (i.e., coming from
the pointer-chasing problem via the mapping ¢) or fake (i.e., involving vertices added by P;’s in the Step (3) of
the reduction). The actual analysis, however, is much trickier than the short cycle case, and we have to prove a
sophisticated concentration inequality regarding the number of possible embeddings of a pointer chasing instance
in a graph G € G, . This involves a lot of additional technical work, that we defer to Section 6.

3 Preliminaries

3.1 Notation We use N to denote all non-negative integers, and N>; to denote all positive integers. We also
use 2N (resp. 2N>1) to denote all non-negative (resp. positive) even integers. For two elements or vectors u, v,
we use u o v to denote the concatenation of u and v.

We often use bold font letters (e.g., X) to denote random variables, and calligraphic font letters (e.g., X) to
denote distributions. For two random variables X and Y, and for Y € supp(Y'), we use (X|Y =Y) to denote
X conditioned on Y =Y. For two lists a and b, we use a o b to denote their concatenation.

For two distributions D; and D, on set X and) respectively, we use D; ® Dy to denote their product
distribution over X x), and ||D; — Dz|| 1y, to denote the total variation distance between them.

Let n € N>1. We use [n] to denote the set {1,--- ,n}. We often use symbols such as & to emphasize that &
is a vector, and we often use z; to denote its i-th entry and |Z| to denote the length of Z. For a set S and m € N,
we use (51) to denote all size-m subsets of S.

3.2 Graphs Formally, a labeled undirected graph G is a tuple (V, E, i), where V is the set of vertices,
E = ((ui,vs))icpm) is a list of edges such that u;,v; € V, and i = (p1,---,pm) is a list of labels. In the

Copyright © 2023
884 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

streaming model, it is presented as a stream of tuples (u;,v;, ft;), from ¢ = 1 to ¢ = m. Similarly, an undirected
graph G is a pair (V, E)

An ordered matching M on a set of vertices V is a list of vertex-disjoint undirected edges. The size of a
matching M is simply the number of edges in it. For a vertex set V of even size, we use My to denote the
uniform distribution over all ordered matchings on V' with size |V|/2.

DEFINITION 3.0.1. Let n € 2N>; and T € N>;. We define G,, v as the following distribution on undirected
graphs:

o We set V =[n].
e For each i € [T, we draw Mt~ My, independently across all i. Then we set E = M'o M2 o---o M7,

A (undirected) path @ is a list of edges ey, - - - , ex such that e; = (u;,v;) and for all ¢ € [k—1], v; = u;41. (Note
that since we are working with undirected graphs, we can swap wu; and v; if necessary.) Similarly, a (undirected)
cycle is a path « that additionally satisfies vy = u;. We say a path or a cycle is simple, if no vertices except for
the starting vertex u; is visited twice.

DEFINITION 3.0.2. Let n € 2Ns; and T € N>y and G = ([n], E) € supp(Gn.r). Let E = M' o M? o0 ---0o M7
where M is the i-th matching according to Definition 3.0.1. Let vs € [n], L € N, and 7 € [T)*. We define
Path(G, v, T) as the output of the following algorithm:

1. Let vg = vs and W be an empty list.

2. For i from 1 to L:

(a) Let e be the unique edge in the matching M™ that is adjacent to the verter v;_1. If no such e ezxists,
return L.

(b) Add e to the end of W. Let v; be the endpoint of e other than v;_;.

3. Return .

In other words, Path(G, v, T) (if exists) is the unique path in G that starts from vs and follows the pattern 7.
We say 7 is a valid path pattern, if for every j € [|7] — 1], it holds that 7; # 7;41. We also say 7 is a walid cycle
pattern, if it is a valid path pattern and also 77 # 1.

4 Lower Bounds for Finding Cycles

Our lower bound for finding cycle will follow from the following two lemmas.

Notation. Fix a graph G € supp(G,) and 7 € [T]F. We let C-(G) be the set of simple cycles in G with
pattern 7, and C(G) be the set of all simple cycles in G. We also let Lz(G) be the set of simple paths in G with
pattern 7.

LEMMA 4.0.1. (LOWER BOUND FOR FINDING A SHORT CYCLE WITH A FIXED PATTERN 7) There exist £,0 €
(0,1) such that for all T € N>1 and for all sufficiently large n € 2N>q the following holds: For all L € [logn],
valid cycle pattern 7 € [T)F, and n®-pass n®-space streaming algorithms A, we have

(4.1) Pr [A(G) e C-(@Q)| <ns.
G<Gn,T
LEMMA 4.0.2. (LOWER BOUND FOR FINDING A LONG PATH WITH A FIXED PATTERN 7) There exist ,0,7v €

(0,1) such that for all T € N>q and for all sufficiently large n € 2N>q the following holds: For all L € [y, - logn],
p < (L — 15) /4T, valid path pattern 7 € [T|*, and p-pass n°-space streaming algorithms A, we have

(4.2) Pr |A(G) € Lx(G)| < n®0H/P,
GeQnTT

Copyright © 2023
885 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

THEOREM 4.1. There exist €,6 € (0,1) such that for all T € N>1 and for all sufficiently large n € 2N>y the
following holds: for all o(logn)-pass n°-space streaming algorithms A, we have

(4.3) Pr |A(G) e (C(G)} <n~°.
G+Gn,T
Proof. Let € be the minimum of the ¢ constants from Lemma 4.0.1 and Lemma 4.0.2, and 4; be the minimum of
the ¢ constants from Lemma 4.0.1 and Lemma 4.0.2.
Fix an o(logn)-pass n®-space streaming algorithm A. Let L = xlogn for a constant x € (0,1) to be chosen
later. For notational convenience, we also use C<r(G) and Cs1(G) to denote the set of simple cycles in G with
length at most L and greater than L, respectively. Then we have

5 lereao] < [cca]+ 5 [serccuo]

First, by Lemma 4.0.1, we have

< ~
B [A(G) e CSL(G)] < 3 oFr [A(G) e CT(G)}
7e[T)*
7 is a valid cycle pattern

< TL . n—(51

< 2logT~n~logn . 7’L_61

< nmlogT—(sl.

We now set k = min(mgﬁ7 o) so that we have
(4.4) Pr [A(G) € (C<L(G)] <n0/2,
G+Gn,T -

Now, we let L_1(G) denote the set of simple paths in G with length exactly L. Given the algorithm A, we
construct another algorithm A who outputs the first L edges in the cycle found by A (if A does not output a valid
cycle, A just outputs L). Now, we note that A has the same pass and space complexity as A, and whenever A
finds a cycle in Cs (@), A outputs a path in L_p(G).

Hence, by Lemma 4.0.2, we have

51 oceuo] < 1y [0 <o)

< 3 Pr [A(G) € Lx(G)

G+—Gn,T
Fe[T*
7 is a valid path pattern
< TL . n3—51~L/0(logn)
(4.5) <n~e@),
Putting (4.4) and (4.5) together and set § = 41/3 completes the proof. ad

5 Lower Bounds for Finding a Short Cycle

Recall that Cz(G) is the set of simple cycles in G with the pattern 7. In this section we prove Lemma 4.0.1, which
is restated below.

Reminder of Lemma 4.0.1. There exist £,0 € (0,1) such that for all T € N>y and for all sufficiently large
n € 2Ns the following holds: For all L € [logn], valid cycle pattern 7 € [T|*, and n®-pass n®-space streaming
algorithms A, we have

(5.6) P [A(G) e C(G)] <n~°.

Copyright © 2023
886 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

To prove Lemma 4.0.1, we will indeed prove a stronger communication complexity lower bound first, and
then show Lemma 4.0.1 as an easy corollary. We first define the following communication problem.

DEFINITION 5.0.1. (THE CYCLE-SEARCH,, 77 PROBLEM) Letn € 2N>q, T, L € N> and T € [T)F such that 7 is
a valid cycle pattern. In the Cycle-Search,, 1 = problem, Alice holds a perfect matching M on [n] and Bob holds
T —1 perfect matchings M2, ..., MT on [n], their goal is to output a simple cycle in G = ([n], M*oM?o...0o MT)
with pattern T.

Slightly abusing notation, we can also view G, r (a distribution over graphs that is the union of 7' uniform
Given G = ([n], M',M?,...,MT)
Gn, T, we first convert these ordered matchings M into their unordered counterparts M*, and then give M' to
Alice, and M?2,..., M7T to Bob. We will write (M, M=2) < G,, 1 to denote that Alice’s input M and Bob’s
input M=% = (M?,...,M7T) are generated as above.

We will prove the following lower bound for Cycle-Search,, 1 -.

random perfect matchings) as an input distribution to Cycle-Search,, -.

LEMMA 5.0.1. There ezists €,6 € (0,1), such that for allT € Nx1, for all sufficiently large n € 2N>q, L € [logn],
valid cycle pattern 7 € [T|* such that ¥ contains at least one occurrence of 1, and for all two-party communication
protocols 11 with communication complexity at most n®,

(5.7) Pr IM(M*, M=?) € C2(G)| <n°.
(M11M22)<_gn,T
G=([n],M*oM=?)

Before proving Lemma 5.0.1, we show that Lemma 4.0.1 follows immediately from Lemma 5.0.1.

Proof. [Proof of Lemma 4.0.1] Let ¢, 6 be the constants guaranteed by Lemma 5.0.1. Let p € [T] be an index that
occurs at least once in 7. We consider the following communication problem:

e A list of unordered matchings M?,..., M7 are drawn from G, .

e Alice is given the matching M*#, and Bob is given the rest of the matchings, M*,..., M#*= 1 Mr+l MT,
denoted by M ~#.

e The goal is output a cycle from C»(G), where G = ([n], M*, M?,... MT).

Since all matchings in G, 1 are independently and identically distributed (i.e., they are distributed uniformly
over all perfect matchings on [n]), Lemma 5.0.1 implies that!! for all two-party communication protocols II with
communication complexity at most n°,

(5.8) Pr I(M*, M) € C#(G)| <n~°.
(M*" M~ ")Gn 1T
G=([n],M"oM~H)

Since Alice and Bob can simulate a p-pass, s-space complexity streaming algorithm A over the input stream
(MY, M?,...,MT) by a two-party protocol with ps -7 communication complexity'?, it follows that no n°/3-pass,
né/3-space algorithm A violates (5.6), since otherwise there is a communication protocol II with n%/3.T < n®
communication complexity that violates (5.8), contradicting Lemma 5.0.1.

d

5.1 Proof of Lemma 5.0.1 In the rest of this section we will prove Lemma 5.0.1 by a reduction from a sparse
version of the well-known set-intersection problem. We first introduce this problem together with some notation.

TTAn algorithm for this new communication problem where p # 1 can be used to solve the special case that p = 1 (corresponding
to Lemma 5.0.1) simply by swapping matchings M! with M#. We note that here we crucially used the fact that Lemma 5.0.1 applies
to communication protocols instead of streaming algorithms over the input stream (Ml, e MT).

12The factor of T' comes from the fact that in each pass, we may alternate at most 7" times between matchings from Alice and from
Bob.

Copyright © 2023
887 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

5.1.1 A Sparse Variant of the Set-Intersection Problem Given a matrix M € X"*™ and a row index
i € [n], we use row(M, i) to denote its i-th row vector (i.e., row(M,i) = (M; 1, M, 2,...,M;m)). We will need the
following communication problem.

DEFINITION 5.0.2. (THE SPARSE-SI,, 1. PROBLEM) Let n,k,L € N>1. In the Sparse-Sl,, ;. ; problem, Alice and
Bob get matrices MA, M® € [n]**L, respectively. The goal for them is to find a common row of M” and M®
(i.e., a vector X € [n]¥ such that row(M? i) = row(M®, j) = X for some i,j € [k]).

We will consider the following hard distribution for Sparse-Sl,, ; .

DEFINITION 5.0.3. Let n,k,L € N>;. We define the following distribution Dflz'L for the problem Sparse-Sl, . .

Alice and Bob’s inputs are uniformly distributed over all (M”, MB) € [n]**L x [n]**L satisfying the following two
conditions:

1. There exist two indices i,j € [k] such that row(M*",i) = row(MB, j).

2. Let M be the (2k — 1) x L matriz obtained by first removing the j-th row from M® and then concatenating
M~ and M®B (i.e., putting M on the top of M®). All entries in M are distinct.

We will need the following lower bound for Sparse-S,, ;. ; over Dii' I

LEMMA 5.0.2. Let n,k,L € N>y such that k = n'/3 and L € [logn]. No two-party communication protocol with
complezity at most n®' solves Sparse-Sl,, . 1, over Dg’i’L with probability more than 1/n°*.

To prove Lemma 5.0.2, we will use a reduction from the standard set-intersection problem Sl,, 5. In Sl g,
Alice and Bob get sets A, B C [n], respectively, such that |A| = |B| = k and their goal is to output an element
from AN B.

Let Df’ik be the following distribution over inputs to Sl x: Alice and Bob’s inputs are drawn at uniformly
random from all pairs A, B C [n] such that |[A| = |B| =k and |AN B| = 1.

We need the following theorem well known result.

THEOREM 5.1. ([60, 48, 20, 9]) For every ¢ € (0,1) and k € N>1, any protocol solving Sl 1, with probability e
over Di‘}c’k requires communication complexity at least Q(e? - k).

The lower bound of Theorem 5.1 only applies to solving Sl x, it can be easily generalized to the case of
solving Sl,, j, for any n > 4k.

COROLLARY 5.1.1. For every ¢ € (0,1), n,k € N such that n > 4k, any protocol solving Sl j with probability e
over DZ",C requires communication complexity at least Q(g2 - k).

Sl

> 1.» While preserving the success

Proof. We will show how to reduce solving Sly, i over Di,'m . to solving Sl ;, over D
probability.
Suppose Alice and Bob get sets A, B C [4k], they use public randomness to sample an injective mapping

7: [4k] — [n], and construct their new inputs
A'={n(u):ue A} and B’ ={rn(u):ue B}
One can see that when (A, B) are drawn from Di,'c_’ s (A', B') are distributed according to Dﬂ s and given the
intersection u € A’ N B’, we know that 7~ !(u) is the intersection of A and B, which completes the proof. |

Now we are ready to prove Lemma 5.0.2.

Proof. [Proof of Lemma 5.0.2] Let N = n’ and ¢ be a bijection from [N] to [n]~.
Let D be the uniform distribution over all (M”, MB) € [n]**L x [n]**L satisfying the following two conditions:

1. There exist two indices i, j € [k] such that row(M” i) = row(MEB, j).

2. Let M be the (2k — 1) x L matrix obtained by first removing the j-th row from M® and then concatenating
M* and M® (i.e., putting M* on the top of M®). All rows in M are distinct (i.e., forall 1 < a < b < 2k—1,
row(M, a) # row(M,b)).

Copyright © 2023
888 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Let D = DZ‘%'_L. We note that D is indeed D conditioning on the event that all entries of M are
distinct, which happens with probability at least 1 — (2kL)?/n by a union bound. Hence, we have that
ID = Dllyy < (2kL)?/n < 002,

Note that Sparse-Sl,, ;, ; over the distribution D is indeed Sl N~k in disguise: Alice and Bob can both apply
¢ to each row of their matrices M” and M®B to get two sets A’ and B’, and A’ N B’ corresponds to the
common row of M” and MB. By Corollary 5.1.1, we know that communication protocol with complexity n%*
cannot solve Sparse-Sl,, ; ; with probability more than n=%!! over D. Hence, since ||D — Dl|py < n 02 it
follows that communication protocol with complexity n®! cannot solve Sparse-Sl,, ;, ; with probability more than
n= 0 _ =02 < =01 gyer D, which completes the proof. 0

5.1.2 A Reduction from Sparse-Sl, , ; to Cycle-Search,, ;- We will use the following reduction from
Sparse-Sl,, ;. 1, to Cycle-Search,, ;- ». We will assume 7 contains at least one occurrence of 1.

Reduction from Sparse-Sl,, ;, ; to Cycle-Search,, ;. : Red-Cyc(M*, M®)

Alice gets M* € [n]**L and Bob gets MB ¢ [n]**£.

Return L if (M*, MB) ¢ supp(DfL‘i”L).

Alice generates M as follows:

— For exlzery i € [k] and every j € [L] such that 7; = 1, Alice adds the edge (M}, Mﬁ(j mod L)+1)
to M-".¢

— Alice extends M! into a perfect matching uniformly at random.

Similarly, Bob generates M2,..., M” as follows:

— For every i € [k], every p € {2,...,T}, and every j € [L] such that 7; = p, Bob adds the edge
(MB;, MB, . q 1ys1) t0 M.

— For every p € {2,...,T}, Bob extends M* into a perfect matching uniformly at random.

“We write (j mod L) + 1 in the subscript as we index starting from 1 instead of 0.

Notation. For n, L € N>1, we let S, 1, be the set of all the vectors from [n]Z whose entries are all distinct.

Let n,k,L € N>y, i,j € [k], and X € S,, .. We define D;c;il,L;uj,X to be the distribution DTS;Z{L conditioning
on the event that row(M*”, i) = row(MB, j) = X.

We then define

Rn,1,70,5,x = Red'CyC(DrSL—,iI,L;i,j,X)v
which is the outputted distribution of the reduction Red-Cyc where Alice and Bob draw their inputs jointly from
S-S

DX

Let G,, 7,7 x to be the distribution G,, 7 conditioning on the event that the graph contains X as a 7 pattern
cycle. Slightly abusing notation, we also identify a graph G € supp(G, r) by a list of T perfect matchings
MY, M2, MT 3

Given G € supp(G,.r) and a pattern 7 € [T]L, we define #-(G) as the number of simple cycles in G with
pattern 7 (i.e., #=(G) = |C#(G))).

We will need the following two lemmas.

LEMMA 5.1.1. For all T € N>, for all sufficiently large n € 2N>; the following holds: letting k = n'/3, for every
L€ logn], 7€ [T)*, X € S,.1 and i,j € [k], it holds that

IR k1,705,x — Gnorzxllpy < 1/nt

TBWe note that since now we are aiming to prove the communication complexity lower bound, the orderings of the edges within

individual matchings do not matter, so we (Alice and Bob, indeed) will simply “forget” their orderings.

Copyright © 2023
889 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEMMA 5.1.2. For all T € N>1, for all sufficiently large n € 2N>q the following holds: for every L € [logn] and
valid cycle pattern 7 € [T)F, it holds that

Pr [#7(G) > log®n] < n=10,
G+—Gn,T

and

1/2< Ge]Egyl,T[#;(G)] <2

Now we are ready to prove Lemma 5.0.1.

Proof. [Proof of Lemma 5.0.1] Let ,0 € (0,1) to be specified later. For the sake of contradiction, we will first
assume the existence of a communication protocol Il with complexity n® such that

B -5 14
(5.9) P [Hcyc(G) e CT(G)} >n9,
G=([n],M oM=>2)

and then construct another protocol Ils, that contradicts Lemma 5.0.2. Recall that & = n!/3 in Lemma 5.0.2.
Now we specify the protocol Ilg.

The protocol Il for Sparse-Sl,, ; |,

1. Alice gets M* € [n]**L and Bob gets MB € [n]k*L.

2. Alice and Bob simulate Red-Cyc(M*”, M®) to get their new inputs M! and M=2, respectively. (Note
that this step does not require communication, according to Red-Cyc.)

3. Alice and Bob run I, with inputs being M* and M 22 respectively.

4. If Iy returns a cycle C, Alice and Bob then outputs the vertices in C', in the same order they
appear in C.

In the rest of the proof, for simplicity we will use Gx to denote G, 77 x, Rx to denote Ry, i 7,74,j,x, and
DE’ES' to denote DISJS'X Their other parameters in the subscripts (n, K, L, T, 7,4, j) will always be clear from the
context.

The success probability ps,c of Ils) over DS can be calculated as follows:

= Pr Pr Pr g (MA, MB) = X].
DPsuc X8 1 iyj[n] (MA,MB)FDEZE[X[SI() }

From now on, we will slightly abuse the notation by identify an ordered cycle C with the list of its vertices.
(Since we only care about cycles with pattern 7, the latter uniquely determines the former.)

We wish to lower bound

Pr Pr [IIs;(M*, MB) = X]
X4Sn,L (MA,MB)«+ DS

= P P H Ml,MZZ _ X
X(—gn,L (MlxMzg)eRx[CYC()]

1.1 > P Pr (I = X]—n".
(Lemma 5.1.1) _X<_§ln,LG<_5X[oe(G) =X]—n

Next we define QN as the following distribution: draw X < S, 1, G <= Gx, and then output G. We have

P Pr [yo(G)=X]= Pr Pr [y (G)=X].
Xegwcegx[ye(G) = X] GergX%Cg(G)[ye(G) = X]

We need the following claim that helps us to analyze the above quantity.

T For notation convenience, given a graph G = ([n], M' o M22), we use ey (G) to denote Meye (M1, M=2),

Copyright © 2023
890 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CLAM 5.1.1. The following two statements hold:
1. Prceg[ncyc(G) S (C;:(G)] > TL_‘S/Q.
2. Pry _gl#+(G) > log® n] < 1/n°.

Before proving Claim 5.1.1, we first show it implies our lemma. We have

P Pr [y (G)=X
G:,gvx%g(e)[oc(G) = X]
1
> E ——-1 ﬂ
Z i #(Q) W @EC (G
1
> E :]]- = 7 0O, n
7G<~§ 10g3n {HCyC(G)GCT(G) A #T(G)Sl g3 }
1
(Claim 5.1.1) > (n7°/2-n"").
log” n

Putting everything together and setting 6 = 0.05 and € = 0.1, we have

. (?7,76/2 o n750) o nfo.l > nfo.l.

pSUC Z 10g3 n

Noting that IIs; has the same communication complexity as Il ., we have established that IIs; solves Df’li' I

01 with communication complexity n%!, contradiction to Lemma 5.0.2.

over D,SL%' ;, with probability at least n
This completes the proof for the lemma.

Finally, we prove Claim 5.1.1.

Proof. [Proof of Claim 5.1.1] Let Sg = supp(G). Note that G’s support is a subset of Sg. Fix G € Sg, we note
that the probability of G is drawn from G is proportional to #z(G), so we have

S #7(G)

N s, A
Therefore _

9G) __ #z(G)

G(G) Emnesg ##(H)
Applying Lemma 5.1.2, we have

5.10 =(G)/2 < —D—£ < 2#=(@G).
(510 #2(0)/2 < G < 2#4(0)
Now we are ready to prove Item (1).
Pr [l (G) € Cz(G)]= E @ “In.. (6)ec-(G)}
G+G Y GG Q(G) o "
(By (5.10)) > B #7(G)/2 Lngcrecaon
1
3 b ln@ec @)
>n"0/2

Next, we prove Item (2).

Copyright © 2023
891 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

= ggg; Lige(@)>1080 n)
(By (5.10)) < B2 #7(G) - L{s.(G)>10g3 n}
(#z(G) <n) <2n- G]Egll{#,-(c)>1og3 n}
(Lemma 5.1.2) <n %,
0
0

5.2 Proof of Lemma 5.1.1 In this section we prove Lemma 5.1.1, which is restated below.

Reminder of Lemma 5.1.1. For all T € N>, for all sufficiently large n € 2N the following holds: letting
k=n'3 for every L € [logn], 7 € [T)*, X € S,.. and i,j € [k], it holds that

IR k.705.% — Gnromx ||y < 1/t

Let C,, be the number of perfect matchings on an n vertex set (assuming that n € 2N>1).
We need the following fact regarding C,,.

Fact 5.1.1. Let n € 2N>; be sufficiently large. For every k € N such that k < n/2, we have

Cn—Qk_ 1
Cn 11 (n—2i+1)

i€ k]

In particular, for every k € N such that k < n°34, it holds that

n k< Crnak <nF.(14+n02,

o C’IL
Proof. [Proof of Lemma 5.1.1] For notational convenience, throughout the proof we will use Rx to denote
Rk, T,7i,5,x and Gx to denote G, 7 7. x.
Let X|; be the edges in X that belongs to M if treating X as a 7-pattern cycle'®, we can see that Gx is the
uniform distribution over lists of T" perfect matchings (M*, M2, ..., MT) such that X}; C M".
_ We first observe that Rx can be alternatively described as below. We will also define an auxiliary distribution
Rx to help the analysis.

Alternative sampling procedures Sampy and gz;\m/px for Rx and R x, respectively

o Let £=|{r; =1:5€[L]}

Sampler Sampy for Rx Alice gets MA € [n]*~1*2¢ and Bob gets MB € [n]*~D*L from the uniform
distribution over all pairs (M”, M®) such that the union of M”, M® X has distinct entries.

Sampler Sampy for Rx Alice gets MA e [n]*=1*2¢ and Bob gets M® e [n]*~V*L from the uniform
distribution over all such pairs (M”, MB).

e If the union of MA, M®, X does not have distinct entries, then return | and terminate. (This is only
relevant for Rx.)

e Alice generates M as follows:

5 That is, X[z] = {(X¢, X¢ mod L+1) e [L] ATy =1}

Copyright © 2023
892 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

— Alice first sets M* = X7y).
— For every i € [k — 1] and j € [(], Alice adds the edge (Mp,; ,, M)

1,27

) to ML,

— Alice extends M" into a perfect matching uniformly at random.
e Similarly, Bob generates M?2,..., M7 as follows:

— For every u € {2,...,T}, Bob first sets M* = X,

— For every i € [k], every p € {2,...,T}, and every j € [L] such that 7; = p, Bob adds the edge
B /B
(M}, M, 1o £ys1) to MH.

— For every u € {2,...,T}, Bob extends M* into a perfect matching uniformly at random.

We first prove the following claim.

CLAIM 5.1.2. It holds that

and

—~—

Proof. Let Dx and 5){ be the distribution of the pairs (M”, M®) in Sampy and Samp ., respectively. It suffices
to show that |Dx — 5X||TV <n=0%2. Let &£ be the probability that the union of M”, MB X has distinct entries.
We note that Dx is simply D x conditioning on the event £. _

By a simple union bound, we have Prz [£] > 1 — (2kL)?/n, which implies Rx(L) < n~%2 and

|Dx — Dx|lpy <702, and therefore completes the proof. 0

From now on we are going to show Gx and R x are close. We will use the following claim.
Cram 5.1.3. For all G € supp(Gx),

<(1+ n*0'15).

Proof. Fix G € Gx. We note that if G is generated by the procedure for generating ﬁx, then (MA, M®B) are
indeed completely determined by (k — 1) - 2¢ entries. Hence we have

-1
pk—1)-2¢

n(k—1)-(2¢+L) H Cn— 2k| X (4|
€T

Rx(G) <

Also, note that
-1

H Cr—2|x,| ,
i€[T)

we have B
Rx(G) _ _(-1)r
<n
gx(G) ~

CTL*Q‘X“] ‘ ‘|
1€[T]

By Fact 5.1.1 and noting k| X;)| < n'/3 . logn < n%3*, the above can be bounded by

p— (k=1L (k=1)-L 1+ nfo.z)zT <(1+ nfo.15)'

Copyright © 2023
893 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Now, note that

IRx = Gxllpy =Rx(L)+ > max(0,Rx(G) — Gx(G)).
Géesupp(Gx)

By Claim 5.1.3 and Claim 5.1.2, the above can be bounded

n=02 4 Z Gx(G) - n=015 < p=02 4 =015 < nfo.l’
Gesupp(9x)

which completes the proof. 0
5.3 Proof of Lemma 5.1.2 In this section we prove Lemma 5.1.2, which is restated below.

Reminder of Lemma 5.1.2. For all T € N>y, for all sufficiently large n € 2N>; the following holds: for every
L € [logn] and valid cycle pattern 7 € [T, it holds that

Pr [##(G) > log®n] < n=100,
G+—Gn,T

and
12< E [#:(G)] <2

G+—Gn,T

Proof. We first bound Eg. g, ,[##(G)]. By linearity of expectation, we have that

6B, HAON= 2 o By IPath(CoT) € C(G)

So it suffices to bound Prgeg, ,.[Path(G,vs, 7) € C#(G)] for a fixed vs € [n]. We will analyze the following
“lazy procedure” when determining if Path(G,vs, 7) € C#(G):

1. Let vy = vs and W(® be an empty list.
2. For i from 1 to L:

(a) Let e be the unique edge in the matching MTi that is adjacent to the vertex v;_1.

(b) Let v; be the endpoint of e other than v;_1. If i < L and v; is already visited in @Y (i.e., v; is the
endpoints of some edges in w*~1), then return NO.

(c) W =@V oe.
3. If vy, = vy, return YES. Otherwise return NO.

Intuitively, in Step (2) we check whether we get a simple path, and in Step (3) we check whether we get
a cycle. Now we analyze the probability that the above procedure returns YES. Let &; be the event that the
procedure does not return NO before the end of i-th loop at Step (2). We first calculate Pr[&;|€;—1].

Note that conditioning on &;_1, the path has visited ¢ vertices vy, ...,v;_1. Let t; be the number of edges
from M7 that is contained in @1 . We note that ¢; < i/2. We can see that the endpoint of e other than v;_;
has n — 1 — 2t; many equally likely choices, and only ¢ — 2¢; many of them causes the procedure to return NO.
Hence, we have
i—2t;

Prl&|&] =1 — —— 28
rl&il€ial n—1-—2,

Now we analyze the probability of the procedure outputting YES conditioning on £r. Again, we note that
the other endpoint of the last edge e has n — 1 — 2¢;, many equally likely choices, but only 1 of them (vs) causes

the procedure to return YES. Hence the probability is ﬁ

Copyright © 2023
894 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Hence, we have

psingle - G Pr [Path(G7 Us, 7_:) € C‘I—"(G)]

—Gn,T

1 1 — 2t
=— 1——7 .
n—1-2t H]< n—1—2ti)

ie[L—1
Note that 2¢; <1 for all ¢ € [L], we have

1
Dsingle < m < 2/”7

and

1 B}
Dsingle > E H](1— n_1> > 1/271,

i€[L—1

the last inequality follows from L € [logn].

The desired bound on Eg.g, . [#7(G)] then follows from the fact that it equals 1 - psingle-

Upper bounding Prg.g, ,[#7(G) > log®n]. We first note that a vertex u € [n] in G € supp(G,,r) can
only be contained in at most L many cycles with pattern 7, since fixing its position in the pattern 7 completely
determines the cycle. Hence, a cycle C' € Cx(G) can share vertices with at most L? many other cycles in Cz(G).

Assuming now that #7(G) = |C#(G)| > log®n. We consider a dependence graph V¢ with vertices being
C#(G), and we add an edge between two cycles in V¢ if they share a vertex. By previous discussions, we know
that V¢ has maximum degree A < L? < logZn. By a standard coloring argument, it follows that V¢ has an
independent set of size at least (log®n)/(A +1) >logn — 1.

Let £ =logn — 1. From the above discussion, we know that #z(G) > log® n implies the existence of ¢ many
vertex-disjoint pattern-7 cycles in G. We denote the latter event as Enice and will upper bound Pr[&c] instead.

Let S = {s1,52,...,5¢} be a subset of [n]. For every possible length-L paths W = (@, @2, ..., "), we will
show that conditioning on the event

Ety = N\ [Path(G.si,7) =]
i€[4]

S

the probability that all of Path(G, s;,T) are vertex-disjoint simple cycles with pattern 7, denoted as event £7 .
are at most
(n—¢-L)7"

Now, conditioning on Epaeh, if for any i # j, @' and @’ share at least one vertex, then by definition Efice
happens with probability 0. So we can assume all of @' are pair-wise vertex-disjoint. In this case, we note that
£ .. happens if and only if the following event happens: for every i € [¢], the unique edge from M7* that is
adjacent to wiL, connects to w?.

Since all @"’s are vertex disjoint, the above happens with probability at most (n — ¢- L)~
Putting the above together, it follows that

Pri&3.] < (n—€-L)7*<(n—log’n)~".

nice

By a union bound, we have

Pr[gnice] S Z Pr[grﬁce}

SCl[nl,|S|=¢

(Z) - (n —log?n)~*

L

% - (n—log?n)~*

IN

IA

Copyright © 2023
895 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(i) 3
n—logn £!

()i
1—1og n/n) £

(n is sufficiently large and ¢ = logn — 1) n 100,

Finally, recall that #z(G) > log® n implies Enice, it follows that Pr[#z(G) > log® n] < n=100 as well, which
completes the proof.]

6 Lower Bounds for Finding a Long Path

Recall that Lz(G) is the set of simple paths in G with pattern 7. In this section we prove Lemma 4.0.2, which is
restated below.

Reminder of Lemma 4.0.2. There ezist €,0,70 € (0,1) such that for all T € N>y and for all sufficiently large
n € 2Nsy the following holds: For all L € [y - logn|, p < (L — 15)/4T, walid path pattern 7 € [T|*, and p-pass
nf-space streaming algorithms A, we have

(6.11) Pr |A(G) € L-(G)| < n®-0L/P,
Gegan

We will also call the problem of finding an element in L.z(G) as the Path-Search-Streaming,, 1 ~ problem.

6.1 Lower Bounds for a Specific Pointer Chasing Problem We will prove Lemma 4.0.2 by a reduction
from a specific pointer chasing problem.

DEFINITION 6.0.1. (THE ASPC,, 4 PROBLEM) Letn € N>y and d € 2N>y. In the ASPC,, 4 problem, there are two

players Alice and Bob, and d permutations © = (71,72, ...,7q) on [n]. Alice gets all the odd-indexed permutations
M1, M3, ...,Tqg—1, and Bob gets all the even-indexed permutations T, M4y ..., Tq. Let T<; =m;om_yo...0om for
every i € [d]. Their goal is to output the path pathz(s) = (s,m<1(s), m<2(8),...,7<q(s)) for some s € [n].

For notational convenience, let P(7) = {path(s) : s € [n]}. The goal of Alice and Bob can then be restated as
outputting an element from P(7). We also let P, 4 denote the uniform distribution over all possible 7 consisting
of d permutations on [n].

We need the following lower bound for ASPC,, 4; see Appendix A for a proof.

LEMMA 6.0.1. (LOWER BOUNDS FOR ASPC,, 4) There exist €,0 € (0,1) such that for all sufficiently large n € N
the following holds: for all d € [logn], p < (d—6)/2, and all p-round communication protocols I1 with at most n®
communication complexity, it holds that

Pr [I(7) € P(%)] < n' /P,

7?(7737,,,(1
where II(T) denotes the output of I1 when Alice gets the input 71,73, ..., m4—1 and Bob gets the input ma, 74, ..., 7q.

To make use of Lemma 6.0.1, we first reduce ASPC to another auxiliary problem, which is closer to the
Path-Search-Streaming problem considered in Lemma 4.0.2.

DEFINITION 6.0.2. (THE Path-Finding,, ;- PROBLEM) Let n,T,L € N>y and 7 € [T]* be a valid path pattern.
In the Path-Finding,, = problem, there is a graph H consisting of L + 1 layers of vertices V= V1, Va, ..., Vi4),

each with size n, and L set of edges W= (W1, Wa, ..., Wy) such that W; is a perfect bipartite matching between
layers V; and Viy1. There are T players Py, ..., Pr, such that the i-th players gets all Wy such that 7y = i as
input. Their goal is to output a directed path from the first layer V1 to the last layer V1.

Copyright © 2023
896 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

For simplicity, we will always assume V; = {(i — 1) -n+1,(i—1)-n+2,...,i-n} for each ¢ € [L]. We also
let Wy, 1 be the uniform distribution over all possible W consisting of L perfect bipartite matchings, where the
i-th matching is between V; and Vi, 1. We denote P(W) as the set of all directed paths from the first layer Vi to
the last layer Vi1, going through the graph defined by W. The goal of Path-Finding,, » can then be restated as

output an element of P(W).
Using a reduction from the ASPC problem, we have the following lower bound for Path-Finding.

LEMMA 6.0.2. (LOWER BOUNDS FOR Path-Finding,, r -) There exist €,6 € (0,1) such that for all T € N and for
all sufficiently large n € N the following holds: for all L € [logn)|, valid path pattern 7 € [L]T, p < (L — 15)/4T,
and all p-round communication protocol II with at most n® communication complexity in the blackboard model,'®
it holds that

_Pr [[(W) e P(W)] < nt0L/P,
W<Whn, L

-

where II(W) denotes the output of the protocol I1 when the T players get their inputs from 1174 according to the
pattern 7.

Proof. We first partition the T players into two disjoint sets T7,T» C {P,..., Pr} such that there are at least
(L —1)/2 indices ¢ such that 7, and 7441 are not in the same set. Such partition always exists by a probabilistic
argument, since a random partition gives (L — 1)/2 such indices in expectation.

This allows us to view 7 as d > [(L — 1)/2] 4+ 1 segments that alternate between players in T} and players
in 75. We will view blackboard communication protocols for Path-Finding,, 1 = as a two-player communication
protocol between “player” T7 and “player” T5.

Formally, let 7, ..., 74 be the segments of 7 such that each odd 7; has all its coordinates in T}, and each even
7; has all its coordinates in T>. Fix a protocol II for Path-Finding,, 1 -. We will use it to solve ASPC,, 4, then
apply the lower bound in Lemma 6.0.1. '

Consider the following protocol for ASPC,, 4.

Protocol for ASPC,, 4
Inpiuts T, e..,Tq

Communication

1. for each odd 4, Alice samples uniformly random matchings in segment 7; conditioned on their
composition equal to 7;

2. for each even i, Bob samples uniformly random matchings in segment 7; conditioned on their
composition equal to 7;

3. denote the graph they generated by H, Alice and Bob run IT on H, where Alice simulates all players
in 77 and Bob simulates all players in T5, and obtain a path @ in H

4. output the path for 7 obtained by composing all segments 71, ..., 7y of @

When 71, ...,7q are uniform, H is a uniformly random graph. Alice knows the inputs for all players in 717,
and Bob knows the inputs for all players in T5. Hence, the players can simulate II. Moreover, the number of
rounds in our protocol for ASPC,, ; is at most 1" times the number of rounds in II. When II outputs a correct
path @ in H, the output of the protocol for ASPC,, 4 is correct.

Hence, by Lemma 6.0.1, the probability that IT outputs a correct path is at most n'=%¥/? < p!=9L/(2p) By
reparametrizing, we prove the lemma. 0

18That is, in each round, from the first player to the T-th player, each player writes some bits to a blackboard that can be seen by
everyone. And the final output of the protocol is only determined by the content of the blackboard at the end of the protocol. The
communication complexity of the protocol is the maximum total number of bits written on the blackboard.

Copyright © 2023
897 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

6.2 Proof of Lemma 4.0.2 Now we are ready to prove Lemma 4.0.2 by a reduction from the Path-Finding
problem.

Reduction Red-Path from Path-Finding,,, 1 > to Path-Search-Streaming,, 1 »

Parameters v = 1073. n, T, ¥ are parameters for the desired Path-Search-Streaming problem instance. Let
m=n".
Input for Path-Finding,,, 1 There is a graph H consisting of L+1 layers of vertices V= V1, Vo, ..., Viga),

each with size m, and L matchings W = (W1, Wo,...,Wy) such that W; is a perfect bipartite
matching between layers V; and V;;;. There are T" players P4, ..., Pr, such that the P; gets all W,
such that 7, = ¢ as input.

We also have V; = {(i—1)-m+1, (i—1)-m+2,...,i-m} for each i € [L], and ;¢ 11; Vi = [m-(L+1)].

e All T players first use public randomness to sample an injective function ¢: [m - (L 4+ 1)] — [n].
e For each i € [T):

1. Let E; be the set of all edges from {W, : 7, = i}. Player P; first constructs a partial matching
M; = {(90(“)7%0(”)) : (’LL,’U) € Ei}'a
2. P; then extends M; into a perfect matching over [n| uniformly at random.

@M, is indeed a partial matching since 7 is a valid path pattern, as required by the definition of Path-Search-Streaming,, 1 .

Notation. We call a subset X C [n] a valid starting subset of a graph G = ([n], M1 o...o MT) € supp(G,.7)
with respect to the pattern 7, if for every u € X, Path(G,u,) is simple, and for every two distinct u,v € X,
Path(G,u,T) and Path(G,v,T) are vertex-disjoint. We also use X,,, #(G) to denote the set of all valid starting
subset of G of size m with respect to 7. For a subset S C [n], we use Xi’;(G) to denote the subset of X, 7(G)
that contains S as a subset.

For a subset X C [n] with size n", we use G,, 17 x to denote the uniform distribution over all possible graphs
G € supp(Gn,r) such that X € X|x| #(G). Also, let R, 1.7x be the distribution outputted by Red-Path given
inputs drawn from W, and conditioning on the event that {p(i) : i € [n?]} = X. We have the following
observation.

OBSERVATION 6.0.1. Let n,T,7 and v be as in the reduction Red-Path. For every X C [n] with size n”, it holds
that the distributions R, r.7x and G, rzx are identical.

We also need the following lemma.

LEMMA 6.0.3. Let v = 1073, For all T € N>, for all sufficiently large n € 2Nsq the following holds: letting
m =n", for every L € [logn| and valid path pattern 7 € [T|L, it holds that

1.

{1} <1. n—1 — ~ < p—logn
Gfgrn,T {|Xm’F(G) <3 (m 1 APath(G,1,7) e Lz(G)| <n .

Now we are ready to prove Lemma 4.0.2.

Proof. [Proof of Lemma 4.0.2] Let €,6 € (0,1) be two constants to be specified later. Let Z,0 be the constants
in Lemma 6.0.2, and vy = v = 1073.

Copyright © 2023
898 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Given a p-pass n-space streaming algorithm A such that

(6.12) Pr [A(G) € Lx(G)] > n® /P,
G«—Gn,T
we will construct a communication protocol for Path-Finding,, 1 » that violates Lemma 6.0.2.

First, we note that (6.12) implies that there exists a vertex s* € [n] such that

(6.13) Pr [A(G) = Path(G, s*,7) A A(G) € Lz(G)] > n?~L/P,
G+Gn,T

We set peye = n2~%L/P for notational convenience. By symmetry, we can assume that s* = 1.

Our protocol II for Path-Finding,,, - = works by first running Red-Path to obtain a Path-Search-Streaming,, 1 ~
instance, and then simulating the streaming algorithm A using p rounds and n® - (p - T') bits of communication to
obtain A’s output, a length-L path ¢ = (v1,v2,...,vr41) € [n]. Finally, it constructs a new length-L path @ in
the Path-Finding,, 7 » by setting u; = ¢! (v;) for every i € [L + 1], and outputs @ (if some v; is not in the range
of ¢, or A does not output a valid length-L path @, IT simply outputs L).

Now we analyze the success probability of II over the distribution W,, 1. We first note that conditioning on
the event that {¢(i) : i € [m]} = X, the output distribution of Red-Path is R,, 1 7 x, which is identical to G, 77 x
by Observation 6.0.1. From now on, we will denote G,, 1 x by Gx for simplicity.

The success probability can then be lower bounded by

(6.14) ; f(r[l]) P [A(G) = Path(G,1.7) A A(G) € Le(G) A1 € X].

Now, let G be the distribution generated as follows: first draw X <« (")), then draw G + Gx and output
G. (6.14) can then be alternatively written as
r Pr [A(G)=Path(G,1,7) NA(G) e Lz(G) A1 € X]
GG X€Xy, 7(G)

6.15 — Pr 10 - en- Pr [leXx].
(6.15) 0:5 {A(G)=Path(G,1,7)AA(G)EL=(G)} Xexml,;(c:)[]

To lower bound (6.15), we need the following claim.

CLAIM 6.0.1. For every event £, it holds that

1 —logn
Pre@)z 5+ | Prle@)] -

Proof. We first note that supp(G) C supp(G), and for G € supp(G), we have

5 X #(G)

JURD S—")L
which implies that

§(&) _ Xnr(G)

G(G) Epcsupp(g) Xmz(H)

Now, we have

GTé[e(G)] = br ggg; [E(@)]
XnL,?(G)

CGeg EHEsupp(g) me‘?(H)

(Z) - (2) 1/2- Pr. {Xm,;((;) >
1
5

-[€(G)]

(EHESUpp(g) Xm,‘?(H) < (:1))

vV

N =
N
3 3
~~—
>
g
N
=

(Lemma 6.0.3)

Y

(P [£(G)] —n~1Em).

G+G

|

Copyright © 2023
899 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Now we are ready to lower bound (6.15). We have

Pr 1 . B) . P le X
G:@ {A(G)=Path(G,1,7)AA(G)€eL=(G)} XeXmI,;(G)[]
n—1 2 o
>)2 g [A(G) = Path(G, 1,7) A A(G) € L=(G) A X, L(G) > (n 1> ' 1]
AR RN
(Claim 6.0.1) > n~". (Pr [A(G) = Path(G,1,7) AA(G) € L=(G) A X{l}q(G) > (n — 1)) 1} _ n—logn>
GG " mol ?

(Lemma 6.0.3 and A(G) = Path(G,1,7) A A(G) € Lz(G) implies Path(G, 1,7) € Lz(G))
> nt. (psuc -2 nflogn)'

Now, we set € = £/2, which means IT has communication complexity n° - (p-T) < n°. We also set § = % Sy 5.
Then the success probability of II over W, 1, is at least

(6.16) n-l. (nféL/p+2 _ 9.0 logn) > p~0L/p+0.5 _ —36vL/p+1/2 > mféL/PJrl’

contradicting Lemma 6.0.2. This completes the proof.]

6.3 Proof of Item (1) of Lemma 6.0.3 Reminder of Item (1) of Lemma 6.0.3. Lety = 10"3. For all
T € N>1, for all sufficiently large n € 2N>q the following holds: letting m = n”, for every L € [logn] and valid
path pattern 7 € [T, it holds that

1 /n 1
- < Z. < ogn.
G<_Pgrn,T [Xm’T(G”) (m)} ="

P mqffotation and setup. Throughout the proof, we use G' to denote a random variable drawn from G,, 7. For
every S € ([:T‘L]), we use Ys to denote the random variable 1(scx,, -(q)} (i.e., Ys equals 1 if S € X, 2(G) and 0
otherwise). We also let M = (") and

(6.17) Y = Ys = [Xm 7(G)|.
se(t)

m

Item (1) can then be restated as
(6.18) Pr[Y /M < 1/2] <n~'o8™,

For each S € ([77;‘3)7 we also define Zg = (1 —Ys) and Z = Zse(["l) Zs. Let ¢ < n'/3 be an even integer to
be chosen later. We will prove (6.18) by upper bounding
(6.19) E[(Z/M)").

Expanding (6.19). Now, for each 1 < u < v < n, we define W,, ,, to be the indicator random variable that the
following three conditions all hold: (1) Path(G,u,T) is simple, (2) Path(G,v,T) is simple, and (3) Path(G, u,T)
and Path(G,v,T) share at least one vertex. Also, for each u € [n], we define B, to be the indicator random
variable that Path(G,u,T) is not simple. By the definition of Zg, we can see that for every S € ([;Ll]),

(6.20) Zs < Z W, + Z B,.

u,WES, u<v uesS

Plugging (6.20) in the definition of Z, we have

(6.21) z< Y > Wuu+) B,

SE([:;]) u,vES, ulv ues

Copyright © 2023
900 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(6.22) = Y W< > ZBu'<n1)7

1<u<v<n u€[n]

which further implies that

z/M< Y WM~ _1 +ZB

1<u<v<n u€n

The inequality above can be further simplified to

(6.23) Z/M< E W]

1<u<v<n 2 u€[n]

Raising both sides of (6.23) to the ¢-th power, we have

m—-1\" ,_
Z/M Z Z() <2> 'mz ’ 1<u1<v1<n H Wu,,v, .wl ,wﬁ KE H sz

k=0 i€[k] . i€[(—Fk]

1§uk<vk <n

M~

Il 5.

k —
2¢- (m2/2) -mF 1<u1<U1<7l H Wu“vl . i€ [L—k]

. ikl Ww1,...,we—E€[N]

-
Il

1<uy <Uk§n

Il B..

Wi,eeey wz k€[n]

2£ E Il W,
Ui,v;
1<u1<vl<n

i€[k] i€[l—k)
1§uk<'uk§n
Taking the expectation of both sides, we have
24 Z /M) < m? - B,
(6.24) E[(Z/ Z e Brano B BT W T B

ic[k] i€[t—k]

1§uk <oy, <n
In the rest of the proof, we will focus on upper bounding the right side of (6.24). We will upper bound each
summand above separately depending on whether k > ¢/2 or k < /2.

The case when k < ¢/2. We first focus on the case that k < £/2. We set t = £ — k and note that ¢t > £/2.
Now, first note that we have

Wi €N
i€[t—k] w’ i€lt]

(6'25) 1SU1IE111§TL ws H Wui,vi ' H BwL S H BwL

1<uy {vkgn

So in the following we will upper bound

E |] Bu.

wisewe€lnl S

Copyright © 2023
901 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

We will first condition on the event that the number of distinct elements in wy, ..., w; is more than ¢/2. We
first show the probability that this event does not happen is small, in particular

(6.26) P (el <02 < ([),)- (”2) <ntl

Wi, W E n
So now we assume that ’{wi}ie[t]‘ =r >t/2, and we will upper bound
e
€S

for any S € ([:]).

CLAIM 6.0.2. For every r < ni/3 and S e ([:L]), it holds that

H Bz‘| S TL_T/2.

i€S

Combining (6.26) and Claim 6.0.2, we have
(6.27) E E|J]Buw | <n " +n* <n™8 408 <ont8,
Putting (6.27) and (6.25) together, and recall that we assumed k < /2, we have

2/2—1

. vy < o8 <Y,
(6 28) kZ—O 1§u1IEm§n wi,..., H Wu“”‘ elz_[k] Bw‘ - (K/Q) 2n <t-n

1<ug {vkgn

The case when k > (/2. Next we consider the case when k > £/2. We have that

(6.29) E E|] Wuw.- [] Buw| < I ...
1<ur <v1<n wy,.. 71112 kE[n ieik] il 1<u1<v1<’fl ieik]
1<up <vy<n 1§uk<vk§’ﬂ

In the following we will upper bound

Wi, v,
1<u1<v1<n H WiV

1<uy %w@ <n

Let S = {(ui,vs) }iclr) be a set of pairs. We say that S is valid, if the following two conditions hold: (1) all of
ULy o .y Up, V1, ..., 0, are distinct elements of [n] and (2) u; < v; for every i € [r].
We need the following two claims.

CLAIM 6.0.3. For every k < n'/3, it holds that

Pr (3 a valid set S s.t. |S| > k/2 and S C {(ui, vi) }ie] =1 — n=k/4,

1<ui<vi<n

1<ug %vkgn

Copyright © 2023
902 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

CLAIM 6.0.4. For every r < n'/3. Let S be a valid set of pairs such that |S| = r. It holds that

El [Waol| <n "2
(u,v)€S

Combining Claim 6.0.3 and Claim 6.0.4, we immediately have

(6.30) . E _E I Waio, | Sn ¥4 % < on=t/8,
—ulfvl—n ic[k]
1Sukévk§n

Putting (6.30) and (6.29) together and recall that we assumed k > ¢/2, we have

Y4

6.31 E: E W, o - B, || <@/2+1) -2n Y8 <20. 078,
() 1<u <vi<n wa,.. ’w[LE[n H Vi ‘ H wq — (/ +) n I n
k=¢0/2 . 1€ (k] i€[l—k]
1§ukévk§n

Proving Item (1). Now, plugging (6.27) and (6.30) into (6.24), we have
(6.32) E[(Z/M)"] <m? - 3¢-n~"5,

Recall that Z/M =1 —Y /M, and hence Item (1) is equivalent to
(6.33) Pr[Z/M > 1/2] < n~ 08",

To prove (6.33), we now set £ = log® n. By Markov’s inequality, we have

Pr[Z/M > 1/2] = Pr[(Z/M)* > 27
<2'-E[(Z/M)']

(By (6.32)) <20.m?.30.n7Y8
(m=mn7) < 9l.30. pt/8+2Ly
(1/8 — 2y > 1/10) <2.30.nt10
(¢ =log®n) <nploen

0

6.4 Proof of Item (2) of Lemma 6.0.3 Reminder of Item (2) of Lemma 6.0.3. Lety = 10"3. For all
T € N>1, for all sufficiently large n € 2N>q the following holds: letting m = n”, for every L € [logn] and valid
path pattern 7 € [T, it holds that

{1} 1 n 1 < —logn
G Png |Xm7;(G)\ 5 (m 1) A Path(G,1,7) € Lz(G) n .
Proof.

Copyright © 2023
903 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Notation and setup. We define random variables G, W, ,,, B, Yg, and Zg in the same way as in the
proof of Item (1) of Lemma 6.0.3. We will however define Z, Y, and M differently as below.
Let ST ={S:S5¢ ([ZL]) A1l e S} We define

S vy, z= Y Zs, and MZ(Z—ll)'

Sesit} Sesi}
By definition, we have
Yy = [x{L(@)l.

Recall that B, is the indicator that Path(G,u,7) is not simple. Our goal can then be restated as proving
Pr[Z/M > 1/2 A By = 0] < n~ g,

which is equivalent to
Pr[Z/M - (1 - B;) >1/2] <n~len,

We will prove the above by upper bounding
¢
(6.34) E [(Z/M~ (1-By)) }

for some parameter ¢ < n'/3 to be specified later.

Expanding (6.34). Recall that
ZS S Z Wu,v + Z Bu

u,VES, ulv uesS
We have
z< Y | ¥ wo+¥n
Ses{1}t [u,ves, u<v ues
n—2 2 n—1
- Wu v v . .
D Y R S R S) R)
2<u<v<n 2<u<n 2<v<n
Consequently,
Zl-B)< > WM«(> > B, < 2>+ > WM~<"_2>.
- ’ 2 ’ m — 2
2<u<v<n 2<u<n 2<v<n
Recall that M = ('~ 1) dividing both sides by M, we further have
z0-ByM< Y w,, mmDm= s g m 1
! - “ i —1)(n—2) Ton-—1
2<u<v<n 2<u<n 2<v<n
< E Wy, m*+ E B, m+ E W, m
2<u<v<n 2<u<n 2<v<n
Taking the ¢-th power and then the expectation of both sides, we have
E [(Z/M (- Bu))q
< 3t.m2 > E E H Waw, o [[Bw: - [] Wi
8.0 B40=t 2§u1§v1§n wi,...,wg€{2,...,n} 21, 7zge{2 ielf] ici]

2<uq <va<n

We divide the triples («, 3,6) into three categories: (1) ao > £/3, (2) a < £/3 and 5 > ¢/3, and (3) o, 8 < £/3
and 6 > ¢/3, and bound them separately. Let Z;,Z,, and Z3 be the set of triples («, 5, 0) that satisfies (1), (2),
and (3), respectively.

Copyright © 2023
904 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

The case when (o, 8,0) € Z;. First, we have

Z 23u1[<Ev1§nw1, ” ,zé,e{z HW“”” HB““ ig]wl’z"

(a.B,0)€ETL €} 21, i€la] €[]

2<Uq %va <n

< > H w.
- 2<uy <111<n v

(v, 8,0) €Ty
2<Uq <va <n

By Claim 6.0.3 and Claim 6.0.4, we have

E|] Wuiw | <2(n—1)"* <2(n—1)"/12

2<u1<v1<n
i€la]
2§ua<va§n
Therefore
(6.35)
Z E E H W/U, v; H BwZ H Wl \Zi < 52 : 2(” - 1)76/12~
(BT QSvalSn Wi, WEE{2,...,n} 21, ’296{2 iciol icif] iciol
QSuQévagn
The case when (o, 3,0) € Z,. Next, we have
Z E E H Wu, v, H -Bw7 . H Wl,zi
(5.0 €T 2Sulfv1 <n wi,..,wa€{2,...,n} 21,.. 296{2 icio] icis] iciol
2§uaiva§n
< B,
- Z Wl,y.eny w/3€{2 H ¢
(a,8,0)ET, iclf]

By (6.26) and Claim 6.0.2, we have

E|[] Bu| <2(n—1)""*<2(n—1)"""

w1,.. ,wge[

€[]
Therefore
(6.36)
> E E E|[] Wuiwe o [[Bui - [Wie| <€2-2(n—1)7"2
(@B e 2§u1§v1 <n wi,...,wg€{2,...,n} z1,.. 7296{2 iclol iclf] icif]
2§uaéva§n
The case when (¢, 8,0) € Zs. Finally, we have
Z E E H Wul,vl H BwI H Wl \Z;
(0,5.0)€Ts QSulfmSn Wiy W €{2,...,n} 21,0 7296{2 icla] ic[8] il
2§uaéva§n

Copyright © 2023
905 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

§ Z 21, ,296{2, .n}]:[Wl zi

(a,8,0)€Z3 i€[o]
By (6.26), we have

(6.37) Pr o [{zitie] > 6/21 21— (n—1)"%"
Z1,..,20€{2,...,n}

We also need the following claim.

CLAIM 6.0.5. For every r > (logn +1)? and S € ({2"7;"”}), it holds that

11 WLU] = 0.

ues

Proof. Recall that W1, means that both Path(G,1,7) and Path(G,u,7T) are simple and they share at least one
vertex. Since one vertex u can only be on Path(G,u,7) for at most L + 1 many vertices u (since p’s position
in the pattern 7 completely determines the path Path(G,u, 7)), we know that Path(G,1,7) can intersect with
Path(G,u,7) for at most (L + 1)? < (logn + 1)? many distinct u. Hence, if |S| > (logn + 1), it must hold that
[T.cs Wi, =0, which completes the proof. d

Now, we set £ = log® n. Combining (6.37) and Claim 6.0.5, we have that

H le é n—l)_e/lz.

21, 7295{27 771}

i€[6]
Therefore
(6.38)
> E E H Waiw [Bu [Wi | < (n—1)7"2.
(. D)ETs 2Su15v1Sn wi,...,wg€{2,...,n} 21,.. ,z96{2 7n} iclo ielf) ieif]
2§uaévagn

Putting (6.35), (6.36), and (6.38) together, we have
E[(Z/M-(1-B,) | <3 -m* 5 (n—1)7/2

Finally, by Markov’s inequality, we have that

Pr[(Z/M-(1—B,) >27¢ <203 m?.5.0% (n—1)"4/12
<7t 2t 18

< 7l /13420y
(—1/13+ 2y < 0 and £ = log®n) < - logn,

This completes the proof.
O

6.5 Omitted Proofs We first prove Claim 6.0.3 (restated below).

Reminder of Claim 6.0.3. For every k < n'/3, it holds that
Pr (3 a valid set S s.t. |S| > k/2 and S C {(ui, vi) }ie] =1 — n~k/M,

1<ui<vi<n

1<ug %vkgn

Copyright © 2023
906 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Proof. We consider the following greedy algorithm that constructs a valid subset S of {(us, vi) biep:
e S = () initially.
e For every i € [k], if
{ui, vi} 0 ({weteei— U {veteepi—1)) =0,
we add (u;, v;) to S (i.e., if (u;,v;) does not share any element with all previous i — 1 pairs).
It is straightforward to verify that S is always a valid subset of {(us, vi) Foen-

To prove the claim, it suffices to prove that

Pr [|§| < k/z} < nH/4,

1<u;<v1<n

lgukévk <n

(%]

o H k/2

constructing S, for every i € W, (u;,v;) is not added to S. We say such a subset W is bad.
We then have

We note that |§ | < k/2 happens only if there exists a subset W € () such that in the greedy algorithm for

pr[IS<k/2] < > Pr[Wisbad].
1<ui<vi<n o 1<ui<vi<n

| we(l)
lguk{’ukgn 1§uk%vk§n

Now, we note that conditioning on the values of ((us, v¢))sefi—1), the probability that (u;,v;) is not added to

1_((n—2§—1)))/<2) Sl_n—?fj—l).n—i(li:ll)_l

(12 2y

_2Ai-n 2= < 6k/n.

n n—1

S is at most

So the probability that W € ([k[%]) is bad can be bounded by (6k/n)*/2, and we have

Pr (IS <k/2] < (k’;Q) - (6 /n)/

1<u;<vi<n
lgukévkgn
< 2k (6k/n)F/?
< (24k/n)k/?
(k‘ < n1/3) < n_k/4.

This completes the proof. 0

Before proving Claim 6.0.2, we give a template for constructing a sampling procedure for the distribution

gn,T'

Sampler Sampy for G,

1. Initially M1, M?,..., M7T are all empty sets, and R, R?,... RT are all [n].

2. While not all of R¥’s are empty

Copyright © 2023
907 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

(a) Pick a vertex u € [n] and an index i € [T] such that u € R.
(b) Sample uniformly at random a vertex v from R*\ {u}.
(c) Add (u,v) to M?, and remove u and v from R'.

3. Output G = ([n], Mt o M%0o...MT).

Picking rule Formally, in Step (2.a), the pair (u,%) is determined by a (potentially probabilistic) function
F that maps the current partial matchings (M1, ..., M7T) to an element (u,i) € [n] x [T] such that
u € R*.* We call such a function F a valid picking rule.

?Note that for each i € [T], R; is determined by M?.

We have the following observation.
OBSERVATION 6.0.2. For any valid picking rule F', the output distribution of Sampy is identical to G, 7.

Now we are ready to prove Claim 6.0.2.

Reminder of Claim 6.0.2. For every r < ni/3 and S € ([’;]), it holds that

H Bu] <n /2,

ueS

E

Proof. Let s1 < s9 < §3 < --+ < s, be the elements of S. In the following we analyze a particular sampler SampB®
that instantiates the sampling template Samp by fixing a particular picking rule.

Sampler SampB® for Gn1

1. Initially M1, M?, ..., M7T are all empty sets, and R*, R?,..., RT are all [n]. Let K = ().
2. For each i € [r]:

(a) If s; € K, go to label END.
(b) Set s;0 =s; and add s; to K.
(¢c) For each j € [L]:
i. If s, ;_1 ¢ R™, go to label END.
ii. Sample uniformly at random a vertex v from R™ \ {s; j_1}.
ili. Add (s;j—1,v) to M7, and remove s; j_1 and v from R7.
iv. Set s;; =v. If v € K, go to label END.
v. Add v to K.

(d) Go to label STOP.*
(e) END
3. STOP: While not all of R"’s are empty

(a) Pick a vertex u € [n] and an index i € [T] such that u € R’
(b) Sample uniformly at random a vertex v from R\ {u}.
(c) Add (u,v) to M?, and remove u and v from R'.

4. Output G = ([n], Mo M?o... MT).

%At this point, we know that Path(G, s;, T) is simple.

Copyright © 2023
908 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Intuitively speaking, in the above sampler, for each s;, we try to first sample the walk Path(G, s;,7), and
maintain K as the set of visited vertices. Whenever we encounter a vertex that is already visited before
(by the current s; or earlier s; for j < i), we simply stop sampling the current walk. Also, when we have
successfully sampled the whole walk Path(G, s;,7) without encountering any already visited vertices, we know
that Path(G, s;,7T) is simple, meaning that By, = 0, and we can already go to STOP to sample the rest of the
graphs since we already know that [], g By = 0.

Now we formally analyze SampB®. Let & be the event that it reaches END at the i-th iteration of Step (2)
(i.e., it does not reach Step (2.d) and go directly to STOP). By previous discussions, we note that =&, implies
that we had sampled a simple path with pattern 7 starting from some s;, and therefore [| B, = 0. Hence, we

have
E lH Bul < Prl&,].

u€eS

ues

Hence it suffices to upper bound Pr[€,], we will indeed prove
CLAIM 6.0.6. For every i € [r], it holds that
Pr[&|&i—1] < 1//n.
Claim 6.0.6 immediately implies that
E

H B’L‘| S n—T‘/27
€S
which completes the proof of Claim 6.0.2.

Finally, we prove Claim 6.0.6.

Proof. [Proof of Claim 6.0.6] Fix ¢ € [r], conditioning on the event &_1, let K;_; be the set K at the end of
(i — 1)-th iteration of Step (2). We can see that {s1,s2,...,8—1} € K and |[K| < (i—1)-(L+1). Now we further
conditioning on the size nx of K;_1. We can see that K;_; \ {s1, $2,...,8;—1} is a uniformly random subset of
[n)\ {s1,82...,8i—1} with size ng — (i — 1) <i- L.

Now we lower bound Pr[-&;|€;_1]. We note that this happens if (1) s; ¢ K;_; and (2) Path(G, s;,7) is simple
and does not visited any vertices in K;_;. By our previous discussion and a direct calculation, s; ¢ K; 1 happens
with probability at least 1 — 2—/’:2

We then conditioning on the event s; ¢ K;_1, and also the value of K; 1 to be K;_;. We can then calculate
the probability of Path(G, s;, 7) is simple and does not visited any vertices in K; 1 is at least

(-52)
1—— .
n/2
Putting everything together and recall that L < logn and i < r < n'/?, we have
i L\t
Pr[=&|&ii] > (1 — —= >1-1 ,
g 2 (1-) NG
which completes the proof. 0

|

Reminder of Claim 6.0.4. For every r < n'/3. Let S be a valid set of pairs such that |S| = r. It holds that

E| [Wuo| <n"/2
(u,v)€S

Proof. Let (u1,v1), (ug,v2),. .., (ur,vy) be the elements of S. We will analyze the following sampler SampW.

Copyright © 2023
909 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Sampler SampW?* for Gn1

1. Initially M1, M?, ..., MT are all empty sets, and R, R?, ..., RT are all [n]. Let K = ().
2. For each i € [r]:

(a) For each u € {u;,v;}
i. If p € K, go to label END.
ii. Set fieyr = p-
ili. For each j € [L]:
A. If peur € R™, go to label END.

Sample uniformly at random a vertex v from R™ \ {picur }-
Add (ficur, V) to M7, and remove fiey and v from R74.
Set peyr = v. If v € K, go to label END.
. Add v to K.
(b) go to label STOP.“
(c) END
(d) Add u; and v; to K.

m 9 QW

3. STOP: While not all of R"’s are empty

(a) Pick a vertex u € [n] and an index i € [T] such that u € R.
(b) Sample uniformly at random a vertex v from R\ {u}.
(c) Add (u,v) to M?, and remove u and v from R'.

4. Output G = ([n], Mo M?o...MT).

%At this point, we know that both Path(G,u;,T) and Path(G,v;,7) are simple, and they do not share any vertices.

Intuitively speaking, in the above sampler, we maintain K as the set of visited vertices. For each i € [r], we
try to first sample the walk Path(G, u;, 7). Whenever we encounter a vertex that is already visited before (by the
current u; or earlier u;, v; for j < i), we simply stop the sampling the induced walk. When we successfully sampled
the whole walk Path(G,u;,7) without encountering any already visited vertices, we know that Path(G,u;,T) is
simple. We then similarly try to sample the walk Path(G,v;, 7). If we successfully reach Step (2.b), it means that
both Path(G, u;,7) and Path(G,v;,T) are simple, and they do not share any vertices, meaning that W,, ,, = 0.
We can then go to STOP to sample the rest of the graphs since we already know that H(W})Es Wy =0.

Our proof below follows the same structure of that of Claim 6.0.2. Now we formally analyze SampW?. Let &
be the event that it reaches END at the i-th iteration of Step (2) (i.e., it does not reach Step (2.b) and then go
directly to STOP). By previous discussions, we note that =&, implies that H(w))es W,» = 0. Hence, we have

E H Wi | < Pri&].
(u,v)€ES
Hence it suffices to upper bound Pr[£,], we will indeed prove

CLAM 6.0.7. For every i € [r], it holds that
Pr(&]€i-1] < 1/V/n.

Copyright © 2023
910 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Claim 6.0.7 immediately implies that

E| [[] Wuo| <n "2,
(u,v)€S

which completes the proof of Claim 6.0.4.
Finally, we prove Claim 6.0.7.

Proof. [Proof of Claim 6.0.7] Fix ¢ € [r], conditioning on the event &;_1, let K;_1 be the set K at the end of (i—1)-
th iteration of Step (2). Let Vi1 = {us}oeri—1]U{ve}oeri—1)- We can see that V;_; € K and [K| < 2-(i—1)-(L+1).
Now we further conditioning on the size ng of K;_1. We can see that K, 1 \ V;_ is a uniformly random subset
of [n]\ Vioq with size ngg —2- (1 —1)<2-¢- L.

Now we lower bound Pr[—&;|€;_1]. We note that this happens if (1) u; ¢ K;_1 and (2) Path(G, u;, T) is simple
and does not visited any vertices in K;_1, (3) v; ¢ K;_1 UPath(G,u;,T) and (4) Path(G, v;, T) is simple and does
not visited any vertices in K; 1 U Path(G,u;, 7).

Note that conditioning on both of (1) and (2) hold, Path(G, u;, 7) \ {u;} distributes as a uniform size-L subset
of [n] \ (Ki—1 U{ui}).

Hence, by a similar calculation as in Claim 6.0.6, we have

. 2(L+1)
QDY 1y

PI‘[_\EZ‘|5,L'_1] Z (1 -
n

which completes the proof. 0
a0

A Proof of Lemma 6.0.1

Reminder of Lemma 6.0.1. There exist €,6 € (0,1) such that for all sufficiently large n € N the following
holds: for alld € [logn], p < (d—6)/2, and all p-round communication protocols II with at most n® communication
complezxity, it holds that

Pr [[I(7) € P(7)] < n'0U/P,

T4—Pn,a

where II(7) denotes the output of I when Alice gets the input 71,73, ..., Tq—1 and Bob gets the input mo, 74, . .., Tq.

To prove the lemma, we will exploit the direct product structure in the problem: We can view the length-d
output as O(d/p) segments of length ©(p), and argue that each segment is hard to compute with n® communication
in p rounds, then apply a direct product theorem. We first formally prove this reduction.

We define the pointer chasing problem with a fixed starting vertex s as follows.

DEFINITION A.0.1. Let n,t € N such that t is even. In the PC, ; problem, there are two players Alice and Bob,

a start vertexr s € [n] and t permutations © = (w1,72,...,m) on [n]. Both Alice and Bob know s. Alice also
gets all the odd permutations 71,73, ..., T:—1, and Bob also gets all the even permutations ma,my, ..., . Let
T<; =M 0mi—10...0m. Their goal is to output the path path:(s) = (s,m<1(s), m<2(s),...,m<i(s)).

LEMMA A.0.1. Suppose there is a p-round protocol with at most S bits of communication that solves ASPC,, 4
with probability greater than n'=°%/P when 7 is sampled from Pn.a- Then for k,t € N such that t is even and
k(2t+2) < d, there is a p-round protocol with at most S bits of communication such that given 1, T2, . .., Tk < Pt
and s1,...,8k €unis [n] independently, the protocol outputs (pathz (s1),...,pathz, (sx)) with probability greater
than n=04/P

Proof. Fix a protocol II that solves ASPC,, 4 with the claimed properties, and fix k£ and .
Consider the following protocol II' that solves k independent instances of PC,, ;.

Copyright © 2023
911 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Protocol II' for k instances of PC,, ,

Inputs: s1,...,8, and 71, ..., Tk, where each 7; = (m;1,...,m;¢)
Construct d permutations @' = (7{, ..., 7))

/

1. For i € [k] and j € [t], set m(;_;) H(2t42)—j

-1
2t42)4 1O i, and set m to m;

2. For i € [k], set m/ to the identify matching, and set wg(to any fixed matching such

(i—1)(2¢+2)+t+1
that 7TZ{(2t+2)(si) = 8i11 (Sk+1 is assumed to be 1)

2t+2)

3. For i > k(2t + 2), set 7} to the identity matching

Construct d random permutations 7 = (71,...,7q)

4. Alice knows all 7} for odd i € [d] and Bob knows all 7} for even i € [d]
5. They use public random bits to sample random permutations g, ..., 74
6. They set m; to Ti_l o, 0Tiq

Simulate II and compute outputs

7. Run IT on 7 and obtain a path pathz(s) = (s,7<1($),...,7<4(s)) for some s € [n]
8. If 79(s) # s1, then output FAIL

9. Otherwise, for i € [k] and j € [t], compute and output 7 <;(8i) = T(i—1)(2t4+2)+5 (T<(i—1)(2t+2)+5 (5))

Since T, ..., 7q are random independent permutations over [n], all 7; generated in step 6 must be uniform and
independent, following the same distribution as generated by P, 4. Thus, by our assumption on II, it successfully
outputs a path path-(s) with probability greater than n!=94/P and the communication cost is as claimed.

Moreover, since we applied random permutations 7;, s; becomes independent of 7. In particular, IT only takes
7 as input, which implies that s; is independent of s. Hence, we output FAIL in step 8 with probability 1/n.

Finally, by construction, for i € [d], we always have 7;(m<;(s)) = mj(Ti—1(7<i=1(8))) = 7, (70(s)). Thus, if
70(s) = s1, then (70(s), 71 (7<1(s)),...) is the path on 7 starting from s;. By the construction of 7', we have
T i—1y(2t42)(51) = s Thus, 7 <;(8:) = 7(;_1)0040)4,(51) = Ta—1)@e+2)+5 (T—1)2042)+5(5)). The protocol

successfully computes pathz, (s, for all i € [k] with probability greater than n=0d/p, 0

A.1 Direct product Next, we apply a generic direct product theorem to derive a protocol for PC,, ;. The
following argument is a simplification of [21].

DEFINITION A.0.2. A generalized protocol 11 is a distribution over triples
(X,Y, M),

where M = (Mo, ..., M,) such that each M; is chosen from a prefiz-free set M;(M<;) which depends only on
M_;. The last message M, is the output of the protocol. The 6'°%-cost of I with respect to an input distribution

JTRE
1
0,°8(I1) := 2Dxr,(Ix y ||) + 5 (Tn(X; Mo | Y) + In(Y5 Mo | X))

+ Y In(Y5M; | X, Mo)+ Y In(X; M; | Y, Mo,).

oddi€[1,r] eveni€(l,r]

The commumnication cost s

T
max Z |M;] .
M:TI(M)>0

Copyright © 2023
912 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

The following lemma relates the §'°8-cost to the success probability of a standard protocol.

LEMMA A.0.2. If there is a generalized protocol I1 with 6'°%-cost at most O with respect to . computing a function
f, then there is a standard protocol II' computing [with probability at least

9—6(6+1)
Moreover, I1 and II' have the same communication cost.

Proof. Consider the following standard protocol IT':

Protocol II' for inputs (X,Y) ~ pu
1. view the public random bits as a sequence of | M| independent samples (Méi), t(i))ieHMoH for uniform
M) € Mg and t® € [0,1]
2. if there is a unique Méi) such that t() < H(Méi) | X), Alice sets Mg to Méi)
if there is a unique Méi) such that () < H(Méi) | Y), Bob sets MP to Moi)
otherwise they set Mg or M arbitrarily
fori=1,...,r

if 4 is odd, Alice samples M; ~ Iy, x v, for Mo = Mé“, and sends M;

oS & o> 88

if 4 is even, Bob samples M; ~ Iy, y,ar., for Mo = ME, and sends M;

Clearly, the communication cost of II’ is the same as that of IL.
For each fixed i, the probability that ¢ < TI(M{” | X) is equal to
1

1 .
— (M =m | X) = ——.
m(;,lo Mo ’ Mol

By union bound, the probability that either t() < H(Méi) | X) or t) < H(Méi) | Y) is at most 2/ |Mp]|. Thus,
the probability that both Alice and Bob set Mg' and ME to M is at least

min {TI(My | X), T(Mo | Y)} - (1 =2/ [Mo)**1 7! > = min {TT(Mp | X), TI(M, | V)},

0| =

where we assumed without loss of generality that |[Mg| > 4. Thus, when (X,Y) is sampled from u, we have

(XY, M) > _ - u(X,Y) - min {TI(Mo | X),TI(My | Y)}

[T oonix,me)- [TOG|Y, M)

oddi€[1,r] even i€[1,r]

| =

Let I’y be the distribution such that

(X, Y, M) = p(X,Y)-TII(My | X)- J[TG X Mo)- [1M | Y, M),
odd i€[1,r] eveni€(l,r]
and Iz be the distribution such that

Mp(X,Y, M) = p(X,Y)-TI(Mo | V) [[TG X, Mo)- [[TO0OG|Y, M)

oddi€[1,r] even i€[1,r]

Copyright © 2023
913 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Thus, we have

I'(X,Y, M) > - min {IT, (X, Y, M), Il (X, Y, M)} .

| =

Now, observe that

Dy (IT| ITy)

I S ER R
(XY, M)~ & I, (X,Y, M)

_ r [10 (H(XJ’).H(MO|X7Y)~Hoddie[1,r]H(MiX,Y,M<i)~Heveni€[1ﬂ_]H(Mi|X,Y,M<,;)>]

B (XY, M)~T1 /’L(va) : H(MO | X) ’ Hoddie[l,r] H(MZ | X, M<l) : Hevenie[l,r] H(M’L | Y, M<z)
= Die(Txy || @)+ In(Yi My | X)+ Y In(MyY | X, Mo)+ Y In(Mi; X | Y, M)
odd i€[1,r] eveni€([l,r]
Similarly,

Dy, (IT|| 1) = Dk, (Ixy || p) + In(X; Mo | Y)
+ Y m(MgY | X.Mo)+ > In(MgX | Y, M),

oddi€(1,r] eveni€[1,r]

Therefore,
Dy (IT||ITy) + Dy (I || ITz) = 20,°8(T1) — 2Dkr (Tx v || 1) < 26.

CrLAM A.0.1. Let P,Q1,Q2 be three distributions. We must have

Z min{P(z), Q1 (x), Qo (x)} > 27 3(max{Drr (P][Q). Drv (P [Q2)}+1)

We will prove the claim later. The claim implies that

> min{II(X,Y, M),IT, (X, Y, M), I(X,Y, M)} > 275973,
X,Y,M

which in turn, implies that

1
" minfII(X, Y, M), IV(X,Y, M)} > £ -2760-9 > 2760+,
XYM
Since II computes f, II' must compute f with probability at least 276+ This proves the lemma. n]

Proof. [Proof of Claim A.0.1] Let
Ep:={z: P(z) < Qi(z) A P(z) < Q2(x)},

Eyi={z: Qi(z) < P(z) A Qi(x) < Qa(2)},
and
Ey:={z:Qz2(x) < P(z) NQa2(z) < Q1(x)}.

Then at least one of Ey, F, E5 has probability at least 1/3 under distribution P.
If P(Ey) > 1/3, then

S min{P(z), Qi (2), Qa(x)} > 1/3.

The lemma holds.

Copyright © 2023
914 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Suppose P(FE;) > 1/3. We have
> min{P(z), Q1(x), Q2(x)} > Q1(En).

On the other hand,

Dy (P | Q1) Ep [log(P(x)/Q1(x))]

=P(Ey)- Elog(P@)/@u(z)]+ P(Ey) E__[log(P(z)/Cr(x))
x~ 1 xz~P|Eq
which by the convexity of f(t) = log(1/t), is

zP(Eolog(E [Ql(x)/P<x>}1)+P(E1>1og< E[Q1<x)/P<x>]1>

z~P|E; z~P|E;

P(Eqy)log (P(E1)/Q1(E1)) + (1 — P(Ey))log (1 — P(E1))/(1 — Q1(E1)))
> P(Eq)log(1/Q1(E1)) — 1
1
3

>

log(1/Q1(E1)) — 1.

That is, Qq(F;) > 2~ 3(Pxe(P Q1)+ The lemma holds. The case where P(F5) > 1/3 is similar. O

The following lemma is implicitly proved in [21].

LEMMA A.0.3. Let II be a standard protocol with input distribution p and W be an event, let I be the
distribution of II conditioned on W, then

log (TTW
0,8(I1") < 5log(1/IL(W)).
Proof. Consider 0)°8(II'"). For the first term, since II(X,Y) = u(X,Y), we have

(XY | W)
W — —_
Dy)= VB [log (u(X,Y))}

< oy By Lo (1/110V))]
= log(1/1L(W)).

For the second term, since (X,Y) and My are independent in II, we have

Tow (X; Mo | V) = ZH(X—x,Mo—mo|Y—y,W>~log((7| Mo = mo, y’W))

IX=x|Y=yW)

Z,Y,mo
H(XZJT‘MQ:mo,Y:y,W)
zyz,% = Mo = mo | Y=y 1) Og(X =2|Y =y)

— Z H(X:m,M0:m0|Y:y,W)~log<

Z,Y,Mmo

I(X=z|Y=y W)
NX=z|Y=y)

(X =2 | Myg=mp,Y =y, W)
(X =z | My=mgo,Y =vy)

= Z H(X—x,Mo—m0|Y—y,W)~log(

Z,Y,mo

— Dxr(Ilxw,y [TIxy)
< Z (Y =y, Mo =mgo | W) -log(1/I(W | Y =y, Mo = my))

Yy,mo

Copyright © 2023
915 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

which by the concavity of log, is

<10g ZH(Y:y’M():mO'W)
=\ & W TY =y, Mo = mo)

B I(Y =y, My = myg)
= log (Z T)

— log(1/TL(W)).

Similarly, Iyw (Y; My | X) < log(1/II(W)).
For the third term, fix an odd 7, we have

IHW (Y, Mz | X, M<z)

= Y OX=2Y=yMg=mg|W):log (H(

TY,Mm<q

Mi:mi|X:xayzyaM<i:m<i7W)
M(M; =m; | X =2, Me; = mei, W)

= Z (X =2,Y =y, M<; = m<; | W) - log <H(

TY,Mm<q

Mi:mi|X:anzyaM<i:m<iaW)
H(Ml = m; | X:x,M<i :m<i)

+ > H(X—x,Y—y,Mgi—mSi|W)~log<

Z,Y, Mg

H(MZ = m; | X = LI?,M<Z‘ = m<i)
H(M’L =m; | X = !L'7M<i = m<i7W) .

Note that the second term is at most 0, since its negation is an expected KL-divergence. For the first term, we
have II(M; = m; | X = o, Mo; = me;)) = II(M; = m; | X = 2,Y = y,Mo;, = m<;), since II is a standard
protocol and 7 is odd. Thus, we have

IHW(Y;Mi | X, M<i)

= Y H(X:x,Y:y,MQ:mq|W)~10g<

T,Y,M<;

H(Mi:mi|X:x,Y:y,M<i=m<i,W))
H(Mizm”X:x,Y:y,Mq-:mq)

= E Dy, (Mag x =2,y =y, Mes=me,w 1 T X =2,y =y, Mo j=m o,)-
zy,mei~Ix, vy, M

Thus, the third term in G}fg(HW) is

> Imw(Y;M; | X, M)

odd i€[1,r]
< E E Dxr.(pg, x=a,y =y, Mei=me,w | TIa X =2,y =y, Mo y=m ;)
; zy,m<ilx vy, M,
oddi€[l,r]
< E E Dy (g, x =2,y =y, Mei=meiw || Dty X =2,y =y, Moi=m;)
1] z,y,mei~Ilx vy vy
?)

which by the chain rule of KL-divergence, is

= E D1, (Mpg x =2,y =y, Mo=mo,w || Haz| X =2,y =y, Mo=ms)
z,y,mo~Ilx v, my
< E log(1/TI(W | X = 2,Y =y, My =my))

z,y,mo~Ilx v, mg
< log(1/TI(W)).
The same argument proves that the last term is also at most log(1/II(W)). Thus, the lemma holds. 0
The following lemma decomposes a protocol for k instances into one protocol for one instance and one protocol

for &k — 1 instances.

Copyright © 2023
916 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

LEMMA A.0.4. Let p be a distribution over input pairs (X,Y). Let I be a generalized protocol on k input pairs
(X1,..., Xp, Y1,...,Y3) that uses C bits of communication and computes f*. There is a generalized protocol
(<% and a generalized protocol I®) such that

o both TI<K) and TI®) use at most C' bits of communication;
o 098, (IIC<M) glos(IIM)) < 998 (1I);

o II(<K) computes f5*=1 and TI®) computes f.
By repeatedly applying the above lemma, we prove the following lemma as a corollary.

LEMMA A.0.5. If there is an r-message protocol with 0'°%-cost 6 with respect to ™ and C bits of communication
that computes f". Then there is an r-message protocol with 6'°%-cost 0/n with respect to u and C bits of
communication that computes f.

Proof. [Proof of Lemma A.0.4] Let (X,Y, M) be random variables distributed according to II. Let S C [k] be a
nonempty proper subset of the instances (think of S = [k — 1]), and denote its complement by S. Consider the
following protocol n& for fI°l with respect to pul9l, which defines a distribution over triples

(X", Y7, M™").

Protocol ngz
1. sample (X,Y, M) ~ II
set X" := Xgand Y" : =Yg
set M := Xgo My
fori=1,...,r—1, set M := M;
set M, to M, restricted to coordinates in S

G N

Compared to II, 17§ restricts the input pair (X,Y’) to coordinates only in S, prepends Xz to the public random
bits, and restricts the output to coordinates only in S. Since M, = f*(X,Y), M = f191(Xg,Ys). Hence, g is
an r-message protocol that computes f!51.

Similarly, we define 7% as follows.

Protocol 7%/:

1. sample (X,Y, M) ~ II
set X" := Xz and Y" :=Yg
set M =Yg o My
fori=1,...,r—1, set M := M;
set M) to M, restricted to coordinates in S

Al el

We prepend Yy to My, and restrict the output to coordinates in S. Similarly, 77% is an r-message protocol that

computes f|§|
To prove the lemma, we will set II(<*) to 77? and set TI(®) to 77’?/ for S = [k — 1]. Clearly, both protocols use

at most C bits of communication. It remains to show that their '°8-costs sum up to that of II.
Analysis of the #'°%-cost. Next, we analyze their '°%-costs. We first focus on n& . The mutual information
between the input and the public random bits is

In(Xn; Mg | Y77) + In(Yn; Mg | X’I) = IH(XS; Xg, M() ‘ Ys) + IH(Y5; Xg, Mg | Xs)
The mutual information between Y and the odd messages is

o LM X ML) < > In(Ye; M | X, M),
oddi€[1,r] oddi€[1,r]

The mutual information between X" and the even messages is
Z L(X" M [Y, M)

eveni€[1,r]

Copyright © 2023
917 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

< > In(Xs; M; | Ys, Xg, Moy)
eveni€([l,r]
= Z (IH(XS7Y§7 MZ ‘ YS7X§7 M<Z) - IH(XSa Y§ | YS7X§7 M<i7Mi))
ni€(l,r]

even ¢

= Z (IH(XSQMi | X§7Y7M<i)

eveni€(l,r]

+ IH(X37Y§ ‘ X§7 YSaM<i) - IH(X57Y§ | Xga YS7M<’i+1))7

Summing up all terms, we have

(A1) 005 (ng)
(A.2) < 2Dk (Ixg vy | Mlsl) + % In(Xs; Xq, My | Ys) + % In(Ys; Xg, Mo | Xs)
(A.3) + > In(YsiMi | X, M)+ Y In(Xs;M; | X5, Y, M)
odd i€[1,r] eveni€([l,r]
(A.4) + Y (In(Xs:Yg | X5, Ys, Moy) — In(Xs; Y5 | X3, Ys, Mciga)).

eveni€[1,r]
Similarly, for 77%/ , the mutual information between the input and the public random bits is
In(Xz;Ys, Mo | Yg) + In(Ys; Ys, Mo | X3).
The mutual information between Y and the odd messages is at most

> In(Yg M; | X5, Ys, M)

odd i€[1,r]

= Z (In(Yg; Xs, M; | X5,Ys,M<;) — In(Yg; Xs | X5, Ys, Mcit1))
oddi€[1,r]

= Y (In(YgM; | X, Y, M)
odd i€[1,r]

+In(Yg; Xs | X5,Ys, Mci) — In(Xs: Ys | X3, Ys, Mcitr)).
The mutual information between X" and the even messages is at most

Y In(Xg M| Y, My).

eveni€([l,r]

Summing up all terms, we have

(A.5) oifif;qs\ (77%)
(A.6) < 2Dk (Ix. v, || 151 + % -In(X4;Ys, My | Yg) + % -In(Ys; Ys, My | X7)
(A7) + > In(Yg M| X, Ys, Mo)+ Y In(Xg M; | Y, M)
odd i€(1,r] even i€[1,r]
(A.8) + Y (In(Yg Xs | X5, Ys, M) — In(Xs; Yy | X3, Yo, Mciga).
odd i€[1,r]

Next, we sum up Equation (A.1) and (A.5). The first lines (A.2) and (A.6) sum up to
2Dk (Mx v || 1) + 2Dk (x| 1 711)
1 1
+5 In(Xs; X5, Mo | Ys) + 5 - In(Ys; X5, Mo | X5s)

Copyright © 2023
918 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1 1
+ 5 IH(Xg; Ys, My | Yg) + 3" IH(Yg; Ys, My | Xg)

= 2Dk (Ilx y || #*) — 2In(Xs, Ys; X3, Yy)

1
+g (In(Xs; X5 | Ys) + In(Xs; My | Xg,Ys) + In(Ys; Xg | Xs) + In(Ys; My | X))

1
+5 (In(X45;Ys | Yg) + In(X5; Mo | Y) + In(Ys; Ys | Xg) + In(Yg; Mo | X5,Y5))
< 2Dy, (Ix y || p¥) — 2In(Xs, Ys; X<, Ys)

+ - (In(Xs; X5 | Ys) + In(Xs; My | Xg,Ys) + In(Xs,Ys; X5, Yg) + In(Ys; Mo | X))

+
N~ N~

. (IH(Xg, Yg, XS7YS) + IH(Xg, MO | Y) + IH(X@, Yg, YS) + IH(Y%7 Mo | Xg, Ys))
1 1
= 2Dk (Ix vy || 1*) — In(Xs, Ys; X5, Ys) + 5 In(Xs; X5 | Ys) + 3 In(Xs, Y5 Ys)
1
+ 5 . (IH(Xs;MO ‘ Xg, YS) +IH(Y3;M0 | X) + IH(Xg; Mg | Y) +IH(Y§, M() ‘ X§, Ys))
< 2Dk (IIx y | 1) — In(Xs;Ys | X5, Ys)
1
+ 5 (In(Xs; My ‘ Xg, Ys) + In(Ys; My | X)+ IH(Xg; My |Y) +IH(Y§; My ‘ X§, Ys))
= 2Dy (Ix y || 1#*)
1
+ 5 (In(Xs:; Yy | X5, Ys) + In(Xs; Mo | X5, Ys) + In(Xz: Mo | Y))
1
+5 (—In(Xs;Yg | X5,Ys) + In(Ys; Mo | X) + In(Yq; My | X5,Y5))
= 2Dk (Ix v || 1¥)

= (—In(Xs;Yg | Xg,Ys, My) + In(X; My | Y))

+

N~ N~

(—In(Xs:; Yz | X5, Ys, Mo) + In(Y; Mo | X))

= 2Di(Tx v || 1*) + % C(In(X; Mo | Y) + In(Y; Mo | X)) — In(Xs; Yz | X3, Ys, Mo).
The second lines (A.3) and (A.7) sum up to
Yo In(YssMi | X, M)+ Y In(Ys; Mi| X,Ys, M)

odd i€[1,r] oddi€[1,r]

+ Y In(XsiMi | X5, Y, Mo)+ Y In(XgM; | Y, M)

eveni€([l,r] eveni€[1,r]

= Y In(YiMi | X, M)+ Y In(X;M; | Y, M)

odd i€[1,r] even i€[1,r]

Finally, the third lines (A.4) and (A.8) sum up to

Z (In(Xs;Yg | X, Ys, Mo;) — In(Xs:Ys | Xg,Ys,Mciy1))
i€[1,r]
= IH(X57Y§ | ng Y57MO) - [H(XS7Y§ ‘ X§7Y87M)
< IH(X57Y§ | Xga Y57MO)'

Summing up all lines gives us

0%, (1) + 0% ., ()

plS|

Copyright © 2023
919 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1
< 2Dk (Tx v || 1) + 5 - (In(X; Mo | YV) + In(Y'; My | X))

+ > In(Y5M; | X, Mo)+ > In(X;M; | Y, M)

odd i€[1,r] eveni€[1,r]

= 0,58 (T0).
This completes the proof of the lemma.]

Finally, by combining Lemma A.0.3, Lemma A.0.5 and Lemma A.0.2, we prove the following direct product
result.

LEMMA A.0.6. If there is a r-message protocol I1 that computes f™ with probability ¢ under input distribution p™
using C' bits of communication, then there is a r-message protocol II' that computes f with probability 2=6 - 30/
under p using C' bits of communication.

Proof. Consider the distribution induced by running II on input distribution p”. Let W be the event that II
succeeds. Then II(W) > ¢. Lemma A.0.3 implies that 6°5(IT"") < 5log(1/q). Next, Lemma A.0.5 implies
that there is a protocol that computes f with §'°8-cost with respect to p at most 5-n~!log(1/q). Finally, by
Lemma /A.O.2, it implies a protocol II’ that computes f under p with probability at least 9—6(5n" " log(1/q)+1) >
2—6 . q30 n O

A.2 Lower bound for PC,; The following lemma is a direct corollary of Lemma A.0.6.

LEMMA A.0.7. Suppose for k,t € N such that t is even and k(2t+2) < d, there is a p-round protocol with at most
S bits of communication such that given Ty, Ta, ..., Ty <= Pt and si,..., Sk €unif [n] independently, the protocol
outputs (pathz (s1),...,pathz (sy)) with probability greater than n=9%4/P Then there is a p-round protocol with
at most S bits of communication computing PC,,; with probability at least 27 - n 3004/ (PR) for 7 Pn,t and
S Eunaf [1].

Finally, we use the following lower bound for PC,, ;, whose proof is similar to that of Lemma 4.11 in [10] and
the standard pointer chasing lower bound [59].

LEMMA A.0.8. Any (t — 2)-message protocol I1 with at most n'/* bits of communication cannot solve PC,, ; with
probability greater than 2t -n~1/%.

Thus, Lemma 6.0.1 is a direct corollary of Lemma A.0.1, Lemma A.0.7 and Lemma A.0.8 for ¢ = 1/4 and
0 = 0.001 by setting t = p+ 2 and k = |d/(2t + 2)|, as we have

9—6 . 1y =300d/(pk) > 96 . —0.03d/p(Ld/(2p+6)]) 5 9f . p=1/8

)
since t < logn.

Proof. Let X be Alice’s matchings (71,...,m—1), and let Y be Bob’s matchings (73, ..., 7). We will inductively
prove the following: For i € [0,¢ — 2], the distribution of

7T§1'+2(S) | Tlyeo- 77Ti+1,S,M§Z'

is i - n~1/8-close to uniform in total variation distance in expectation. In particular for i = ¢ — 2, the {o-norm is

at most (t —2)-n~ Y% 4+ 1/n in expectation. That is, in expectation, one cannot predict m<¢(s) with probability
better than (¢ — 2) - n~1/8 4 1/n given mq,...,m—1, 8, M<;_o. Since the output of the protocol is determined by
M<;_», it implies that the overall success probability is at most (t —2) - n~1/8 +1/n < 2t - n~1/8.

Base case: i = 0. We first prove the base case when i = 0. The distribution of

T<2(s) | m1, 8, Mo
is the uniform distribution over [n], since 7o is still uniform conditioned on (71, s, My) (which determines m;(s)).

Hence, the total variation distance is 0 in expectation.

Copyright © 2023
920 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Induction: i — 1 to i. By symmetry, assume that ¢ is odd.
Consider the matching m;12. Since all permutations are independent in the input distribution, we have

H(ﬂ-i+2 | Tlseees Ty S) = log(n')a

which implies that
H(miyo | 71,07, 8, M<i) > log(n!) — |[M<;| > log(n!) — n'/%.

The following lemma from [8] relates the entropy of a permutation to the entropy of its random coordinate.

LEMMA A.0.9. (LEMMA A.13 IN [8]) Let m be a random permutation over [n]. If H(w) > logn! —n/8, then

nlogn — Z H(n(z)) < 4y/(logn! — H(m))n + 3.

x€[n]
It implies that for a uniform = € [n] (independent of 742 conditioned on (mq,...,m;, s, M<;)), we have
AR/t p 43
E [H(mis2(2) | m1,y... 7,8, M, x)] > logn — fvnondts >logn —n~ /4,
= n

z€[n]

In particular, by Pinsker’s inequality and the concavity of square-root, we obtain that for a uniform = € [n], the
distribution of

7TZ'+2(£L') | Ty Ty S, Mgi,x

is n~1/%-close to the uniform distribution over [n] in expectation.
Now suppose the claim holds for ¢ — 1, i.e.,

T<iv1(8) [71,0, iy 8, M<ig
is (i — 1)n~'/8-close to uniform. We observe that conditioned on (71, ...,7;, s, M<i_1), mi41(s) is determined by
mi+1, which is part of Bob’s input. By the Markov property of communication protocols, 741 is independent
of Alice’s inputs conditioned on (m1,...,m;,s, M<;—1). Thus, m1 is also independent of M; conditioned on
(m1,...,mi,s,M<;_1). Hence, the distribution of

7T§1'+1(8) | TlyeeoyTiyS, Mgi

is (i — 1)n~/8-close to uniform.
By the Markov property again, m<;yi(s) and m1o are independent conditioned on (my,...,m;,s, M<;).
Therefore, by the triangle inequality, the distribution of

Tiyo(m<iv1(s)) | 71, ..., My 8, My, m<iya(s)
is i - n~/3-close to uniform in ex i
- pectation.
Finally, since m;+1 and 712 are independent conditioned on (m1,...,m;, s, M<;, T<;+1(s)). The distribution
of

Tiv2(T<it1(s)) | w1y, M1, §, M<i, m<iy1(s)

is i - n~1/8-close to uniform in expectation. Observing that T<i+1(s) is determined by other variables in the
conditioned, we complete the induction.]

References

[1] List of open problems in sublinear algorithms: Problem 45. https://sublinear.info/45.
[2] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal algorithms for maximum
matching under resource constraints. ACM Transactions on Parallel Computing (TOPC), 4(4):1-40, 2018.

Copyright © 2023
921 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

3l

(4]

(5]

(6]

[7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

(15]

[16]

(17]
18]
(19]
[20]

21]

(22]

23]
(24]

(25]

[26]

Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments.
Journal of Computer and system sciences, 58(1):137-147, 1999.

Alexandr Andoni, Tal Malkin, and Negev Shekel Nosatzki. Two party distribution testing: Communication and
security. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein. Coresets meet edcs:
algorithms for matching and vertex cover on massive graphs. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1616-1635. STAM, 2019.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph streams. In Proceedings
of the Twenty-Fighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1723-1742. STAM, 2017.
Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dynamic graph streams
and the simultaneous communication model. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 1345-1364. STAM, 2016.

Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. Multi-pass graph streaming lower bounds for
cycle counting, max-cut, matching size, and other problems. In FOCS. https://arxiv.org/pdf/2009.03038.pdf,
2020.

Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming algorithms. In FOCS.
https://arxiv.org/pdf/2009.01161.pdf, 2020.

Sepehr Assadi and N Vishvajeet. Graph streaming lower bounds for parameter estimation and property testing via
a streaming xor lemma. In 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages
612—625. Association for Computing Machinery, 2021.

Lészlé Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986), pages 337-347. IEEE, 1986.

Mitali Bafna, Badih Ghazi, Noah Golowich, and Madhu Sudan. Communication-rounds tradeoffs for common
randomness and secret key generation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1861-1871, 2019.

Maria-Florina Balcan, Yi Li, David P Woodruff, and Hongyang Zhang. Testing matrix rank, optimally. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 727-746. STAM, 2019.

Ziv Bar-Yossef, Thathachar S Jayram, and Iordanis Kerenidis. Exponential separation of quantum and classical one-
way communication complexity. In Proceedings of the thirty-sizth annual ACM symposium on Theory of computing,
pages 128-137, 2004.

Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with an application to counting
triangles in graphs. In SODA, volume 2, pages 623-632, 2002.

Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-optimal approximate
shortest paths and transshipment in distributed and streaming models. In 81 International Symposium on Distributed
Computing, 2017.

Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles and other substructures
in graph streams. In 84th Symposium on Theoretical Aspects of Computer Science, 2017.

Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear algorithms for maxcut and correlation
clustering. In 45th International Colloguium on Automata, Languages, and Programming, 2018.

Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy. Closed-form expressions
for the sketching approximability of (some) symmetric boolean csps. arXiv preprint arXiv:2112.06319, 2021.

Mark Braverman and Ankur Moitra. An information complexity approach to extended formulations. In Proceedings
of the forty-fifth annual ACM symposium on Theory of computing, pages 161-170, 2013.

Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products in communication complexity.
In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 746-755. IEEE Computer Society, 2013.

Vladimir Braverman, Stephen Chestnut, Robert Krauthgamer, Yi Li, David Woodruff, and Lin Yang. Matrix norms
in data streams: Faster, multi-pass and row-order. In International Conference on Machine Learning, pages 649-658.
PMLR, 2018.

Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting triangles in the streaming model?
In International Colloguium on Automata, Languages, and Programming, pages 244-254. Springer, 2013.

Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic data streams. In
Algorithms-ESA 2015, pages 263—-274. Springer, 2015.

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R Saxena, Zhao Song, and Huacheng Yu. Almost optimal
super-constant-pass streaming lower bounds for reachability. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 570-583, 2021.

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R Saxena, Zhao Song, and Huacheng Yu. Near-optimal

Copyright © 2023
922 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

27]
28]

29]

30]

31]

(32]

(33]

34]
(35]

(36]

37]

(38]

39]

[40]

(41]
[42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

two-pass streaming algorithm for sampling random walks over directed graphs. In 48th International Colloguium on
Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2021.
Ashish Chiplunkar, John Kallaugher, Michael Kapralov, and Eric Price. Factorial lower bounds for (almost) random
order streams. arXiv preprint arXiw:2110.10091, 2021.

Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini Velusamy. Linear space
streaming lower bounds for approximating csps. arXiv preprint arXiv:2106.13078, 2021.

Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approximability of all finite csps
with linear sketches. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
1197-1208. IEEE, 2021.

Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal streaming approximations for all boolean
max-2csps and max-ksat. In 2020 IEEFE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
330-341. IEEE, 2020.

Graham Cormode and Hossein Jowhari. A second look at counting triangles in graph streams (corrected). Theoretical
Computer Science, 683:22-30, 2017.

Hossein Esfandiari, Mohammadtaghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and Krzysztof Onak.
Streaming algorithms for estimating the matching size in planar graphs and beyond. ACM Transactions on Algorithms
(TALG), 14(4):1-23, 2018.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in
a semi-streaming model. In International Colloguium on Automata, Languages, and Programming (ICALP), pages
531-543. Springer, 2004.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. Graph distances in the
data-stream model. SIAM Journal on Computing, 38(5):1709-1727, 2009.

Orr Fischer, Shay Gershtein, and Rotem Oshman. On the multiparty communication complexity of testing triangle-
freeness. In Proceedings of the ACM Symposium on Principles of Distributed Computing, pages 111-120, 2017.
Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via unweighted
augmentations. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC), pages
491-500, 2019.

Dmitry Gavinsky, Julia Kempe, lordanis Kerenidis, Ran Raz, and Ronald De Wolf. Exponential separations for
one-way quantum communication complexity, with applications to cryptography. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pages 516—525, 2007.

Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming complexity of maximum
bipartite matching. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms
(SODA), pages 468—485. SIAM, 2012.

Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. ACM, 42(6):1115-1145, nov 1995.

Noah Golowich and Madhu Sudan. Round complexity of common randomness generation: The amortized setting.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1076-1095. STAM,
2020.

Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph processing. Algorithmica,
76(3):654-683, 2016.

Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games. Approzimation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 2019.

Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming complexity of approximating max
2csp and max acyclic subgraph. In Approzimation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

Zengfeng Huang and Pan Peng. Dynamic graph stream algorithms in o (n) space. Algorithmica, 81(5):1965-1987,
2019.

Ce Jin. Simulating random walks on graphs in the streaming model. In 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume 124, pages 46:1-46:15,
2019.

John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity of graph and hypergraph counting.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 556-567. IEEE, 2018.
John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The complexity of counting cycles in the
adjacency list streaming model. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 119-133, 2019.

Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity of set intersection. STAM
Journal on Discrete Mathematics, 5(4):545-557, 1992.

Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the twenty-fourth annual

Copyright © 2023
923 Copyright for this paper is retained by the authors

Downloaded 01/30/23 to 96.248.68.17 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

[50]

[51]

[52]
53]
[54]
[55]
[56]
[57]
(58]

[59]

(60]
[61]
(62]

(63]

ACM-SIAM symposium on Discrete algorithms (SODA), pages 1679-1697. SIAM, 2013.

Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approximating MAX-CUT. In
Proceedings of the Twenty-Sizth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 1263-1282, 2015.

Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (14+ w (1))-approximation to max-cut
requires linear space. In Proceedings of the Twenty-FEighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1703-1722, 2017.

Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approximating max-cut. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 277288, 2019.

Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability results for MAX-
CUT and other 2-variable csps? SIAM J. Comput., 37(1):319-357, 2007.

Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, pages 367-376, 2015.

Yi Li and David P Woodruff. On approximating functions of the singular values in a stream. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing (STOC), pages 726-739, 2016.

Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 170-181. Springer, 2005.

Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9-20, 2014.

Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better algorithms for counting triangles in data streams.
In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
401-411, 2016.

Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. In Cris Koutsougeras and
Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-
8, 1991, New Orleans, Louisiana, USA, pages 419-429. ACM, 1991.

Alexander A Razborov. On the distributional complexity of disjointness. In International Colloguium on Automata,
Languages, and Programming, pages 249-253. Springer, 1990.

Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph streams. Journal of the
ACM (JACM), 58(3):1-19, 2011.

Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation resistance of every ordering csp.
arXiv preprint arXiw:2105.01782, 2021.

Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals, and other problems. In
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 11-25. SIAM, 2011.

Copyright © 2023
924 Copyright for this paper is retained by the authors

	Introduction
	Our Result
	Our Techniques
	Additional Related Work
	Acknowledgments

	Overview of Techniques
	Setup and high-level overview
	Two Cases: Short Simple Cycles and Long Simple Path
	Patterns
	Our Strategy: Hiding a Hard Search Problem in Cycle/Path-Finding

	Lower Bounds for Short Cycles via Set-Intersection
	Toy Case: = (1,2)
	Generalization to Arbitrary Patterns

	Lower Bounds for Paths via Pointer-Chasing

	Preliminaries
	Notation
	Graphs

	Lower Bounds for Finding Cycles
	Lower Bounds for Finding a Short Cycle
	Proof of lemma:lowb-for-CycleSearch
	A Sparse Variant of the Set-Intersection Problem
	A Reduction from Sparse-SIn,k,L to Cycle-Searchn,T,

	Proof of lemma:distr-close
	Proof of lemma:cyc-bounds

	Lower Bounds for Finding a Long Path
	Lower Bounds for a Specific Pointer Chasing Problem
	Proof of lemma:long-path-case
	Proof of Item (1) of lemma:bounds-on-X-G
	Proof of Item (2) of lemma:bounds-on-X-G
	Omitted Proofs

	Proof of lemma:lowb-ASPC
	Direct product
	Lower bound for PCn,t

