
Towards Multi-Pass Streaming Lower Bounds

for Optimal Approximation of Max-Cut

Lijie Chen∗ Gillat Kol† Dmitry Paramonov‡ Raghuvansh R. Saxena§ Zhao Song¶

Huacheng Yu‖

Abstract

We consider the Max-Cut problem, asking how much space is needed by a streaming algorithm in order to
estimate the value of the maximum cut in a graph. This problem has been extensively studied over the last
decade, and we now have a near-optimal lower bound for one-pass streaming algorithms, showing that they
require linear space to guarantee a better-than-2 approximation [50, 52]. This result relies on a lower bound
for the cycle-finding problem, showing that it is hard for a one-pass streaming algorithm to find a cycle in a
union of matchings.

The end-goal of our research is to prove a similar lower bound for multi-pass streaming algorithms that
guarantee a better-than-2 approximation for Max-Cut, a highly challenging open problem. In this paper, we
take a significant step in this direction, showing that even o(log n)-pass streaming algorithms need n

Ω(1) space
to solve the cycle-finding problem. Our proof is quite involved, dividing the cycles in the graph into “short”
and “long” cycles, and using tailor-made lower bound techniques to handle each case.

1 Introduction

How well can the value of the maximum cut (Max-Cut) in a graph be approximated with a polynomial time
algorithm? This question was studied for decades, culminating in the celebrated Goemans-Williamson algorithm
[39] that gives a 1.138 approximation, that was later shown to be optimal under the Unique Games Conjecture
[53]. The Max-Cut question has also been of special interest to the streaming community [1], and after extensive
research efforts, the space complexity of one-pass streaming algorithms for Max-Cut is now well understood.

A recent effort by the streaming community is to devise lower bounds against multi-pass algorithms. This
paper is a part of this effort, with the end goal of showing that streaming algorithms that compute a better-
than-2 approximation of Max-Cut require at least nΩ(1) space, even if ω(1) passes are allowed. Note that a
2-approximation is trivial, as a random cut contains at least half of the edges in the graph. However, such a lower
bound is likely to be very challenging as it would subsume technically complex lower bounds in the streaming
literature (surveyed below). In this paper, we take a significant step towards this goal and give a lower bound for
an associated search problem.

(1+ ε)-approximation and the BHM problem. The Boolean Hidden Matching (BHM) is a popular two-
party communication problem [14, 37]. Here, Alice’s input is a uniformly random cut over n vertices, and Bob’s
input is obtained by sampling a uniformly random matching and dropping all the edges that do not cross Alice’s
cut in the “yes” case1, and dropping each edge independently with probability half in the “no” case. The goal of
the parties is to determine which is the case. In their influential work, [37] showed a lower bound saying that any
one-way protocol that solves the BHM problem must have Alice sending at least Ω(

√
n) bits to Bob.

The seminal work of Verbin and Yu [63] uses this lower bound, together with novel “gadget-based” reductions,
to prove lower bounds on the space required by graph streaming algorithms. More reductions were discovered
by subsequent works [24, 55, 6, 22, 32, 44], including reductions from the Max-Cut problem [54, 50]. These lower

∗UC Berkeley.
†Princeton University.
‡Princeton University.
§Microsoft
¶Adobe Research.
‖Princeton University.
1As Alice’s cut is uniformly random, this means that Bob drops half of his edges in expectation.

Copyright © 2023
Copyright for this paper is retained by the authors878

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

bounds have also been extended to multi-pass streaming algorithms by recent works [8, 10]. However, the gadget
based reductions in this line of work only rule out small constant factor approximations for Max-Cut by streaming
algorithms.

2-approximation and the distribution G. Kapralov, Khanna, and Sudan [50] (and subsequent works
[51, 52]) devised an improved reduction that can also rule out any streaming algorithm guaranteeing any
approximation factor better-than-2. The best way to understand this result is to view their graph as a union of
many matchings, with each matching resembling an instance of the BHM problem2.

In more detail, let G = Gn,T be the distribution over n-vertex graphs whose edge set is a union of T matchings,
selected independently and uniformly at random. Let GY be the “yes” distribution obtained by sampling a graph
from G, then sampling a uniformly random cut and deleting all the edges that are not in the cut. Let GN be
the “no” distribution obtained by sampling a graph from G and randomly deleting each edge with probability 1

2 .
Observe that by construction, graphs in the support of GY have a cut that consists of all the edges, and that, as T
increases, the maximum cut of graphs in the support of GN has roughly half of the edges (with high probability).
Therefore, a lower bound on algorithms distinguishing between these two distributions is also a lower bound on
getting a better-than-2 approximation of Max-Cut.

As in other works in the streaming literature that give lower bounds for Max-Cut [8, 10], this is done through
the following perspective of a cycle problem (see also [27]): Graphs in the support of GY are bipartite, and therefore
have no odd cycles, whereas graphs in the support of GN have many (short) odd cycles with high probability. In
this perspective, [50] show that:

Theorem 1.1. ([50], Informal) Any one-pass streaming algorithm that decides if an input graph has an odd
cycle, under the promise that the graph was either sampled from GY or GN , must use Ω(

√
n) space.

At a very high level, to prove Theorem 1.1, [50] use the BHM lower bound3 to argue that even if the streaming
algorithm knew the sampled cut, any given matching cannot help the algorithm distinguish between the two cases,
and a hybrid argument over all matchings then yields the desired lower bound.

The cycle-finding problem. As Theorem 1.1 gives a lower bound for a decision problem, it also trivially
implies a lower bound for the associated search problem of finding an odd cycle in a graph sampled from GN .
Going back to the Max-Cut problem, this corresponds to finding a cycle-based certificate for proving that the
graph has a small maximum cut. The proof of [50] even shows the following slightly stronger search lower bound:

Theorem 1.2. ([50], Informal) Any one-pass streaming algorithm that outputs a cycle4 in a graph sampled
from G with constant probability must use Ω(

√
n) space.

1.1 Our Result Theorems 1.1 and 1.2 above are restricted to one-pass streaming algorithms. This is because
they crucially rely on the hardness of the BHM problem, and the BHM problem can be solved using only O(log n)
bits of communication if Bob is allowed to send one of his edges to Alice. Our main result in this paper is
removing this restriction and showing a multi-pass analogue of Theorem 1.2. Getting a similar analogue of
Theorem 1.1 would mean getting a lower bound against multi-pass streaming algorithms computing a better-
than-2 approximation of Max-Cut, and is an outstanding problem that we hope to see resolved soon.

Theorem 1.3. (Main, see formal statement as Theorem 4.1) Any o(log n)-pass streaming algorithm that
outputs a cycle in a graph sampled from G with constant probability must use nΩ(1) space.

We mention that [8, 10] implicitly show theorems akin to Theorem 1.3, proving that multi-pass streaming
algorithms cannot find a cycle in the input graph, albeit with a different distribution G. Specifically, [8, 10]
worked with a distribution over graphs that (roughly) are a union of vertex disjoint cycles of length k, for some

2In their original work, [50] worked with sparse random graphs instead of matchings. This was done to show a lower bound for
randomly-ordered streams but is not crucial for our purposes.

3The BHM lower bound is a one-way communication lower bound, but it is well known that such lower bounds imply streaming
lower bounds.

4Ruling out algorithms outputting any cycle (not necessarily odd), as is done by [50] and by our work (see Theorem 1.3), is not
a huge overkill, at least if one wants to generalize the lower bound to only marginally more general constraint satisfaction problems,

such as Max-2XOR. Recall that Max-2XOR is the same as Max-Cut except that each edge has a 0/1-label and the goal is to output a
cut with as many 1 edges and as few 0 edges as possible.

Copyright © 2023
Copyright for this paper is retained by the authors879

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

constant length k > 0. However, requiring that the cycles are vertex disjoint implies that there is always a cut
that contains all but one of the edges in every cycle, and therefore [8, 10] only obtain a lower bound against
algorithms that (roughly) guarantee a strong

(
1 + 1

k

)
-approximation to Max-Cut.

In fact, the argument above applies to any distribution where the cycles are “more-or-less-disjoint”, and the
only way to get the optimal 2-approximation lower bound from a theorem like Theorem 1.3, is to work with a
distribution where the cycles are unstructured and entangled with one another (like the distribution G used by
[50, 51, 52] and also used in this work). While proving Theorem 1.3 using such an entangled distribution is crucial,
it is also the main source of hardness, as analyzing such distributions poses several challenges, as explained next.

1.2 Our Techniques We now provide a very brief overview of our techniques. For a detailed exposition, see
Section 2.

Recall that unlike previous lower bounds on multi-pass algorithms for cycle problems [8, 10], our Theorem 1.3
imposes very little structure on the graph instances that it works with. This makes our proof very different from
the proofs found in these works. Specifically, as [8, 10] deal with graphs that are a union of vertex disjoint cycles
of the same length, algorithms in their settings, roughly speaking, have only one way to output a cycle, which
is to pick a start vertex and chase one of its edges till it loops back. This makes such algorithms amenable to
“pointer chasing techniques”, roughly saying that a small space algorithm can only advance by one edge in one
pass, and implying that the number of passes must be comparable to the length of the cycles.

In contrast, our Theorem 1.3 shows a multi-pass lower bound for an extremely unstructured instance, with
no guarantee on the length or the structure of the cycles it contains. In particular, our instances are likely to have
extremely short cycles, even cycles of length 2, and an algorithm may just try to find one such short cycle in the
graph and output it. As we allow the streaming algorithm to have up to o(log n) passes, it has enough passes to
explore this short cycle and standard pointer chasing techniques will not apply.

To deal with such algorithms, we divide the cycles in the graph into short cycles, with length at most κ log n,
for some κ > 0, and long cycles that are longer than κ log n. We then separately show that there is no low-space,
o(log n)-pass streaming algorithm that outputs a short cycle, and that there is no such algorithm that outputs a
long cycle, and apply a union bound. Both of these proofs actually classify the respective cycles further to various
patterns, where the pattern for a cycle says which of the T matchings each of its edges come from, and bound the
probability of outputting a cycle following a given pattern (see Definition 3.0.2).

Short cycles. For a short cycle with a fixed pattern, we are able to show that finding such a cycle is
equivalent to solving set-intersection, and use the set-intersection lower bounds from the literature [11, 60, 48].
As an example, consider algorithms that output cycles following the pattern (1, 2), i.e., cycles with two edges,
where the first edge comes from the first matching and the second edge comes from the second matching. Observe
that an algorithm can only output such a cycle if it finds an edge that is contained in the intersection of the first
and second matchings, and thus, we can reduce to an instance of set-intersection. Of course, complications arise
when dealing with other, more complicated patterns, but this underlying idea remains valid.

Long cycles. For a long cycle with a fixed pattern, we use the pointer-chasing techniques described above,
carefully adapting them to our setting. The key difference is that in standard pointer chasing, the graph is a
union of vertex disjoint paths and the goal is to chase one of these paths given its start vertex. For us, the various
cycles that follow a pattern may not be vertex disjoint, and, moreover, it is okay to output any one of these cycles.
For the former, we prove combinatorial lemmas showing that it is possible to carefully select a large set of vertex
disjoint cycles with high probability, and embed a pointer chasing instance on these cycles. For the latter, we use
a direct product result to show that outputting any specific such cycle is only possible with negligible probability,
and then use a union bound over all cycles.

1.3 Additional Related Work
Boolean Hidden Matching. The BHM problem [14, 37], was originally studied in order to get a separation

between quantum and classical communication complexity. The communication complexity of BHM is Θ(
√
n) in

the one-way setting [37], and Θ(log n) in the two-way and quantum settings. BHM is truly versatile and has found
surprising applications in various settings, such as distribution testing [4], distributed computing [35], property
testing [13], and sketching [46].

Streaming algorithms. Streaming algorithms, first studied by [3], is now one of the main algorithmic
models used to study large graphs that arise in modern day applications [33, 34]. Several graph problems are

Copyright © 2023
Copyright for this paper is retained by the authors880

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

being actively pursued in this context, making it impossible to list all of them (see [57] for a survey). These
include streaming algorithms for finding maximum matchings [56, 38, 49, 7, 2, 5, 36, 8, 10], shortest paths and
reachability [34, 41, 16, 9, 25], subgraph counting [15, 23, 16, 58, 31, 17, 47], and random walks [61, 45, 26].

Beyond Max-Cut. General constraint satisfaction problems (including and beyond Max-Cut) have also
received a lot of attention in the streaming model. These include extending and generalizing the [50] work
to lower bounds for more problems [42, 30, 29, 28, 19, 62] and also finding novel and interesting upper bounds
[43, 18].

1.4 Acknowledgments The authors would like to thank Sepehr Assadi for useful discussions.

2 Overview of Techniques

2.1 Setup and high-level overview As already discussed in Section 1.2, finding short cycles and long cycles
is hard due to totally different reasons. Roughly speaking, finding short cycles is hard because we need to find
an intersection between two matchings, and finding long cycles is hard because we have to chase many edges5.
Below we discuss our approach in more detail. We begin with some notation and observations.

2.1.1 Two Cases: Short Simple Cycles and Long Simple Path Let n ∈ N≥1 be the number of vertices
and T ∈ N≥1 be a large constant. We will always assume that n is even. Let κ ∈ (0, 1) be a small constant. We
say a cycle is short, if it has at most κ · log n many edges, and is long otherwise. We first make two simple but
useful observations below:

1. Any cycle contains a simple cycle (i.e., a cycle that visits any vertex at most once), meaning that if an
algorithm finds a cycle, it also finds a simple cycle. So it suffices to upper bound the probability of finding
a simple cycle.

2. If an algorithm finds a long simple cycle with more than κ · log n many edges, it also finds a simple path
of length κ · log n (i.e., a path that visits any vertex at most once). This means that, to upper bound the
probability of finding a long simple cycle, it suffices to upper bound the probability of finding a simple path
of length κ · log n.

Based on the above observations, given a low-pass streaming algorithm A, it suffices to upper bound the
probability of the following two events:

1. A finds a simple cycle of length at most κ · log n.

2. A finds a simple path of length exactly κ · log n.

2.1.2 Patterns Next, we introduce the concept of patterns, which helps us to find some structure in the graph
distribution Gn,T . Let G = ([n],M1◦M2◦· · ·◦MT) be a graph

6 that is a union of T perfect matchingsM1, · · · ,MT .
A pattern ~τ ∈ [T]L for some integer L ∈ N tells you how to chase a path from a fixed starting point u: first
traverse the edge incident on u in matching Mτ1 to reach vertex u1, then traverse the edge incident on u1 in
matching Mτ2 to reach vertex u2, and so on, until the last matching MτL .

We use Path(G, u, ~τ) to denote the resulting path (see Definition 3.0.2 for a formal definition). We first note
that for the path to be simple, we must have τj 6= τj+1 for every j ∈ [L − 1], and for the cycle to be simple,
we should additionally ensure that τ1 6= τL. We call such patterns valid path patterns and valid cycle patterns,
respectively; see Section 3.2 for formal definitions.

Now, to upper bound the probability that the algorithm A finds a simple cycle of length at most κ · log n,
we will instead upper bound the probability of A finding a simple cycle with a fixed pattern ~τ ∈ [T]L for some
L ≤ κ log n, and apply a union bound over all O(Tκ·logn) = O(nκ log T) many such patterns. Similarly we will
upper bound the probability of A finding a simple path with a fixed pattern ~τ ∈ [T]κ·logn, and apply a union
bound.

5We mention that a combination of set intersection and pointer chasing lower bounds was also used by the (otherwise unrelated)
works [12, 40].

6For two elements or vectors u, v, we use u ◦ v to denote the concatenation of u and v.

Copyright © 2023
Copyright for this paper is retained by the authors881

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

2.1.3 Our Strategy: Hiding a Hard Search Problem in Cycle/Path-Finding For both short cycles
and long paths, we show that finding a cycle/path is hard by embedding a hard communication problem P into
an instance of the cycle/path finding problem. This means that any algorithm that outputs a cycle/path can also
be used to solve the hard communication problem P, giving us a lower bound.

2.2 Lower Bounds for Short Cycles via Set-Intersection

2.2.1 Toy Case: ~τ = (1, 2) Let us first consider the simple case when ~τ = (1, 2). As explained in Section 1.2,
in this case, we wish to find an edge common to two uniformly random perfect matchings M1 and M2. By a
standard connection between streaming algorithms and communication protocols, it suffices to prove that any
short two-party protocol where Alice’s and Bob’s inputs are uniformly random perfect matchings M1 and M2,
cannot output an edge in the intersection of M1 and M2 with probability more than n−Ω(1).

Starting point: set-intersection lower bounds with low success probability. Viewing the set of all
potential edges as the universe U =

(
[n]
2

)
,7 the aforementioned problem is exactly set-intersection, in which two

players are given two sets S, T ⊆ U with size |S| = |T | = n/2, and wish to find an element in S ∩ T . There are
however two complications: (1) standard lower bounds for distributional set-intersection start from the uniform
distribution over all possible (S, T) such that |S ∩ T | = 1 and |S| = |T | = n/2, while in our case, Alice and Bob
are holding independently chosen subsets such that the edges in those subsets form a matching, and (2) we will
need a lower bound showing that the success probability is at most n−Ω(1), instead of “merely” a small constant.

The second difficulty is easier to resolve, and we do it by invoking the strong lower bound on set intersection in
[9]. Specifically, [9] say that, for all k,N ∈ N such that N ≥ 4k, if Alice and Bob’s input are uniformly distributed

over all possible pairs of sets S, T ∈
(
[N]
k

)
such that |S ∩ T | = 1, any protocol with communication complexity

at most k1/3 can only find the unique element in S ∩ T with probability at most O(k−1/3) (see Corollary 5.1.1).
Thus, if we have k = nΩ(1), then we will have the required success probability bound. Henceforth, we will use
DN,k to denote the distribution above and use SIN,k to denote instances sampled from this distribution.

Embedding set-intersection into cycle finding. We still have to resolve the first difficulty. We set
N =

(
n
2

)
so that the universe corresponds to the set of all possible edges. Our idea is to embed an instance

of SIN,k into the problem of finding intersection of random matchings as follows: Alice and Bob get the input
(S, T)← DN,k, each of them first interprets their set S (resp. T) as a set of edges from U , and then extends this
set into a matching uniformly at random8. Alice and Bob can then run the algorithm A that finds a cycle in the
graph G = ([n],M1 ◦M2) with the pattern (1, 2) to find a collision between the generated matchings.

However, the reduction above has a couple of problems. Recall that we want to show that an algorithm
that finds a cycle with pattern (1, 2) over the distribution Gn,T can be used to solve set intersection over the
distribution DN,k. The first problem is that starting from the distribution DN,k, the reduction above will not
generate the distribution Gn,T . One obvious issue is that with inputs (S, T) drawn from DN,k, the set S (resp.
T) may not correspond to a set of vertex-disjoint edges, and then there is no way to extend them into perfect
matchings. The solution is to notice that if we set k = n1/3, then the probability of this bad event happening is
low (in fact, n−Ω(1)), and we can condition on it not happening.

However, even with this fix, the distribution generated by the reduction is very far from the target distribution
Gn,T . In particular, in the above reduction, since |S ∩ T | = 1, the resulting two matchings M1 and M2 always
have at least one common edge, while in Gn,T , the matchings M1 and M2 are disjoint (with constant probability).
Nevertheless, these differences between Gn,T and the distribution generated are always in the “right” direction,
in the sense that algorithms that find cycles over Gn,T will also find a cycle over the distribution generated by
the reduction. For example, as the generated distribution does not have graphs where the matchings M1 and M2

are disjoint, a cycle finding algorithm would not fail because there are no (1, 2)-pattern cycles in the graph. See
Claim 5.1.1 for details.

The second problem in the reduction is that, given A’s solution to the cycle finding problem, it is unclear
if one can obtain a solution to the set intersection instance. This is because, if there are many (1, 2)-pattern
cycles in the generated graph G = (n,M1 ◦M2), there is no guarantee that the cycle found by the cycle-finding

7For a set S and an integer k ∈ N≥1, we use
(S
k

)

to denote the collection of all k-size subsets of S.
8That is, if interpreting S gives Alice the edges e1, · · · , ek and V ′ is the set of vertices that are not touched by any of these edges,

then, Alice adds a uniformly random perfect matching on V ′ to her input. Bob does the same.

Copyright © 2023
Copyright for this paper is retained by the authors882

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

algorithm A corresponds to the solution of the embedded SIN,k instance. Rather, it could just be a cycle formed by
edges that are added by Alice and Bob during in the reduction. Our key observation here is that the cycle-finding
algorithm A does not know whether a (1, 2)-pattern cycle in the generated graph G is “genuine” (i.e., coming from
the embedded SIN,k instance) or “fake” (i.e., involving edges that are added later by Alice and Bob during the
reduction). So, intuitively, the worst thing A can do is output a random (1, 2)-pattern cycle in the graph. We then
prove a concentration inequality saying that for any short pattern ~τ of length at most κ · log n, with probability
1 − n−ω(1), a graph G ← Gn,T has at most log3 n cycles with pattern ~τ ; see Lemma 5.1.2 for more details. This
helps us show that the probability of A finding a (1, 2)-pattern cycle is at most k−1/3 · log3 n ≤ n−Ω(1), by our
choice of k.

2.2.2 Generalization to Arbitrary Patterns ~τ Now we discuss how to embed set-intersection into cycle
finding with a fixed pattern ~τ , for a general ~τ of length L ≤ κ · log n, which is much more challenging. For
simplicity, we assume that ~τ has at least one occurrence of 1 (i.e., the matching M1 is involved in the cycle).9

First, since we wish that the found cycle with length L corresponds directly to the common element in the
starting SIN,k problem, we should set N = nL so that the universe [N] corresponds to all possible length-L
cycles10.

Second, we still wish to use the standard connection between streaming algorithms and communication
protocols, and give all matchings M1, · · · ,MT in the graph G = ([n],M1 ◦ · · · ◦MT) to two players Alice and Bob.
We will simply give M1 to Alice, and the rest M≥2 to Bob.

Our key idea is that, given a sequence ~u ∈ [n]L, if for every ` ∈ [L] such that τ` = 1, Alice adds (u`, u`+1)
to her set of edges (we use uL+1 to denote u1, for notational convenience), and for every ` ∈ [L] such that
τ` ∈ {2, · · · , T}, Bob adds (u`, u`+1) to his set of edges. Then, in the combined graph of Alice and Bob, ~u is a
cycle with pattern ~τ , and thus can potentially be detected by the cycle-finding algorithm A.

Our reduction from SIN,k over distribution DN,k to finding a pattern-~τ cycle then works as follows:

1. Alice and Bob get S, T ∈
(
[N]
k

)
distributed according to DN,k. Alice (resp. Bob) interprets S (resp. T) as k

vectors ~s(1), ~s(2), · · · , ~s(k) (resp. ~t(1),~t(2), · · · ,~t(k)) from [n]L.

2. Initially, Alice lets M1 be the empty set, and Bob lets M2, · · · ,MT be empty sets too.

3. For every ~s(i), for every ` ∈ [L] such that τ` = 1, Alice adds (s
(i)
` , s

(i)
`+1) to M1.

4. For every ~t(i), for every ` ∈ [L] such that τ` 6= 1, Bob adds (t
(i)
` , t

(i)
`+1) to Mτ` .

5. At the end, Alice extends M1 to a perfect matching uniformly at random, and Bob extends M2, · · · ,MT to
perfect matchings uniformly at random as well.

Crucially, by previous discussions, the common element S∩T is going to be a cycle with pattern ~τ in the joint
graph G = ([n],M1 ◦M≥2). So this reduction makes sense. Still, the three issues in the toy example occur here
as well. First, it is possible that for some S, T , Step (2) and (3) above do not generate valid partial matchings.
However, by setting k small enough (say k = n1/3), we can show that the probability of this event happening is
small, and we can condition on this event not happening.

Second, the resulting graph G may contain more than one cycle with pattern ~τ . Similarly to the toy case,
we make use of the observation that A does not know which ~τ -pattern cycle is genuine or fake, and derive the
lower bound using the concentration inequality we proved regarding the number of ~τ -pattern cycles in a graph
G ← Gn,T . See Section 5.1.2 for more details of the proof and how the third issue is addressed in a way similar
to the toy example.

2.3 Lower Bounds for Paths via Pointer-Chasing In the long simple path case, for a fixed pattern ~τ ∈ [T]L

where L = κ · log n, we will prove that an o(log n)-pass streaming algorithm A cannot find a simple path of pattern
~τ with probability at least n−ω(1).

9See the proof of Lemma 4.0.1 for the general case.
10Here we interpret a length-L cycle as a sequence of L vertices from [n], and we allow non-simple cycles and even self-loops.

Copyright © 2023
Copyright for this paper is retained by the authors883

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

As already discussed in Section 1.2, the reason finding a long simple path in G ← Gn,T is difficult is that
this requires the streaming algorithm A to chase from a vertex u ∈ [n] for L steps, following the pattern ~τ , and
pointer chasing is well-known to be hard for low-pass streaming algorithms. Hence, our strategy here is to reduce
a certain pointer chasing instance into the problem of finding a simple path with pattern ~τ .

To simplify the discussions, we will focus on the case that T = 3 and ~τ is a repetition of (1, 2, 3). Again, we
wish to study a related communication problem, in which there are three players P1, P2, P3 such that Pi holds the
matching Mi, and their goal is to output a simple path with pattern ~τ in the joint graph G = ([n],M1 ◦M2 ◦M3).

For simplicity, we assume that L is a multiple of 3. Our starting point is the following search version of
the pointer chasing problem that is defined over a graph with L + 1 layers V1, · · · , VL+1 each consisting of m
vertices, and L matchings W1, · · · ,WL such that for every i ∈ [L], Wi is a perfect bipartite matching between
the layers Vi and Vi+1: Player Pi gets matchings Wi,Wi+3,Wi+6, · · · as input, and their goal is to output a
length-L path from any vertex in V1 to any vertex in VL+1. Since L = Ω(log n), using direct product theorem
for communication protocols, we are able to prove that communication protocols with o(log n) round complexity
and mε communication complexity for some constant ε ∈ (0, 1) can solve this problem with probability at most
m−ω(1). We will set m = nγ for some small constant γ ∈ (0, 1), so that a success probability upper bounded by
m−ω(1) = n−ω(1) is good enough. For simplicity, we let Vi = {(i − 1) ·m + 1, · · · , i ·m}. Then the whole vertex
set V is [(L+ 1) ·m].

We can then embed the pointer-chasing instance above into a path-finding problem as follows:

1. Using public randomness, P1, P2, P3 jointly sample a random injective function φ : [(L+ 1) ·m]→ [n]. For
i ∈ [3], player Pi also initializes Mi be the empty set.

2. For each player Pi, for every edge (u, v) from its input Wi,Wi+3,Wi+6, · · · , Pi adds (φ(u), φ(v)) into Mi.

3. Finally, each player Pi extends Mi into a perfect matching uniformly at random.

First, we observe that the above procedure gives a valid partial matching for each player Pi after Step (2),
so that they can always extend their inputs into perfect matchings at Step (3). Second, one can see that for
every u ∈ V1 = [m], the generated graph contains a simple ~τ -pattern path starting from φ(u). Hence, our hope
is to show that if the streaming algorithm A finds a simple ~τ -pattern path in the resulting graph G, then, with a
reasonable probability, the path starts from vertices in the set {φ(u) : u ∈ [m]}. This means that any streaming
algorithm A that finds a simple ~τ -pattern path in G← Gn,T with probability n−O(1) contradicts the hardness of
the pointer-chasing problem, as required for our lower bound.

The key observation, again, is that A does not know which ~τ -pattern path in G is genuine (i.e., coming from
the pointer-chasing problem via the mapping φ) or fake (i.e., involving vertices added by Pi’s in the Step (3) of
the reduction). The actual analysis, however, is much trickier than the short cycle case, and we have to prove a
sophisticated concentration inequality regarding the number of possible embeddings of a pointer chasing instance
in a graph G ∈ Gn,T . This involves a lot of additional technical work, that we defer to Section 6.

3 Preliminaries

3.1 Notation We use N to denote all non-negative integers, and N≥1 to denote all positive integers. We also
use 2N (resp. 2N≥1) to denote all non-negative (resp. positive) even integers. For two elements or vectors u, v,
we use u ◦ v to denote the concatenation of u and v.

We often use bold font letters (e.g., X) to denote random variables, and calligraphic font letters (e.g., X) to
denote distributions. For two random variables X and Y , and for Y ∈ supp(Y), we use (X|Y = Y) to denote
X conditioned on Y = Y . For two lists a and b, we use a ◦ b to denote their concatenation.

For two distributions D1 and D2 on set X and Y respectively, we use D1 ⊗ D2 to denote their product
distribution over X × Y, and ‖D1 −D2‖TV to denote the total variation distance between them.

Let n ∈ N≥1. We use [n] to denote the set {1, · · · , n}. We often use symbols such as ~x to emphasize that ~x
is a vector, and we often use xi to denote its i-th entry and |~x| to denote the length of ~x. For a set S and m ∈ N,
we use

(
S
m

)
to denote all size-m subsets of S.

3.2 Graphs Formally, a labeled undirected graph G is a tuple (V, ~E, ~µ), where V is the set of vertices,
~E = ((ui, vi))i∈[m] is a list of edges such that ui, vi ∈ V , and ~µ = (µ1, · · · , µm) is a list of labels. In the

Copyright © 2023
Copyright for this paper is retained by the authors884

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

streaming model, it is presented as a stream of tuples (ui, vi, µi), from i = 1 to i = m. Similarly, an undirected

graph G is a pair (V, ~E).

An ordered matching ~M on a set of vertices V is a list of vertex-disjoint undirected edges. The size of a
matching ~M is simply the number of edges in it. For a vertex set V of even size, we use MV to denote the
uniform distribution over all ordered matchings on V with size |V |/2.

Definition 3.0.1. Let n ∈ 2N≥1 and T ∈ N≥1. We define Gn,T as the following distribution on undirected
graphs:

• We set V = [n].

• For each i ∈ [T], we draw ~M i ←MV , independently across all i. Then we set ~E = ~M1 ◦ ~M2 ◦ · · · ◦ ~MT .

A (undirected) path ~w is a list of edges e1, · · · , ek such that ei = (ui, vi) and for all i ∈ [k−1], vi = ui+1. (Note
that since we are working with undirected graphs, we can swap ui and vi if necessary.) Similarly, a (undirected)
cycle is a path ~w that additionally satisfies vk = u1. We say a path or a cycle is simple, if no vertices except for
the starting vertex u1 is visited twice.

Definition 3.0.2. Let n ∈ 2N≥1 and T ∈ N≥1 and G = ([n], ~E) ∈ supp(Gn,T). Let ~E = ~M1 ◦ ~M2 ◦ · · · ◦ ~MT

where ~M i is the i-th matching according to Definition 3.0.1. Let vs ∈ [n], L ∈ N, and ~τ ∈ [T]L. We define
Path(G, vs, ~τ) as the output of the following algorithm:

1. Let v0 = vs and ~w be an empty list.

2. For i from 1 to L:

(a) Let e be the unique edge in the matching ~Mτi that is adjacent to the vertex vi−1. If no such e exists,
return ⊥.

(b) Add e to the end of ~w. Let vi be the endpoint of e other than vi−1.

3. Return ~w.

In other words, Path(G, vs, ~τ) (if exists) is the unique path in G that starts from vs and follows the pattern ~τ .
We say ~τ is a valid path pattern, if for every j ∈ [|~τ | − 1], it holds that τj 6= τj+1. We also say ~τ is a valid cycle
pattern, if it is a valid path pattern and also τ|~τ | 6= τ1.

4 Lower Bounds for Finding Cycles

Our lower bound for finding cycle will follow from the following two lemmas.
Notation. Fix a graph G ∈ supp(Gn,T) and ~τ ∈ [T]L. We let C~τ (G) be the set of simple cycles in G with

pattern ~τ , and C(G) be the set of all simple cycles in G. We also let L~τ (G) be the set of simple paths in G with
pattern ~τ .

Lemma 4.0.1. (Lower bound for finding a short cycle with a fixed pattern ~τ) There exist ε, δ ∈
(0, 1) such that for all T ∈ N≥1 and for all sufficiently large n ∈ 2N≥1 the following holds: For all L ∈ [log n],
valid cycle pattern ~τ ∈ [T]L, and nε-pass nε-space streaming algorithms A, we have

(4.1) Pr
G←Gn,T

[
A(G) ∈ C~τ (G)

]
≤ n−δ.

Lemma 4.0.2. (Lower bound for finding a long path with a fixed pattern ~τ) There exist ε, δ, γ0 ∈
(0, 1) such that for all T ∈ N≥1 and for all sufficiently large n ∈ 2N≥1 the following holds: For all L ∈ [γ0 · log n],
p ≤ (L− 15)/4T , valid path pattern ~τ ∈ [T]L, and p-pass nε-space streaming algorithms A, we have

(4.2) Pr
G←Gn,T

[
A(G) ∈ L~τ (G)

]
≤ n3−δL/p.

Copyright © 2023
Copyright for this paper is retained by the authors885

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Theorem 4.1. There exist ε, δ ∈ (0, 1) such that for all T ∈ N≥1 and for all sufficiently large n ∈ 2N≥1 the
following holds: for all o(log n)-pass nε-space streaming algorithms A, we have

(4.3) Pr
G←Gn,T

[
A(G) ∈ C(G)

]
≤ n−δ.

Proof. Let ε be the minimum of the ε constants from Lemma 4.0.1 and Lemma 4.0.2, and δ1 be the minimum of
the δ constants from Lemma 4.0.1 and Lemma 4.0.2.

Fix an o(log n)-pass nε-space streaming algorithm A. Let L = κ log n for a constant κ ∈ (0, 1) to be chosen
later. For notational convenience, we also use C≤L(G) and C>L(G) to denote the set of simple cycles in G with
length at most L and greater than L, respectively. Then we have

Pr
G←Gn,T

[
A(G) ∈ C(G)

]
≤ Pr

G←Gn,T

[
A(G) ∈ C≤L(G)

]
+ Pr

G←Gn,T

[
A(G) ∈ C>L(G)

]
.

First, by Lemma 4.0.1, we have

Pr
G←Gn,T

[
A(G) ∈ C≤L(G)

]
≤

∑

~τ∈[T]L

~τ is a valid cycle pattern

Pr
G←Gn,T

[
A(G) ∈ C~τ (G)

]

≤ TL · n−δ1

≤ 2log T ·κ·logn · n−δ1

≤ nκ·log T−δ1 .

We now set κ = min(δ1
2 log T , γ0) so that we have

(4.4) Pr
G←Gn,T

[
A(G) ∈ C≤L(G)

]
≤ n−δ1/2.

Now, we let L=L(G) denote the set of simple paths in G with length exactly L. Given the algorithm A, we
construct another algorithm Ã who outputs the first L edges in the cycle found by A (if A does not output a valid

cycle, Ã just outputs ⊥). Now, we note that Ã has the same pass and space complexity as A, and whenever A
finds a cycle in C>L(G), Ã outputs a path in L=L(G).

Hence, by Lemma 4.0.2, we have

Pr
G←Gn,T

[
A(G) ∈ C>L(G)

]
≤ Pr

G←Gn,T

[
Ã(G) ∈ L=L(G)

]

≤
∑

~τ∈[T]L

~τ is a valid path pattern

Pr
G←Gn,T

[
Ã(G) ∈ L~τ (G)

]

≤ TL · n3−δ1·L/o(logn)

≤ n−ω(1).(4.5)

Putting (4.4) and (4.5) together and set δ = δ1/3 completes the proof.

5 Lower Bounds for Finding a Short Cycle

Recall that C~τ (G) is the set of simple cycles in G with the pattern ~τ . In this section we prove Lemma 4.0.1, which
is restated below.

Reminder of Lemma 4.0.1. There exist ε, δ ∈ (0, 1) such that for all T ∈ N≥1 and for all sufficiently large
n ∈ 2N≥1 the following holds: For all L ∈ [log n], valid cycle pattern ~τ ∈ [T]L, and nε-pass nε-space streaming
algorithms A, we have

(5.6) Pr
G←Gn,T

[
A(G) ∈ C~τ (G)

]
≤ n−δ.

Copyright © 2023
Copyright for this paper is retained by the authors886

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

To prove Lemma 4.0.1, we will indeed prove a stronger communication complexity lower bound first, and
then show Lemma 4.0.1 as an easy corollary. We first define the following communication problem.

Definition 5.0.1. (The Cycle-Searchn,T,~τ problem) Let n ∈ 2N≥1, T, L ∈ N≥1 and ~τ ∈ [T]L such that ~τ is
a valid cycle pattern. In the Cycle-Searchn,T,~τ problem, Alice holds a perfect matching M1 on [n] and Bob holds

T −1 perfect matchings M2, . . . ,MT on [n], their goal is to output a simple cycle in G = ([n],M1 ◦M2 ◦ . . .◦MT)
with pattern ~τ .

Slightly abusing notation, we can also view Gn,T (a distribution over graphs that is the union of T uniform

random perfect matchings) as an input distribution to Cycle-Searchn,T,~τ . Given G = ([n], ~M1, ~M2, . . . , ~MT) ←
Gn,T , we first convert these ordered matchings ~M i into their unordered counterparts M i, and then give M1 to
Alice, and M2, . . . ,MT to Bob. We will write (M1,M≥2) ← Gn,T to denote that Alice’s input M1 and Bob’s
input M≥2 = (M2, . . . ,MT) are generated as above.

We will prove the following lower bound for Cycle-Searchn,T,~τ .

Lemma 5.0.1. There exists ε, δ ∈ (0, 1), such that for all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1, L ∈ [log n],
valid cycle pattern ~τ ∈ [T]L such that ~τ contains at least one occurrence of 1, and for all two-party communication
protocols Π with communication complexity at most nε,

(5.7) Pr
(M1,M≥2)←Gn,T

G=([n],M1◦M≥2)

[
Π(M1,M≥2) ∈ C~τ (G)

]
≤ n−δ.

Before proving Lemma 5.0.1, we show that Lemma 4.0.1 follows immediately from Lemma 5.0.1.

Proof. [Proof of Lemma 4.0.1] Let ε, δ be the constants guaranteed by Lemma 5.0.1. Let µ ∈ [T] be an index that
occurs at least once in ~τ . We consider the following communication problem:

• A list of unordered matchings M1, . . . ,MT are drawn from Gn,T .

• Alice is given the matching Mµ, and Bob is given the rest of the matchings, M1, . . . ,Mµ−1,Mµ+1, . . . ,MT ,
denoted by M−µ.

• The goal is output a cycle from C~τ (G), where G = ([n],M1,M2, . . . ,MT).

Since all matchings in Gn,T are independently and identically distributed (i.e., they are distributed uniformly
over all perfect matchings on [n]), Lemma 5.0.1 implies that11 for all two-party communication protocols Π with
communication complexity at most nε,

(5.8) Pr
(Mµ,M−µ)←Gn,T

G=([n],Mµ◦M−µ)

[
Π(Mµ,M−µ) ∈ C~τ (G)

]
≤ n−δ.

Since Alice and Bob can simulate a p-pass, s-space complexity streaming algorithm A over the input stream
(M1,M2, . . . ,MT) by a two-party protocol with ps · T communication complexity12, it follows that no nε/3-pass,
nε/3-space algorithm A violates (5.6), since otherwise there is a communication protocol Π with n2ε/3 · T < nε

communication complexity that violates (5.8), contradicting Lemma 5.0.1.

5.1 Proof of Lemma 5.0.1 In the rest of this section we will prove Lemma 5.0.1 by a reduction from a sparse
version of the well-known set-intersection problem. We first introduce this problem together with some notation.

11An algorithm for this new communication problem where µ 6= 1 can be used to solve the special case that µ = 1 (corresponding
to Lemma 5.0.1) simply by swapping matchings M1 with Mµ. We note that here we crucially used the fact that Lemma 5.0.1 applies
to communication protocols instead of streaming algorithms over the input stream (M1, . . . ,MT).

12The factor of T comes from the fact that in each pass, we may alternate at most T times between matchings from Alice and from
Bob.

Copyright © 2023
Copyright for this paper is retained by the authors887

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

5.1.1 A Sparse Variant of the Set-Intersection Problem Given a matrix M ∈ Σn×m and a row index
i ∈ [n], we use row(M, i) to denote its i-th row vector (i.e., row(M, i) = (Mi,1,Mi,2, . . . ,Mi,m)). We will need the
following communication problem.

Definition 5.0.2. (The Sparse-SIn,k,L problem) Let n, k, L ∈ N≥1. In the Sparse-SIn,k,L problem, Alice and

Bob get matrices MA,MB ∈ [n]k×L, respectively. The goal for them is to find a common row of MA and MB

(i.e., a vector X ∈ [n]L such that row(MA, i) = row(MB, j) = X for some i, j ∈ [k]).

We will consider the following hard distribution for Sparse-SIn,k,L.

Definition 5.0.3. Let n, k, L ∈ N≥1. We define the following distribution DS-SI

n,k,L for the problem Sparse-SIn,k,L:

Alice and Bob’s inputs are uniformly distributed over all (MA,MB) ∈ [n]k×L× [n]k×L satisfying the following two
conditions:

1. There exist two indices i, j ∈ [k] such that row(MA, i) = row(MB, j).

2. Let M be the (2k − 1)× L matrix obtained by first removing the j-th row from MB and then concatenating
MA and MB (i.e., putting MA on the top of MB). All entries in M are distinct.

We will need the following lower bound for Sparse-SIn,k,L over DS-SI
n,k,L.

Lemma 5.0.2. Let n, k, L ∈ N≥1 such that k = n1/3 and L ∈ [log n]. No two-party communication protocol with
complexity at most n0.1 solves Sparse-SIn,k,L over DS-SI

n,k,L with probability more than 1/n0.1.

To prove Lemma 5.0.2, we will use a reduction from the standard set-intersection problem SIn,k. In SIn,k,
Alice and Bob get sets A,B ⊆ [n], respectively, such that |A| = |B| = k and their goal is to output an element
from A ∩B.

Let DSI
n,k be the following distribution over inputs to SIn,k: Alice and Bob’s inputs are drawn at uniformly

random from all pairs A,B ⊆ [n] such that |A| = |B| = k and |A ∩B| = 1.
We need the following theorem well known result.

Theorem 5.1. ([60, 48, 20, 9]) For every ε ∈ (0, 1) and k ∈ N≥1, any protocol solving SI4k,k with probability ε
over DSI

4k,k requires communication complexity at least Ω(ε2 · k).
The lower bound of Theorem 5.1 only applies to solving SI4k,k, it can be easily generalized to the case of

solving SIn,k for any n ≥ 4k.

Corollary 5.1.1. For every ε ∈ (0, 1), n, k ∈ N such that n ≥ 4k, any protocol solving SIn,k with probability ε
over DSI

n,k requires communication complexity at least Ω(ε2 · k).

Proof. We will show how to reduce solving SI4k,k over DSI
4k,k to solving SIn,k over DSI

n,k, while preserving the success
probability.

Suppose Alice and Bob get sets A,B ⊆ [4k], they use public randomness to sample an injective mapping
π : [4k]→ [n], and construct their new inputs

A′ = {π(u) : u ∈ A} and B′ = {π(u) : u ∈ B}.

One can see that when (A,B) are drawn from DSI
4k,k, (A

′, B′) are distributed according to DSI
n,k, and given the

intersection u ∈ A′ ∩B′, we know that π−1(u) is the intersection of A and B, which completes the proof.

Now we are ready to prove Lemma 5.0.2.

Proof. [Proof of Lemma 5.0.2] Let N = nL and φ be a bijection from [N] to [n]L.

Let D̃ be the uniform distribution over all (MA,MB) ∈ [n]k×L×[n]k×L satisfying the following two conditions:

1. There exist two indices i, j ∈ [k] such that row(MA, i) = row(MB, j).

2. Let M be the (2k− 1)×L matrix obtained by first removing the j-th row from MB and then concatenating
MA and MB (i.e., putting MA on the top of MB). All rows in M are distinct (i.e., for all 1 ≤ a < b ≤ 2k−1,
row(M,a) 6= row(M, b)).

Copyright © 2023
Copyright for this paper is retained by the authors888

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Let D = DS-SI
n,k,L. We note that D is indeed D̃ conditioning on the event that all entries of M are

distinct, which happens with probability at least 1 − (2kL)2/n by a union bound. Hence, we have that

‖D − D̃‖TV ≤ (2kL)2/n ≤ n−0.2.

Note that Sparse-SIn,k,L over the distribution D̃ is indeed SIN,k in disguise: Alice and Bob can both apply

φ to each row of their matrices MA and MB to get two sets A′ and B′, and A′ ∩ B′ corresponds to the
common row of MA and MB. By Corollary 5.1.1, we know that communication protocol with complexity n0.1

cannot solve Sparse-SIn,k,L with probability more than n−0.11 over D̃. Hence, since ‖D̃ − D‖TV ≤ n−0.2, it
follows that communication protocol with complexity n0.1 cannot solve Sparse-SIn,k,L with probability more than
n−0.11 − n−0.2 ≤ n−0.1 over D, which completes the proof.

5.1.2 A Reduction from Sparse-SIn,k,L to Cycle-Searchn,T,~τ We will use the following reduction from
Sparse-SIn,k,L to Cycle-Searchn,T,~τ . We will assume ~τ contains at least one occurrence of 1.

Reduction from Sparse-SIn,k,L to Cycle-Searchn,T,~τ : Red-Cyc(MA,MB)

• Alice gets MA ∈ [n]k×L and Bob gets MB ∈ [n]k×L.

• Return ⊥ if (MA,MB) /∈ supp(DS-SI
n,k,L).

• Alice generates M1 as follows:

– For every i ∈ [k] and every j ∈ [L] such that τj = 1, Alice adds the edge (MA
i,j ,M

A
i,(j mod L)+1)

to M1.a

– Alice extends M1 into a perfect matching uniformly at random.

• Similarly, Bob generates M2, . . . ,MT as follows:

– For every i ∈ [k], every µ ∈ {2, . . . , T}, and every j ∈ [L] such that τj = µ, Bob adds the edge
(MB

i,j ,M
B
i,(j mod L)+1) to Mµ.

– For every µ ∈ {2, . . . , T}, Bob extends Mµ into a perfect matching uniformly at random.

aWe write (j mod L) + 1 in the subscript as we index starting from 1 instead of 0.

Notation. For n, L ∈ N≥1, we let Sn,L be the set of all the vectors from [n]L whose entries are all distinct.
Let n, k, L ∈ N≥1, i, j ∈ [k], and X ∈ Sn,L. We define DS-SI

n,k,L;i,j,X to be the distribution DS-SI
n,k,L conditioning

on the event that row(MA, i) = row(MB, j) = X.
We then define

Rn,T,~τ ;i,j,X := Red-Cyc(DS-SI
n,k,L;i,j,X),

which is the outputted distribution of the reduction Red-Cyc where Alice and Bob draw their inputs jointly from
DS-SI

n,k,L;i,j,X .
Let Gn,T,~τ ;X to be the distribution Gn,T conditioning on the event that the graph contains X as a ~τ pattern

cycle. Slightly abusing notation, we also identify a graph G ∈ supp(Gn,T) by a list of T perfect matchings
M1,M2, . . . ,MT .13

Given G ∈ supp(Gn,T) and a pattern ~τ ∈ [T]L, we define #~τ (G) as the number of simple cycles in G with
pattern ~τ (i.e., #~τ (G) = |C~τ (G)|).

We will need the following two lemmas.

Lemma 5.1.1. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: letting k = n1/3, for every
L ∈ [log n], ~τ ∈ [T]L, X ∈ Sn,L and i, j ∈ [k], it holds that

‖Rn,k,T,~τ ;i,j,X − Gn,T,~τ ;X‖TV ≤ 1/n0.1.

13We note that since now we are aiming to prove the communication complexity lower bound, the orderings of the edges within
individual matchings do not matter, so we (Alice and Bob, indeed) will simply “forget” their orderings.

Copyright © 2023
Copyright for this paper is retained by the authors889

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma 5.1.2. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: for every L ∈ [log n] and
valid cycle pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[#~τ (G) > log3 n] ≤ n−100,

and
1/2 ≤ E

G←Gn,T

[#~τ (G)] ≤ 2.

Now we are ready to prove Lemma 5.0.1.

Proof. [Proof of Lemma 5.0.1] Let ε, δ ∈ (0, 1) to be specified later. For the sake of contradiction, we will first
assume the existence of a communication protocol Πcyc with complexity nε such that

(5.9) Pr
G←Gn,T

G=([n],M1◦M≥2)

[
Πcyc(G) ∈ C~τ (G)

]
> n−δ, 14

and then construct another protocol ΠSI that contradicts Lemma 5.0.2. Recall that k = n1/3 in Lemma 5.0.2.
Now we specify the protocol ΠSI.

The protocol ΠSI for Sparse-SIn,k,L

1. Alice gets MA ∈ [n]k×L and Bob gets MB ∈ [n]k×L.

2. Alice and Bob simulate Red-Cyc(MA,MB) to get their new inputs M1 and M≥2, respectively. (Note
that this step does not require communication, according to Red-Cyc.)

3. Alice and Bob run Πcyc with inputs being M1 and M≥2, respectively.

4. If Πcyc returns a cycle C, Alice and Bob then outputs the vertices in C, in the same order they
appear in C.

In the rest of the proof, for simplicity we will use GX to denote Gn,T,~τ ;X , RX to denote Rn,k,T,~τ ;i,j,X , and
DS-SI

X to denote DS-SI
i,j,X . Their other parameters in the subscripts (n,K,L, T, ~τ , i, j) will always be clear from the

context.
The success probability psuc of ΠSI over DS-SI can be calculated as follows:

psuc = Pr
X←Sn,L

Pr
i,j←[n]

Pr
(MA,MB)←DS-SI

i,j,X

[ΠSI(M
A,MB) = X].

From now on, we will slightly abuse the notation by identify an ordered cycle C with the list of its vertices.
(Since we only care about cycles with pattern ~τ , the latter uniquely determines the former.)

We wish to lower bound

Pr
X←Sn,L

Pr
(MA,MB)←DS-SI

X

[ΠSI(M
A,MB) = X]

= Pr
X←Sn,L

Pr
(M1,M≥2)←RX

[Πcyc(M
1,M≥2) = X]

≥ Pr
X←Sn,L

Pr
G←GX

[Πcyc(G) = X]− n−0.1.(Lemma 5.1.1)

Next we define G̃ as the following distribution: draw X ← Sn,L, G← GX , and then output G. We have

Pr
X←Sn,L

Pr
G←GX

[Πcyc(G) = X] = Pr
G←G̃

Pr
X←C~τ (G)

[Πcyc(G) = X].

We need the following claim that helps us to analyze the above quantity.

14For notation convenience, given a graph G = ([n],M1 ◦M≥2), we use Πcyc(G) to denote Πcyc(M1,M≥2).

Copyright © 2023
Copyright for this paper is retained by the authors890

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Claim 5.1.1. The following two statements hold:

1. PrG←G̃ [Πcyc(G) ∈ C~τ (G)] ≥ n−δ/2.

2. PrG←G̃ [#~τ (G) > log3 n] ≤ 1/n50.

Before proving Claim 5.1.1, we first show it implies our lemma. We have

Pr
G←G̃

Pr
X←C~τ (G)

[Πcyc(G) = X]

≥ E
G←G̃

1

#~τ (G)
· 1{Πcyc(G)∈C~τ (G)}

≥ E
G←G̃

1

log3 n
· 1{Πcyc(G)∈C~τ (G) ∧ #~τ (G)≤log3 n}

≥ 1

log3 n
· (n−δ/2− n−50).(Claim 5.1.1)

Putting everything together and setting δ = 0.05 and ε = 0.1, we have

psuc ≥
1

log3 n
· (n−δ/2− n−50)− n−0.1 ≥ n−0.1.

Noting that ΠSI has the same communication complexity as Πcyc, we have established that ΠSI solves DS-SI
n,k,L

over DS-SI
n,k,L with probability at least n−0.1 with communication complexity n0.1, contradiction to Lemma 5.0.2.

This completes the proof for the lemma.
Finally, we prove Claim 5.1.1.

Proof. [Proof of Claim 5.1.1] Let SG = supp(G). Note that G̃’s support is a subset of SG . Fix G ∈ SG , we note

that the probability of G is drawn from G̃ is proportional to #~τ (G), so we have

G̃(G) =
#~τ (G)∑

H∈SG
#~τ (H)

.

Therefore
G̃(G)

G(G)
=

#~τ (G)

EH∈SG
#~τ (H)

.

Applying Lemma 5.1.2, we have

(5.10) #~τ (G)/2 ≤ G̃(G)

G(G)
≤ 2#~τ (G).

Now we are ready to prove Item (1).

Pr
G←G̃

[Πcyc(G) ∈ C~τ (G)] = E
G←G

G̃(G)

G(G)
· 1{Πcyc(G)∈C~τ (G)}

≥ E
G←G

#~τ (G)/2 · 1{Πcyc(G)∈C~τ (G)}(By (5.10))

≥ 1

2
· E
G←G

1{Π(G)∈C~τ (G)}

≥ n−δ/2.

Next, we prove Item (2).

Pr
G←G̃

[#~τ (G) > log3 n]

Copyright © 2023
Copyright for this paper is retained by the authors891

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

= E
G←G

G̃(G)

G(G)
· 1{#~τ (G)>log3 n}

≤ E
G←G

2 ·#~τ (G) · 1{#~τ (G)>log3 n}(By (5.10))

≤ 2n · E
G←G

1{#~τ (G)>log3 n}(#~τ (G) ≤ n)

≤ n−50.(Lemma 5.1.2)

5.2 Proof of Lemma 5.1.1 In this section we prove Lemma 5.1.1, which is restated below.

Reminder of Lemma 5.1.1. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: letting
k = n1/3, for every L ∈ [log n], ~τ ∈ [T]L, X ∈ Sn,L and i, j ∈ [k], it holds that

‖Rn,k,T,~τ ;i,j,X − Gn,T,~τ ;X‖TV ≤ 1/n0.1.

Let Cn be the number of perfect matchings on an n vertex set (assuming that n ∈ 2N≥1).
We need the following fact regarding Cn.

Fact 5.1.1. Let n ∈ 2N≥1 be sufficiently large. For every k ∈ N such that k < n/2, we have

Cn−2k

Cn
=
∏

i∈[k]

1

(n− 2i+ 1)
.

In particular, for every k ∈ N such that k < n0.34, it holds that

n−k ≤ Cn−2k

Cn
≤ n−k · (1 + n−0.2).

Proof. [Proof of Lemma 5.1.1] For notational convenience, throughout the proof we will use RX to denote
Rn,k,T,~τ ;i,j,X and GX to denote Gn,T,~τ ;X .

Let X[i] be the edges in X that belongs to M i if treating X as a ~τ -pattern cycle15, we can see that GX is the
uniform distribution over lists of T perfect matchings (M1,M2, . . . ,MT) such that X[i] ⊆M i.

We first observe that RX can be alternatively described as below. We will also define an auxiliary distribution
R̃X to help the analysis.

Alternative sampling procedures SampX and S̃ampX for RX and R̃X , respectively

• Let ` = |{τj = 1 : j ∈ [L]}|.
Sampler SampX for RX Alice gets MA ∈ [n](k−1)×2` and Bob gets MB ∈ [n](k−1)×L from the uniform

distribution over all pairs (MA,MB) such that the union of MA,MB, X has distinct entries.

Sampler S̃ampX for R̃X Alice gets MA ∈ [n](k−1)×2` and Bob gets MB ∈ [n](k−1)×L from the uniform

distribution over all such pairs (MA,MB).

• If the union of MA,MB, X does not have distinct entries, then return ⊥ and terminate. (This is only

relevant for R̃X .)

• Alice generates M1 as follows:

15That is, X[i] = {(X`, X` mod L+1) : ` ∈ [L] ∧ τ` = i}.

Copyright © 2023
Copyright for this paper is retained by the authors892

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

– Alice first sets M1 = X[1].

– For every i ∈ [k − 1] and j ∈ [`], Alice adds the edge (MA
i,2j−1,M

A
i,2j) to M1.

– Alice extends M1 into a perfect matching uniformly at random.

• Similarly, Bob generates M2, . . . ,MT as follows:

– For every µ ∈ {2, . . . , T}, Bob first sets Mµ = X[µ].

– For every i ∈ [k], every µ ∈ {2, . . . , T}, and every j ∈ [L] such that τj = µ, Bob adds the edge
(MB

i,j ,M
B
i,(j mod L)+1) to Mµ.

– For every µ ∈ {2, . . . , T}, Bob extends Mµ into a perfect matching uniformly at random.

We first prove the following claim.

Claim 5.1.2. It holds that
‖R̃X −RX‖TV ≤ n−0.2,

and
R̃X(⊥) ≤ n−0.2.

Proof. Let DX and D̃X be the distribution of the pairs (MA,MB) in SampX and S̃ampX , respectively. It suffices

to show that ‖DX − D̃X‖TV ≤ n−0.2. Let E be the probability that the union of MA,MB, X has distinct entries.

We note that DX is simply D̃X conditioning on the event E .
By a simple union bound, we have PrD̃X

[E] ≥ 1 − (2kL)2/n, which implies R̃X(⊥) ≤ n−0.2 and

‖DX − D̃X‖TV ≤ n−0.2, and therefore completes the proof.

From now on we are going to show GX and R̃X are close. We will use the following claim.

Claim 5.1.3. For all G ∈ supp(GX),

R̃X(G)

GX(G)
≤ (1 + n−0.15).

Proof. Fix G ∈ GX . We note that if G is generated by the procedure for generating R̃X , then (MA,MB) are
indeed completely determined by (k − 1) · 2` entries. Hence we have

R̃X(G) ≤ n(k−1)·2`

n(k−1)·(2`+L)
·



∏

i∈[T]

Cn−2k|X[i]|



−1

.

Also, note that

GX(G) =



∏

i∈[T]

Cn−2|X[i]|



−1

,

we have
R̃X(G)

GX(G)
≤ n−(k−1)·L

∏

i∈[T]

[
Cn−2|X[i]|

Cn−2k|X[i]|

]

By Fact 5.1.1 and noting k|X[i]| ≤ n1/3 · log n ≤ n0.34, the above can be bounded by

n−(k−1)·L · n(k−1)·L · (1 + n−0.2)2T ≤ (1 + n−0.15).

Copyright © 2023
Copyright for this paper is retained by the authors893

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Now, note that

‖R̃X − GX‖TV = R̃X(⊥) +
∑

G∈supp(GX)

max(0, R̃X(G)− GX(G)).

By Claim 5.1.3 and Claim 5.1.2, the above can be bounded

n−0.2 +
∑

G∈supp(GX)

GX(G) · n−0.15 ≤ n−0.2 + n−0.15 ≤ n−0.1,

which completes the proof.

5.3 Proof of Lemma 5.1.2 In this section we prove Lemma 5.1.2, which is restated below.

Reminder of Lemma 5.1.2. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: for every
L ∈ [log n] and valid cycle pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[#~τ (G) > log3 n] ≤ n−100,

and

1/2 ≤ E
G←Gn,T

[#~τ (G)] ≤ 2.

Proof. We first bound EG←Gn,T
[#~τ (G)]. By linearity of expectation, we have that

E
G←Gn,T

[#~τ (G)] =
∑

vs∈[n]

Pr
G←Gn,T

[Path(G, vs, ~τ) ∈ C~τ (G)].

So it suffices to bound PrG←Gn,T
[Path(G, vs, ~τ) ∈ C~τ (G)] for a fixed vs ∈ [n]. We will analyze the following

“lazy procedure” when determining if Path(G, vs, ~τ) ∈ C~τ (G):

1. Let v0 = vs and ~w(0) be an empty list.

2. For i from 1 to L:

(a) Let e be the unique edge in the matching ~Mτi that is adjacent to the vertex vi−1.

(b) Let vi be the endpoint of e other than vi−1. If i < L and vi is already visited in ~w(i−1) (i.e., vi is the
endpoints of some edges in ~w(i−1)), then return NO.

(c) ~w(i) = ~w(i−1) ◦ e.

3. If vL = v0, return YES. Otherwise return NO.

Intuitively, in Step (2) we check whether we get a simple path, and in Step (3) we check whether we get
a cycle. Now we analyze the probability that the above procedure returns YES. Let Ei be the event that the
procedure does not return NO before the end of i-th loop at Step (2). We first calculate Pr[Ei|Ei−1].

Note that conditioning on Ei−1, the path has visited i vertices v0, . . . , vi−1. Let ti be the number of edges
from Mτi that is contained in ~w(i−1). We note that ti ≤ i/2. We can see that the endpoint of e other than vi−1
has n − 1 − 2ti many equally likely choices, and only i − 2ti many of them causes the procedure to return NO.
Hence, we have

Pr[Ei|Ei−1] = 1− i− 2ti
n− 1− 2ti

.

Now we analyze the probability of the procedure outputting YES conditioning on EL. Again, we note that
the other endpoint of the last edge e has n− 1− 2tL many equally likely choices, but only 1 of them (vs) causes
the procedure to return YES. Hence the probability is 1

n−1−2tL
.

Copyright © 2023
Copyright for this paper is retained by the authors894

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Hence, we have

psingle = Pr
G←Gn,T

[Path(G, vs, ~τ) ∈ C~τ (G)]

=
1

n− 1− 2tL
·
∏

i∈[L−1]

(
1− i− 2ti

n− 1− 2ti

)
.

Note that 2ti ≤ i for all i ∈ [L], we have

psingle ≤
1

n− 1− L
≤ 2/n,

and

psingle ≥
1

n
·
∏

i∈[L−1]

(
1− i

n− 1

)
≥ 1/2n,

the last inequality follows from L ∈ [log n].
The desired bound on EG←Gn,T

[#~τ (G)] then follows from the fact that it equals n · psingle.
Upper bounding PrG←Gn,T [#~τ (G) > log3 n]. We first note that a vertex u ∈ [n] in G ∈ supp(Gn,T) can

only be contained in at most L many cycles with pattern ~τ , since fixing its position in the pattern ~τ completely
determines the cycle. Hence, a cycle C ∈ C~τ (G) can share vertices with at most L2 many other cycles in C~τ (G).

Assuming now that #~τ (G) = |C~τ (G)| > log3 n. We consider a dependence graph VC with vertices being
C~τ (G), and we add an edge between two cycles in VC if they share a vertex. By previous discussions, we know
that VC has maximum degree ∆ ≤ L2 ≤ log2 n. By a standard coloring argument, it follows that VC has an
independent set of size at least (log3 n)/(∆ + 1) ≥ log n− 1.

Let ` = log n− 1. From the above discussion, we know that #~τ (G) > log3 n implies the existence of ` many
vertex-disjoint pattern-~τ cycles in G. We denote the latter event as Enice and will upper bound Pr[Enice] instead.

Let S = {s1, s2, . . . , s`} be a subset of [n]. For every possible length-L paths ~W = (~w1, ~w2, . . . , ~w`), we will
show that conditioning on the event

ES, ~Wpath =
∧

i∈[`]

[
Path(G, si, ~τ) = ~wi

]
,

the probability that all of Path(G, si, ~τ) are vertex-disjoint simple cycles with pattern ~τ , denoted as event ESnice
are at most

(n− ` · L)−`.
Now, conditioning on Epath, if for any i 6= j, ~wi and ~wj share at least one vertex, then by definition ESnice

happens with probability 0. So we can assume all of ~wi are pair-wise vertex-disjoint. In this case, we note that
ESnice happens if and only if the following event happens: for every i ∈ [`], the unique edge from MτL that is
adjacent to wi

L, connects to wi
1.

Since all ~wi’s are vertex disjoint, the above happens with probability at most (n− ` · L)−`.
Putting the above together, it follows that

Pr[ESnice] ≤ (n− ` · L)−` ≤ (n− log2 n)−`.

By a union bound, we have

Pr[Enice] ≤
∑

S⊂[n],|S|=`

Pr[ESnice]

≤
(
n

`

)
· (n− log2 n)−`

≤ n`

`!
· (n− log2 n)−`

Copyright © 2023
Copyright for this paper is retained by the authors895

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

≤
(

n

n− log2 n

)`

· 1
`!

≤
(

1

1− log2 n/n

)`

· 1
`!

≤ n−100.(n is sufficiently large and ` = log n− 1)

Finally, recall that #~τ (G) > log3 n implies Enice, it follows that Pr[#~τ (G) > log3 n] ≤ n−100 as well, which
completes the proof.

6 Lower Bounds for Finding a Long Path

Recall that L~τ (G) is the set of simple paths in G with pattern ~τ . In this section we prove Lemma 4.0.2, which is
restated below.

Reminder of Lemma 4.0.2. There exist ε, δ, γ0 ∈ (0, 1) such that for all T ∈ N≥1 and for all sufficiently large
n ∈ 2N≥1 the following holds: For all L ∈ [γ0 · log n], p ≤ (L − 15)/4T , valid path pattern ~τ ∈ [T]L, and p-pass
nε-space streaming algorithms A, we have

(6.11) Pr
G←Gn,T

[
A(G) ∈ L~τ (G)

]
≤ n3−δL/p.

We will also call the problem of finding an element in L~τ (G) as the Path-Search-Streamingn,T,~τ problem.

6.1 Lower Bounds for a Specific Pointer Chasing Problem We will prove Lemma 4.0.2 by a reduction
from a specific pointer chasing problem.

Definition 6.0.1. (The ASPCn,d problem) Let n ∈ N≥1 and d ∈ 2N≥1. In the ASPCn,d problem, there are two
players Alice and Bob, and d permutations ~π = (π1, π2, . . . , πd) on [n]. Alice gets all the odd-indexed permutations
π1, π3, . . . , πd−1, and Bob gets all the even-indexed permutations π2, π4, . . . , πd. Let π≤i = πi ◦ πi−1 ◦ . . . ◦ π1 for
every i ∈ [d]. Their goal is to output the path path~π(s) = (s, π≤1(s), π≤2(s), . . . , π≤d(s)) for some s ∈ [n].

For notational convenience, let P(~π) = {path~π(s) : s ∈ [n]}. The goal of Alice and Bob can then be restated as
outputting an element from P(~π). We also let Pn,d denote the uniform distribution over all possible ~π consisting
of d permutations on [n].

We need the following lower bound for ASPCn,d; see Appendix A for a proof.

Lemma 6.0.1. (Lower Bounds for ASPCn,d) There exist ε, δ ∈ (0, 1) such that for all sufficiently large n ∈ N
the following holds: for all d ∈ [log n], p ≤ (d− 6)/2, and all p-round communication protocols Π with at most nε

communication complexity, it holds that

Pr
~π←Pn,d

[Π(~π) ∈ P(~π)] ≤ n1−δd/p,

where Π(~π) denotes the output of Π when Alice gets the input π1, π3, . . . , πd−1 and Bob gets the input π2, π4, . . . , πd.

To make use of Lemma 6.0.1, we first reduce ASPC to another auxiliary problem, which is closer to the
Path-Search-Streaming problem considered in Lemma 4.0.2.

Definition 6.0.2. (The Path-Findingn,T,~τ problem) Let n, T, L ∈ N≥1 and ~τ ∈ [T]L be a valid path pattern.

In the Path-Findingn,~τ problem, there is a graph H consisting of L + 1 layers of vertices ~V = (V1, V2, . . . , VL+1),

each with size n, and L set of edges ~W = (W1,W2, . . . ,WL) such that Wi is a perfect bipartite matching between
layers Vi and Vi+1. There are T players P1, . . . , PT , such that the i-th players gets all W` such that τ` = i as
input. Their goal is to output a directed path from the first layer V1 to the last layer VL+1.

Copyright © 2023
Copyright for this paper is retained by the authors896

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

For simplicity, we will always assume Vi = {(i− 1) · n+ 1, (i− 1) · n+ 2, . . . , i · n} for each i ∈ [L]. We also

let Wn,L be the uniform distribution over all possible ~W consisting of L perfect bipartite matchings, where the

i-th matching is between Vi and Vi+1. We denote P(~W) as the set of all directed paths from the first layer V1 to

the last layer VL+1, going through the graph defined by ~W . The goal of Path-Findingn,~τ can then be restated as

output an element of P(~W).
Using a reduction from the ASPC problem, we have the following lower bound for Path-Finding.

Lemma 6.0.2. (Lower bounds for Path-Findingn,T,~τ) There exist ε, δ ∈ (0, 1) such that for all T ∈ N and for

all sufficiently large n ∈ N the following holds: for all L ∈ [log n], valid path pattern ~τ ∈ [L]T , p ≤ (L − 15)/4T ,
and all p-round communication protocol Π with at most nε communication complexity in the blackboard model,16

it holds that

Pr
~W←Wn,L

[Π(~W) ∈ P(~W)] ≤ n1−δL/p,

where Π(~W) denotes the output of the protocol Π when the T players get their inputs from ~W according to the
pattern ~τ .

Proof. We first partition the T players into two disjoint sets T1, T2 ⊆ {P1, . . . , PT } such that there are at least
(L− 1)/2 indices ` such that τ` and τ`+1 are not in the same set. Such partition always exists by a probabilistic
argument, since a random partition gives (L− 1)/2 such indices in expectation.

This allows us to view ~τ as d ≥ d(L − 1)/2e + 1 segments that alternate between players in T1 and players
in T2. We will view blackboard communication protocols for Path-Findingn,T,~τ as a two-player communication
protocol between “player” T1 and “player” T2.

Formally, let ~τ1, . . . , ~τd be the segments of τ such that each odd ~τi has all its coordinates in T1, and each even
~τi has all its coordinates in T2. Fix a protocol Π for Path-Findingn,T,~τ . We will use it to solve ASPCn,d, then
apply the lower bound in Lemma 6.0.1.

Consider the following protocol for ASPCn,d.

Protocol for ASPCn,d

Inputs π1, . . . , πd

Communication

1. for each odd i, Alice samples uniformly random matchings in segment ~τi conditioned on their
composition equal to πi

2. for each even i, Bob samples uniformly random matchings in segment ~τi conditioned on their
composition equal to πi

3. denote the graph they generated by H, Alice and Bob run Π on H, where Alice simulates all players
in T1 and Bob simulates all players in T2, and obtain a path Q in H

4. output the path for ~π obtained by composing all segments ~τ1, . . . , ~τd of Q

When π1, . . . , πd are uniform, H is a uniformly random graph. Alice knows the inputs for all players in T1,
and Bob knows the inputs for all players in T2. Hence, the players can simulate Π. Moreover, the number of
rounds in our protocol for ASPCn,d is at most T times the number of rounds in Π. When Π outputs a correct
path Q in H, the output of the protocol for ASPCn,d is correct.

Hence, by Lemma 6.0.1, the probability that Π outputs a correct path is at most n1−δd/p ≤ n1−δL/(2p). By
reparametrizing, we prove the lemma.

16That is, in each round, from the first player to the T -th player, each player writes some bits to a blackboard that can be seen by

everyone. And the final output of the protocol is only determined by the content of the blackboard at the end of the protocol. The
communication complexity of the protocol is the maximum total number of bits written on the blackboard.

Copyright © 2023
Copyright for this paper is retained by the authors897

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

6.2 Proof of Lemma 4.0.2 Now we are ready to prove Lemma 4.0.2 by a reduction from the Path-Finding
problem.

Reduction Red-Path from Path-Findingnγ ,T,~τ to Path-Search-Streamingn,T,~τ

Parameters γ = 10−3. n, T, ~τ are parameters for the desired Path-Search-Streaming problem instance. Let
m = nγ .

Input for Path-Findingm,T,~τ There is a graphH consisting of L+1 layers of vertices ~V = (V1, V2, . . . , VL+1),

each with size m, and L matchings ~W = (W1,W2, . . . ,WL) such that Wi is a perfect bipartite
matching between layers Vi and Vi+1. There are T players P1, . . . , PT , such that the Pi gets all W`

such that τ` = i as input.

We also have Vi = {(i−1)·m+1, (i−1)·m+2, . . . , i·m} for each i ∈ [L], and
⋃

i∈[L+1] Vi = [m·(L+1)].

• All T players first use public randomness to sample an injective function ϕ : [m · (L+ 1)]→ [n].

• For each i ∈ [T]:

1. Let Ei be the set of all edges from {W` : τ` = i}. Player Pi first constructs a partial matching
Mi = {(ϕ(u), ϕ(v)) : (u, v) ∈ Ei}.a

2. Pi then extends Mi into a perfect matching over [n] uniformly at random.

aMi is indeed a partial matching since ~τ is a valid path pattern, as required by the definition of Path-Search-Streamingn,T,~τ .

Notation. We call a subset X ⊆ [n] a valid starting subset of a graph G = ([n],M1 ◦ . . . ◦MT) ∈ supp(Gn,T)
with respect to the pattern ~τ , if for every u ∈ X, Path(G, u, ~τ) is simple, and for every two distinct u, v ∈ X,
Path(G, u, ~τ) and Path(G, v, ~τ) are vertex-disjoint. We also use Xm,~τ (G) to denote the set of all valid starting
subset of G of size m with respect to ~τ . For a subset S ⊆ [n], we use XS

m,~τ (G) to denote the subset of Xm,~τ (G)
that contains S as a subset.

For a subset X ⊆ [n] with size nγ , we use Gn,T,~τ ;X to denote the uniform distribution over all possible graphs
G ∈ supp(Gn,T) such that X ∈ X|X|,~τ (G). Also, let Rn,T,~τ ;X be the distribution outputted by Red-Path given
inputs drawn from Wn,L and conditioning on the event that {ϕ(i) : i ∈ [nγ]} = X. We have the following
observation.

Observation 6.0.1. Let n, T, ~τ and γ be as in the reduction Red-Path. For every X ⊆ [n] with size nγ , it holds
that the distributions Rn,T,~τ ;X and Gn,T,~τ ;X are identical.

We also need the following lemma.

Lemma 6.0.3. Let γ = 10−3. For all T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: letting
m = nγ , for every L ∈ [log n] and valid path pattern ~τ ∈ [T]L, it holds that

1.

Pr
G←Gn,T

[
|Xm,~τ (G)| ≤ 1

2
·
(
n

m

)]
≤ n− logn,

2.

Pr
G←Gn,T

[
|X{1}m,~τ (G)| ≤ 1

2
·
(
n− 1

m− 1

)
∧ Path(G, 1, ~τ) ∈ L~τ (G)

]
≤ n− logn.

Now we are ready to prove Lemma 4.0.2.

Proof. [Proof of Lemma 4.0.2] Let ε, δ ∈ (0, 1) be two constants to be specified later. Let ε̃, δ̃ be the constants
in Lemma 6.0.2, and γ0 = γ = 10−3.

Copyright © 2023
Copyright for this paper is retained by the authors898

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Given a p-pass nε-space streaming algorithm A such that

(6.12) Pr
G←Gn,T

[A(G) ∈ L~τ (G)] > n3−δL/p,

we will construct a communication protocol for Path-Findingm,T,~τ that violates Lemma 6.0.2.
First, we note that (6.12) implies that there exists a vertex s∗ ∈ [n] such that

(6.13) Pr
G←Gn,T

[A(G) = Path(G, s∗, ~τ) ∧ A(G) ∈ L~τ (G)] > n2−δL/p.

We set psuc = n2−δL/p for notational convenience. By symmetry, we can assume that s∗ = 1.
Our protocol Π for Path-Findingm,T,~τ works by first running Red-Path to obtain a Path-Search-Streamingn,T,~τ

instance, and then simulating the streaming algorithm A using p rounds and nε · (p · T) bits of communication to
obtain A’s output, a length-L path ~v = (v1, v2, . . . , vL+1) ∈ [n]. Finally, it constructs a new length-L path ~u in
the Path-Findingm,T,~τ by setting ui = ϕ−1(vi) for every i ∈ [L+ 1], and outputs ~u (if some vi is not in the range
of ϕ, or A does not output a valid length-L path ~u, Π simply outputs ⊥).

Now we analyze the success probability of Π over the distribution Wn,L. We first note that conditioning on
the event that {ϕ(i) : i ∈ [m]} = X, the output distribution of Red-Path is Rn,T,~τ ;X , which is identical to Gn,T,~τ ;X

by Observation 6.0.1. From now on, we will denote Gn,T,~τ ;X by GX for simplicity.
The success probability can then be lower bounded by

(6.14) Pr
X←([n]

m)
Pr

G←GX
[A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ 1 ∈ X] .

Now, let G̃ be the distribution generated as follows: first draw X ←
(
[n]
m

)
, then draw G ← GX and output

G. (6.14) can then be alternatively written as

Pr
G←G̃

Pr
X∈Xm,~τ (G)

[A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ 1 ∈ X]

= Pr
G←G̃

1{A(G)=Path(G,1,~τ)∧A(G)∈L~τ (G)} · Pr
X∈Xm,~τ (G)

[1 ∈ X] .(6.15)

To lower bound (6.15), we need the following claim.

Claim 6.0.1. For every event E, it holds that

Pr
G←G̃

[E(G)] ≥ 1

2
·
[
Pr

G←G
[E(G)]− n− logn

]
.

Proof. We first note that supp(G̃) ⊆ supp(G), and for G ∈ supp(G), we have

G̃(G) =
Xm,~τ (G)∑

H∈supp(G) Xm,~τ (H)
,

which implies that

G̃(G)

G(G)
=

Xm,~τ (G)

EH∈supp(G) Xm,~τ (H)
.

Now, we have

Pr
G←G̃

[E(G)] = Pr
G←G

G̃(G)

G(G)
· [E(G)]

= Pr
G←G

Xm,~τ (G)

EH∈supp(G) Xm,~τ (H)
· [E(G)]

≥
(
n

m

)−1
·
(
n

m

)
· 1/2 · Pr

G←G

[
Xm,~τ (G) >

1

2
·
(
n

m

)
∧ E(G)

]
(EH∈supp(G) Xm,~τ (H) ≤

(
n
m

)
)

≥ 1

2
· (Pr

G←G
[E(G)]− n− logn).(Lemma 6.0.3)

Copyright © 2023
Copyright for this paper is retained by the authors899

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Now we are ready to lower bound (6.15). We have

Pr
G←G̃

1{A(G)=Path(G,1,~τ)∧A(G)∈L~τ (G)} · Pr
X∈Xm,~τ (G)

[1 ∈ X]

≥
(
n−1
m−1

)
/2

(
n
m

) · Pr
G←G̃

[
A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ X{1}m,~τ (G) ≥

(
n− 1

m− 1

)
· 1
2

]

≥ n−1 ·
(

Pr
G←G

[
A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) ∧ X{1}m,~τ (G) ≥

(
n− 1

m− 1

)
· 1
2

]
− n− logn

)
(Claim 6.0.1)

≥ n−1 · (psuc − 2 · n− logn).

(Lemma 6.0.3 and A(G) = Path(G, 1, ~τ) ∧ A(G) ∈ L~τ (G) implies Path(G, 1, ~τ) ∈ L~τ (G))

Now, we set ε = ε̃/2, which means Π has communication complexity nε · (p ·T) ≤ nε̃. We also set δ = 1
2 ·γ · δ̃.

Then the success probability of Π over Wn,L is at least

(6.16) n−1 · (n−δL/p+2 − 2 · n− logn) ≥ n−δL/p+0.5 = n−
1
2 δ̃γL/p+1/2 > m−δ̃L/p+1,

contradicting Lemma 6.0.2. This completes the proof.

6.3 Proof of Item (1) of Lemma 6.0.3 Reminder of Item (1) of Lemma 6.0.3. Let γ = 10−3. For all
T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: letting m = nγ , for every L ∈ [log n] and valid
path pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[
|Xm,~τ (G)| ≤ 1

2
·
(
n

m

)]
≤ n− logn.

Proof.Notation and setup. Throughout the proof, we use G to denote a random variable drawn from Gn,T . For
every S ∈

(
[n]
m

)
, we use YS to denote the random variable 1{S∈Xm,~τ (G)} (i.e., YS equals 1 if S ∈ Xm,~τ (G) and 0

otherwise). We also let M =
(
n
m

)
and

(6.17) Y =
∑

S∈([n]
m)

YS = |Xm,~τ (G)|.

Item (1) can then be restated as

(6.18) Pr[Y /M ≤ 1/2] ≤ n− logn.

For each S ∈
(
[n]
m

)
, we also define ZS = (1− YS) and Z =

∑
S∈([n]

m)ZS . Let ` ≤ n1/3 be an even integer to

be chosen later. We will prove (6.18) by upper bounding

(6.19) E[(Z/M)`].

Expanding (6.19). Now, for each 1 ≤ u < v ≤ n, we defineWu,v to be the indicator random variable that the
following three conditions all hold: (1) Path(G, u, ~τ) is simple, (2) Path(G, v, ~τ) is simple, and (3) Path(G, u, ~τ)
and Path(G, v, ~τ) share at least one vertex. Also, for each u ∈ [n], we define Bu to be the indicator random

variable that Path(G, u, ~τ) is not simple. By the definition of ZS , we can see that for every S ∈
(
[n]
m

)
,

(6.20) ZS ≤
∑

u,v∈S, u<v

Wu,v +
∑

u∈S

Bu.

Plugging (6.20) in the definition of Z, we have

Z ≤
∑

S∈([n]
m)




∑

u,v∈S, u<v

Wu,v +
∑

u∈S

Bu


(6.21)

Copyright © 2023
Copyright for this paper is retained by the authors900

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

=
∑

1≤u<v≤n

Wu,v ·
(
n− 2

m− 2

)
+
∑

u∈[n]

Bu ·
(
n− 1

m− 1

)
,(6.22)

which further implies that

Z/M ≤
∑

1≤u<v≤n

Wu,v ·
m(m− 1)

n(n− 1)
+
∑

u∈[n]

Bu ·
m

n
.

The inequality above can be further simplified to

(6.23) Z/M ≤ E
1≤u<v≤n

[Wu,v] ·
m(m− 1)

2
+ E

u∈[n]
[Bu] ·m.

Raising both sides of (6.23) to the `-th power, we have

(Z/M)` ≤
∑̀

k=0

(
`

k

)
·
(
m(m− 1)

2

)k

·m`−k




E
1≤u1<v1≤n

...
1≤uk<vk≤n

∏

i∈[k]

Wui,vi · E
w1,...,w`−k∈[n]

∏

i∈[`−k]

Bwi




≤
∑̀

k=0

2` ·
(
m2/2

)k ·m`−k




E
1≤u1<v1≤n

...
1≤uk<vk≤n

∏

i∈[k]

Wui,vi · E
w1,...,w`−k∈[n]

∏

i∈[`−k]

Bwi




≤ m2` ·
∑̀

k=0




E
1≤u1<v1≤n

...
1≤uk<vk≤n

∏

i∈[k]

Wui,vi
· E
w1,...,w`−k∈[n]

∏

i∈[`−k]

Bwi



.

Taking the expectation of both sides, we have

(6.24) E[(Z/M)`] ≤ m2` ·
∑̀

k=0




E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E



∏

i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi






.

In the rest of the proof, we will focus on upper bounding the right side of (6.24). We will upper bound each
summand above separately depending on whether k ≥ `/2 or k < `/2.

The case when k < `/2. We first focus on the case that k < `/2. We set t = `− k and note that t ≥ `/2.
Now, first note that we have

(6.25) E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E



∏

i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi


 ≤ E

w1,...,wt∈[n]
E



∏

i∈[t]

Bwi


 .

So in the following we will upper bound

E
w1,...,wt∈[n]

E



∏

i∈[t]

Bwi


 .

Copyright © 2023
Copyright for this paper is retained by the authors901

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

We will first condition on the event that the number of distinct elements in w1, . . . , wt is more than t/2. We
first show the probability that this event does not happen is small, in particular

(6.26) Pr
w1,...,wt∈[n]

[∣∣{wi}i∈[t]
∣∣ ≤ t/2

]
≤
(

n

t/2

)
·
(
t/2

n

)t

≤ n−t/4.

So now we assume that
∣∣{wi}i∈[t]

∣∣ = r > t/2, and we will upper bound

E

[
∏

i∈S

Bi

]

for any S ∈
(
[n]
r

)
.

Claim 6.0.2. For every r ≤ n1/3 and S ∈
(
[n]
r

)
, it holds that

E

[
∏

i∈S

Bi

]
≤ n−r/2.

Combining (6.26) and Claim 6.0.2, we have

(6.27) E
w1,...,wt∈[n]

E



∏

i∈[t]

Bwi


 ≤ n−t/4 + n−t/4 ≤ n−`/8 + n−`/8 ≤ 2n−`/8.

Putting (6.27) and (6.25) together, and recall that we assumed k < `/2, we have

(6.28)

`/2−1∑

k=0




E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E



∏

i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi






≤ (`/2) · 2n−`/8 ≤ ` · n−`/8.

The case when k ≥ `/2. Next we consider the case when k ≥ `/2. We have that

(6.29) E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E



∏

i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi


 ≤ E

1≤u1<v1≤n

...
1≤uk<vk≤n

E



∏

i∈[k]

Wui,vi


 .

In the following we will upper bound

E
1≤u1<v1≤n

...
1≤uk<vk≤n

E



∏

i∈[k]

Wui,vi


 .

Let S = {(ui, vi)}i∈[r] be a set of pairs. We say that S is valid, if the following two conditions hold: (1) all of
u1, . . . , ur, v1, . . . , vr are distinct elements of [n] and (2) ui < vi for every i ∈ [r].

We need the following two claims.

Claim 6.0.3. For every k ≤ n1/3, it holds that

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
∃ a valid set S s.t. |S| ≥ k/2 and S ⊆ {(ui, vi)}i∈[k]

]
≥ 1− n−k/4.

Copyright © 2023
Copyright for this paper is retained by the authors902

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Claim 6.0.4. For every r ≤ n1/3. Let S be a valid set of pairs such that |S| = r. It holds that

E



∏

(u,v)∈S

Wu,v


 ≤ n−r/2.

Combining Claim 6.0.3 and Claim 6.0.4, we immediately have

(6.30) E
1≤u1<v1≤n

...
1≤uk<vk≤n

E



∏

i∈[k]

Wui,vi


 ≤ n−k/4 + n−k/4 ≤ 2n−`/8.

Putting (6.30) and (6.29) together and recall that we assumed k ≥ `/2, we have

(6.31)
∑̀

k=`/2




E
1≤u1<v1≤n

...
1≤uk<vk≤n

E
w1,...,w`−k∈[n]

E



∏

i∈[k]

Wui,vi ·
∏

i∈[`−k]

Bwi






≤ (`/2 + 1) · 2n−`/8 ≤ 2` · n−`/8.

Proving Item (1). Now, plugging (6.27) and (6.30) into (6.24), we have

(6.32) E[(Z/M)`] ≤ m2` · 3` · n−`/8.

Recall that Z/M = 1− Y /M , and hence Item (1) is equivalent to

(6.33) Pr[Z/M > 1/2] ≤ n− logn.

To prove (6.33), we now set ` = log2 n. By Markov’s inequality, we have

Pr[Z/M > 1/2] = Pr[(Z/M)` > 2−`]

≤ 2` · E[(Z/M)`]

≤ 2` ·m2` · 3` · n−`/8(By (6.32))

≤ 2` · 3` · n−`/8+2`·γ(m = nγ)

≤ 2` · 3` · n−`/10(1/8− 2γ > 1/10)

≤ n− logn.(` = log2 n)

6.4 Proof of Item (2) of Lemma 6.0.3 Reminder of Item (2) of Lemma 6.0.3. Let γ = 10−3. For all
T ∈ N≥1, for all sufficiently large n ∈ 2N≥1 the following holds: letting m = nγ , for every L ∈ [log n] and valid
path pattern ~τ ∈ [T]L, it holds that

Pr
G←Gn,T

[
|X{1}m,~τ (G)| ≤ 1

2
·
(
n− 1

m− 1

)
∧ Path(G, 1, ~τ) ∈ L~τ (G)

]
≤ n− logn.

Proof.

Copyright © 2023
Copyright for this paper is retained by the authors903

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Notation and setup. We define random variables G, Wu,v, Bu, YS , and ZS in the same way as in the
proof of Item (1) of Lemma 6.0.3. We will however define Z, Y , and M differently as below.

Let S{1} = {S : S ∈
(
[n]
m

)
∧ 1 ∈ S}. We define

Y =
∑

S∈S{1}

YS , Z =
∑

S∈S{1}

ZS , and M =

(
n− 1

m− 1

)
.

By definition, we have

Y = |X{1}m,~τ (G)|.
Recall that Bu is the indicator that Path(G, u, ~τ) is not simple. Our goal can then be restated as proving

Pr[Z/M > 1/2 ∧B1 = 0] ≤ n− logn,

which is equivalent to
Pr[Z/M · (1−B1) > 1/2] ≤ n− logn.

We will prove the above by upper bounding

(6.34) E
[(
Z/M · (1−B1)

)`]
,

for some parameter ` < n1/3 to be specified later.
Expanding (6.34). Recall that

ZS ≤
∑

u,v∈S, u<v

Wu,v +
∑

u∈S

Bu.

We have

Z ≤
∑

S∈S{1}




∑

u,v∈S, u<v

Wu,v +
∑

u∈S

Bu




=
∑

2≤u<v≤n

Wu,v ·
(
n− 3

m− 3

)
+

∑

2≤u≤n

Bu ·
(
n− 2

m− 2

)
+
∑

2≤v≤n

W1,v ·
(
n− 2

m− 2

)
+B1 ·

(
n− 1

m− 1

)
.

Consequently,

Z(1−B1) ≤
∑

2≤u<v≤n

Wu,v ·
(
n− 3

m− 3

)
+

∑

2≤u≤n

Bu ·
(
n− 2

m− 2

)
+
∑

2≤v≤n

W1,v ·
(
n− 2

m− 2

)
.

Recall that M =
(
n−1
m−1

)
, dividing both sides by M , we further have

Z(1−B1)/M ≤
∑

2≤u<v≤n

Wu,v ·
(m− 1)(m− 2)

(n− 1)(n− 2)
+

∑

2≤u≤n

Bu ·
m− 1

n− 1
+
∑

2≤v≤n

W1,v ·
m− 1

n− 1
.

≤ E
2≤u<v≤n

Wu,v ·m2 + E
2≤u≤n

Bu ·m+ E
2≤v≤n

W1,v ·m.

Taking the `-th power and then the expectation of both sides, we have

E
[(
Z/M · (1−Bu)

)`]

≤ 3` ·m2`
∑

α,β,θ:α+β+θ=`

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[α]

Wui,vi ·
∏

i∈[β]

Bwi
·
∏

i∈[θ]

W1,zi


 .

We divide the triples (α, β, θ) into three categories: (1) α ≥ `/3, (2) α < `/3 and β ≥ `/3, and (3) α, β < `/3
and θ ≥ `/3, and bound them separately. Let I1, I2, and I3 be the set of triples (α, β, θ) that satisfies (1), (2),
and (3), respectively.

Copyright © 2023
Copyright for this paper is retained by the authors904

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The case when (α, β, θ) ∈ I1. First, we have

∑

(α,β,θ)∈I1

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[α]

Wui,vi
·
∏

i∈[β]

Bwi
·
∏

i∈[θ]

W1,zi




≤
∑

(α,β,θ)∈I1

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E



∏

i∈[α]

Wui,vi


 .

By Claim 6.0.3 and Claim 6.0.4, we have

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E



∏

i∈[α]

Wui,vi


 ≤ 2(n− 1)−α/4 ≤ 2(n− 1)−`/12.

Therefore
(6.35)

∑

(α,β,θ)∈I1

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[α]

Wui,vi ·
∏

i∈[β]

Bwi
·
∏

i∈[θ]

W1,zi


 ≤ `2 · 2(n− 1)−`/12.

The case when (α, β, θ) ∈ I2. Next, we have

∑

(α,β,θ)∈I2

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[α]

Wui,vi
·
∏

i∈[β]

Bwi
·
∏

i∈[θ]

W1,zi




≤
∑

(α,β,θ)∈I2

E
w1,...,wβ∈{2,...,n}

E



∏

i∈[β]

Bwi


 .

By (6.26) and Claim 6.0.2, we have

E
w1,...,wβ∈[n]

E



∏

i∈[β]

Bwi


 ≤ 2(n− 1)−β/4 ≤ 2(n− 1)−`/12.

Therefore
(6.36)

∑

(α,β,θ)∈I2

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[α]

Wui,vi ·
∏

i∈[β]

Bwi
·
∏

i∈[θ]

W1,zi


 ≤ `2 · 2(n− 1)−`/12.

The case when (α, β, θ) ∈ I3. Finally, we have

∑

(α,β,θ)∈I3

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[α]

Wui,vi
·
∏

i∈[β]

Bwi
·
∏

i∈[θ]

W1,zi




Copyright © 2023
Copyright for this paper is retained by the authors905

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

≤
∑

(α,β,θ)∈I3

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[θ]

W1,zi


 .

By (6.26), we have

(6.37) Pr
z1,...,zθ∈{2,...,n}

[|{zi}i∈[θ]| ≥ θ/2] ≥ 1− (n− 1)−θ/4.

We also need the following claim.

Claim 6.0.5. For every r > (log n+ 1)2 and S ∈
(
{2,...,n}

r

)
, it holds that

E

[
∏

u∈S

W1,u

]
= 0.

Proof. Recall that W1,u means that both Path(G, 1, ~τ) and Path(G, u, ~τ) are simple and they share at least one
vertex. Since one vertex µ can only be on Path(G, u, ~τ) for at most L + 1 many vertices u (since µ’s position
in the pattern ~τ completely determines the path Path(G, u, ~τ)), we know that Path(G, 1, ~τ) can intersect with
Path(G, u, ~τ) for at most (L+ 1)2 ≤ (log n+ 1)2 many distinct u. Hence, if |S| > (log n+ 1)2, it must hold that∏

u∈S W1,u = 0, which completes the proof.

Now, we set ` = log3 n. Combining (6.37) and Claim 6.0.5, we have that

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[θ]

W1,zi


 ≤ (n− 1)−`/12.

Therefore
(6.38)

∑

(α,β,θ)∈I3

E
2≤u1<v1≤n

...
2≤uα<vα≤n

E
w1,...,wβ∈{2,...,n}

E
z1,...,zθ∈{2,...,n}

E



∏

i∈[α]

Wui,vi
·
∏

i∈[β]

Bwi
·
∏

i∈[θ]

W1,zi


 ≤ `2 · (n− 1)−`/12.

Putting (6.35), (6.36), and (6.38) together, we have

E
[(
Z/M · (1−Bu)

)`] ≤ 3` ·m2` · 5 · `2 · (n− 1)−`/12.

Finally, by Markov’s inequality, we have that

Pr[(Z/M · (1−Bu))
`
> 2−`] ≤ 2` · 3` ·m2` · 5 · `2 · (n− 1)−`/12

≤ 7` ·m2` · n−`/13

≤ 7` · n−`/13+2`·γ

≤ n− logn.(−1/13 + 2γ < 0 and ` = log3 n)

This completes the proof.

6.5 Omitted Proofs We first prove Claim 6.0.3 (restated below).

Reminder of Claim 6.0.3. For every k ≤ n1/3, it holds that

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
∃ a valid set S s.t. |S| ≥ k/2 and S ⊆ {(ui, vi)}i∈[k]

]
≥ 1− n−k/4.

Copyright © 2023
Copyright for this paper is retained by the authors906

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Proof. We consider the following greedy algorithm that constructs a valid subset S̃ of {(ui, vi)}i∈[k]:

• S̃ = ∅ initially.

• For every i ∈ [k], if
{ui, vi} ∩

(
{u`}`∈[i−1] ∪ {v`}`∈[i−1]

)
= ∅,

we add (ui, vi) to S̃ (i.e., if (ui, vi) does not share any element with all previous i− 1 pairs).

It is straightforward to verify that S̃ is always a valid subset of {(ui, vi)}i∈[k].
To prove the claim, it suffices to prove that

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
|S̃| ≤ k/2

]
≤ n−k/4.

We note that |S̃| ≤ k/2 happens only if there exists a subset W ∈
(
[k]
k/2

)
such that in the greedy algorithm for

constructing S̃, for every i ∈W , (ui, vi) is not added to S̃. We say such a subset W is bad.
We then have

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
|S̃| ≤ k/2

]
≤

∑

W∈([k]
k/2)

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
W is bad

]
.

Now, we note that conditioning on the values of ((u`, v`))`∈[i−1], the probability that (ui, vi) is not added to

S̃ is at most

1−
(
(n− 2(i− 1))

2

)/(
n

2

)
≤ 1− n− 2(i− 1)

n
· n− 2(i− 1)− 1

n− 1

≤ 1−
(
1− 2(i− 1)

n

)
·
(
1− 2(i− 1)

n− 1

)

≤ 2(i− 1)

n
+

2(i− 1)

n− 1
≤ 6k/n.

So the probability that W ∈
(

[k]
[k/2]

)
is bad can be bounded by (6k/n)k/2, and we have

Pr
1≤u1<v1≤n

...
1≤uk<vk≤n

[
|S̃| ≤ k/2

]
≤
(

k

k/2

)
· (6k/n)k/2

≤ 2k · (6k/n)k/2

≤ (24k/n)k/2

≤ n−k/4.(k ≤ n1/3)

This completes the proof.

Before proving Claim 6.0.2, we give a template for constructing a sampling procedure for the distribution
Gn,T .

Sampler SampF for Gn,T

1. Initially M1,M2, . . . ,MT are all empty sets, and R1, R2, . . . , RT are all [n].

2. While not all of Ri’s are empty

Copyright © 2023
Copyright for this paper is retained by the authors907

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

(a) Pick a vertex u ∈ [n] and an index i ∈ [T] such that u ∈ Ri.

(b) Sample uniformly at random a vertex v from Ri \ {u}.
(c) Add (u, v) to M i, and remove u and v from Ri.

3. Output G = ([n],M1 ◦M2 ◦ . . .MT).

Picking rule Formally, in Step (2.a), the pair (u, i) is determined by a (potentially probabilistic) function

F that maps the current partial matchings (M1, . . . ,MT) to an element (u, i) ∈ [n]× [T] such that
u ∈ Ri.a We call such a function F a valid picking rule.

aNote that for each i ∈ [T], Ri is determined by M i.

We have the following observation.

Observation 6.0.2. For any valid picking rule F , the output distribution of SampF is identical to Gn,T .

Now we are ready to prove Claim 6.0.2.

Reminder of Claim 6.0.2. For every r ≤ n1/3 and S ∈
(
[n]
r

)
, it holds that

E

[
∏

u∈S

Bu

]
≤ n−r/2.

Proof. Let s1 < s2 < s3 < · · · < sr be the elements of S. In the following we analyze a particular sampler SampBS

that instantiates the sampling template Samp by fixing a particular picking rule.

Sampler SampBS for Gn,T

1. Initially M1,M2, . . . ,MT are all empty sets, and R1, R2, . . . , RT are all [n]. Let K = ∅.
2. For each i ∈ [r]:

(a) If si ∈ K, go to label END.

(b) Set si,0 = si and add si to K.

(c) For each j ∈ [L]:

i. If si,j−1 /∈ Rτj , go to label END.

ii. Sample uniformly at random a vertex v from Rτj \ {si,j−1}.
iii. Add (si,j−1, v) to Mτj , and remove si,j−1 and v from Rτj .

iv. Set si,j = v. If v ∈ K, go to label END.

v. Add v to K.

(d) Go to label STOP.a

(e) END

3. STOP: While not all of Ri’s are empty

(a) Pick a vertex u ∈ [n] and an index i ∈ [T] such that u ∈ Ri.

(b) Sample uniformly at random a vertex v from Ri \ {u}.
(c) Add (u, v) to M i, and remove u and v from Ri.

4. Output G = ([n],M1 ◦M2 ◦ . . .MT).

aAt this point, we know that Path(G, si, ~τ) is simple.

Copyright © 2023
Copyright for this paper is retained by the authors908

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Intuitively speaking, in the above sampler, for each si, we try to first sample the walk Path(G, si, ~τ), and
maintain K as the set of visited vertices. Whenever we encounter a vertex that is already visited before
(by the current si or earlier sj for j < i), we simply stop sampling the current walk. Also, when we have
successfully sampled the whole walk Path(G, si, ~τ) without encountering any already visited vertices, we know
that Path(G, si, ~τ) is simple, meaning that Bsi = 0, and we can already go to STOP to sample the rest of the
graphs since we already know that

∏
u∈S Bu = 0.

Now we formally analyze SampBS . Let Ei be the event that it reaches END at the i-th iteration of Step (2)
(i.e., it does not reach Step (2.d) and go directly to STOP). By previous discussions, we note that ¬Er implies
that we had sampled a simple path with pattern ~τ starting from some si, and therefore

∏
u∈S Bu = 0. Hence, we

have

E

[
∏

u∈S

Bu

]
≤ Pr[Er].

Hence it suffices to upper bound Pr[Er], we will indeed prove

Claim 6.0.6. For every i ∈ [r], it holds that

Pr[Ei|Ei−1] ≤ 1/
√
n.

Claim 6.0.6 immediately implies that

E

[
∏

i∈S

Bi

]
≤ n−r/2,

which completes the proof of Claim 6.0.2.
Finally, we prove Claim 6.0.6.

Proof. [Proof of Claim 6.0.6] Fix i ∈ [r], conditioning on the event Ei−1, let Ki−1 be the set K at the end of
(i−1)-th iteration of Step (2). We can see that {s1, s2, . . . , si−1} ⊆K and |K| ≤ (i−1) · (L+1). Now we further
conditioning on the size nK of Ki−1. We can see that Ki−1 \ {s1, s2, . . . , si−1} is a uniformly random subset of
[n] \ {s1, s2 . . . , si−1} with size nK − (i− 1) ≤ i · L.

Now we lower bound Pr[¬Ei|Ei−1]. We note that this happens if (1) si /∈Ki−1 and (2) Path(G, si, ~τ) is simple
and does not visited any vertices in Ki−1. By our previous discussion and a direct calculation, si /∈Ki−1 happens
with probability at least 1− i·L

n/2 .

We then conditioning on the event si /∈Ki−1, and also the value of Ki−1 to be Ki−1. We can then calculate
the probability of Path(G, si, ~τ) is simple and does not visited any vertices in Ki−1 is at least

(
1− i · L

n/2

)L

.

Putting everything together and recall that L ≤ log n and i ≤ r ≤ n1/3, we have

Pr[¬Ei|Ei−1] ≥
(
1− i · L

n/2

)L+1

≥ 1− 1/
√
n,

which completes the proof.

Reminder of Claim 6.0.4. For every r ≤ n1/3. Let S be a valid set of pairs such that |S| = r. It holds that

E



∏

(u,v)∈S

Wu,v


 ≤ n−r/2.

Proof. Let (u1, v1), (u2, v2), . . . , (ur, vr) be the elements of S. We will analyze the following sampler SampW.

Copyright © 2023
Copyright for this paper is retained by the authors909

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Sampler SampWS for Gn,T

1. Initially M1,M2, . . . ,MT are all empty sets, and R1, R2, . . . , RT are all [n]. Let K = ∅.

2. For each i ∈ [r]:

(a) For each µ ∈ {ui, vi}
i. If µ ∈ K, go to label END.

ii. Set µcur = µ.

iii. For each j ∈ [L]:

A. If µcur /∈ Rτj , go to label END.

B. Sample uniformly at random a vertex ν from Rτj \ {µcur}.
C. Add (µcur, ν) to Mτj , and remove µcur and ν from Rτj .

D. Set µcur = ν. If ν ∈ K, go to label END.

E. Add ν to K.

(b) go to label STOP.a

(c) END

(d) Add ui and vi to K.

3. STOP: While not all of Ri’s are empty

(a) Pick a vertex u ∈ [n] and an index i ∈ [T] such that u ∈ Ri.

(b) Sample uniformly at random a vertex v from Ri \ {u}.
(c) Add (u, v) to M i, and remove u and v from Ri.

4. Output G = ([n],M1 ◦M2 ◦ . . .MT).

aAt this point, we know that both Path(G, ui, ~τ) and Path(G, vi, ~τ) are simple, and they do not share any vertices.

Intuitively speaking, in the above sampler, we maintain K as the set of visited vertices. For each i ∈ [r], we
try to first sample the walk Path(G, ui, ~τ). Whenever we encounter a vertex that is already visited before (by the
current ui or earlier uj , vj for j < i), we simply stop the sampling the induced walk. When we successfully sampled
the whole walk Path(G, ui, ~τ) without encountering any already visited vertices, we know that Path(G, ui, ~τ) is
simple. We then similarly try to sample the walk Path(G, vi, ~τ). If we successfully reach Step (2.b), it means that
both Path(G, ui, ~τ) and Path(G, vi, ~τ) are simple, and they do not share any vertices, meaning that Wui,vi = 0.
We can then go to STOP to sample the rest of the graphs since we already know that

∏
(u,v)∈S Wu,v = 0.

Our proof below follows the same structure of that of Claim 6.0.2. Now we formally analyze SampWS . Let Ei
be the event that it reaches END at the i-th iteration of Step (2) (i.e., it does not reach Step (2.b) and then go
directly to STOP). By previous discussions, we note that ¬Er implies that

∏
(u,v)∈S Wu,v = 0. Hence, we have

E



∏

(u,v)∈S

Wu,v


 ≤ Pr[Er].

Hence it suffices to upper bound Pr[Er], we will indeed prove

Claim 6.0.7. For every i ∈ [r], it holds that

Pr[Ei|Ei−1] ≤ 1/
√
n.

Copyright © 2023
Copyright for this paper is retained by the authors910

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Claim 6.0.7 immediately implies that

E



∏

(u,v)∈S

Wu,v


 ≤ n−r/2,

which completes the proof of Claim 6.0.4.
Finally, we prove Claim 6.0.7.

Proof. [Proof of Claim 6.0.7] Fix i ∈ [r], conditioning on the event Ei−1, letKi−1 be the setK at the end of (i−1)-
th iteration of Step (2). Let Vi−1 = {u`}`∈[i−1]∪{v`}`∈[i−1]. We can see that Vi−1 ⊆K and |K| ≤ 2·(i−1)·(L+1).
Now we further conditioning on the size nK of Ki−1. We can see that Ki−1 \ Vi−1 is a uniformly random subset
of [n] \ Vi−1 with size nK − 2 · (i− 1) ≤ 2 · i · L.

Now we lower bound Pr[¬Ei|Ei−1]. We note that this happens if (1) ui /∈Ki−1 and (2) Path(G, ui, ~τ) is simple
and does not visited any vertices in Ki−1, (3) vi /∈Ki−1 ∪Path(G, ui, ~τ) and (4) Path(G, vi, ~τ) is simple and does
not visited any vertices in Ki−1 ∪ Path(G, ui, ~τ).

Note that conditioning on both of (1) and (2) hold, Path(G, ui, ~τ)\{ui} distributes as a uniform size-L subset
of [n] \ (Ki−1 ∪ {ui}).

Hence, by a similar calculation as in Claim 6.0.6, we have

Pr[¬Ei|Ei−1] ≥
(
1− O(i · L)

n

)2(L+1)

≥ 1− 1/
√
n,

which completes the proof.

A Proof of Lemma 6.0.1

Reminder of Lemma 6.0.1. There exist ε, δ ∈ (0, 1) such that for all sufficiently large n ∈ N the following
holds: for all d ∈ [log n], p ≤ (d−6)/2, and all p-round communication protocols Π with at most nε communication
complexity, it holds that

Pr
~π←Pn,d

[Π(~π) ∈ P(~π)] ≤ n1−δd/p,

where Π(~π) denotes the output of Π when Alice gets the input π1, π3, . . . , πd−1 and Bob gets the input π2, π4, . . . , πd.

To prove the lemma, we will exploit the direct product structure in the problem: We can view the length-d
output as Θ(d/p) segments of length Θ(p), and argue that each segment is hard to compute with nε communication
in p rounds, then apply a direct product theorem. We first formally prove this reduction.

We define the pointer chasing problem with a fixed starting vertex s as follows.

Definition A.0.1. Let n, t ∈ N such that t is even. In the PCn,t problem, there are two players Alice and Bob,
a start vertex s ∈ [n] and t permutations ~π = (π1, π2, . . . , πt) on [n]. Both Alice and Bob know s. Alice also
gets all the odd permutations π1, π3, . . . , πt−1, and Bob also gets all the even permutations π2, π4, . . . , πt. Let
π≤i = πi ◦ πi−1 ◦ . . . ◦ π1. Their goal is to output the path path~π(s) = (s, π≤1(s), π≤2(s), . . . , π≤t(s)).

Lemma A.0.1. Suppose there is a p-round protocol with at most S bits of communication that solves ASPCn,d

with probability greater than n1−δd/p when ~π is sampled from Pn,d. Then for k, t ∈ N such that t is even and
k(2t+2) ≤ d, there is a p-round protocol with at most S bits of communication such that given ~π1, ~π2, . . . , ~πk ← Pn,t

and s1, . . . , sk ∈unif [n] independently, the protocol outputs (path~π1
(s1), . . . , path~πk

(sk)) with probability greater

than n−δd/p.

Proof. Fix a protocol Π that solves ASPCn,d with the claimed properties, and fix k and t.
Consider the following protocol Π′ that solves k independent instances of PCn,t.

Copyright © 2023
Copyright for this paper is retained by the authors911

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Protocol Π′ for k instances of PCn,t

Inputs: s1, . . . , sk and ~π1, . . . , ~πk, where each ~πi = (πi,1, . . . , πi,t)
Construct d permutations ~π′ = (π′1, . . . , π

′
d)

1. For i ∈ [k] and j ∈ [t], set π′(i−1)(2t+2)+j to πi,j , and set π′i(2t+2)−j to π−1i,j

2. For i ∈ [k], set π′(i−1)(2t+2)+t+1 to the identify matching, and set π′i(2t+2) to any fixed matching such

that π′i(2t+2)(si) = si+1 (sk+1 is assumed to be 1)

3. For i > k(2t+ 2), set π′i to the identity matching

Construct d random permutations ~π = (π1, . . . , πd)

4. Alice knows all π′i for odd i ∈ [d] and Bob knows all π′i for even i ∈ [d]

5. They use public random bits to sample random permutations τ0, . . . , τd

6. They set πi to τ−1i ◦ π′i ◦ τi−1
Simulate Π and compute outputs

7. Run Π on ~π and obtain a path path~π(s) = (s, π≤1(s), . . . , π≤d(s)) for some s ∈ [n]

8. If τ0(s) 6= s1, then output FAIL

9. Otherwise, for i ∈ [k] and j ∈ [t], compute and output πi,≤j(si) = τ(i−1)(2t+2)+j(π≤(i−1)(2t+2)+j(s))

Since τ0, . . . , τd are random independent permutations over [n], all πi generated in step 6 must be uniform and
independent, following the same distribution as generated by Pn,d. Thus, by our assumption on Π, it successfully
outputs a path path~π(s) with probability greater than n1−δd/p, and the communication cost is as claimed.

Moreover, since we applied random permutations τi, s1 becomes independent of ~π. In particular, Π only takes
~π as input, which implies that s1 is independent of s. Hence, we output FAIL in step 8 with probability 1/n.

Finally, by construction, for i ∈ [d], we always have τi(π≤i(s)) = π′i(τi−1(π≤i−1(s))) = π′≤i(τ0(s)). Thus, if
τ0(s) = s1, then (τ0(s), τ1(π≤1(s)), . . .) is the path on ~π′ starting from s1. By the construction of π′, we have
π′≤(i−1)(2t+2)(s1) = si. Thus, πi,≤j(si) = π′(i−1)(2t+2)+j(s1) = τ(i−1)(2t+2)+j(π(i−1)(2t+2)+j(s)). The protocol

successfully computes path~πi(si) for all i ∈ [k] with probability greater than n−δd/p.

A.1 Direct product Next, we apply a generic direct product theorem to derive a protocol for PCn,t. The
following argument is a simplification of [21].

Definition A.0.2. A generalized protocol Π is a distribution over triples

(X,Y,M),

where M = (M0, . . . ,Mr) such that each Mi is chosen from a prefix-free set Mi(M<i) which depends only on
M<i. The last message Mr is the output of the protocol. The θlog-cost of Π with respect to an input distribution
µ is

θlogµ (Π) := 2DKL(ΠX,Y ‖µ) +
1

2
· (IΠ(X;M0 | Y) + IΠ(Y ;M0 | X))

+
∑

odd i∈[1,r]

IΠ(Y ;Mi | X,M<i) +
∑

even i∈[1,r]

IΠ(X;Mi | Y,M<i).

The communication cost is

max
M :Π(M)>0

r∑

i=1

|Mi| .

Copyright © 2023
Copyright for this paper is retained by the authors912

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

The following lemma relates the θlog-cost to the success probability of a standard protocol.

Lemma A.0.2. If there is a generalized protocol Π with θlog-cost at most θ with respect to µ computing a function
f , then there is a standard protocol Π′ computing f with probability at least

2−6(θ+1).

Moreover, Π and Π′ have the same communication cost.

Proof. Consider the following standard protocol Π′:

Protocol Π′ for inputs (X,Y) ∼ µ

1. view the public random bits as a sequence of |M0| independent samples (M
(i)
0 , t(i))i∈[|M0|] for uniform

M
(i)
0 ∈M0 and t(i) ∈ [0, 1]

2. if there is a unique M
(i)
0 such that t(i) ≤ Π(M

(i)
0 | X), Alice sets MA

0 to M
(i)
0

3. if there is a unique M
(i)
0 such that t(i) ≤ Π(M

(i)
0 | Y), Bob sets MB

0 to M
(i)
0

4. otherwise they set MA
0 or MB

0 arbitrarily

5. for i = 1, . . . , r

6. if i is odd, Alice samples Mi ∼ ΠMi|X,M<i
for M0 = MA

0 , and sends Mi

7. if i is even, Bob samples Mi ∼ ΠMi|Y,M<i
for M0 = MB

0 , and sends Mi

Clearly, the communication cost of Π′ is the same as that of Π.

For each fixed i, the probability that t(i) ≤ Π(M
(i)
0 | X) is equal to

∑

m0∈M0

1

|M0|
·Π(M

(i)
0 = m0 | X) =

1

|M0|
.

By union bound, the probability that either t(i) ≤ Π(M
(i)
0 | X) or t(i) ≤ Π(M

(i)
0 | Y) is at most 2/ |M0|. Thus,

the probability that both Alice and Bob set MA
0 and MB

0 to M0 is at least

min {Π(M0 | X),Π(M0 | Y)} · (1− 2/ |M0|)|M0|−1 ≥ 1

8
·min {Π(M0 | X),Π(M0 | Y)} ,

where we assumed without loss of generality that |M0| ≥ 4. Thus, when (X,Y) is sampled from µ, we have

Π′(X,Y,M) ≥ 1

8
· µ(X,Y) ·min {Π(M0 | X),Π(M0 | Y)}

·
∏

odd i∈[1,r]

Π(Mi | X,M<i) ·
∏

even i∈[1,r]

Π(Mi | Y,M<i).

Let Π′A be the distribution such that

Π′A(X,Y,M) = µ(X,Y) ·Π(M0 | X) ·
∏

odd i∈[1,r]

Π(Mi | X,M<i) ·
∏

even i∈[1,r]

Π(Mi | Y,M<i),

and Π′B be the distribution such that

Π′B(X,Y,M) = µ(X,Y) ·Π(M0 | Y) ·
∏

odd i∈[1,r]

Π(Mi | X,M<i) ·
∏

even i∈[1,r]

Π(Mi | Y,M<i).

Copyright © 2023
Copyright for this paper is retained by the authors913

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Thus, we have

Π′(X,Y,M) ≥ 1

8
·min {Π′A(X,Y,M),Π′B(X,Y,M)} .

Now, observe that

DKL(Π ‖Π′A)

= E
(X,Y,M)∼Π

[
log

(
Π(X,Y,M)

Π′A(X,Y,M)

)]

= E
(X,Y,M)∼Π

[
log

(
Π(X,Y) ·Π(M0 | X,Y) ·∏odd i∈[1,r] Π(Mi | X,Y,M<i) ·

∏
even i∈[1,r] Π(Mi | X,Y,M<i)

µ(X,Y) ·Π(M0 | X) ·∏odd i∈[1,r] Π(Mi | X,M<i) ·
∏

even i∈[1,r] Π(Mi | Y,M<i)

)]

= DKL(ΠX,Y ‖µ) + IΠ(Y ;M0 | X) +
∑

odd i∈[1,r]

IΠ(Mi;Y | X,M<i) +
∑

even i∈[1,r]

IΠ(Mi;X | Y,M<i).

Similarly,

DKL(Π ‖Π′B) = DKL(ΠX,Y ‖µ) + IΠ(X;M0 | Y)

+
∑

odd i∈[1,r]

IΠ(Mi;Y | X,M<i) +
∑

even i∈[1,r]

IΠ(Mi;X | Y,M<i).

Therefore,
DKL(Π ‖Π′A) +DKL(Π ‖Π′B) = 2θlogµ (Π)− 2DKL(ΠX,Y ‖µ) ≤ 2θ.

Claim A.0.1. Let P,Q1, Q2 be three distributions. We must have

∑

x

min{P (x), Q1(x), Q2(x)} ≥ 2−3(max{DKL(P ‖Q1),DKL(P ‖Q2)}+1).

We will prove the claim later. The claim implies that

∑

X,Y,M

min{Π(X,Y,M),Π′A(X,Y,M),Π′B(X,Y,M)} ≥ 2−6θ−3,

which in turn, implies that

∑

X,Y,M

min{Π(X,Y,M),Π′(X,Y,M)} ≥ 1

8
· 2−6θ−3 ≥ 2−6(θ+1).

Since Π computes f , Π′ must compute f with probability at least 2−6(θ+1). This proves the lemma.

Proof. [Proof of Claim A.0.1] Let

E0 := {x : P (x) ≤ Q1(x) ∧ P (x) ≤ Q2(x)},

E1 := {x : Q1(x) ≤ P (x) ∧Q1(x) ≤ Q2(x)},
and

E2 := {x : Q2(x) ≤ P (x) ∧Q2(x) ≤ Q1(x)}.
Then at least one of E0, E1, E2 has probability at least 1/3 under distribution P .

If P (E0) ≥ 1/3, then ∑

x

min{P (x), Q1(x), Q2(x)} ≥ 1/3.

The lemma holds.

Copyright © 2023
Copyright for this paper is retained by the authors914

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Suppose P (E1) ≥ 1/3. We have

∑

x

min{P (x), Q1(x), Q2(x)} ≥ Q1(E1).

On the other hand,

DKL(P ‖Q1) = E
x∼P

[log(P (x)/Q1(x))]

= P (E1) · E
x∼P |E1

[log(P (x)/Q1(x))] + P (E1) E
x∼P |E1

[log(P (x)/Q1(x))]

which by the convexity of f(t) = log(1/t), is

≥ P (E1) log

(
E

x∼P |E1

[Q1(x)/P (x)]
−1

)
+ P (E1) log

(
E

x∼P |E1

[Q1(x)/P (x)]
−1

)

= P (E1) log (P (E1)/Q1(E1)) + (1− P (E1)) log ((1− P (E1))/(1−Q1(E1)))

≥ P (E1) log(1/Q1(E1))− 1

≥ 1

3
log(1/Q1(E1))− 1.

That is, Q1(E1) ≥ 2−3(DKL(P ‖Q1)+1). The lemma holds. The case where P (E2) ≥ 1/3 is similar.

The following lemma is implicitly proved in [21].

Lemma A.0.3. Let Π be a standard protocol with input distribution µ and W be an event, let ΠW be the
distribution of Π conditioned on W , then

θlogµ (ΠW) ≤ 5 log(1/Π(W)).

Proof. Consider θlogµ (ΠW). For the first term, since Π(X,Y) = µ(X,Y), we have

DKL(Π
W
X,Y ‖µ) = E

(X,Y)∼Π|W

[
log

(
Π(X,Y |W)

µ(X,Y)

)]

≤ E
(X,Y)∼Π|W

[log (1/Π(W))]

= log(1/Π(W)).

For the second term, since (X,Y) and M0 are independent in Π, we have

IΠW (X;M0 | Y) =
∑

x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log
(
Π(X = x |M0 = m0, Y = y,W)

Π(X = x | Y = y,W)

)

=
∑

x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log
(
Π(X = x |M0 = m0, Y = y,W)

Π(X = x | Y = y)

)

−
∑

x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log
(
Π(X = x | Y = y,W)

Π(X = x | Y = y)

)

=
∑

x,y,m0

Π(X = x,M0 = m0 | Y = y,W) · log
(
Π(X = x |M0 = m0, Y = y,W)

Π(X = x |M0 = m0, Y = y)

)

−DKL(ΠX|W,Y ‖ΠX|Y)

≤
∑

y,m0

Π(Y = y,M0 = m0 |W) · log(1/Π(W | Y = y,M0 = m0))

Copyright © 2023
Copyright for this paper is retained by the authors915

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

which by the concavity of log, is

≤ log

(
∑

y,m0

Π(Y = y,M0 = m0 |W)

Π(W | Y = y,M0 = m0)

)

= log

(
∑

y,m0

Π(Y = y,M0 = m0)

Π(W)

)

= log(1/Π(W)).

Similarly, IΠW (Y ;M0 | X) ≤ log(1/Π(W)).
For the third term, fix an odd i, we have

IΠW (Y ;Mi | X,M<i)

=
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i |W) · log
(
Π(Mi = mi | X = x, Y = y,M<i = m<i,W)

Π(Mi = mi | X = x,M<i = m<i,W)

)

=
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i |W) · log
(
Π(Mi = mi | X = x, Y = y,M<i = m<i,W)

Π(Mi = mi | X = x,M<i = m<i)

)

+
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i |W) · log
(

Π(Mi = mi | X = x,M<i = m<i)

Π(Mi = mi | X = x,M<i = m<i,W)

)
.

Note that the second term is at most 0, since its negation is an expected KL-divergence. For the first term, we
have Π(Mi = mi | X = x,M<i = m<i) = Π(Mi = mi | X = x, Y = y,M<i = m<i), since Π is a standard
protocol and i is odd. Thus, we have

IΠW (Y ;Mi | X,M<i)

=
∑

x,y,m≤i

Π(X = x, Y = y,M≤i = m≤i |W) · log
(
Π(Mi = mi | X = x, Y = y,M<i = m<i,W)

Π(Mi = mi | X = x, Y = y,M<i = m<i)

)

= E
x,y,m<i∼ΠX,Y,M<i

DKL(ΠMi|X=x,Y=y,M<i=m<i,W ‖ΠMi|X=x,Y=y,M<i=m<i
).

Thus, the third term in θlogµ (ΠW) is

∑

odd i∈[1,r]

IΠW (Y ;Mi | X,M<i)

≤
∑

odd i∈[1,r]

E
x,y,m<i∼ΠX,Y,M<i

DKL(ΠMi|X=x,Y=y,M<i=m<i,W ‖ΠMi|X=x,Y=y,M<i=m<i
)

≤
∑

i∈[1,r]

E
x,y,m<i∼ΠX,Y,M<i

DKL(ΠMi|X=x,Y=y,M<i=m<i,W ‖ΠMi|X=x,Y=y,M<i=m<i
)

which by the chain rule of KL-divergence, is

= E
x,y,m0∼ΠX,Y,M0

DKL(ΠM |X=x,Y=y,M0=m0,W ‖ΠM |X=x,Y=y,M0=m0
)

≤ E
x,y,m0∼ΠX,Y,M0

log(1/Π(W | X = x, Y = y,M0 = m0))

≤ log(1/Π(W)).

The same argument proves that the last term is also at most log(1/Π(W)). Thus, the lemma holds.

The following lemma decomposes a protocol for k instances into one protocol for one instance and one protocol
for k − 1 instances.

Copyright © 2023
Copyright for this paper is retained by the authors916

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Lemma A.0.4. Let µ be a distribution over input pairs (X,Y). Let Π be a generalized protocol on k input pairs
(X1, . . . , Xk, Y1, . . . , Yk) that uses C bits of communication and computes fk. There is a generalized protocol
Π(<k) and a generalized protocol Π(k) such that

• both Π(<k) and Π(k) use at most C bits of communication;

• θlog
µk−1(Π

(<k)) + θlogµ (Π(k)) ≤ θlog
µk (Π);

• Π(<k) computes fk−1 and Π(k) computes f .

By repeatedly applying the above lemma, we prove the following lemma as a corollary.

Lemma A.0.5. If there is an r-message protocol with θlog-cost θ with respect to µn and C bits of communication
that computes fn. Then there is an r-message protocol with θlog-cost θ/n with respect to µ and C bits of
communication that computes f .

Proof. [Proof of Lemma A.0.4] Let (X,Y ,M) be random variables distributed according to Π. Let S ([k] be a
nonempty proper subset of the instances (think of S = [k − 1]), and denote its complement by S. Consider the
following protocol ηXS for f |S| with respect to µ|S|, which defines a distribution over triples

(Xη,Y η,Mη).

Protocol ηXS :
1. sample (X,Y ,M) ∼ Π
2. set X

η := XS and Y
η := YS

3. set Mη
0 := XS ◦M0

4. for i = 1, . . . , r − 1, set Mη
i := Mi

5. set Mη
r to Mr restricted to coordinates in S

Compared to Π, ηXS restricts the input pair (X,Y) to coordinates only in S, prepends XS to the public random
bits, and restricts the output to coordinates only in S. Since Mr = fn(X,Y), Mη

r = f |S|(XS ,YS). Hence, ηXS is
an r-message protocol that computes f |S|.

Similarly, we define ηY
S

as follows.

Protocol ηY
S
:

1. sample (X,Y ,M) ∼ Π
2. set X

η := XS and Y
η := YS

3. set Mη
0 := YS ◦M0

4. for i = 1, . . . , r − 1, set Mη
i := Mi

5. set Mη
r to Mr restricted to coordinates in S

We prepend YS to M0, and restrict the output to coordinates in S. Similarly, ηY
S

is an r-message protocol that

computes f |S|.
To prove the lemma, we will set Π(<k) to ηXS and set Π(k) to ηY

S
for S = [k − 1]. Clearly, both protocols use

at most C bits of communication. It remains to show that their θlog-costs sum up to that of Π.
Analysis of the θlog-cost. Next, we analyze their θlog-costs. We first focus on ηXS . The mutual information

between the input and the public random bits is

Iη(X
η;Mη

0 | Y η) + Iη(Y
η;Mη

0 |Xη) = IΠ(XS ;XS ,M0 | YS) + IΠ(YS ;XS ,M0 |XS).

The mutual information between Y
η and the odd messages is

∑

odd i∈[1,r]

Iη(Y
η;Mη

i |Xη,Mη
<i) ≤

∑

odd i∈[1,r]

IΠ(YS ;Mi |X,M<i).

The mutual information between X
η and the even messages is

∑

even i∈[1,r]

Iη(X
η;Mη

i | Y η,Mη
<i)

Copyright © 2023
Copyright for this paper is retained by the authors917

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

≤
∑

even i∈[1,r]

IΠ(XS ;Mi | YS ,XS ,M<i)

=
∑

even i∈[1,r]

(IΠ(XS ;YS ,Mi | YS ,XS ,M<i)− IΠ(XS ;YS | YS ,XS ,M<i,Mi))

=
∑

even i∈[1,r]

(IΠ(XS ;Mi |XS ,Y ,M<i)

+ IΠ(XS ;YS |XS ,YS ,M<i)− IΠ(XS ;YS |XS ,YS ,M<i+1)),

Summing up all terms, we have

θlog
µ|S|(η

X
S)(A.1)

≤ 2DKL(ΠXS ,YS
‖µ|S|) + 1

2
· IΠ(XS ;XS ,M0 | YS) +

1

2
· IΠ(YS ;XS ,M0 |XS)(A.2)

+
∑

odd i∈[1,r]

IΠ(YS ;Mi |X,M<i) +
∑

even i∈[1,r]

IΠ(XS ;Mi |XS ,Y ,M<i)(A.3)

+
∑

even i∈[1,r]

(IΠ(XS ;YS |XS ,YS ,M<i)− IΠ(XS ;YS |XS ,YS ,M<i+1)) .(A.4)

Similarly, for ηY
S
, the mutual information between the input and the public random bits is

IΠ(XS ;YS ,M0 | YS) + IΠ(YS ;YS ,M0 |XS).

The mutual information between Y
η and the odd messages is at most

∑

odd i∈[1,r]

IΠ(YS ;Mi |XS ,YS ,M<i)

=
∑

odd i∈[1,r]

(IΠ(YS ;XS ,Mi |XS ,YS ,M<i)− IΠ(YS ;XS |XS ,YS ,M<i+1))

=
∑

odd i∈[1,r]

(IΠ(YS ;Mi |X,YS ,M<i)

+ IΠ(YS ;XS |XS ,YS ,M<i)− IΠ(XS ;YS |XS ,YS ,M<i+1)).

The mutual information between X
η and the even messages is at most

∑

even i∈[1,r]

IΠ(XS ;Mi | Y ,M<i).

Summing up all terms, we have

θlog
µk−|S|(η

Y
S
)(A.5)

≤ 2DKL(ΠXS ,YS
‖µk−|S|) +

1

2
· IΠ(XS ;YS ,M0 | YS) +

1

2
· IΠ(YS ;YS ,M0 |XS)(A.6)

+
∑

odd i∈[1,r]

IΠ(YS ;Mi |X,YS ,M<i) +
∑

even i∈[1,r]

IΠ(XS ;Mi | Y ,M<i)(A.7)

+
∑

odd i∈[1,r]

(IΠ(YS ;XS |XS ,YS ,M<i)− IΠ(XS ;YS |XS ,YS ,M<i+1)).(A.8)

Next, we sum up Equation (A.1) and (A.5). The first lines (A.2) and (A.6) sum up to

2DKL(ΠXS ,YS
‖µ|S|) + 2DKL(ΠXS ,YS

‖µk−|S|)

+
1

2
· IΠ(XS ;XS ,M0 | YS) +

1

2
· IΠ(YS ;XS ,M0 |XS)

Copyright © 2023
Copyright for this paper is retained by the authors918

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

+
1

2
· IΠ(XS ;YS ,M0 | YS) +

1

2
· IΠ(YS ;YS ,M0 |XS)

= 2DKL(ΠX,Y ‖µk)− 2IΠ(XS ,YS ;XS ,YS)

+
1

2
· (IΠ(XS ;XS | YS) + IΠ(XS ;M0 |XS ,YS) + IΠ(YS ;XS |XS) + IΠ(YS ;M0 |X))

+
1

2
· (IΠ(XS ;YS | YS) + IΠ(XS ;M0 | Y) + IΠ(YS ;YS |XS) + IΠ(YS ;M0 |XS ,YS))

≤ 2DKL(ΠX,Y ‖µk)− 2IΠ(XS ,YS ;XS ,YS)

+
1

2
· (IΠ(XS ;XS | YS) + IΠ(XS ;M0 |XS ,YS) + IΠ(XS ,YS ;XS ,YS) + IΠ(YS ;M0 |X))

+
1

2
· (IΠ(XS ,YS ;XS ,YS) + IΠ(XS ;M0 | Y) + IΠ(XS ,YS ;YS) + IΠ(YS ;M0 |XS ,YS))

= 2DKL(ΠX,Y ‖µk)− IΠ(XS ,YS ;XS ,YS) +
1

2
· IΠ(XS ;XS | YS) +

1

2
· IΠ(XS ,YS ;YS)

+
1

2
· (IΠ(XS ;M0 |XS ,YS) + IΠ(YS ;M0 |X) + IΠ(XS ;M0 | Y) + IΠ(YS ;M0 |XS ,YS))

≤ 2DKL(ΠX,Y ‖µk)− IΠ(XS ;YS |XS ,YS)

+
1

2
· (IΠ(XS ;M0 |XS ,YS) + IΠ(YS ;M0 |X) + IΠ(XS ;M0 | Y) + IΠ(YS ;M0 |XS ,YS))

= 2DKL(ΠX,Y ‖µk)

+
1

2
· (−IΠ(XS ;YS |XS ,YS) + IΠ(XS ;M0 |XS ,YS) + IΠ(XS ;M0 | Y))

+
1

2
· (−IΠ(XS ;YS |XS ,YS) + IΠ(YS ;M0 |X) + IΠ(YS ;M0 |XS ,YS))

= 2DKL(ΠX,Y ‖µk)

+
1

2
· (−IΠ(XS ;YS |XS ,YS ,M0) + IΠ(X;M0 | Y))

+
1

2
· (−IΠ(XS ;YS |XS ,YS ,M0) + IΠ(Y ;M0 |X))

= 2DKL(ΠX,Y ‖µk) +
1

2
· (IΠ(X;M0 | Y) + IΠ(Y ;M0 |X))− IΠ(XS ;YS |XS ,YS ,M0).

The second lines (A.3) and (A.7) sum up to

∑

odd i∈[1,r]

IΠ(YS ;Mi |X,M<i) +
∑

odd i∈[1,r]

IΠ(YS ;Mi |X,YS ,M<i)

+
∑

even i∈[1,r]

IΠ(XS ;Mi |XS ,Y ,M<i) +
∑

even i∈[1,r]

IΠ(XS ;Mi | Y ,M<i)

=
∑

odd i∈[1,r]

IΠ(Y ;Mi |X,M<i) +
∑

even i∈[1,r]

IΠ(X;Mi | Y ,M<i).

Finally, the third lines (A.4) and (A.8) sum up to

∑

i∈[1,r]

(IΠ(XS ;YS |XS ,YS ,M<i)− IΠ(XS ;YS |XS ,YS ,M<i+1))

= IΠ(XS ;YS |XS ,YS ,M0)− IΠ(XS ;YS |XS ,YS ,M)

≤ IΠ(XS ;YS |XS ,YS ,M0).

Summing up all lines gives us

θlog
µ|S|(η

X
S) + θlog

µk−|S|(η
Y
S
)

Copyright © 2023
Copyright for this paper is retained by the authors919

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

≤ 2DKL(ΠX,Y ‖µk) +
1

2
· (IΠ(X;M0 | Y) + IΠ(Y ;M0 |X))

+
∑

odd i∈[1,r]

IΠ(Y ;Mi |X,M<i) +
∑

even i∈[1,r]

IΠ(X;Mi | Y ,M<i)

= θlog
µk (Π).

This completes the proof of the lemma.

Finally, by combining Lemma A.0.3, Lemma A.0.5 and Lemma A.0.2, we prove the following direct product
result.

Lemma A.0.6. If there is a r-message protocol Π that computes fn with probability q under input distribution µn

using C bits of communication, then there is a r-message protocol Π′ that computes f with probability 2−6 · q30/n
under µ using C bits of communication.

Proof. Consider the distribution induced by running Π on input distribution µn. Let W be the event that Π
succeeds. Then Π(W) ≥ q. Lemma A.0.3 implies that θlog(ΠW) ≤ 5 log(1/q). Next, Lemma A.0.5 implies
that there is a protocol that computes f with θlog-cost with respect to µ at most 5 · n−1 log(1/q). Finally, by

Lemma A.0.2, it implies a protocol Π′ that computes f under µ with probability at least 2−6(5·n
−1 log(1/q)+1) ≥

2−6 · q30/n.

A.2 Lower bound for PCn,t The following lemma is a direct corollary of Lemma A.0.6.

Lemma A.0.7. Suppose for k, t ∈ N such that t is even and k(2t+2) ≤ d, there is a p-round protocol with at most
S bits of communication such that given ~π1, ~π2, . . . , ~πk ← Pn,t and s1, . . . , sk ∈unif [n] independently, the protocol
outputs (path~π1

(s1), . . . , path~πk
(sk)) with probability greater than n−δd/p. Then there is a p-round protocol with

at most S bits of communication computing PCn,t with probability at least 2−6 · n−30δd/(pk) for ~π ← Pn,t and
s ∈unif [n].

Finally, we use the following lower bound for PCn,t, whose proof is similar to that of Lemma 4.11 in [10] and
the standard pointer chasing lower bound [59].

Lemma A.0.8. Any (t− 2)-message protocol Π with at most n1/4 bits of communication cannot solve PCn,t with
probability greater than 2t · n−1/8.

Thus, Lemma 6.0.1 is a direct corollary of Lemma A.0.1, Lemma A.0.7 and Lemma A.0.8 for ε = 1/4 and
δ = 0.001 by setting t = p+ 2 and k = bd/(2t+ 2)c, as we have

2−6 · n−30δd/(pk) ≥ 2−6 · n−0.03d/p(bd/(2p+6)c) > 2t · n−1/8,

since t ≤ log n.

Proof. Let X be Alice’s matchings (π1, . . . , πt−1), and let Y be Bob’s matchings (π2, . . . , πt). We will inductively
prove the following: For i ∈ [0, t− 2], the distribution of

π≤i+2(s) | π1, . . . , πi+1, s,M≤i

is i · n−1/8-close to uniform in total variation distance in expectation. In particular for i = t− 2, the `∞-norm is
at most (t− 2) · n−1/8 + 1/n in expectation. That is, in expectation, one cannot predict π≤t(s) with probability
better than (t− 2) · n−1/8 + 1/n given π1, . . . , πt−1, s,M≤t−2. Since the output of the protocol is determined by
M≤t−2, it implies that the overall success probability is at most (t− 2) · n−1/8 + 1/n ≤ 2t · n−1/8.

Base case: i = 0. We first prove the base case when i = 0. The distribution of

π≤2(s) | π1, s,M0

is the uniform distribution over [n], since π2 is still uniform conditioned on (π1, s,M0) (which determines π1(s)).
Hence, the total variation distance is 0 in expectation.

Copyright © 2023
Copyright for this paper is retained by the authors920

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

Induction: i− 1 to i. By symmetry, assume that i is odd.
Consider the matching πi+2. Since all permutations are independent in the input distribution, we have

H(πi+2 | π1, . . . , πi, s) = log(n!),

which implies that
H(πi+2 | π1, . . . , πi, s,M≤i) ≥ log(n!)− |M≤i| ≥ log(n!)− n1/4.

The following lemma from [8] relates the entropy of a permutation to the entropy of its random coordinate.

Lemma A.0.9. (Lemma A.13 in [8]) Let π be a random permutation over [n]. If H(π) ≥ log n!− n/8, then

n log n−
∑

x∈[n]

H(π(x)) ≤ 4
√
(log n!−H(π))n+ 3.

It implies that for a uniform x ∈ [n] (independent of πi+2 conditioned on (π1, . . . , πi, s,M≤i)), we have

E
x∈[n]

[H(πi+2(x) | π1, . . . , πi, s,M≤i, x)] ≥ log n− 4
√
n1/4 · n+ 3

n
≥ log n− n−1/4.

In particular, by Pinsker’s inequality and the concavity of square-root, we obtain that for a uniform x ∈ [n], the
distribution of

πi+2(x) | π1, . . . , πi, s,M≤i, x

is n−1/8-close to the uniform distribution over [n] in expectation.
Now suppose the claim holds for i− 1, i.e.,

π≤i+1(s) | π1, . . . , πi, s,M≤i−1

is (i− 1)n−1/8-close to uniform. We observe that conditioned on (π1, . . . , πi, s,M≤i−1), πi+1(s) is determined by
πi+1, which is part of Bob’s input. By the Markov property of communication protocols, πi+1 is independent
of Alice’s inputs conditioned on (π1, . . . , πi, s,M≤i−1). Thus, πi+1 is also independent of Mi conditioned on
(π1, . . . , πi, s,M≤i−1). Hence, the distribution of

π≤i+1(s) | π1, . . . , πi, s,M≤i

is (i− 1)n−1/8-close to uniform.
By the Markov property again, π≤i+1(s) and πi+2 are independent conditioned on (π1, . . . , πi, s,M≤i).

Therefore, by the triangle inequality, the distribution of

πi+2(π≤i+1(s)) | π1, . . . , πi, s,M≤i, π≤i+1(s)

is i · n−1/8-close to uniform in expectation.
Finally, since πi+1 and πi+2 are independent conditioned on (π1, . . . , πi, s,M≤i, π≤i+1(s)). The distribution

of
πi+2(π≤i+1(s)) | π1, . . . , πi+1, s,M≤i, π≤i+1(s)

is i · n−1/8-close to uniform in expectation. Observing that π≤i+1(s) is determined by other variables in the
conditioned, we complete the induction.

References

[1] List of open problems in sublinear algorithms: Problem 45. https://sublinear.info/45.
[2] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal algorithms for maximum

matching under resource constraints. ACM Transactions on Parallel Computing (TOPC), 4(4):1–40, 2018.

Copyright © 2023
Copyright for this paper is retained by the authors921

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency moments.
Journal of Computer and system sciences, 58(1):137–147, 1999.

[4] Alexandr Andoni, Tal Malkin, and Negev Shekel Nosatzki. Two party distribution testing: Communication and
security. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[5] Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein. Coresets meet edcs:
algorithms for matching and vertex cover on massive graphs. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1616–1635. SIAM, 2019.

[6] Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximummatching size in graph streams. In Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1723–1742. SIAM, 2017.

[7] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in dynamic graph streams
and the simultaneous communication model. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 1345–1364. SIAM, 2016.

[8] Sepehr Assadi, Gillat Kol, Raghuvansh R Saxena, and Huacheng Yu. Multi-pass graph streaming lower bounds for
cycle counting, max-cut, matching size, and other problems. In FOCS. https://arxiv.org/pdf/2009.03038.pdf,
2020.

[9] Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming algorithms. In FOCS.
https://arxiv.org/pdf/2009.01161.pdf, 2020.

[10] Sepehr Assadi and N Vishvajeet. Graph streaming lower bounds for parameter estimation and property testing via
a streaming xor lemma. In 53rd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2021, pages
612–625. Association for Computing Machinery, 2021.

[11] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity theory. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986), pages 337–347. IEEE, 1986.

[12] Mitali Bafna, Badih Ghazi, Noah Golowich, and Madhu Sudan. Communication-rounds tradeoffs for common
randomness and secret key generation. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1861–1871, 2019.

[13] Maria-Florina Balcan, Yi Li, David P Woodruff, and Hongyang Zhang. Testing matrix rank, optimally. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 727–746. SIAM, 2019.

[14] Ziv Bar-Yossef, Thathachar S Jayram, and Iordanis Kerenidis. Exponential separation of quantum and classical one-
way communication complexity. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 128–137, 2004.

[15] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with an application to counting
triangles in graphs. In SODA, volume 2, pages 623–632, 2002.

[16] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-optimal approximate
shortest paths and transshipment in distributed and streaming models. In 31 International Symposium on Distributed
Computing, 2017.

[17] Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles and other substructures
in graph streams. In 34th Symposium on Theoretical Aspects of Computer Science, 2017.

[18] Aditya Bhaskara, Samira Daruki, and Suresh Venkatasubramanian. Sublinear algorithms for maxcut and correlation
clustering. In 45th International Colloquium on Automata, Languages, and Programming, 2018.

[19] Joanna Boyland, Michael Hwang, Tarun Prasad, Noah Singer, and Santhoshini Velusamy. Closed-form expressions
for the sketching approximability of (some) symmetric boolean csps. arXiv preprint arXiv:2112.06319, 2021.

[20] Mark Braverman and Ankur Moitra. An information complexity approach to extended formulations. In Proceedings
of the forty-fifth annual ACM symposium on Theory of computing, pages 161–170, 2013.

[21] Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products in communication complexity.
In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 746–755. IEEE Computer Society, 2013.

[22] Vladimir Braverman, Stephen Chestnut, Robert Krauthgamer, Yi Li, David Woodruff, and Lin Yang. Matrix norms
in data streams: Faster, multi-pass and row-order. In International Conference on Machine Learning, pages 649–658.
PMLR, 2018.

[23] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting triangles in the streaming model?
In International Colloquium on Automata, Languages, and Programming, pages 244–254. Springer, 2013.

[24] Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic data streams. In
Algorithms-ESA 2015, pages 263–274. Springer, 2015.

[25] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R Saxena, Zhao Song, and Huacheng Yu. Almost optimal
super-constant-pass streaming lower bounds for reachability. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 570–583, 2021.

[26] Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R Saxena, Zhao Song, and Huacheng Yu. Near-optimal

Copyright © 2023
Copyright for this paper is retained by the authors922

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

two-pass streaming algorithm for sampling random walks over directed graphs. In 48th International Colloquium on
Automata, Languages, and Programming (ICALP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[27] Ashish Chiplunkar, John Kallaugher, Michael Kapralov, and Eric Price. Factorial lower bounds for (almost) random
order streams. arXiv preprint arXiv:2110.10091, 2021.

[28] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, Ameya Velingker, and Santhoshini Velusamy. Linear space
streaming lower bounds for approximating csps. arXiv preprint arXiv:2106.13078, 2021.

[29] Chi-Ning Chou, Alexander Golovnev, Madhu Sudan, and Santhoshini Velusamy. Approximability of all finite csps
with linear sketches. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
1197–1208. IEEE, 2021.

[30] Chi-Ning Chou, Alexander Golovnev, and Santhoshini Velusamy. Optimal streaming approximations for all boolean
max-2csps and max-ksat. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
330–341. IEEE, 2020.

[31] Graham Cormode and Hossein Jowhari. A second look at counting triangles in graph streams (corrected). Theoretical
Computer Science, 683:22–30, 2017.

[32] Hossein Esfandiari, Mohammadtaghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and Krzysztof Onak.
Streaming algorithms for estimating the matching size in planar graphs and beyond. ACM Transactions on Algorithms
(TALG), 14(4):1–23, 2018.

[33] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in
a semi-streaming model. In International Colloquium on Automata, Languages, and Programming (ICALP), pages
531–543. Springer, 2004.

[34] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. Graph distances in the
data-stream model. SIAM Journal on Computing, 38(5):1709–1727, 2009.

[35] Orr Fischer, Shay Gershtein, and Rotem Oshman. On the multiparty communication complexity of testing triangle-
freeness. In Proceedings of the ACM Symposium on Principles of Distributed Computing, pages 111–120, 2017.

[36] Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings via unweighted
augmentations. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (PODC), pages
491–500, 2019.

[37] Dmitry Gavinsky, Julia Kempe, Iordanis Kerenidis, Ran Raz, and Ronald De Wolf. Exponential separations for
one-way quantum communication complexity, with applications to cryptography. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing, pages 516–525, 2007.

[38] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming complexity of maximum
bipartite matching. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms
(SODA), pages 468–485. SIAM, 2012.

[39] Michel X. Goemans and David P. Williamson. Improved approximation algorithms for maximum cut and satisfiability
problems using semidefinite programming. J. ACM, 42(6):1115–1145, nov 1995.

[40] Noah Golowich and Madhu Sudan. Round complexity of common randomness generation: The amortized setting.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1076–1095. SIAM,
2020.

[41] Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph processing. Algorithmica,
76(3):654–683, 2016.

[42] Venkatesan Guruswami and Runzhou Tao. Streaming hardness of unique games. Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, 2019.

[43] Venkatesan Guruswami, Ameya Velingker, and Santhoshini Velusamy. Streaming complexity of approximating max
2csp and max acyclic subgraph. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[44] Zengfeng Huang and Pan Peng. Dynamic graph stream algorithms in o (n) space. Algorithmica, 81(5):1965–1987,
2019.

[45] Ce Jin. Simulating random walks on graphs in the streaming model. In 10th Innovations in Theoretical Computer
Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, volume 124, pages 46:1–46:15,
2019.

[46] John Kallaugher, Michael Kapralov, and Eric Price. The sketching complexity of graph and hypergraph counting.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 556–567. IEEE, 2018.

[47] John Kallaugher, Andrew McGregor, Eric Price, and Sofya Vorotnikova. The complexity of counting cycles in the
adjacency list streaming model. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 119–133, 2019.

[48] Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity of set intersection. SIAM
Journal on Discrete Mathematics, 5(4):545–557, 1992.

[49] Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the twenty-fourth annual

Copyright © 2023
Copyright for this paper is retained by the authors923

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

ACM-SIAM symposium on Discrete algorithms (SODA), pages 1679–1697. SIAM, 2013.
[50] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Streaming lower bounds for approximating MAX-CUT. In

Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 1263–1282, 2015.

[51] Michael Kapralov, Sanjeev Khanna, Madhu Sudan, and Ameya Velingker. (1+ ω (1))-approximation to max-cut
requires linear space. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1703–1722, 2017.

[52] Michael Kapralov and Dmitry Krachun. An optimal space lower bound for approximating max-cut. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 277–288, 2019.

[53] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability results for MAX-
CUT and other 2-variable csps? SIAM J. Comput., 37(1):319–357, 2007.

[54] Dmitry Kogan and Robert Krauthgamer. Sketching cuts in graphs and hypergraphs. In Proceedings of the 2015
Conference on Innovations in Theoretical Computer Science, pages 367–376, 2015.

[55] Yi Li and David P Woodruff. On approximating functions of the singular values in a stream. In Proceedings of the
forty-eighth annual ACM symposium on Theory of Computing (STOC), pages 726–739, 2016.

[56] Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomization and Combinatorial
Optimization. Algorithms and Techniques, pages 170–181. Springer, 2005.

[57] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record, 43(1):9–20, 2014.
[58] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better algorithms for counting triangles in data streams.

In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages
401–411, 2016.

[59] Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. In Cris Koutsougeras and
Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-
8, 1991, New Orleans, Louisiana, USA, pages 419–429. ACM, 1991.

[60] Alexander A Razborov. On the distributional complexity of disjointness. In International Colloquium on Automata,
Languages, and Programming, pages 249–253. Springer, 1990.

[61] Atish Das Sarma, Sreenivas Gollapudi, and Rina Panigrahy. Estimating pagerank on graph streams. Journal of the
ACM (JACM), 58(3):1–19, 2011.

[62] Noah Singer, Madhu Sudan, and Santhoshini Velusamy. Streaming approximation resistance of every ordering csp.
arXiv preprint arXiv:2105.01782, 2021.

[63] Elad Verbin and Wei Yu. The streaming complexity of cycle counting, sorting by reversals, and other problems. In
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 11–25. SIAM, 2011.

Copyright © 2023
Copyright for this paper is retained by the authors924

D
o
w

n
lo

ad
ed

 0
1
/3

0
/2

3
 t

o
 9

6
.2

4
8
.6

8
.1

7
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y

	Introduction
	Our Result
	Our Techniques
	Additional Related Work
	Acknowledgments

	Overview of Techniques
	Setup and high-level overview
	Two Cases: Short Simple Cycles and Long Simple Path
	Patterns
	Our Strategy: Hiding a Hard Search Problem in Cycle/Path-Finding

	Lower Bounds for Short Cycles via Set-Intersection
	Toy Case: = (1,2)
	Generalization to Arbitrary Patterns

	Lower Bounds for Paths via Pointer-Chasing

	Preliminaries
	Notation
	Graphs

	Lower Bounds for Finding Cycles
	Lower Bounds for Finding a Short Cycle
	Proof of lemma:lowb-for-CycleSearch
	A Sparse Variant of the Set-Intersection Problem
	A Reduction from Sparse-SIn,k,L to Cycle-Searchn,T,

	Proof of lemma:distr-close
	Proof of lemma:cyc-bounds

	Lower Bounds for Finding a Long Path
	Lower Bounds for a Specific Pointer Chasing Problem
	Proof of lemma:long-path-case
	Proof of Item (1) of lemma:bounds-on-X-G
	Proof of Item (2) of lemma:bounds-on-X-G
	Omitted Proofs

	Proof of lemma:lowb-ASPC
	Direct product
	Lower bound for PCn,t

