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Abstract—We consider the problem of finding a maximal
independent set (MIS) in the shared blackboard communication
model with vertex-partitioned inputs. There are n players corre-
sponding to vertices of an undirected graph, and each player sees
the edges incident on its vertex — this way, each edge is known by
both its endpoints and is thus shared by two players. The players
communicate in simultaneous rounds by posting their messages
on a shared blackboard visible to all players, with the goal of
computing an MIS of the graph. While the MIS problem is well
studied in other distributed models, and while shared blackboard
is, perhaps, the simplest broadcast model, lower bounds for our
problem were only known against one-round protocols.

We present a lower bound on the round-communication
tradeoff for computing an MIS in this model. Specifically, we
show that when r rounds of interaction are allowed, at least

r+1

one player needs to communicate 2(n'/2°" ") bits. In particular,
with logarithmic bandwidth, finding an MIS requires 2(log logn)
rounds. This lower bound can be compared with the algorithm
of Ghaffari, Gouleakis, Konrad, Mitrovi¢, and Rubinfeld [PODC
2018] that solves MIS in O(loglogn) rounds but with a loga-
rithmic bandwidth for an average player. Additionally, our lower
bound further extends to the closely related problem of maximal
bipartite matching.

The presence of edge-sharing gives the algorithms in our model
a surprising power and numerous algorithmic results exploiting
this power are known. For a similar reason, proving lower
bounds in this model is much more challenging, as this sharing
in the players’ inputs prohibits the use of standard number-in-
hand communication complexity arguments. Thus, to prove our
results, we devise a new round elimination framework, which we
call partial-input embedding, that may also be useful in future
work for proving round-sensitive lower bounds in the presence
of shared inputs.

Finally, we discuss several implications of our results to multi-
round (adaptive) distributed sketching algorithms, broadcast
congested clique, and to the welfare maximization problem in
two-sided matching markets.

Index Terms—distributed sketching, shared blackboard, com-
munication complexity, maximal independent set, maximum
matching

I. INTRODUCTION

Consider the following communication model: there are n
players corresponding to vertices of an undirected graph G =
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(V,E) and each player only sees the edges incident on its
vertex — this way, each edge of the graph is shared by the two
players at its endpoints. The goal of the players is to solve
some fixed problem on G, for instance, finding a spanning
forest of G. To do so, the players communicate in synchronous
rounds wherein all parties simultaneously write a message on a
shared blackboard visible to all. The messages communicated
by the players are only functions of their own inputs and the
content of the blackboard. When the protocol concludes, an
additional party, called the referee, computes the output of
the protocol as a function of the blackboard content. We are
interested in the tradeoff between the number of rounds of
the protocol and the per-player communication, defined as the
worst-case length of any message sent by any player in any
round.

In the communication complexity terminology, this model
is referred to as the multi-party communication model with
shared blackboard and vertex-partitioned inputs. However,
it has also been studied by different communities under
different names, such as broadcast congested clique [1]-[4], or
(adaptive) distributed sketching [5]—[8]. At this point, there is
quite a large body of algorithmic results in this model [5],
[5], [6], [8]-[17] (see Section I-B for more details). The
source of power behind these results is a crucial aspect of
this model: edge-sharing, or in other words, the fact that each
edge of the graph is seen by both its endpoints'. This sharing
in the players’ inputs makes this model an “intermediate”
model lying between the number-in-hand model (with no input
sharing) and the notorious number-on-forehead model (with
arbitrary input sharing). As a result, lower bounds are more
scarce in this model [1], [2], [7], [18]-[22].

We study the maximal independent set (MIS) problem in
this model. While MIS is one of the most studied prob-
lems in other distributed models (see, e.g., [23]-[27]), and
while shared blackboard is, perhaps, the simplest broadcast
model, not much is known about MIS in this model. We
do note that Luby’s celebrated MIS algorithm [23] implies
an O(logn)-round O(1)-per-player communication algorithm
in this model. Ghaffari, Gouleakis, Konrad, Mitrovic, and

I'The interested reader is referred to [5] to see this in a surprising algorithm
that solves graph connectivity using only a single round and O(log3 n)
communication bits per player.



Rubinfeld [28] gave an algorithm that runs in O(loglogn)
rounds, but only bounds the communication of an average
player by O(logn). Le., the total communication by all
players in a round is O(nlogn), but some players may need
to communicate w(logn) bits2. Moreover, Assadi, Kol, and
Oshman proved that any one-round protocol requires almost
(n!/ 2) per-player communication. This state-of-affairs raises
the following question:

What is the complexity of MIS in the shared black-
board model with vertex-partitioned inputs? In par-
ticular, what are the possible round-communication
tradeoffs in this model?

We make progress on this fundamental open question by
presenting a new lower bound on the round-communication
tradeoff for the MIS problem. The key contribution of our
work is a new technique for proving multi-round lower bounds,
even in the presence of edge-sharing. This also allows us to
prove a similar lower bound for another fundamental problem,
namely, the maximal bipartite matching problem.

Our work can be viewed as a direct continuation of two
lines of work: the first line of work is on number-in-hand
multi-round communication complexity, where we follow up
on the result of Alon, Nisan, Raz, and Weinstein [29]. They
give lower bounds for the bipartite maximal matching problem,
where only parties on one side of the partition are allowed to
communicate. The second line of work is the aforementioned
lower bound of Assadi, Kol, and Oshman [7], which works
in our model, but only considers one-round protocols. In the
following, we elaborate more on our results, techniques, and
their connections to other settings.

We remark that most proofs are omitted in this version.
Interested readers are referred to the full version [30].

A. Our Contributions

Our main result is a multi-round lower bound for computing
MIS in the shared blackboard model.

Result 1. Any r-round multi-party protocol (determin-
istic or randomized) in the shared blackboard model for
finding a maximal independent set on n-vertex graphs
requires (n/20" ") bits of communication per player. In
particular, (loglogn) rounds are needed for protocols
with polylog(n) per-player communication.

Previously, the only known lower bound for MIS in our
model was the (almost) Q(nl/ 2)-communication lower bound
of [7] for one-round protocols. Indeed, to the best of our
knowledge, there has been no prior communication lower
bound in this model for any natural problem that is sensitive
to the number of rounds (the lower bounds were either for

2This algorithm is designed for the (unicast) congested clique model, but
given its connection to the distributed sketching/dynamic streaming algorithm
of [17]—that solves MIS as a subroutine in correlation clustering—it can be
directly implemented in our model with the mentioned bounds.

one-round protocols, e.g., [7], [21], [22], or arbitrary number
of rounds, e.g., [1], [2]?).

The tradeoff achieved in Result 1 asymptotically matches
the aforementioned O(loglogn)-round algorithm of [28] for
finding MIS, except that, as mentioned before, the protocol
of [28] only bounds the communication of an average player
by O(logn) bits and a few players need to communicate
way more than polylog(n) bits. Thus, the two results do not
directly match. It remains an interesting open question to either
improve the guarantee of the algorithm of [28] to per-player
communication bound or improve our lower bound to average-
case communication.

Our techniques in establishing Result 1 are quite general
and, as a corollary to our proof, also allow us to prove a lower
bound for another fundamental problem, namely, maximal
matching.

Result 2. Any r-round multi-party protocol (determin-
istic or randomized) in the shared blackboard model
for finding a maximal matching or any constant factor
approximation to maximum matching on n-vertex (bipar-
tite) graphs requires (n'/2°""") bits of communication
per player. As such, (loglogn) rounds are needed for
protocols with polylog(n) per-player communication.

As in the case of MIS, the only known lower bound prior
to our work was the one-round lower bound of [7]. However,
for the number-in-hand variant of our communication model,
wherein each edge of the graph is only seen by one of its
endpoints, a series of papers [29], [31], [32] proved a nearly-
logarithmic round lower bound for the matching problem (we
elaborate on this line of work later). Yet, the number-in-hand
model is algorithmically much weaker than the edge-sharing
model studied in our paper; for instance, the lower bound
of [32] also holds for finding a spanning forest of the input in
that model, while finding spanning forests in our model can be
done with O(log3 n) communication in just one round [5]. We
refer the reader to [7] for discussions on the inherit difference
of number-in-hand model and our model that allows for edge-
sharing and thus is “one step closer” to the notorious number-
on-forehead model.

a) Our techniques: We shall go over our techniques in
detail in the streamlined overview of our approach in Sec-
tion III. For now, we only mention the high level bits of our
techniques.

Our techniques unify and generalize the lower bounds of [7]
for one-round protocols in our model, as well as the lower
bounds of [29] for multi-round protocols in the number-in-
hand model. To this end, we need several substantially new

3Specifically, the latter ones bound the fotal communication needed to solve
the problem and use this to get a lower bound on the number of rounds times
communication per round. Such lower bounds cannot capture more nuanced
round-communication tradeoffs (e.g., like the ones exhibited by [23] or [28]
for MIS).



ideas*. The main novelty of our work is in developing a new
round elimination argument that is tailored to our edge-sharing
model. Similar to standard round elimination arguments, say,
the one in [29], our approach is also based on simulating an r-
round protocol on “large” instances in only (r — 1) rounds for
smaller “embedded” instances (with fewer players and smaller
inputs). Prior work perform such a simulation by generating an
input for the “missing” players of the large r-round instance
with low correlation with the actual embedded (r — 1)-round
hard instance. As we argue, such an approach is doomed to
fail for our model with its edge-sharing aspects. Instead, we
introduce a partial-input embedding argument that implements
this simulation via generating only the messages of the missing
players. We then use information-theoretic tools to track the
gradual increase in the correlation of these messages with the
embedded hard instance throughout the entire simulation (not
only the first round which is sufficient for “input-sampling”
protocols of prior work).

B. Further Implications of Our Results to Related Models

We conclude this section by listing further implications of
our results to other well-studied settings.

a) Broadcast congested clique: The communication
model studied in our paper is equivalent to the broadcast
congested clique model studied in various prior work, e.g.,
in [1]-[4]. Specifically, our Result 1 and Result 2 imply
Q(loglogn) round lower bounds for both MIS and maximal
matching on any broadcast congested clique algorithm with
polylog(n) bandwidth. Incidentally, in the stronger unicast
congested clique model, O(loglogn)-round algorithms are
known for both MIS [28] and maximal matching [33]. We
note that, as shown in [1], proving lower bounds in the unicast
model implies strong circuit lower bounds and thus is beyond
the reach of current techniques.

b) Distributed sketching: Our model is also equivalent
to the distributed sketching model that was initiated in the
breakthrough work of [5]. Starting from the connectivity
sketch of [5], there has been tremendous progress on efficient
distributed sketching algorithms for various other problems
in one round, e.g., cut sparsifiers [6], spectral sparsifiers [9],
[10], vertex connectivity [11], densest subgraph [12], (A +1)-
coloring [13], A-coloring [14], and in multiple rounds, e.g.,
minimum spanning trees [5], matchings [5], [15], spanners [8],
[16], and MIS and correlation clustering [17]. Given the
strength of this model, proving lower bounds in this model
has been a highly challenging task (see, e.g. [7], [8]), and
only a handful of lower bounds are known including Q(log® n)
bits for connectivity [21], [22] and Q(n'/2) bits for MIS and
maximal matching [7] for omne-round sketches. Our results
contribute to this line of work by providing the first round-

4Braverman and Oshman [32] gave stronger lower bounds than [29], that
work for nearly logarithmic number of rounds. However, their techniques seem
“too tailored” to the number-in-hand model and approximate matchings, and
thus are not suitable for us (given the algorithm of [28] for MIS, which, even
though not exactly in our model, seem quite close, it is not clear if one can
get a logarithmic lower bound in our model).

sensitive lower bounds in this model, and our techniques can
be of independent interest here as well.

¢) Dynamic streaming algorithms: One key motivation
of [5] in introducing graph sketching was their application to
dynamic (semi-)streaming algorithms that can process streams
of insertions and deletions of edges with O(n - poly log (n))
memory (all sketches mentioned above also imply dynamic
streaming algorithms). Multi-round sketching protocols, sim-
ilar to the ones in our model, then correspond to multi-pass
streaming algorithms. Currently, the best known multi-pass dy-
namic semi-streaming algorithms for MIS and maximal match-
ing require O(loglogn) passes [17] and O(logn) passes [5],
[15], respectively. On the lower bound front however, only
single-pass lower bounds are known for either problem [13],
[34]-[36] (there has been recent progress on multi-pass lower
bounds for computing exact maximum matchings [37]-[39]
in logarithmic passes or even (1 + o(1))-approximation in two
passes [40] but they do not apply to maximal matching in
any way). While our results do not imply streaming lower
bounds, they do rule out certain popular techniques of vertex-
partitioned graph sketching for obtaining o(loglogn)-pass
algorithms for either problem. Thus, they can form a starting
point for proving multi-pass lower bounds for all dynamic
streaming algorithms as well.

d) Welfare maximization and interaction: A beautiful
line of work initiated by [31] and followed up in [29], [32],
[41], [42], studies the role played by the interaction of partic-
ipating agents in the efficiency of markets. One formalization,
corresponding to unit-demand agents in a matching market, is
as follows: we have n agents who are interested in getting any
one of their private subset of n items; the goal is to allocate
these items in a way that maximizes the welfare, defined as
the number of agents who receive an item of their liking. The
market proceeds in rounds wherein the agents communicate
polylog(n)-bit messages about their desired items. How many
rounds of interaction are needed to maximize the welfare to
within a constant factor?

This problem can be seen as approximating matchings on
the bipartite graph consisting of agents on one side that have
edges to their preferred items on the other side. The model
of communication is also identical to the one in our paper
with the crucial difference that only vertices on one side
of the bipartition, namely, the agents, are communicating. In
this model, [31] gave an O(logn)-round algorithm and ruled
out one-round algorithms. [29] improved the lower bound to
Q(loglogn) rounds and subsequently [32] obtained a nearly
tight Q(log_)lgo 7) lower bound (similar lower bounds are also
obtained for the more general setting of combinatorial auctions
in [41]).

All these results are restricted to one-sided markets. Our Re-
sult 2 generalizes (some of) these results to two-sided match-
ing markets [43], wherein both sides of the market consist
of communicative agents that know in advance if they make
a good match. A canonical example of two-sided matching
markets is college admissions and the celebrated Gale-Shapley
algorithm for stable marriage [44]. Another example, perhaps




more closely related to the setting of our paper, is assigning
users to servers in a large distributed Internet service [45].
Our Result 2 suggests that even when both sides of the market
are able to communicate with a limited bandwidth, at least
a modest amount of interaction is necessary for maximizing
welfare (approximately).

II. PRELIMINARIES

a) Notation: For an integer ¢ € N, we write [¢] as a
shorthand for the set {1,...,¢}. Let h : A — B be an arbitrary
function for two sets A, B. For any subset Z < A, we use
hZ) = {h(z) | z€ Z}. For a tuple X = (Xy,...,X;) and
integer i € [t], we define X_; = (X1,...,X;_1) (we also
define X_; and X; analogously). For a graph G = (V, E)
and a permutation o over V, we denote by o (&) the graph on
the same vertex set in which o(u) and o(v) are connected if
and only if (u,v) € E.

When there is room for confusion, we use sans-serif letters
for random variables (e.g. A) and the same normal letters for
their realizations (e.g. A). For random variables A, B, we use
supp(A) as the support of A, H(A) as the Shannon entropy,
I(A;B) as the mutual information, D(A || B) as the KL-
divergence, and |A — Bl|tva as the total variation distance.
We refer the interested readers to the textbook by Cover and
Thomas [46] for necessary background on information theory,
including the definitions and basic tools used in our paper.

A. Multi-Party Shared Blackboard Model with Vertex-
Partitioned Inputs

We work in the multi-party shared blackboard model with
vertex-partitioned inputs, also known as the broadcast con-
gested clique model in the literature. The communication
model is defined formally as follows. Consider a simple
graph G = (V, E) with one player assigned to each of the
n = |V vertices. For convenience, we identify a vertex with
its associated player in the rest of this paper and use the two
terms interchangeably. There is a shared blackboard, initially
empty, that is readable and writable by all players. The player
associated to a vertex v € V is presented as input with n, a
unique ID of v in the range [n], and IDs of all of v’s neighbors
Ng(v) = {ue V| (v,u) € E}. Thus, each edge (u,v) € E is
shared by both players u and v.

Communication proceeds in r € N synchronous rounds. For
each round ¢ € [r], the players compute their messages based
on their initial input as well as the current content of the
blackboard, and post them to the blackboard simultaneously.
In a randomized protocol, the players may also use both public
and private randomness. After the last round, the final content
of the blackboard constitutes the transcript, denoted by II,
of the protocol. Then, a referee computes the output of the
protocol depending on II (and possibly public randomness of
all players and its own private randomness). The bandwidth of
a protocol is defined to be the maximum number of bits ever
communicated by any player in any round.

We are interested in round-communication tradeoff of the
following problems:

a) Maximal Independent Set: We say a protocol com-
putes a maximal independent set (MIS) with error probability
d € [0, 1] if the output of the referee is a valid MIS of G with
probability at least 1 — § over the randomness of the protocol.
The protocol may err by outputting a subset of vertices which
is not independent or not maximal.

b) Approximate Matching: We say a protocol computes
an «a-approximate matching (o = 1) if the output T'(TII) of
the referee: (1) is always a set of disjoint pairs of vertices;
and (2) satisfies E|I'(II) n E| = u(G)/a, where u(G) is the
size of the maximum matching of G and expectation is taken
over the randomness of the protocol. This definition allows
the referee to output non-existing edges as long as they are
disjoint but only the correct ones in E are counted. This is
a less restrictive error-model than requiring the algorithm to
output a valid matching with certain probability and our lower
bound holds even in this less restrictive setting; see also [29].

III. TECHNICAL OVERVIEW

As our proof is quite dense and technical and involves
various information theoretic maneuvers that are daunting to
parse, we use this section to unpack our main ideas and give a
streamlined overview of our approach. We emphasize that this
section oversimplifies many details and the discussions will be
informal for the sake of intuition.

The starting point of our approach is a lower bound of [29]
for approximate matchings in the number-in-hand multi-party
communication model. We first give a detailed discussion of
this result as our techniques need to inevitably subsume this
work (since our result implies theirs as well). We then discuss
the challenges of extending this result to our model that allows
for edge-sharing and present a technical overview of our work.
We stick with approximate matchings in this overview as it is
easier to work with and to compare with [29].

A. A Detailed Overview of [29]

[29] considers the same communication setting as ours on
bipartite graphs G = (L u R, E) with the key difference
that the players are only associated with vertices in L, and
thus each edge is seen by only a single player. They prove
that any protocol that uses polylog(n) communication per
player and computes an O(1)-approximate matching requires
Q(loglogn) rounds in this model.

The proof in [29] is via round elimination: to lower bound
polylog (n)-communication r-round protocols 7., they start
with p, ~ n*® independent (r — 1)-round “hard” instances
Ii,...,1I,,, called principal instances. These instances are
supported on disjoint sets of ~ n'/5 vertices each, and are
then “embedded” in a single graph G to form an r-round
instance I. This instance is such that the first message of m,
cannot reveal much information about principal instances and
thus 7, cannot solve them in its remaining r — 1 rounds given
their (inductive) hardness.

To limit the information revealed by m, about principal
instances, [29] further “packs” the graph, for every principal
instance i € [p,], with f, ~ n%° fooling instances J; s :=



Fig. 1. An illustration of the lower bound instances of [29] with parameters
fr = 3 and p, = 6. The top right vertices (blue) are used in principal
instances, while top left vertices (gray) are fooling instances. The heavy (blue)
edges are from principal instances and the light (gray) edges are from fooling
instances — to avoid clutter, only the edges in fooling instances of the first
principal instance are drawn (solid black edges). To find a large matching
in this graph, one needs to find sufficiently large matchings in many of the
principal instances.

Ji1s.--,Jig.. This packing ensures that: (1) these fooling
instances are supported on a small set of vertices on the R-
side of the bipartition and so m, still has to solve most of
the underlying principal instances in order to solve [; and (2)
each player in I “plays” in f, + 1 instances, consisting of
only one principal instance, while being oblivious to which
instance is the principal one. An ingenious idea in [29] is that
these fooling instances need not actually be hard (r—1)-round
instances! Instead, they form a product distribution where for
each vertex v € L, only the marginal distribution of v is the
same under fooling and principal instances. This ensures that
in the first round (and only in this round), v cannot distinguish
between principal and fooling instances.

a) Round elimination embedding: We can now discuss
how [29] eliminates the first round of 7, and obtains an (r—1)-

round protocol o for solving an (r — 1)-round hard instance
I~

Embedding argument of [29]:

(i) The players in o sample the first message M M of
7, using public randomness.

Then, they will sample an index ¢ € [p,-] uniformly
and let I; = I* in the instance I.

Next, they sample J;i,...,J; conditioned on
M™ and I; = I* using private randomness. This is
a non-trivial sampling process which, on a high level,
is doable only because fooling instances are product
distributions (with only the marginals matching prin-
cipal ones).

More specifically, each player v independently sam-
ple its own input J; . (v) in all the fooling instances,
conditioned on only its actual input I;(v) in its
principal instance I;, and M ().

Finally, the players of o sample the remaining p, — 1
principal instances I_; and (p. — 1) - f, fooling
instances J_; 4 conditioned on M () to have a com-
plete instance 1.

At this point, the players in o already have the first message
M of 7, as well as inputs of all underlying instances with-
out any communication. So, they can continue running 7,- from

its second round, by each player of o on I* communicating the
messages of corresponding player of m,. in I;, and simulating
messages of 7,. for players outside I; with no communication.
As 7, will also need to solve I; for a random i € [p,], this
gives a (r — 1)-round protocol o for I* = I;.

At a high level, the correctness of this approach can be
argued as follows:

o The right distribution of all underlying variables for

can be expressed as (by chain rule):

MO 5 (1 | MDY x (34 | 1, MD)
X (1-is Jie [ i i, MOD). )

o The distribution sampled from in the protocol o on the
other hand is:

MO i x (X i (v) [ 1i(0), MOY)

~~

privately

X (I, d 5 | MDY,
[ N ——

publicly input

2
publicly

Let us show that these distributions are o(1)-close in total
variation distance, which implies that 7, also works (almost)
as good on sampled instances, giving us the desired (r — 1)-
round protocol o for I*. Here, the first terms are the same.
For the second terms,

I = (1 | MW) 2,4 < I(1;; MD)
1
fr+1

In (3), the first inequality is standard. The second inequality
uses the fact that the players in I; in m, are oblivious to
origins of their edges in I; vs. Ji s = Ji1,...,J iy (by
the marginal indistinguishability of these instances); thus, the
information revealed by their messages Mi(l) is “spread” over
these instances; also, other players of m, cannot reveal any
information about these instances as they do not see them. The
final inequality holds because the messages communicated by
~ n'/5 players in I; have collective size much smaller than
fr /5,

Finally, the third and fourth terms in (1) and (2) also have
the same distributions in both cases, which at a high level,
follows from the rectangle property of communication proto-
cols: for instance, since J; x(u) and J; (v) were independent
originally, they remain independent even after conditioning
on MW _ this is sufficient to show the equivalence of
corresponding distributions. This concludes the closeness of
these distributions and our overview of the work of [29].

<

A1 MY) < 0(1). (3)

B. Our Approach and New Ideas

The very first obvious challenge in using construction
of [29] in our model is that it can be easily solved in just a
single round once both sides of the bipartite graph can speak
(the maximum matching of instances created is incident on
vertices with degree one in R who can just communicate their
edge directly on the blackboard). This brings us to the first
and most obvious of our ideas.



EZ9N | N2 (N 7 S
(= = '[ i — I Iy L Iy Is

o JLe JOo J Je J0o ]

Fig. 2. An illustration of our lower bound instances with parameters f, = 3
and p, = 6. The top and bottom vertices (blue) are principal blocks, while
middle left vertices (gray) are fooling blocks. The heavy (blue) edges are
from principal instances and the light (gray) edges are from fooling instances
— to avoid clutter, only the edges in fooling instances of the first principal
instance are drawn (solid black edges). Note that fooling blocks participate
only in fooling instances while principal blocks participate both in principal
and fooling instances.

1) Idea One: Symmetrizing the Input Distribution: The first
step is to symmetrize the input distribution in [29]. Basically,
to create a hard r-round instance, we again start with (r —1)-
round hard principal instances Iy,..., I, . We then also add
fr sets of vertices J1,...,TFy, called the fooling blocks and
use vertices on both sides of each principal instance I;, called
principal block P;, and the fooling blocks to form fooling
instances J; 1,...,J; 5, — as before, these fooling instances
are not hard (r —1)-round distributions, but only that the input

of principal blocks match the “right” distribution marginally.

This step of symmetrizing the input distribution is a straight-
forward extension of [29], and we claim no novelty in this part.
The interesting part is how to analyze this distribution in our
model in light of the following key differences from [29]:
(1) in addition to principal blocks, vertices in Jy,..., 3y,
can now also communicate; and (2) there is an edge-sharing
aspect in our model; in particular, sharing of edges between
fooling blocks and principal blocks allows fooling blocks
to communicate even about edges directly inside principal
instances (!), and yet fooling blocks themselves are not even
fooled anymore in the distribution. We discuss our approach
for handling these parts in the following three subsections.

2) Idea Two: Bounding Revealed Information on Average:
Our goal as before is to do a round elimination argument and
embed an (r — 1)-round instance inside an r-round one. Our
embedding argument in the first round is going to be the same
as that of [29], except that we also sample the first message
M l(pl) of fooling blocks using public randomness (there are no
such players in [29]). We will then have all the messages of
round one, namely, MO = (Ml(pl), 1(71)), as well as edges
incident on the principal block P;, namely, I;, J; ,, inside I
without having done any communication.

Specifically, we design a protocol o that given an (r — 1)-
round instance I*, creates an r-round instance I and uses
a polylog(n)-communication r-round protocol 7, on I to
solve I* as follows. Let us argue that the joint distribution
of obtained random variables at this point is close to that of
the actual distribution induced by . (similar to (1) and (2)
for [29]):

Our embedding argument — first round:

(i) Players in o sample the first message M 1(;1), M él) of
principal and fooling blocks publicly.

Then, they will sample an index ¢ € [p,] uniformly
and let I; = I in the instance I; thus, players in o
will play the role of principal block P; in 7, from
now on.

Next, they sample J; . conditioned only on M }(,1) and
I; = I using private randomness by each vertex v of
o independently sampling J; .. (v) only conditioned
on I;(v), M}P.

o The right distribution of the underlying variables for 7,
can be expressed as:

(ME), M) (15| MG, M)
x (Jis | 15, M3 MD). )

« The distribution sampled from in the protocol o is:

(ME),ME) ¢ 1 (X i (0) [ L(0), M), (5)

input

publicly privately
The first terms are the same. For the second terms, similar
to (3), we have,

I — (1 | MG MED) 2,
<I(l; ;MY M)
= 1(1;sMO)) + 1(1 s M) | MGy, ©6)

using the chain rule of mutual information in the equality. The
first term in RHS above can still be bounded by o(1) by the
same logic that principal blocks are oblivious to identity of
principal instance edges in their input. But such a statement
is not true about fooling blocks in the second term, as those
vertices themselves are not fooled. Consider the following 1-
bit protocol.

Example. Suppose we direct each edge of the graph
randomly to one of its endpoints using public randomness.
Principal blocks? send the XOR of their outgoing edges
and fooling blocks send the XOR of their incoming edges

incident on J; , for some 4 € [p,]. Taking the XOR of

messages sent by P;, M }(,12 , and fooling blocks, M g),

reveals XOR of all edges inside I; as each such edge will
be outgoing for exactly one endpoint and edges in J_; 4
cancel out in this XOR. This reveals one bit of information
about [;, making TI(l,; M%l) | Mg)) > 1. (Ideas like this
are used in actual distributed sketching protocols, e.g.,
in [5], [10].)

“A player can know whether it is principal or fooling simply based
on its degree.




Instead, we show that fooling blocks cannot reveal much about
I; for an average i € [p,]:

1
1ZE[JI(|i;M§$> MU < - S ((CT M VIOR VIS

T

<o(1), )

where in the second inequality we used the fact that the
polylog(n)-bit messages of all f. ~ n*" fooling blocks of
size ~ n'/5 cannot reveal more than o(p,) information as
p, ~ n*5 (this idea is similar to the “public-vs-private”
vertices of [7] for one-round lower bounds in the distributed
sketching model). This allows us to bound the LHS of (6)
on average for i € [p,]. A similar type of argument can be
applied to the third terms also to “drop” the conditioning on
M fvl), while changing the distribution only by o(1) in total
variation distance. This implies that

E(Jie | 1, ME,ME) = Uics [ 11 ME))iva < 0(1).

By [29], the second distribution here matches the product
distribution sampled privately by the players (the third term
of (5)). This is now sufficient for simulating the first round of
m, (almost) faithfully with no communication as i € [p,] is
also chosen randomly in the embedding’.

It is tempting to consider our job done as we successfully
simulated the first round of 7, with no communication, and
thus we eliminated a round. But in fact, this is just the start
of the unique challenges of our model. Unlike [29], it is
not clear how we can continue running , in the subsequent
rounds: in o, we have only decided on the input of principal
block P; in I — the input to other principal blocks and all
fooling blocks are still undecided, and so . is not well defined
for the subsequent rounds. We now need to deviate entirely
from [29] to handle this.

3) Idea Three: Partial-Input Embedding and Non-
Simultaneous Simulation: To continue running m, from its
second round onwards, we should be able to simulate all
players in I, not only the principal block P; responsible for
I; = I*. Let us consider a standard approach.

a) Standard approach for handling remaining instances:
The standard approach is to sample input of remaining players
in 7, using public randomness and let the “actual” players of
o simulate them “in their head” with no communication (this
corresponds to step (iv) of embedding of [29]). This approach
fails completely for us. Consider the fooling blocks first: at this
point in the protocol o, the players have sampled J; . privately
which was necessary in the first round (given the correlation
of J; «(v) with I;(v) via Ml(gl) and that I;(v) was only known
to v). But given that the other endpoints of these edges are in
fooling blocks, this means that no single player of ¢ can even
know the edges incident on a single vertex in fooling blocks,
leaving no player to simulate players of 7, in fooling blocks
(or sampling rest of their inputs).

5[29] also works with a random i € [p,] but only to ensure that the
underlying instance I; needs to be solved by 7, as most but not all principal
instances are solved in 7, — all information-theoretic guarantees for 7,
mentioned for the embedding of [29] hold for arbitrary i € [p,] unlike ours.

A more subtle issue happens when it comes to the rest
of principal blocks, which on the surface, should be fine
given they share no edges with principal block P;. To be
able to sample instances I_;, J_; » publicly in the last step
of embedding, we need the following two distributions to be
close:

(I A Y VISR VIO

right distribution

vs. (g, g | M MG

“input-sampling”-protocol distribution

Yet, even a 1-bit communication protocol can turn these two
distributions far from each other:

Example. Suppose principal blocks remain silent and each
fooling block sends the XOR of their incident edges. Then
conditioned on the messages M (1), once we additionally
know J; ., we learn the parity of edges in J_; , which
changes the distribution of J_; , by Q(1).

All in all, when it comes to our edge-sharing model,
the standard approach of sampling the remaining instances
inherently fails: (¢) fooling blocks are directly incident on
edges in J; . which are part of the input to players in P;
in 7,.; (it) worse yet, the messages of fooling blocks even
correlate inputs of the rest of principal vertices with those of
P;, meaning that all principal players can reveal information
about I; not only the ones in P; that are directly incident on
it.

b) Our approach for handling remaining instances: A
key idea we use in the rest of our protocol is what we call
partial-input embedding: we only generate the rest of the
input for players P; and for all the remaining players, we will
simulate them solely by sampling their messages without ever
committing to their input. Thus, our embedding keeps going
even beyond the first round as we will need to generate the
messages of remaining players throughout the entire execution
of 7.

In particular, after running the embedding part of the first
round, for any round ¢ > 1, the players in the protocol o will
simulate the ¢-th round of 7, as follows:

Our embedding argument — after first round:

(i) The players in 0 communicate messages of P; using
the current content of the blackboard M (<!, and
their inputs J; ., I; sampled for the first round, and
send the messages Ml(f)z

(ii) After this message is revealed, the players use public
randomness to sample the ¢-th message of remain-
ing players MZ) = (Ml(gf)_i,Mg)) conditioned on
public knowledge M (<", M.




It is worth pointing out a rather strange aspect of this
embedding. In m, itself, the messages Ml(f)z and Mﬁ? are
communicated simultaneously with each other. Yet, in our
simulation of m,, we are crucially using messages principal
block P; to help us generate the remaining messages! We will
discuss the necessity of this non-simultaneous simulation of
a round in the next subsection.

As before, let us examine the underlying distributions in the
first ¢ rounds for ¢ > 1:

» The right distribution of the underlying variables up until
this point in 7, is:

(MO0, 34 1) x (M), | M9 3, 1)
—_— )
prior rounds

x (MY ME MED ;0 1). ®)
o The distribution sampled from in the protocol o is:

(MED, 354, 1) x (X MB(0) [ MED ;4 (), 1:(v))
—_————— v ?

prior rounds

communication

x (MY | MP M=y, )

~
publicly

The first terms can be shown to be o(1)-close inductively
(with base case being success of our simulation in the first
round). The second terms are identical since the messages
M I(Dt Z in 7, are simply generated simultaneously by each vertex
v € P; looking at its own neighborhood Jix(v), I;(v) and the
blackboard M (<), For the last terms to be close, similar to 3)
and (6), we need to bound the mutual information between
Mitz) and J; 4, I; at this point of the protocol, namely:

[ ML M) — (MO MM, 3 1) g
<MY 505015 | MB) MED), (10)

Yet, while the RHS of this equation may seem similar to
that of (7), this is a much more challenging term to bound
as we shall discuss in the next subsection. For now, we only
mention that our proof eventually bounds this information term
on average for i € [p,] with o(1) which allows us to continue
the simulation.

Having shown the o(1)-closeness of the distribution of
m, and the one used in our embedding, the proof ends as
follows. The players of ¢ can continue running 7, by playing
the role of principal block P; in 7, explicitly with proper
communication and keep sampling messages of remaining
players as done in the embedding. At the end of the last
round, they will obtain an almost faithful simulation of the
entire protocol 7, which allows them to solve [* = I; as m,
likely needs to solve I; for a random ¢ € [p,.]. This will then
give us an (r — 1)-round protocol for I* which in turn allows
us to use the inductive hardness of these instances to infer the
lower bound for r-round protocols.

4) Idea Four: Bounding Gradual Correlation of Players’
Inputs: The main technical part of our proof is to bound the
information term in the RHS of (10), namely, the information
other players can reveal about the input of principal block P;
in a single round. By the definition of Mitl) = (Mgli, Mg))
and chain rule, we have,

RHS of (10) = I(M%)_;; Ji 4, 1; | ME, M<D)
FIMP s | M MDY 1)

Recall that by the construction of the instance I, we have
Jisw,li L J_i s, 1. By the rectangle property of communi-
cation protocols, if the input of players are independent of
each other, then even after communication, their corresponding
input remains independent. Assuming we have this conditional
independence here, one can easily prove both of the following
properties:

1M 5 dis, 1 | ME) MDY = 0,
and
E[I(Mie i 1y | ME), MSD)]
1
< — - I(MP ;0,1 ME M0

T

< o(1). (similar to (7))

So then what is the problem here? Short answer: edge-
sharing between the players!

While J; &, 1; L J_;4,1—; is true initially, having fooling
blocks that are able to see (subsets of) both these sets from
the other endpoints, means that their messages can correlate
these inputs as well. In other words, it can be that J; 4, 1; £
N Mgft) already from the second round. What is even
more problematic is that even principal blocks in P; and P_;
will see messages of these fooling blocks, so after the second
round, even messages of other principal blocks correlate their
originally independent inputs — more formally, this means that
i, li £ Il | Mg) (with no direct conditioning on
fooling blocks’ messages) can also happen after the second
round!

The following example helps to motivate our approach.

Example. Consider the following two protocols:

« Protocol 1: in the second round, every principal block
except for P; sends XOR of their edges to fooling
blocks® J_; ., while fooling blocks send XOR of all
their edges in J.

« Protocol 2: in the second round, every principal block
sends XOR of their edges in J while fooling blocks
send XOR of all their edges in J.

In the first protocol, conditioned on M }2), the messages
M }311 reveal the XOR of edges in J; 4, and thus the first
mutual information term in (11) is 1 bit (note that here
M) = D).

In the second protocol, while M 1(327)_2-, M ;,2)

still reveal the




XOR of J; 4, given that M) is already this XOR itself,
the mutual information term in (11) is O bit.

“Identity of fooling blocks can be known to everyone in the second
round.

This example shows that one can have protocols that for
some values of i € [p,], principal blocks in P_; can reveal
non-trivial information about inputs of a principal block P;
also. But the given protocol (Protocol 1) is quite sensitive to
the choice of index ¢, and for other indices j # 1, this revealing
of information no longer happens in this specific protocol.
On the other hand, making the protocol less sensitive to the
choice of ¢ by “symmetrizing” the actions of players breaks
its information-revealing property as players in P; themselves
will reveal the information offered by others. We exploit this
by bounding the first term of (11) on average for i € [p;].
Note that this is precisely the step that our non-simultaneous
simulation of a round, alluded to in Section III-B3, kicks in:
the messages of M (2)71 are still correlated heavily with J; 4, I;

even in Protocol 2; but conditioning on M 1(322 allows us to
“break” this correlation and thus generate these messages even
in the absence of public knowledge of J; ., I;. We argue this
is true for all protocols in the following.

To continue, by using chain rule on the first term of (11),
we get that,

H(Mg,)—i s i i | Mg;)i, M(<t))
=M=, Mg) i 1) = IMSY, Mg,)i idiws i) (12)

where RHS is all the information revealed by the protocol
about J; 4, I; minus the information revealed already by play-
ers P; and content of the blackboard. Now, in the absence of
any conditioning, one can use the fact that J; ,.,1; L J_; 4, 1;
to bound:

1
E[IMED MY 3, 1)) < o(1) + —-IMED 5 1,1 | M),

i.e., argue that fooling blocks can only reveal o(1) bits about
the input of an average principal block and the rest is the
average information revealed by principal blocks themselves
about the entire input. The second term of (12) is lower
bounded by (via a simple application of chain rule and non-
negativity of mutual information),
E[I(M, M) s Jie, )] = EIIME 3 3 1) | M),

Last step of the proof is to bound the second terms of the two
equations above by showing that

Pr
IMEY 0,1 M) < STIMEY i1 | M),
i=1
In words, this means that the total information revealed by
principal blocks about the entire instance is bounded by the
sum of the information revealed by them about each individual
principal block’s input J; 4, I; for i € [p,] after we condition
on the messages of fooling blocks. This step requires a detailed
calculation that at its core boils down to the fact that once we

, we can “isolate” the information revealed
by each message Mgz solely to J; 4, I; — in other words,
the principal blocks cannot generate correlation with other
principal blocks’ inputs on their own beyond what is already
forced by fooling blocks.

Plugging in these bounds all together in (12) bounds the
RHS by o(1). A similar exercise, allows us to bound the
second term in (11) by o(1) also, which bounds the total
information revealed about J, ., I; by players other than the
ones in P; by o(1). This concludes the o(1) bound on the
mutual information term in (10), and implies the correctness
of our simulation.

To conclude, we managed to simulate all rounds of .
almost faithfully by continuing the embedding throughout the
protocol and as a result solve the underlying instance I* in
(r—1) rounds using a protocol with polylog(n)-size messages.
We can now repeat this argument for (r — 1)-round protocols
and since in each recursion, the size of underlying instances
drops by a factor of ~ n'/5, we will end up with a non-trivial
instance for any r = o(loglogn) that needs to be solved by
a 0-round protocol — a contradiction that implies our desired
lower bound.

condition on M l(ft)

IV. A HARD DISTRIBUTION FOR MAXIMAL INDEPENDENT
SET

The following is a formal restatement of Result 1.

Theorem 1 (Result 1, formal). For » > 0 and any r-
round multi-party protocol (deterministic or randomized) in
the shared blackboard model for computing a maximal in-
dependent set on n-vertex graphs with constant error prob-
ability, there must exist some vertex communicating at least
Q(nY20"™"Y bits in some round.

In this section, we give a recursive definition of the hard
distribution for maximal independent set that we are going
to use for our proofs in Section V. The base case is the
following hard distribution D,(\,?l)s for protocols without any
communication.

Distribution 1. The hard distribution D,(v?,)s for protocols
computing a maximal independent set without any com-
munication.
Parameters: bandwidth k, number of vertices ng = 2k.
1) Let E be an arbitrary, fixed perfect matching over ng
vertices.
2) For e € E, drop e with probability 1/2 independently.
3) Return the graph G sampled above.

An immediate observation about D,(v? |)s is that any valid max-
imal independent set uniquely determines the set of matching
edges that is dropped from E: for e = (u,v) € E, e is dropped
from E if and only if both of w, v are present in the maximal
independent set. So for any deterministic referee, it can output
a valid maximal independent set with probability at most 2~
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Fig. 3. An illustration of our lower bound instances for maximal independent
set with parameters fr = 2 and p, = 4. The bottom vertices (blue) are
principal blocks, while top vertices (gray) are fooling blocks. The heavy (solid
black) edges fully connect fooling vertices from two “half instances” (yellow
boxes). Note that these are the only edges across two “half instances”. To
find a maximal independent set in this graph, one needs to find maximal
independent sets in all principal instances of at least one of “half instances”.

over D,S/? |)S if it gets no information from the vertices. Note that
this distributional bound naturally generalizes to randomized
referees by an averaging argument, which is summarized in
the following lemma.

Lemma IV.1 (Base Case). Any 0-round protocol for com-
puting a maximal independent set can only succeed with
probability 27% over D,(\,?l)s.

Building upon D,S,?I)S, we construct the r-round hard distribu-

tion DI(\/TI)S recursively. Assume we are given the (r — 1)-round

hard distribution D,E,T,gl) over n,_; vertices. The construction
consists of two steps: first defining an auxiliary “half distribu-
tion” ’H,(\AT,)S and then using ’H,(\;,)s to get the desired D,(VT,)S, as
shown below. The “half instances” roughly correspond to the
hard instances we talk about in Section III. See Figure 3 for

an illustration.

Distribution 2. The “half distribution” H|(\/T|)s over graphs
with vertex set V (r > 1).
Parameters: bandwidth k, number of fooling blocks
fr = kS-n?®_ |, number of principal blocks p, = kS-n3_,.
fr, number of vertices 7, = (ny.—_1 — 1) - fT + Nr_1 * Pr,
and vertex set V' with |V| = 7.
1) Partition V into disjoint sets of vertices
Proo o Pp,, T, T such that Vi € [Dr]
|Pi| = np—y and Vj € [fi] © |F;[ = npoy — 1.
Define P(V) 1= J;e(p,.) P and F(V) := Uje[fr] F;.
2) For i € [p,], sample an independent instance of
D,E,T,gl) on P;.
3) For u € P(V) and j € [f,], sample an independent
instance of DIS/TlEl) on F; u {u} and only keep the
edges adjacent to u (dropping all the edges between
vertices in J}).
4) Return the graph G sampled above.

Distribution 3. The hard distribution D,S},hl)s for r-round
protocols computing a maximal independent set (rr > 1).
Parameters: bandwidth k£, number of fooling blocks
fr=2 fr, number of principal blocks p, = 2p,., number
of vertices n, = 2n,..

1) Let U and V be two disjoint sets of vertices, each of
size n,. Sample two independent instances of 7—[,8,])5
onU and V.

2) For uw e F(U) and v € F(V), add an edge (u,v).

3) Let G’ be the graph sampled above. Sample a uni-
formly random permutation ¢ over U U V' and return

G =a(G").

Remark IV.2. A few remarks are in order.

1) In the construction of the “half distribution” 7—[,(\;,)5, we
call the sets of vertices P1, ..., P, the principal blocks,
and the sets of vertices F1,...,F 7 the fooling blocks.
All vertices in P(V') and F(V') are the principal vertices
and the fooling vertices, respectively.

2) With a slight abuse of notation, we write
0(P1),...,0(Pp,.) to denote all p, principal blocks
of o(U v V), and similarly o(F1),...,0(Fy,) for
all fooling blocks, in the construction of the hard
distribution ’DI(VTI)S'

3) It is not hard to see that n, < 20" for r = 0.
Indeed, ng = 2k < k?° and by induction, the number
of fooling blocks is fT < KO- K320" < k929 the number
of principal blocks is p, < kS k320" . f, < k18207 gnd
thus n, <2-2-k29" . p, < k20" for r = 1. Throughout
the paper we assume the bandwidth parameter k is at
least some sufficiently large constant.

One important property about Dl(le)s’ which justifies our use

of two “half instances”, is that any valid maximal independent
set for G must also be maximal for the induced subgraph on
either o(P(U)) or o(P(V)). The implication is that solving a
hard instance drawn from D,\,Tls requires to solve at least one
of the “half instances” drawn from 7—[,(\,7“)5 Formally, we have
the following claim.

Claim IV.3. Let I" be any valid maximal independent set for a
graph G drawn from Dms Then at least one of the following
must hold:

1) T no(P(0)) is a valid maximal independent set for the
induced subgraph on o(P(U)).

2) T no(P(V)) is a valid maximal independent set for the
induced subgraph on o(P(V)).

Note that our construction in Distribution 3 has no edge
between principal blocks, so Claim IV.3 further implies that
solving an r-round instance requires to solve at least half of
the principal (r — 1)-round instances.



V. THE LOWER BOUND FOR MAXIMAL INDEPENDENT SET

We prove the following theorem in this section. Theorem 1
is a straightforward corollary by an averaging argument,
namely the easy direction of Yao’s minimax principle [47].
Note that by the third statement of Remark IV.2, n,. < E20

1/207+1
so we know k = n, .
Theorem 2. For r = o(logk), any r-round protocol for
computing a maximal independent set that communicates at
most k bits per vertex in every round can only succeed with
probability less than 0.1 over DIS/TI)S'

Our proof to Theorem 2 for r-round protocols in general
is by repeatedly applying the following round elimination
lemma.

Lemma V.1 (Round Elimination). For r = o(logk) and
d € [0,1], if there exists an r-round protocol for computing a
maximal independent set that communicates at most k bits
per vertex in every round and succeeds with probability o
over D,{,ﬂ)s, then there also exists an (r — 1)-round protocol
for computing a maximal independent set that communicates
at most k bits per vertex in every round and succeeds with
probability 6/2 — 1/n,_y over D,(\/Tlgl).

Before proving Lemma V.1, which is the main part of this
section, we first show it easily implies Theorem 2.

Proof of Theorem 2: Suppose for the purpose of contra-
diction that there exists an r-round protocol that communicates
at most k bits per vertex in every round and that has success
probability 0.1 over D,(\,T,)S. Applying Lemma V.1 for r times,
we obtain a O-round protocol having success probability

0.1 1 0.1 1 1
- - > -
27 Z 2t-1 CNp_1 27 no Z 2t-1

te[r] te[r]
(as ny—1 is increasing)
0.1 2
2 -
27 no
1
T ko(1)?

over DS'J,)S, where the last step follows from the assumption

r = o(log k). Recall that ny = 2k so the second term above is
O(1/k) and can be ignored. However, the existence of such a
0-round protocol contradicts the lower bound of Lemma IV.1.
This concludes the proof of the theorem. ]

The proof of Lemma V.1 is deferred to the full version [30].

VI. THE LOWER BOUND FOR APPROXIMATE BIPARTITE
MATCHING

In this section we adapt the techniques for maximal inde-
pendent set to prove the following formal version of Result 2.

Theorem 3 (Result 2, formal). For r = 0 and any r-round
multi-party protocol (deterministic or randomized) in the
shared blackboard model for computing a maximal matching
or any constant factor approximation to maximum matching
on n-vertex (bipartite) graphs, there must exist some vertex
communicating at least Q(n'/2""") bits in some round.

Intuitively, Distribution 3 makes little use of any property
specific to independent sets so most of our previous argument
holds for matchings as well. Indeed, with minor adjustment to
the hard distributions to better fit the need of approximation,
almost the same ideas as in Sections IV and V yield the
lower bound for approximate matching for general graphs.
Meanwhile, there is a simple reduction to the bipartite case
(by only considering edges across a random bipartition),
concluding the proof of Theorem 3. Interested readers are
referred to the full version [30] for formal proofs of both parts.
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