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AbstractÐWe consider the problem of finding a maximal
independent set (MIS) in the shared blackboard communication
model with vertex-partitioned inputs. There are n players corre-
sponding to vertices of an undirected graph, and each player sees
the edges incident on its vertex ± this way, each edge is known by
both its endpoints and is thus shared by two players. The players
communicate in simultaneous rounds by posting their messages
on a shared blackboard visible to all players, with the goal of
computing an MIS of the graph. While the MIS problem is well
studied in other distributed models, and while shared blackboard
is, perhaps, the simplest broadcast model, lower bounds for our
problem were only known against one-round protocols.

We present a lower bound on the round-communication
tradeoff for computing an MIS in this model. Specifically, we
show that when r rounds of interaction are allowed, at least

one player needs to communicate Ωpn1{20r`1

q bits. In particular,
with logarithmic bandwidth, finding an MIS requires Ωplog log nq
rounds. This lower bound can be compared with the algorithm
of Ghaffari, Gouleakis, Konrad, MitroviÂc, and Rubinfeld [PODC
2018] that solves MIS in Oplog log nq rounds but with a loga-
rithmic bandwidth for an average player. Additionally, our lower
bound further extends to the closely related problem of maximal
bipartite matching.

The presence of edge-sharing gives the algorithms in our model
a surprising power and numerous algorithmic results exploiting
this power are known. For a similar reason, proving lower
bounds in this model is much more challenging, as this sharing
in the players’ inputs prohibits the use of standard number-in-
hand communication complexity arguments. Thus, to prove our
results, we devise a new round elimination framework, which we
call partial-input embedding, that may also be useful in future
work for proving round-sensitive lower bounds in the presence
of shared inputs.

Finally, we discuss several implications of our results to multi-
round (adaptive) distributed sketching algorithms, broadcast
congested clique, and to the welfare maximization problem in
two-sided matching markets.

Index TermsÐdistributed sketching, shared blackboard, com-
munication complexity, maximal independent set, maximum
matching

I. INTRODUCTION

Consider the following communication model: there are n

players corresponding to vertices of an undirected graph G “
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pV,Eq and each player only sees the edges incident on its

vertex ± this way, each edge of the graph is shared by the two

players at its endpoints. The goal of the players is to solve

some fixed problem on G, for instance, finding a spanning

forest of G. To do so, the players communicate in synchronous

rounds wherein all parties simultaneously write a message on a

shared blackboard visible to all. The messages communicated

by the players are only functions of their own inputs and the

content of the blackboard. When the protocol concludes, an

additional party, called the referee, computes the output of

the protocol as a function of the blackboard content. We are

interested in the tradeoff between the number of rounds of

the protocol and the per-player communication, defined as the

worst-case length of any message sent by any player in any

round.

In the communication complexity terminology, this model

is referred to as the multi-party communication model with

shared blackboard and vertex-partitioned inputs. However,

it has also been studied by different communities under

different names, such as broadcast congested clique [1]±[4], or

(adaptive) distributed sketching [5]±[8]. At this point, there is

quite a large body of algorithmic results in this model [5],

[5], [6], [8]±[17] (see Section I-B for more details). The

source of power behind these results is a crucial aspect of

this model: edge-sharing, or in other words, the fact that each

edge of the graph is seen by both its endpoints1. This sharing

in the players’ inputs makes this model an ªintermediateº

model lying between the number-in-hand model (with no input

sharing) and the notorious number-on-forehead model (with

arbitrary input sharing). As a result, lower bounds are more

scarce in this model [1], [2], [7], [18]±[22].

We study the maximal independent set (MIS) problem in

this model. While MIS is one of the most studied prob-

lems in other distributed models (see, e.g., [23]±[27]), and

while shared blackboard is, perhaps, the simplest broadcast

model, not much is known about MIS in this model. We

do note that Luby’s celebrated MIS algorithm [23] implies

an Oplog nq-round Op1q-per-player communication algorithm

in this model. Ghaffari, Gouleakis, Konrad, Mitrovic, and

1The interested reader is referred to [5] to see this in a surprising algorithm
that solves graph connectivity using only a single round and Oplog3 nq
communication bits per player.



Rubinfeld [28] gave an algorithm that runs in Oplog log nq
rounds, but only bounds the communication of an average

player by Oplog nq. I.e., the total communication by all

players in a round is Opn log nq, but some players may need

to communicate ωplog nq bits2. Moreover, Assadi, Kol, and

Oshman proved that any one-round protocol requires almost

pn1{2q per-player communication. This state-of-affairs raises

the following question:

What is the complexity of MIS in the shared black-

board model with vertex-partitioned inputs? In par-

ticular, what are the possible round-communication

tradeoffs in this model?

We make progress on this fundamental open question by

presenting a new lower bound on the round-communication

tradeoff for the MIS problem. The key contribution of our

work is a new technique for proving multi-round lower bounds,

even in the presence of edge-sharing. This also allows us to

prove a similar lower bound for another fundamental problem,

namely, the maximal bipartite matching problem.

Our work can be viewed as a direct continuation of two

lines of work: the first line of work is on number-in-hand

multi-round communication complexity, where we follow up

on the result of Alon, Nisan, Raz, and Weinstein [29]. They

give lower bounds for the bipartite maximal matching problem,

where only parties on one side of the partition are allowed to

communicate. The second line of work is the aforementioned

lower bound of Assadi, Kol, and Oshman [7], which works

in our model, but only considers one-round protocols. In the

following, we elaborate more on our results, techniques, and

their connections to other settings.

We remark that most proofs are omitted in this version.

Interested readers are referred to the full version [30].

A. Our Contributions

Our main result is a multi-round lower bound for computing

MIS in the shared blackboard model.

Result 1. Any r-round multi-party protocol (determin-

istic or randomized) in the shared blackboard model for

finding a maximal independent set on n-vertex graphs

requires Ωpn1{20r`1

q bits of communication per player. In

particular, Ωplog log nq rounds are needed for protocols

with polylogpnq per-player communication.

Previously, the only known lower bound for MIS in our

model was the (almost) Ωpn1{2q-communication lower bound

of [7] for one-round protocols. Indeed, to the best of our

knowledge, there has been no prior communication lower

bound in this model for any natural problem that is sensitive

to the number of rounds (the lower bounds were either for

2This algorithm is designed for the (unicast) congested clique model, but
given its connection to the distributed sketching/dynamic streaming algorithm
of [17]Ðthat solves MIS as a subroutine in correlation clusteringÐit can be
directly implemented in our model with the mentioned bounds.

one-round protocols, e.g., [7], [21], [22], or arbitrary number

of rounds, e.g., [1], [2]3).

The tradeoff achieved in Result 1 asymptotically matches

the aforementioned Oplog log nq-round algorithm of [28] for

finding MIS, except that, as mentioned before, the protocol

of [28] only bounds the communication of an average player

by Oplog nq bits and a few players need to communicate

way more than polylogpnq bits. Thus, the two results do not

directly match. It remains an interesting open question to either

improve the guarantee of the algorithm of [28] to per-player

communication bound or improve our lower bound to average-

case communication.

Our techniques in establishing Result 1 are quite general

and, as a corollary to our proof, also allow us to prove a lower

bound for another fundamental problem, namely, maximal

matching.

Result 2. Any r-round multi-party protocol (determin-

istic or randomized) in the shared blackboard model

for finding a maximal matching or any constant factor

approximation to maximum matching on n-vertex (bipar-

tite) graphs requires Ωpn1{20r`1

q bits of communication

per player. As such, Ωplog log nq rounds are needed for

protocols with polylogpnq per-player communication.

As in the case of MIS, the only known lower bound prior

to our work was the one-round lower bound of [7]. However,

for the number-in-hand variant of our communication model,

wherein each edge of the graph is only seen by one of its

endpoints, a series of papers [29], [31], [32] proved a nearly-

logarithmic round lower bound for the matching problem (we

elaborate on this line of work later). Yet, the number-in-hand

model is algorithmically much weaker than the edge-sharing

model studied in our paper; for instance, the lower bound

of [32] also holds for finding a spanning forest of the input in

that model, while finding spanning forests in our model can be

done with Oplog3 nq communication in just one round [5]. We

refer the reader to [7] for discussions on the inherit difference

of number-in-hand model and our model that allows for edge-

sharing and thus is ªone step closerº to the notorious number-

on-forehead model.

a) Our techniques: We shall go over our techniques in

detail in the streamlined overview of our approach in Sec-

tion III. For now, we only mention the high level bits of our

techniques.

Our techniques unify and generalize the lower bounds of [7]

for one-round protocols in our model, as well as the lower

bounds of [29] for multi-round protocols in the number-in-

hand model. To this end, we need several substantially new

3Specifically, the latter ones bound the total communication needed to solve
the problem and use this to get a lower bound on the number of rounds times

communication per round. Such lower bounds cannot capture more nuanced
round-communication tradeoffs (e.g., like the ones exhibited by [23] or [28]
for MIS).



ideas4. The main novelty of our work is in developing a new

round elimination argument that is tailored to our edge-sharing

model. Similar to standard round elimination arguments, say,

the one in [29], our approach is also based on simulating an r-

round protocol on ªlargeº instances in only pr´1q rounds for

smaller ªembeddedº instances (with fewer players and smaller

inputs). Prior work perform such a simulation by generating an

input for the ªmissingº players of the large r-round instance

with low correlation with the actual embedded pr ´ 1q-round

hard instance. As we argue, such an approach is doomed to

fail for our model with its edge-sharing aspects. Instead, we

introduce a partial-input embedding argument that implements

this simulation via generating only the messages of the missing

players. We then use information-theoretic tools to track the

gradual increase in the correlation of these messages with the

embedded hard instance throughout the entire simulation (not

only the first round which is sufficient for ªinput-samplingº

protocols of prior work).

B. Further Implications of Our Results to Related Models

We conclude this section by listing further implications of

our results to other well-studied settings.

a) Broadcast congested clique: The communication

model studied in our paper is equivalent to the broadcast

congested clique model studied in various prior work, e.g.,

in [1]±[4]. Specifically, our Result 1 and Result 2 imply

Ωplog log nq round lower bounds for both MIS and maximal

matching on any broadcast congested clique algorithm with

polylogpnq bandwidth. Incidentally, in the stronger unicast

congested clique model, Oplog log nq-round algorithms are

known for both MIS [28] and maximal matching [33]. We

note that, as shown in [1], proving lower bounds in the unicast

model implies strong circuit lower bounds and thus is beyond

the reach of current techniques.

b) Distributed sketching: Our model is also equivalent

to the distributed sketching model that was initiated in the

breakthrough work of [5]. Starting from the connectivity

sketch of [5], there has been tremendous progress on efficient

distributed sketching algorithms for various other problems

in one round, e.g., cut sparsifiers [6], spectral sparsifiers [9],

[10], vertex connectivity [11], densest subgraph [12], p∆`1q-

coloring [13], ∆-coloring [14], and in multiple rounds, e.g.,

minimum spanning trees [5], matchings [5], [15], spanners [8],

[16], and MIS and correlation clustering [17]. Given the

strength of this model, proving lower bounds in this model

has been a highly challenging task (see, e.g. [7], [8]), and

only a handful of lower bounds are known including Ωplog3 nq
bits for connectivity [21], [22] and Ωpn1{2q bits for MIS and

maximal matching [7] for one-round sketches. Our results

contribute to this line of work by providing the first round-

4Braverman and Oshman [32] gave stronger lower bounds than [29], that
work for nearly logarithmic number of rounds. However, their techniques seem
ªtoo tailoredº to the number-in-hand model and approximate matchings, and
thus are not suitable for us (given the algorithm of [28] for MIS, which, even
though not exactly in our model, seem quite close, it is not clear if one can
get a logarithmic lower bound in our model).

sensitive lower bounds in this model, and our techniques can

be of independent interest here as well.

c) Dynamic streaming algorithms: One key motivation

of [5] in introducing graph sketching was their application to

dynamic (semi-)streaming algorithms that can process streams

of insertions and deletions of edges with Opn ¨ poly log pnqq
memory (all sketches mentioned above also imply dynamic

streaming algorithms). Multi-round sketching protocols, sim-

ilar to the ones in our model, then correspond to multi-pass

streaming algorithms. Currently, the best known multi-pass dy-

namic semi-streaming algorithms for MIS and maximal match-

ing require Oplog log nq passes [17] and Oplog nq passes [5],

[15], respectively. On the lower bound front however, only

single-pass lower bounds are known for either problem [13],

[34]±[36] (there has been recent progress on multi-pass lower

bounds for computing exact maximum matchings [37]±[39]

in logarithmic passes or even p1`op1qq-approximation in two

passes [40] but they do not apply to maximal matching in

any way). While our results do not imply streaming lower

bounds, they do rule out certain popular techniques of vertex-

partitioned graph sketching for obtaining oplog log nq-pass

algorithms for either problem. Thus, they can form a starting

point for proving multi-pass lower bounds for all dynamic

streaming algorithms as well.

d) Welfare maximization and interaction: A beautiful

line of work initiated by [31] and followed up in [29], [32],

[41], [42], studies the role played by the interaction of partic-

ipating agents in the efficiency of markets. One formalization,

corresponding to unit-demand agents in a matching market, is

as follows: we have n agents who are interested in getting any

one of their private subset of n items; the goal is to allocate

these items in a way that maximizes the welfare, defined as

the number of agents who receive an item of their liking. The

market proceeds in rounds wherein the agents communicate

polylogpnq-bit messages about their desired items. How many

rounds of interaction are needed to maximize the welfare to

within a constant factor?

This problem can be seen as approximating matchings on

the bipartite graph consisting of agents on one side that have

edges to their preferred items on the other side. The model

of communication is also identical to the one in our paper

with the crucial difference that only vertices on one side

of the bipartition, namely, the agents, are communicating. In

this model, [31] gave an Oplog nq-round algorithm and ruled

out one-round algorithms. [29] improved the lower bound to

Ωplog log nq rounds and subsequently [32] obtained a nearly

tight Ωp logn
log logn

q lower bound (similar lower bounds are also

obtained for the more general setting of combinatorial auctions

in [41]).

All these results are restricted to one-sided markets. Our Re-

sult 2 generalizes (some of) these results to two-sided match-

ing markets [43], wherein both sides of the market consist

of communicative agents that know in advance if they make

a good match. A canonical example of two-sided matching

markets is college admissions and the celebrated Gale-Shapley

algorithm for stable marriage [44]. Another example, perhaps



more closely related to the setting of our paper, is assigning

users to servers in a large distributed Internet service [45].

Our Result 2 suggests that even when both sides of the market

are able to communicate with a limited bandwidth, at least

a modest amount of interaction is necessary for maximizing

welfare (approximately).

II. PRELIMINARIES

a) Notation: For an integer t P N, we write rts as a

shorthand for the set t1, . . . , tu. Let h : A Ñ B be an arbitrary

function for two sets A,B. For any subset Z Ď A, we use

hpZq “ thpzq | z P Zu. For a tuple X “ pX1, . . . , Xtq and

integer i P rts, we define Xăi “ pX1, . . . , Xi´1q (we also

define X´i and Xďi analogously). For a graph G “ pV,Eq
and a permutation σ over V , we denote by σpGq the graph on

the same vertex set in which σpuq and σpvq are connected if

and only if pu, vq P E.

When there is room for confusion, we use sans-serif letters

for random variables (e.g. A) and the same normal letters for

their realizations (e.g. A). For random variables A,B, we use

supppAq as the support of A, HpAq as the Shannon entropy,

IpA ;Bq as the mutual information, DpA || Bq as the KL-

divergence, and }A ´ B}tvd as the total variation distance.

We refer the interested readers to the textbook by Cover and

Thomas [46] for necessary background on information theory,

including the definitions and basic tools used in our paper.

A. Multi-Party Shared Blackboard Model with Vertex-

Partitioned Inputs

We work in the multi-party shared blackboard model with

vertex-partitioned inputs, also known as the broadcast con-

gested clique model in the literature. The communication

model is defined formally as follows. Consider a simple

graph G “ pV,Eq with one player assigned to each of the

n “ |V | vertices. For convenience, we identify a vertex with

its associated player in the rest of this paper and use the two

terms interchangeably. There is a shared blackboard, initially

empty, that is readable and writable by all players. The player

associated to a vertex v P V is presented as input with n, a

unique ID of v in the range rns, and IDs of all of v’s neighbors

NGpvq “ tu P V | pv, uq P Eu. Thus, each edge pu, vq P E is

shared by both players u and v.

Communication proceeds in r P N synchronous rounds. For

each round t P rrs, the players compute their messages based

on their initial input as well as the current content of the

blackboard, and post them to the blackboard simultaneously.

In a randomized protocol, the players may also use both public

and private randomness. After the last round, the final content

of the blackboard constitutes the transcript, denoted by Π,

of the protocol. Then, a referee computes the output of the

protocol depending on Π (and possibly public randomness of

all players and its own private randomness). The bandwidth of

a protocol is defined to be the maximum number of bits ever

communicated by any player in any round.

We are interested in round-communication tradeoff of the

following problems:

a) Maximal Independent Set: We say a protocol com-

putes a maximal independent set (MIS) with error probability

δ P r0, 1s if the output of the referee is a valid MIS of G with

probability at least 1´ δ over the randomness of the protocol.

The protocol may err by outputting a subset of vertices which

is not independent or not maximal.

b) Approximate Matching: We say a protocol computes

an α-approximate matching (α ě 1) if the output ΓpΠq of

the referee: p1q is always a set of disjoint pairs of vertices;

and p2q satisfies E |ΓpΠq X E| ě µpGq{α, where µpGq is the

size of the maximum matching of G and expectation is taken

over the randomness of the protocol. This definition allows

the referee to output non-existing edges as long as they are

disjoint but only the correct ones in E are counted. This is

a less restrictive error-model than requiring the algorithm to

output a valid matching with certain probability and our lower

bound holds even in this less restrictive setting; see also [29].

III. TECHNICAL OVERVIEW

As our proof is quite dense and technical and involves

various information theoretic maneuvers that are daunting to

parse, we use this section to unpack our main ideas and give a

streamlined overview of our approach. We emphasize that this

section oversimplifies many details and the discussions will be

informal for the sake of intuition.

The starting point of our approach is a lower bound of [29]

for approximate matchings in the number-in-hand multi-party

communication model. We first give a detailed discussion of

this result as our techniques need to inevitably subsume this

work (since our result implies theirs as well). We then discuss

the challenges of extending this result to our model that allows

for edge-sharing and present a technical overview of our work.

We stick with approximate matchings in this overview as it is

easier to work with and to compare with [29].

A. A Detailed Overview of [29]

[29] considers the same communication setting as ours on

bipartite graphs G “ pL \ R,Eq with the key difference

that the players are only associated with vertices in L, and

thus each edge is seen by only a single player. They prove

that any protocol that uses polylogpnq communication per

player and computes an Op1q-approximate matching requires

Ωplog log nq rounds in this model.

The proof in [29] is via round elimination: to lower bound

polylog pnq-communication r-round protocols πr, they start

with pr « n4{5 independent pr ´ 1q-round ªhardº instances

I1, . . . , Ipr
, called principal instances. These instances are

supported on disjoint sets of « n1{5 vertices each, and are

then ªembeddedº in a single graph G to form an r-round

instance I . This instance is such that the first message of πr

cannot reveal much information about principal instances and

thus πr cannot solve them in its remaining r´1 rounds given

their (inductive) hardness.

To limit the information revealed by πr about principal

instances, [29] further ªpacksº the graph, for every principal

instance i P rprs, with fr « n2{5 fooling instances Ji,˚ :“



R:

L:

I1 I2 I3 I4 I5 I6
J1,1 J1,2 J1,3

Fig. 1. An illustration of the lower bound instances of [29] with parameters
fr “ 3 and pr “ 6. The top right vertices (blue) are used in principal
instances, while top left vertices (gray) are fooling instances. The heavy (blue)
edges are from principal instances and the light (gray) edges are from fooling
instances ± to avoid clutter, only the edges in fooling instances of the first
principal instance are drawn (solid black edges). To find a large matching
in this graph, one needs to find sufficiently large matchings in many of the
principal instances.

Ji,1, . . . , Ji,fr . This packing ensures that: p1q these fooling

instances are supported on a small set of vertices on the R-

side of the bipartition and so πr still has to solve most of

the underlying principal instances in order to solve I; and p2q
each player in I ªplaysº in fr ` 1 instances, consisting of

only one principal instance, while being oblivious to which

instance is the principal one. An ingenious idea in [29] is that

these fooling instances need not actually be hard pr´1q-round

instances! Instead, they form a product distribution where for

each vertex v P L, only the marginal distribution of v is the

same under fooling and principal instances. This ensures that

in the first round (and only in this round), v cannot distinguish

between principal and fooling instances.

a) Round elimination embedding: We can now discuss

how [29] eliminates the first round of πr and obtains an pr´1q-

round protocol σ for solving an pr ´ 1q-round hard instance

I‹.

Embedding argument of [29]:

piq The players in σ sample the first message M p1q of

πr using public randomness.

piiq Then, they will sample an index i P rprs uniformly

and let Ii “ I‹ in the instance I .

piiiq Next, they sample Ji,1, . . . , Ji,fr conditioned on

M p1q and Ii “ I‹ using private randomness. This is

a non-trivial sampling process which, on a high level,

is doable only because fooling instances are product

distributions (with only the marginals matching prin-

cipal ones).

More specifically, each player v independently sam-

ple its own input Ji,˚pvq in all the fooling instances,

conditioned on only its actual input Iipvq in its

principal instance Ii, and M p1q.

pivq Finally, the players of σ sample the remaining pr ´1

principal instances I´i and ppr ´ 1q ¨ fr fooling

instances J´i,˚ conditioned on M p1q to have a com-

plete instance I .

At this point, the players in σ already have the first message

M p1q of πr as well as inputs of all underlying instances with-

out any communication. So, they can continue running πr from

its second round, by each player of σ on I‹ communicating the

messages of corresponding player of πr in Ii, and simulating

messages of πr for players outside Ii with no communication.

As πr will also need to solve Ii for a random i P rprs, this

gives a pr ´ 1q-round protocol σ for I‹ “ Ii.

At a high level, the correctness of this approach can be

argued as follows:

‚ The right distribution of all underlying variables for πr

can be expressed as (by chain rule):

M
p1q ˆ pIi | Mp1qq ˆ pJi,˚ | Ii,M

p1qq

ˆ pI´i, J´i,˚ | Ji,˚, Ii,M
p1qq. (1)

‚ The distribution sampled from in the protocol σ on the

other hand is:

M
p1q

loomoon

publicly

ˆ Ii
loomoon

input

ˆp
ą

v
Ji,˚pvq | Iipvq,Mp1q

looooooooooooomooooooooooooon

privately

q

ˆ pI´i, J´i,˚ | Mp1qq
looooooooomooooooooon

publicly

. (2)

Let us show that these distributions are op1q-close in total

variation distance, which implies that πr also works (almost)

as good on sampled instances, giving us the desired pr ´ 1q-

round protocol σ for I‹. Here, the first terms are the same.

For the second terms,

}Ii ´ pIi | Mp1qq}2tvd ď IpIi ;M
p1qq

ď
1

fr ` 1
¨ IpJi,˚, Ii ;M

p1q
i q ď op1q. (3)

In (3), the first inequality is standard. The second inequality

uses the fact that the players in Ii in πr are oblivious to

origins of their edges in Ii vs. Ji,˚ “ Ji,1, . . . , Ji,fr (by

the marginal indistinguishability of these instances); thus, the

information revealed by their messages M
p1q
i is ªspreadº over

these instances; also, other players of πr cannot reveal any

information about these instances as they do not see them. The

final inequality holds because the messages communicated by

« n1{5 players in Ii have collective size much smaller than

fr « n2{5.

Finally, the third and fourth terms in (1) and (2) also have

the same distributions in both cases, which at a high level,

follows from the rectangle property of communication proto-

cols: for instance, since Ji,˚puq and Ji,˚pvq were independent

originally, they remain independent even after conditioning

on M p1q ± this is sufficient to show the equivalence of

corresponding distributions. This concludes the closeness of

these distributions and our overview of the work of [29].

B. Our Approach and New Ideas

The very first obvious challenge in using construction

of [29] in our model is that it can be easily solved in just a

single round once both sides of the bipartite graph can speak

(the maximum matching of instances created is incident on

vertices with degree one in R who can just communicate their

edge directly on the blackboard). This brings us to the first

and most obvious of our ideas.



F1 F2 F3

P1

P1

P2

P2

P3

P3

P4

P4

P5

P5

P6

P6

I1 I2 I3 I4 I5 I6
J1,1

J1,1

J1,2

J1,2

J1,3

J1,3

Fig. 2. An illustration of our lower bound instances with parameters fr “ 3
and pr “ 6. The top and bottom vertices (blue) are principal blocks, while
middle left vertices (gray) are fooling blocks. The heavy (blue) edges are
from principal instances and the light (gray) edges are from fooling instances
± to avoid clutter, only the edges in fooling instances of the first principal
instance are drawn (solid black edges). Note that fooling blocks participate
only in fooling instances while principal blocks participate both in principal
and fooling instances.

1) Idea One: Symmetrizing the Input Distribution: The first

step is to symmetrize the input distribution in [29]. Basically,

to create a hard r-round instance, we again start with pr´ 1q-

round hard principal instances I1, . . . , Ipr
. We then also add

fr sets of vertices F1, . . . ,Ffr called the fooling blocks and

use vertices on both sides of each principal instance Ii, called

principal block Pi, and the fooling blocks to form fooling

instances Ji,1, . . . , Ji,fr ± as before, these fooling instances

are not hard pr´1q-round distributions, but only that the input

of principal blocks match the ªrightº distribution marginally.

This step of symmetrizing the input distribution is a straight-

forward extension of [29], and we claim no novelty in this part.

The interesting part is how to analyze this distribution in our

model in light of the following key differences from [29]:

(1) in addition to principal blocks, vertices in F1, . . . ,Ffr

can now also communicate; and (2) there is an edge-sharing

aspect in our model; in particular, sharing of edges between

fooling blocks and principal blocks allows fooling blocks

to communicate even about edges directly inside principal

instances (!), and yet fooling blocks themselves are not even

fooled anymore in the distribution. We discuss our approach

for handling these parts in the following three subsections.

2) Idea Two: Bounding Revealed Information on Average:

Our goal as before is to do a round elimination argument and

embed an pr ´ 1q-round instance inside an r-round one. Our

embedding argument in the first round is going to be the same

as that of [29], except that we also sample the first message

M
p1q
F of fooling blocks using public randomness (there are no

such players in [29]). We will then have all the messages of

round one, namely, M p1q “ pM
p1q
P ,M

p1q
F q, as well as edges

incident on the principal block Pi, namely, Ii, Ji,˚, inside I

without having done any communication.

Specifically, we design a protocol σ that given an pr ´ 1q-

round instance I‹, creates an r-round instance I and uses

a polylogpnq-communication r-round protocol πr on I to

solve I‹ as follows. Let us argue that the joint distribution

of obtained random variables at this point is close to that of

the actual distribution induced by πr (similar to (1) and (2)

for [29]):

Our embedding argument ± first round:

piq Players in σ sample the first message M
p1q
P ,M

p1q
F of

principal and fooling blocks publicly.

piiq Then, they will sample an index i P rprs uniformly

and let Ii “ I‹ in the instance I; thus, players in σ

will play the role of principal block Pi in πr from

now on.

piiiq Next, they sample Ji,˚ conditioned only on M
p1q
P and

Ii “ I‹ using private randomness by each vertex v of

σ independently sampling Ji,˚pvq only conditioned

on Iipvq,M
p1q
P .

‚ The right distribution of the underlying variables for πr

can be expressed as:

pM
p1q
P ,M

p1q
F q ˆ pIi | M

p1q
P ,M

p1q
F q

ˆ pJi,˚ | Ii,M
p1q
P ,M

p1q
F q. (4)

‚ The distribution sampled from in the protocol σ is:

pM
p1q
P ,M

p1q
F q

loooooomoooooon

publicly

ˆ Ii
loomoon

input

ˆp
ą

v
Ji,˚pvq | Iipvq,M

p1q
P

looooooooooooomooooooooooooon

privately

q. (5)

The first terms are the same. For the second terms, similar

to (3), we have,

}Ii ´ pIi | M
p1q
P ,M

p1q
F q}2tvd

ď IpIi ;M
p1q
P ,M

p1q
F q

“ IpIi ;M
p1q
P q ` IpIi ;M

p1q
F | M

p1q
P q, (6)

using the chain rule of mutual information in the equality. The

first term in RHS above can still be bounded by op1q by the

same logic that principal blocks are oblivious to identity of

principal instance edges in their input. But such a statement

is not true about fooling blocks in the second term, as those

vertices themselves are not fooled. Consider the following 1-

bit protocol.

Example. Suppose we direct each edge of the graph

randomly to one of its endpoints using public randomness.

Principal blocksa send the XOR of their outgoing edges

and fooling blocks send the XOR of their incoming edges

incident on Ji,˚ for some i P rprs. Taking the XOR of

messages sent by Pi, M
p1q
P,i , and fooling blocks, M

p1q
F ,

reveals XOR of all edges inside Ii as each such edge will

be outgoing for exactly one endpoint and edges in J´i,˚

cancel out in this XOR. This reveals one bit of information

about Ii, making IpIi ;M
p1q
F | M

p1q
P q ě 1. (Ideas like this

are used in actual distributed sketching protocols, e.g.,

in [5], [10].)

aA player can know whether it is principal or fooling simply based
on its degree.



Instead, we show that fooling blocks cannot reveal much about

Ii for an average i P rprs:

E
i
rIpIi ;M

p1q
F | M

p1q
P qs ď

1

pr
¨ IpI1, . . . , Ipr

;M
p1q
F | M

p1q
P q

ď op1q, (7)

where in the second inequality we used the fact that the

polylogpnq-bit messages of all fr « n2{5 fooling blocks of

size « n1{5 cannot reveal more than opprq information as

pr « n4{5 (this idea is similar to the ªpublic-vs-privateº

vertices of [7] for one-round lower bounds in the distributed

sketching model). This allows us to bound the LHS of (6)

on average for i P rprs. A similar type of argument can be

applied to the third terms also to ªdropº the conditioning on

M
p1q
F , while changing the distribution only by op1q in total

variation distance. This implies that

E
i

}pJi,˚ | Ii,M
p1q
P ,M

p1q
F q ´ pJi,˚ | Ii,M

p1q
P q}tvd ď op1q.

By [29], the second distribution here matches the product

distribution sampled privately by the players (the third term

of (5)). This is now sufficient for simulating the first round of

πr (almost) faithfully with no communication as i P rprs is

also chosen randomly in the embedding5.

It is tempting to consider our job done as we successfully

simulated the first round of πr with no communication, and

thus we eliminated a round. But in fact, this is just the start

of the unique challenges of our model. Unlike [29], it is

not clear how we can continue running πr in the subsequent

rounds: in σ, we have only decided on the input of principal

block Pi in I ± the input to other principal blocks and all

fooling blocks are still undecided, and so πr is not well defined

for the subsequent rounds. We now need to deviate entirely

from [29] to handle this.

3) Idea Three: Partial-Input Embedding and Non-

Simultaneous Simulation: To continue running πr from its

second round onwards, we should be able to simulate all

players in I , not only the principal block Pi responsible for

Ii “ I‹. Let us consider a standard approach.

a) Standard approach for handling remaining instances:

The standard approach is to sample input of remaining players

in πr using public randomness and let the ªactualº players of

σ simulate them ªin their headº with no communication (this

corresponds to step pivq of embedding of [29]). This approach

fails completely for us. Consider the fooling blocks first: at this

point in the protocol σ, the players have sampled Ji,˚ privately

which was necessary in the first round (given the correlation

of Ji,˚pvq with Iipvq via M
p1q
P and that Iipvq was only known

to v). But given that the other endpoints of these edges are in

fooling blocks, this means that no single player of σ can even

know the edges incident on a single vertex in fooling blocks,

leaving no player to simulate players of πr in fooling blocks

(or sampling rest of their inputs).

5 [29] also works with a random i P rprs but only to ensure that the
underlying instance Ii needs to be solved by πr as most but not all principal
instances are solved in πr ± all information-theoretic guarantees for πr

mentioned for the embedding of [29] hold for arbitrary i P rprs unlike ours.

A more subtle issue happens when it comes to the rest

of principal blocks, which on the surface, should be fine

given they share no edges with principal block Pi. To be

able to sample instances I´i, J´i,˚ publicly in the last step

of embedding, we need the following two distributions to be

close:

pI´i, J´i,˚ | Ji,˚, Ii,M
p1q
P ,M

p1q
F q

loooooooooooooooooomoooooooooooooooooon

right distribution

vs. pI´i, J´i,˚ | M
p1q
P ,M

p1q
F q

looooooooooooomooooooooooooon

ªinput-samplingº-protocol distribution

.

Yet, even a 1-bit communication protocol can turn these two

distributions far from each other:

Example. Suppose principal blocks remain silent and each

fooling block sends the XOR of their incident edges. Then

conditioned on the messages M
p1q
F , once we additionally

know Ji,˚, we learn the parity of edges in J´i,˚ which

changes the distribution of J´i,˚ by Ωp1q.

All in all, when it comes to our edge-sharing model,

the standard approach of sampling the remaining instances

inherently fails: piq fooling blocks are directly incident on

edges in Ji,˚ which are part of the input to players in Pi

in πr; piiq worse yet, the messages of fooling blocks even

correlate inputs of the rest of principal vertices with those of

Pi, meaning that all principal players can reveal information

about Ii not only the ones in Pi that are directly incident on

it.

b) Our approach for handling remaining instances: A

key idea we use in the rest of our protocol is what we call

partial-input embedding: we only generate the rest of the

input for players Pi and for all the remaining players, we will

simulate them solely by sampling their messages without ever

committing to their input. Thus, our embedding keeps going

even beyond the first round as we will need to generate the

messages of remaining players throughout the entire execution

of πr.

In particular, after running the embedding part of the first

round, for any round t ą 1, the players in the protocol σ will

simulate the t-th round of πr as follows:

Our embedding argument ± after first round:

piq The players in σ communicate messages of Pi using

the current content of the blackboard M pătq, and

their inputs Ji,˚, Ii sampled for the first round, and

send the messages M
ptq
P,i.

piiq After this message is revealed, the players use public

randomness to sample the t-th message of remain-

ing players M
ptq
´i :“ pM

ptq
P,´i,M

ptq
F q conditioned on

public knowledge M pătq,M
ptq
P,i.



It is worth pointing out a rather strange aspect of this

embedding. In πr itself, the messages M
ptq
P,i and M

ptq
´i are

communicated simultaneously with each other. Yet, in our

simulation of πr, we are crucially using messages principal

block Pi to help us generate the remaining messages! We will

discuss the necessity of this non-simultaneous simulation of

a round in the next subsection.

As before, let us examine the underlying distributions in the

first t rounds for t ą 1:

‚ The right distribution of the underlying variables up until

this point in πr is:

pMpătq, Ji,˚, Iiq
loooooooomoooooooon

prior rounds

ˆpM
ptq
P,i | Mpătq, Ji,˚, Iiq

ˆ pM
ptq
´i | M

ptq
P,i,M

pătq, Ji,˚, Iiq. (8)

‚ The distribution sampled from in the protocol σ is:

pMpătq, Ji,˚, Iiq
loooooooomoooooooon

prior rounds

ˆ p
ą

v
M

ptq
P,ipvq | Mpătq, Ji,˚pvq, Iipvqq

loooooooooooooooooooooomoooooooooooooooooooooon

communication

ˆ pM
ptq
´i | M

ptq
P,i,M

pătqq
looooooooooomooooooooooon

publicly

. (9)

The first terms can be shown to be op1q-close inductively

(with base case being success of our simulation in the first

round). The second terms are identical since the messages

M
ptq
P,i in πr are simply generated simultaneously by each vertex

v P Pi looking at its own neighborhood Ji,˚pvq, Iipvq and the

blackboard M pătq. For the last terms to be close, similar to (3)

and (6), we need to bound the mutual information between

M
ptq
´i and Ji,˚, Ii at this point of the protocol, namely:

}pM
ptq
´i | M

ptq
P,i,M

pătqq ´ pM
ptq
´i | M

ptq
P,i,M

pătq, Ji,˚, Iiq}2tvd

ď IpM
ptq
´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq. (10)

Yet, while the RHS of this equation may seem similar to

that of (7), this is a much more challenging term to bound

as we shall discuss in the next subsection. For now, we only

mention that our proof eventually bounds this information term

on average for i P rprs with op1q which allows us to continue

the simulation.

Having shown the op1q-closeness of the distribution of

πr and the one used in our embedding, the proof ends as

follows. The players of σ can continue running πr by playing

the role of principal block Pi in πr explicitly with proper

communication and keep sampling messages of remaining

players as done in the embedding. At the end of the last

round, they will obtain an almost faithful simulation of the

entire protocol πr which allows them to solve I‹ “ Ii as πr

likely needs to solve Ii for a random i P rprs. This will then

give us an pr ´ 1q-round protocol for I‹ which in turn allows

us to use the inductive hardness of these instances to infer the

lower bound for r-round protocols.

4) Idea Four: Bounding Gradual Correlation of Players’

Inputs: The main technical part of our proof is to bound the

information term in the RHS of (10), namely, the information

other players can reveal about the input of principal block Pi

in a single round. By the definition of M
ptq
´i “ pM

ptq
P,´i,M

ptq
F q

and chain rule, we have,

RHS of (10) “ IpM
ptq
P,´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq

` IpM
ptq
F ; Ji,˚, Ii | M

ptq
P ,Mpătqq. (11)

Recall that by the construction of the instance I , we have

Ji,˚, Ii K J´i,˚, I´i. By the rectangle property of communi-

cation protocols, if the input of players are independent of

each other, then even after communication, their corresponding

input remains independent. Assuming we have this conditional

independence here, one can easily prove both of the following

properties:

IpM
ptq
P,´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq “ 0,

and

E
i
rIpM

ptq
F ; Ji,˚, Ii | M

ptq
P ,Mpătqqs

ď
1

pr
¨ IpM

ptq
F ; J, I | M

ptq
P ,Mpătqq

ď op1q. (similar to (7))

So then what is the problem here? Short answer: edge-

sharing between the players!

While Ji,˚, Ii K J´i,˚, I´i is true initially, having fooling

blocks that are able to see (subsets of) both these sets from

the other endpoints, means that their messages can correlate

these inputs as well. In other words, it can be that Ji,˚, Ii M

J´i,˚, I´i | M
pătq
F already from the second round. What is even

more problematic is that even principal blocks in Pi and P´i

will see messages of these fooling blocks, so after the second

round, even messages of other principal blocks correlate their

originally independent inputs ± more formally, this means that

Ji,˚, Ii M J´i,˚, I´i | M
ptq
P (with no direct conditioning on

fooling blocks’ messages) can also happen after the second

round!

The following example helps to motivate our approach.

Example. Consider the following two protocols:

‚ Protocol 1: in the second round, every principal block

except for Pi sends XOR of their edges to fooling

blocksa J´i,˚, while fooling blocks send XOR of all

their edges in J .

‚ Protocol 2: in the second round, every principal block

sends XOR of their edges in J while fooling blocks

send XOR of all their edges in J .

In the first protocol, conditioned on M
p2q
F , the messages

M
p2q
P,´i reveal the XOR of edges in Ji,˚, and thus the first

mutual information term in (11) is 1 bit (note that here

M
p2q
P,i “ H).

In the second protocol, while M
p2q
P,´i,M

p2q
F still reveal the



XOR of Ji,˚, given that M
p2q
P,i is already this XOR itself,

the mutual information term in (11) is 0 bit.

aIdentity of fooling blocks can be known to everyone in the second
round.

This example shows that one can have protocols that for

some values of i P rprs, principal blocks in P´i can reveal

non-trivial information about inputs of a principal block Pi

also. But the given protocol (Protocol 1) is quite sensitive to

the choice of index i, and for other indices j ‰ i, this revealing

of information no longer happens in this specific protocol.

On the other hand, making the protocol less sensitive to the

choice of i by ªsymmetrizingº the actions of players breaks

its information-revealing property as players in Pi themselves

will reveal the information offered by others. We exploit this

by bounding the first term of (11) on average for i P rprs.
Note that this is precisely the step that our non-simultaneous

simulation of a round, alluded to in Section III-B3, kicks in:

the messages of M
p2q
P,´i are still correlated heavily with Ji,˚, Ii

even in Protocol 2; but conditioning on M
p2q
P,i allows us to

ªbreakº this correlation and thus generate these messages even

in the absence of public knowledge of Ji,˚, Ii. We argue this

is true for all protocols in the following.

To continue, by using chain rule on the first term of (11),

we get that,

IpM
ptq
P,´i ; Ji,˚, Ii | M

ptq
P,i,M

pătqq

“ IpMpătq,M
ptq
P ; Ji,˚, Iiq ´ IpMpătq,M

ptq
P,i ; Ji,˚, Iiq (12)

where RHS is all the information revealed by the protocol

about Ji,˚, Ii minus the information revealed already by play-

ers Pi and content of the blackboard. Now, in the absence of

any conditioning, one can use the fact that Ji,˚, Ii K J´i,˚, Ii
to bound:

E
i
rIpMpătq,M

ptq
P ; Ji,˚, Iiqs ď op1q`

1

pr
¨IpM

pďtq
P ; J, I | M

pătq
F q,

i.e., argue that fooling blocks can only reveal op1q bits about

the input of an average principal block and the rest is the

average information revealed by principal blocks themselves

about the entire input. The second term of (12) is lower

bounded by (via a simple application of chain rule and non-

negativity of mutual information),

E
i
rIpMpătq,M

ptq
P,i ; Ji,˚, Iiqs ě E

i
rIpM

pďtq
P ; Ji,˚, Iiq | M

pătq
F s.

Last step of the proof is to bound the second terms of the two

equations above by showing that

IpM
pďtq
P ; J, I | M

pătq
F q ď

pr
ÿ

i“1

IpM
pďtq
P ; Ji,˚, Ii | M

pătq
F q.

In words, this means that the total information revealed by

principal blocks about the entire instance is bounded by the

sum of the information revealed by them about each individual

principal block’s input Ji,˚, Ii for i P rprs after we condition

on the messages of fooling blocks. This step requires a detailed

calculation that at its core boils down to the fact that once we

condition on M
pătq
F , we can ªisolateº the information revealed

by each message M
ptq
P,i solely to Ji,˚, Ii ± in other words,

the principal blocks cannot generate correlation with other

principal blocks’ inputs on their own beyond what is already

forced by fooling blocks.

Plugging in these bounds all together in (12) bounds the

RHS by op1q. A similar exercise, allows us to bound the

second term in (11) by op1q also, which bounds the total

information revealed about Ji,˚, Ii by players other than the

ones in Pi by op1q. This concludes the op1q bound on the

mutual information term in (10), and implies the correctness

of our simulation.

To conclude, we managed to simulate all rounds of πr

almost faithfully by continuing the embedding throughout the

protocol and as a result solve the underlying instance I‹ in

pr´1q rounds using a protocol with polylogpnq-size messages.

We can now repeat this argument for pr ´ 1q-round protocols

and since in each recursion, the size of underlying instances

drops by a factor of « n1{5, we will end up with a non-trivial

instance for any r “ oplog log nq that needs to be solved by

a 0-round protocol ± a contradiction that implies our desired

lower bound.

IV. A HARD DISTRIBUTION FOR MAXIMAL INDEPENDENT

SET

The following is a formal restatement of Result 1.

Theorem 1 (Result 1, formal). For r ě 0 and any r-

round multi-party protocol (deterministic or randomized) in

the shared blackboard model for computing a maximal in-

dependent set on n-vertex graphs with constant error prob-

ability, there must exist some vertex communicating at least

Ωpn1{20r`1

q bits in some round.

In this section, we give a recursive definition of the hard

distribution for maximal independent set that we are going

to use for our proofs in Section V. The base case is the

following hard distribution D
p0q
MIS

for protocols without any

communication.

Distribution 1. The hard distribution D
p0q
MIS

for protocols

computing a maximal independent set without any com-

munication.

Parameters: bandwidth k, number of vertices n0 “ 2k.

1) Let E be an arbitrary, fixed perfect matching over n0

vertices.

2) For e P E, drop e with probability 1{2 independently.

3) Return the graph G sampled above.

An immediate observation about D
p0q
MIS

is that any valid max-

imal independent set uniquely determines the set of matching

edges that is dropped from E: for e “ pu, vq P E, e is dropped

from E if and only if both of u, v are present in the maximal

independent set. So for any deterministic referee, it can output

a valid maximal independent set with probability at most 2´k



U

FU,1FU,2

PU,1PU,2PU,3PU,4

V

FV,1 FV,2

PV,1 PV,2 PV,3 PV,4

Fig. 3. An illustration of our lower bound instances for maximal independent

set with parameters f̂r “ 2 and p̂r “ 4. The bottom vertices (blue) are
principal blocks, while top vertices (gray) are fooling blocks. The heavy (solid
black) edges fully connect fooling vertices from two ªhalf instancesº (yellow
boxes). Note that these are the only edges across two ªhalf instancesº. To
find a maximal independent set in this graph, one needs to find maximal
independent sets in all principal instances of at least one of ªhalf instancesº.

over D
p0q
MIS

if it gets no information from the vertices. Note that

this distributional bound naturally generalizes to randomized

referees by an averaging argument, which is summarized in

the following lemma.

Lemma IV.1 (Base Case). Any 0-round protocol for com-

puting a maximal independent set can only succeed with

probability 2´k over D
p0q
MIS

.

Building upon D
p0q
MIS

, we construct the r-round hard distribu-

tion D
prq
MIS

recursively. Assume we are given the pr´1q-round

hard distribution D
pr´1q
MIS

over nr´1 vertices. The construction

consists of two steps: first defining an auxiliary ªhalf distribu-

tionº H
prq
MIS

and then using H
prq
MIS

to get the desired D
prq
MIS

, as

shown below. The ªhalf instancesº roughly correspond to the

hard instances we talk about in Section III. See Figure 3 for

an illustration.

Distribution 2. The ªhalf distributionº H
prq
MIS

over graphs

with vertex set V (r ě 1).

Parameters: bandwidth k, number of fooling blocks

f̂r “ k6¨n3
r´1, number of principal blocks p̂r “ k6¨n3

r´1¨

f̂r, number of vertices n̂r “ pnr´1 ´ 1q ¨ f̂r ` nr´1 ¨ p̂r,

and vertex set V with |V | “ n̂r.

1) Partition V into disjoint sets of vertices

P1, . . . ,Pp̂r
,F1, . . . ,Ff̂r

such that @i P rp̂rs :

|Pi| “ nr´1 and @j P rf̂rs : |Fj | “ nr´1 ´ 1.

Define PpV q :“
Ť

iPrp̂rs Pi and FpV q :“
Ť

jPrf̂rs Fj .

2) For i P rp̂rs, sample an independent instance of

D
pr´1q
MIS

on Pi.

3) For u P PpV q and j P rf̂rs, sample an independent

instance of D
pr´1q
MIS

on Fj Y tuu and only keep the

edges adjacent to u (dropping all the edges between

vertices in Fj).

4) Return the graph G sampled above.

Distribution 3. The hard distribution D
prq
MIS

for r-round

protocols computing a maximal independent set (r ě 1).

Parameters: bandwidth k, number of fooling blocks

fr “ 2f̂r, number of principal blocks pr “ 2p̂r, number

of vertices nr “ 2n̂r.

1) Let U and V be two disjoint sets of vertices, each of

size n̂r. Sample two independent instances of H
prq
MIS

on U and V .

2) For u P FpUq and v P FpV q, add an edge pu, vq.

3) Let G1 be the graph sampled above. Sample a uni-

formly random permutation σ over U YV and return

G “ σpG1q.

Remark IV.2. A few remarks are in order.

1) In the construction of the ªhalf distributionº H
prq
MIS

, we

call the sets of vertices P1, . . . ,Pp̂r
the principal blocks,

and the sets of vertices F1, . . . ,Ff̂r
the fooling blocks.

All vertices in PpV q and FpV q are the principal vertices

and the fooling vertices, respectively.

2) With a slight abuse of notation, we write

σpP1q, . . . , σpPpr
q to denote all pr principal blocks

of σpU Y V q, and similarly σpF1q, . . . , σpFfr q for

all fooling blocks, in the construction of the hard

distribution D
prq
MIS

.

3) It is not hard to see that nr ď k20
r`1

for r ě 0.

Indeed, n0 “ 2k ď k20 and by induction, the number

of fooling blocks is f̂r ď k6 ¨k3¨20r ď k9¨20r , the number

of principal blocks is p̂r ď k6 ¨ k3¨20r ¨ f̂r ď k18¨20r , and

thus nr ď 2 ¨ 2 ¨k20
r

¨ p̂r ď k20
r`1

for r ě 1. Throughout

the paper we assume the bandwidth parameter k is at

least some sufficiently large constant.

One important property about D
prq
MIS

, which justifies our use

of two ªhalf instancesº, is that any valid maximal independent

set for G must also be maximal for the induced subgraph on

either σpPpUqq or σpPpV qq. The implication is that solving a

hard instance drawn from D
prq
MIS

requires to solve at least one

of the ªhalf instancesº drawn from H
prq
MIS

. Formally, we have

the following claim.

Claim IV.3. Let Γ be any valid maximal independent set for a

graph G drawn from D
prq
MIS

. Then at least one of the following

must hold:

1) Γ X σpPpUqq is a valid maximal independent set for the

induced subgraph on σpPpUqq.

2) Γ X σpPpV qq is a valid maximal independent set for the

induced subgraph on σpPpV qq.

Note that our construction in Distribution 3 has no edge

between principal blocks, so Claim IV.3 further implies that

solving an r-round instance requires to solve at least half of

the principal pr ´ 1q-round instances.



V. THE LOWER BOUND FOR MAXIMAL INDEPENDENT SET

We prove the following theorem in this section. Theorem 1

is a straightforward corollary by an averaging argument,

namely the easy direction of Yao’s minimax principle [47].

Note that by the third statement of Remark IV.2, nr ď k20
r`1

so we know k ě n
1{20r`1

r .

Theorem 2. For r “ oplog kq, any r-round protocol for

computing a maximal independent set that communicates at

most k bits per vertex in every round can only succeed with

probability less than 0.1 over D
prq
MIS

.

Our proof to Theorem 2 for r-round protocols in general

is by repeatedly applying the following round elimination

lemma.

Lemma V.1 (Round Elimination). For r “ oplog kq and

δ P r0, 1s, if there exists an r-round protocol for computing a

maximal independent set that communicates at most k bits

per vertex in every round and succeeds with probability δ

over D
prq
MIS

, then there also exists an pr ´ 1q-round protocol

for computing a maximal independent set that communicates

at most k bits per vertex in every round and succeeds with

probability δ{2 ´ 1{nr´1 over D
pr´1q
MIS

.

Before proving Lemma V.1, which is the main part of this

section, we first show it easily implies Theorem 2.

Proof of Theorem 2: Suppose for the purpose of contra-

diction that there exists an r-round protocol that communicates

at most k bits per vertex in every round and that has success

probability 0.1 over D
prq
MIS

. Applying Lemma V.1 for r times,

we obtain a 0-round protocol having success probability

0.1

2r
´

ÿ

tPrrs

1

2t´1 ¨ nt´1

ě
0.1

2r
´

1

n0

¨
ÿ

tPrrs

1

2t´1

(as nt´1 is increasing)

ě
0.1

2r
´

2

n0

“
1

kop1q
,

over D
p0q
MIS

, where the last step follows from the assumption

r “ oplog kq. Recall that n0 “ 2k so the second term above is

Θp1{kq and can be ignored. However, the existence of such a

0-round protocol contradicts the lower bound of Lemma IV.1.

This concludes the proof of the theorem.

The proof of Lemma V.1 is deferred to the full version [30].

VI. THE LOWER BOUND FOR APPROXIMATE BIPARTITE

MATCHING

In this section we adapt the techniques for maximal inde-

pendent set to prove the following formal version of Result 2.

Theorem 3 (Result 2, formal). For r ě 0 and any r-round

multi-party protocol (deterministic or randomized) in the

shared blackboard model for computing a maximal matching

or any constant factor approximation to maximum matching

on n-vertex (bipartite) graphs, there must exist some vertex

communicating at least Ωpn1{20r`1

q bits in some round.

Intuitively, Distribution 3 makes little use of any property

specific to independent sets so most of our previous argument

holds for matchings as well. Indeed, with minor adjustment to

the hard distributions to better fit the need of approximation,

almost the same ideas as in Sections IV and V yield the

lower bound for approximate matching for general graphs.

Meanwhile, there is a simple reduction to the bipartite case

(by only considering edges across a random bipartition),

concluding the proof of Theorem 3. Interested readers are

referred to the full version [30] for formal proofs of both parts.
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