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Abstract

While cross entropy (CE) is the most commonly used loss function to train deep
neural networks for classification tasks, many alternative losses have been devel-
oped to obtain better empirical performance. Among them, which one is the best
to use is still a mystery, because there seem to be multiple factors affecting the
answer, such as properties of the dataset, the choice of network architecture, and
so on. This paper studies the choice of loss function by examining the last-layer
features of deep networks, drawing inspiration from a recent line work showing
that the global optimal solution of CE and mean-square-error (MSE) losses ex-
hibits a Neural Collapse (N'C) phenomenon. That is, for sufficiently large net-
works trained until convergence, (i) all features of the same class collapse to the
corresponding class mean and (ii) the means associated with different classes are
in a configuration where their pairwise distances are all equal and maximized.
We extend such results and show through global solution and landscape analyses
that a broad family of loss functions including commonly used label smoothing
(LS) and focal loss (FL) exhibits A’'C. Hence, all relevant losses (i.e., CE, LS,
FL, MSE) produce equivalent features on training data. In particular, based on
the unconstrained feature model assumption, we provide either the global land-
scape analysis for LS loss or the local landscape analysis for FL loss and show
that the (only!) global minimizers are N'C solutions, while all other critical points
are strict saddles whose Hessian exhibit negative curvature directions either in the
global scope for LS loss or in the local scope for FL loss near the optimal solution.
The experiments further show that A/C features obtained from all relevant losses
(i.e., CE, LS, FL, MSE) lead to largely identical performance on test data as well,
provided that the network is sufficiently large and trained until convergence. The
source code is available at https://github.com/jinxinzhou/nc_loss.

1 Introduction

Loss function is an indispensable component in the training of deep neural networks (DNNs). While
cross-entropy (CE) loss is one of the most popular choices for classification tasks, studies over the
past few years have suggested many improved versions of CE that bring better empirical perfor-
mance. Some notable examples include label smoothing (LS) [1] where one-hot label is replaced by
a smoothed label, focal loss (FL) [2] which puts more emphasis on hard misclassified samples and

*Corresponding author.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).


https://github.com/jinxinzhou/nc_loss

reduces the relative loss on the already well-classified samples, and so on. Aside from CE and its
variants, the mean squared error (MSE) loss which was typically used for regression tasks is recently
demonstrated to have a competitive performance when compared to CE for classification tasks [3].

Despite the existence of many loss functions there is however a lack of consensus as to which one is
the best to use, and the answer seems to depend on multiple factors such as properties of the dataset,
choice of network architecture, and so on [4]. In this work, we aim to understand the effect of
loss function in classification tasks from the perspective of characterizing the last-layer features and
classifier of a DNN trained under different losses. Our study is motivated by a sequence of recent
work that identify an intriguing Neural Collapse (N'C) phenomenon in trained networks, which
refers to the following properties of the last-layer features and classifier:

(i) Variability Collapse: all features of the same class collapse to the corresponding class mean.

(i) Convergence to Simplex ETF: the means associated with different classes are in a Simplex
Equiangular Tight Frame (ETF) configuration where their pairwise distances are all equal and
maximized.

(iii) Convergence to Self-duality: the class means are ideally aligned with the last-layer linear
classifiers.

(iv) Simple Decision Rule: the last-layer classifier is equivalent to a Nearest Class-Center decision
rule.

This A/C phenomena is first discovered by Papyan et al. [5, 6] under canonical classification prob-
lems trained with the CE loss. Following with the CE loss, Han et al. [7] recently reported that DNNs
trained with MSE loss for classification problems also exhibit similar A'C phenomena. These results
imply that deep networks are essentially learning maximally separable features between classes, and
a max-margin classifier in the last layer upon these learned features. The intriguing empirical obser-
vation motivated a surge of theoretical investigation [7-22], mostly under a simplified unconstrained
feature model [10] or layer-peeled model [12] that treats the last-layer features of each samples be-
fore the final classifier as free optimization variables. Under the simplified unconstrained feature
model, it has been proved that the N'C solution is the only global optimal solution for the CE and
MSE losses which are also proved to have benign global landscape, explaining why the global N'C
solution can be obtained.

Contributions. While previous work provide thorough analysis for N'C under CE and MSE losses,
the theoretical analysis beyond CE and MSE losses is still limited, and their work only focus on one
specific loss without a general format. In this paper, we consider a broad family of loss functions
that includes CE and some other popular loss functions such as LS and FL as special cases. Under
the unconstrained feature model, we theoretically demonstrate in Section 3 that the A/C solution
is the only global optimal solution to the family of loss functions. Moreover, we provide a global
landscape analysis, showing that the LS loss function is a strict saddle function and FL loss function
is a local strict saddle function [23-25]. A (local) strict saddle function is a function for which every
critical point is either a global solution or a strict saddle point with negative curvature (locally).
Hence, our result suggests that any optimizer can escape strict saddle points and converge to the
global solution responding to A/C for LS and FL. As far as we know, this paper is the first work that
conducts global optimal solution and benign optimization landscape analysis beyond the scope of
CE and MSE losses.

Our theoretical results explained above have important implications for understanding the role of
loss function in training DNNSs for classification tasks. Because all losses lead to NC solutions,
their corresponding features are equivalent up to a rotation of the feature space. In other words, our
analysis provides a theoretical justification for the following claim:

All losses (i.e., CE, LS, FL, MSE) lead to largely identical features on training data by large DNNs
and sufficiently many iterations.

We also provide an experimental verification of this claim through experiments in Section 4.1.

While NC reveals that all losses are equivalent at training time, it does not have a direct implication
for the features associated with test data as well as the generalization performance [26]. In partic-
ular, a recent work [27] shows empirically that A’'C does not occur for the features associated with
test data. Nonetheless, we show through empirical evidence that for large DNNs, NC on training



data well predicts the test performance. In particular, our empirical study in Section 4.2 shows the
following:

All losses (CE, LS, FL, MSE) lead to largely identical performance on test data by large DNNs.

Our conclusion that all losses are created equal appears to go against existing evidence on the ad-
vantages of some losses over the others. Here we emphasize that our conclusion has an important
premise, namely the neural network has sufficient approximation power and the training is per-
formed for sufficiently many iterations. Hence, our conclusion implies that the better performance
with particular choices of loss functions comes as a result that the training does not produce a glob-
ally optimal (i.e., N'C) solution. In such cases different losses lead to different solutions on the
training data, and correspondingly different performance on test data. Such an understanding may
provide important practical guidance on what loss to choose in different cases (e.g., different model
sizes and different training time budgets), as well as for the design of new and better losses in the
future. We note that our conclusion is based on natural accuracy, rather than model transferability
or robustness, which is worth additional efforts to exploit and is left as future work.

2 The Problem Setup

A typical deep neural network ¥(-) : R + R¥ consists of a multi-layer nonlinear compositional
feature mapping ®(-) : R” +— R and a linear classifier (W, b), which can be generally expressed
as

\I/@(:E) = W(I)Q(Il?) +b, (1)

where we use @ to represent the network parameters in the feature mapping and W € R¥*¢ and
b € R¥ to represent the linear classifier’s weight and bias, respectively. Therefore, all the network
parameters are the set of @ = {6, W, b}. For the input x, the output of the feature mapping Pg(x)
is usually termed as the representation or feature learned from the network.

With an appropriate loss function, the parameters © of the whole network are optimized to learn the
underlying relation from the input sample « to their corresponding target y so that the output of the
network ¥ g () approximates the corresponding target, i.e. Yo (2) & y in term of the expectation
over a distribution D of input-output data pairs (x, y). While it is hard to get access to the ground-
truth distribution D in most cases, one can approximate the distribution D through sampling enough
data pairs i.i.d. from D. In this paper, we study the multi-class balanced classification tasks with K
class and n samples per class, where we use the one-hot vector y, € R¥ with unity only in k-th
entry (1 < k < K) to denote the label of the i-th sample x, ; € RP in the k-th class. We then
learn the parameters ® via minimizing the following empirical risk over the total N = nK training
samples

K n
1 A
min 33" L (Ve(er)y) + 5 OI7, @

k=1 1i=1

where A > 0 is the regularization parameter (ak.a., the weight decay parameter’) and
L (Yo (xki),yx) is a predefined loss function that appropriately measures the difference between
the output ¥ g (xy ;) and the target y;,. Some common loss functions used for training deep neural
networks will be specified in the next section.

2.1 Commonly Used Training Losses

In this subsection, we first present four common loss functions for classification task. To simplify
the notation, let z = W ®g(x) + b denote the network’s output (“logit”) vector for the input .
Assume z belongs to the k-th class. Also let ™" = (1 — o)y, + % 1x denote the smoothed
targets of k-th class, where 0 < o < 1 and 1 € R¥ is a vector with all entries equal to one.
We will use z¢, yi,¢ and yzmo"‘h to denote the ¢-th entry of z, y; and yzm""‘h, respectively, where
yymeoth = 1 — E-Lq and yZ‘f’@"mh = g fork # (.

Without weight decay, the features and classifiers will tend to blow up for CE and many other losses.



Cross entropy (CE) is perhaps the most common loss for multi-class classification in deep learn-
ing. It measures the distance between the target distribution y; and the network output distribution
obtained by applying the softmax function on z, resulting in the following expression

Lop(z,yr) = —log (ZGXP(Zk)> . 3)

K
i1 exp(z;)

Focal loss (FL) [2] is first proposed to deal with the extreme foreground-background class imbalance
in dense object detection, which adaptively focuses less on the well-classified samples. Recent
work [28,29] reports that focal loss also improves calibration and automatically forms curriculum
learning in multi-class classification setting. Letting v > 0 denote the tunable focusing parameter,
the focal loss can be expressed as:

r , = - 1—eXp(Zk)>vlo (exp(zk)> 4
FL(2, Yr) ( Zszl exp(z;) ¢ Zf:1 exp(z;) @

Label smoothing (LS) [1] replaces the hard targets in CE with smoothed targets y Smo"th obtained
from mixing the original targets y; with a uniform distribution over all entries 1 K Experiments
in [30, 31] find that classification models trained with label smoothing have better calibration and
generalization. Denoting by 0 < « < 1 the tunable smoothing parameter, the label smoothing loss
function can be formulated as:

Lralz Ly _ ysmooth log ( exp(Z[) ) ) (5)
=) Z 1 explz;)

When a = 0, the above label smoothing loss reduces to the CE loss.

Mean square error (MSE) is often used for regression but not classification task. The recent work
[3] shows that classification networks trained with MSE loss achieve on par performance compared
to those trained with the CE loss. Throughout our paper, we use the rescaled MSE version [3]:

Luse(z,yr) = w2z — B)° + 2247 (6)
£k
where > 0 and 5 > 0 are hyperparameters.

2.2 Problem Formulation Based on Unconstrained Feature Models

Because of the interaction between a large number of nonlinear layers in the feature mapping Py,
it is tremendously challenging to analyze the optimization of deep neural networks. To simplify the
difficulty of deep neural network analysis, a series of recent works of theoretically studying N'C
phenomenon use a so-called unconstrained feature model (or layer-peeled model in [12]) which
treats the last-layer features as free optimization variables h = ®(x) € R?. The reason behind
the unconstrained feature model is that modern highly overparameterized deep networks are able
to approximate any continuous functions [32-35] and the characterization of N'C are only related
with the last layer features. We adopt the same approach and study the effects of different training
losses on the last-layer representations of the network under the unconstrained feature model. For
convenient, let us denote

W = [wl w? .. wK]T e RExd,

H = [H, H, --- H, eR™, and

Y =[Y1 Y - Yg] e REXN
where w" is the k-th row vector of W, all the features in the k-th class are denoted as H; :=
[R1; -+ hgi| € RI*K and hy, ; is the feature of the i-th sample in the k-th class, and Y}, :=
[ye -+ yr] € REX"forallk =1,2,--- K andi = 1,2, -- ,n. Based on the unconstrained
feature model, we consider a slight variant of (2), given by

min f(W,H,b) Z (Whiei +b.ye) + 22 (W + 22 E |+ 22 o]
W ,H.b — @ F F 29
)



where Ay, Agr, A\p > 0 are the penalty parameters for W, H, and b, respectively.

By viewing the last-layer feature H as a free optimization variable, the simplified objective function
(7) consider the weight decay about W and H, which is slightly different from practice that the
weight decay is imposed on all the network parameters ® as shown in (2). Nonetheless, the un-
derlying rationale is that the weight decay on ® implicitly penalizes the energy of the features (i.e.,
|H| ) [16].

As NC phenomena for the learned features and classifiers is first discovered for neural networks
trained with the CE loss [5], the CE loss has been mostly studied through the above simplified
unconstrained feature model [8,9,11,12,16] to understand the A'C phenomena. The work [7,10, 14,
22] also studied the MSE loss, but the analysis there shows the solutions of the learned features and
classifiers depend crucially on the bias term, while for CE loss with or without the bias term have no
effect on the learned features and classifiers under the unconstrained feature model. The other losses
such as focal loss and label smoothing have been less studied, though they are widely employed in
practice to obtain better performance. This will be the subject of next section.

3 Understanding Loss Functions Through Unconstrained Features Model

In this section, we study the effect of different loss functions through the unconstrained features
model. We will first present a contrastive property for general loss function L¢y, in Definition 1.
We will then study the global optimality conditions in terms of the learned features and classifiers
as well as geometric properties for (7) with such a general loss function Lgy,.

3.1 A Contrastive Property for the Loss Functions

In this paper, we aim to provide a unified analysis for different loss functions. Towards that goal, we
first present some common properties behind the CE, FL and FL to motivate the discussion. Taking
CE as an example, we can lower bound it by

Lce(z,yr) > log <1 + (K —1)exp (W)) = ¢cE Z(Zj — 1) (8)
J#k

where ¢cg(t) = log (1 + (K —1)exp (ﬁ) ), and the inequality achieves equality when z; =

zj for all j, j* # k. This requirement is reasonable because the commonly used losses treat all the
outputs except for the k-th output z identically. Since ¢cg is an increasing function, minimizing
the CE loss Lcg(z, yx) is equivalent to maximizing (K — 1)zx — >, #j, Which contrasts the
k-th output z;, simultaneously to all the other outputs z; for all j # k. Thus, we call (8) as a
contrastive property. Maximizing (K — 1)z — >, 2; would lead to a positive (and relatively
large) 2, and negative (and relatively small) z;. In particular, within the unit sphere |2, = 1,

. . .. o K—1 o 1
(K — 1)zk — 345 #; achieves its maximizer when 2, = |/~ and z; = =T for

all j # k, which satisfies the requirement z; = z; for all j,7° # k. Thus, z, = \/% and

zj = — m is also the global minimizer for ¢cg within the unit sphere [z][, = 1. As the

global minimizer is unique for each class, it encourages intra-class compactness. On the other hand,
the minimizers to different classes are maximally distant, promoting inter-class separability.

Motivated by the above discussion, we now introduce the following properties for a general loss
function Lar (2, yi)-

Definition 1 (Contrastive property). We say a loss function La1,(z,yr) satisfies the contrastive
property if there exists a function ¢ such that Lg1,(z, yx) can be lower bounded by

Lon(zur) =6 | D (2 — ) ©)
J#k
where the equality holds only when z; = 2 for all j, j' # k. Moreover, ¢(t) satisfies
t* = arg mtinqﬁ (t) + c|t| is unique for any ¢ > 0,and t* < 0. (10)



In the appendix, we show that CE, FL and LS all satisfy this property. The motivation for (9)
follows from the above discussion. In particular, (9) achieves equality when all the outputs except
for the k-th one are identical, which holds for common loss functions since those outputs are treated
identically. In (10), c is a constant related with the weight decay penalty parameters. By (9), we can
find the global minimizer for L, (z, yx) by minimizing the right hand side since the equality in
(9) is achievable. Thus, the requirement of a unique minimizer (10) ensures a unique minimizer for
the regularized L1, (z, yi). This condition can be easily satisfied. For example, ¢cg(t) defined in
(8) for the CE loss is an increasing and strictly convex function and thus has unique minimizer for
¢cg(t) + c|t|. Along the same line, we require a negative minimizer t* to ensure that the minimizer
for the regularized L¢1,(2, yx) has k-th entry being its largest entry, which is required to ensure
correct prediction since the largest entry predicts the class membership. Therefore, such a condition
is generally satisfied by the common losses. For example, ¢cg(t) is an increasing function and
thus must have a non-positive minimizer for ¢cg(t) + c|t|. Finally, we note that the MSE loss is
not included since it has different form than others and thus the analysis will be different. But as
mentioned above, the MSE loss has been studied in [7, 10, 14,22].

3.2 Landscape Analysis for the Unconstrained Features Model

We now study the global optimality conditions in terms of the learned features and classifiers as well
as geometric properties for the training problem (7) with the general loss function Lgy, satisfying
the above contrastive property.

Theorem 1 (Global Optimality Condition). Assume that the number of classes K is smaller than
the feature dimension d, i.e., K < d, and the dataset is balanced for each class, n =n; = --- =
ng. Then any global minimizer (W™, H*,b*) of f in (7) with a loss function Lgy, satisfying the
contrastive property in Definition 1 has followzng properties:

jwly = [, = [w?], = - = [wX],, ad b —b1,
PR A VkelK),icn], and h, := ii(:h*..:() Vi€ [n]
k,i )\Hn ) 3 5 i K . i R ,

where either b* = 0 or \p = 0, and the matrix W* T is in the form of K -simplex ETF structure (see
appendix for the formal definition) in the sense that

K 1
WTW* = ||lw *||2K (IK K1K1}<>.

Its proof is given in Appendix C. At a high level, we lower bound the general loss function based on
the contrastive property (9) and then check the equality conditions hold for the lower bounds. While
similar strategy has been used for CE loss [12, 13, 16], our proof is different from previous work in
terms of dealing with the nuclear norm and checking the structures of the minimizer per sample and
class, enabling the global optimality analysis for general loss functions. Theorem 1 implies that for
all the loss functions (e.g., CE, LS, and FL) satisfying the contrastive property, they share similar
global solutions with A/C property in the learned features and classifiers.

While Theorem 1 shows that A'C features and classifiers are the only global minimizers to (7), it
is not obvious whether local search algorithms (such as gradient descent) can efficiently find these
benign global solutions. The reason is that the training problem (7) is nonconvex due to the bilinear
form between W and H. To address this challenge, we use the recent advances on the geometric
analysis for nonconvex optimization [23-25,36] to guarantee that the global solutions of (7) can be
efficiently achieved by iterative algorithms. Towards that goal, we first present the following general
results concerning the global landscape for (7).

Theorem 2 (Benign Landscape). Assume that the feature dimension d is larger than the number of
classes K, i.e., d > K. Also assume L(z,y) is a convex function in terms of z. Then the objective
Sfunction f in (7) is a strict saddle function with no spurious local minimum. That is, any of its
critical point is either a global minimizer, or it is a strict saddle point whose Hessian has a strictly
negative eigenvalue.



This result is similar to [16, Theorem 3.2] which studies the particular CE loss. Though the result
in [16] is about the CE loss, we checked its proof and it only uses convexity and smoothness and
thus the result can be applied more generally for any smooth convex loss function L(-,y). So we
omit the proof of Theorem 2. We note that the geometric analysis is also closed related to nonconvex
low-rank matrix problems [37—43] with the Burer-Moneirto factorization approach [44] if one views
W and H as two factors of a matrix Z = W H. We refer to [16] for more discussions about the
connections and differences.

We now exploit Theorem 2 for the label smoothing and focal loss. In the supplementary material,
we show that LS is a convex function. Thus, the following result establishes global optimization
landscape for the training problem (7) with such a loss.

Corollary 1 (Benign Landscape with LS). Assume that the feature dimension d is larger than the
number of classes K, i.e., d > K. Then the objective function f in (7) with LS loss Lyg is a strict
saddle function with no spurious local minimum.

Unlike LS, focal loss Lp1,(z,yx) is convex only in a local region rather than the entire space.
For example, we can show that Lpr(2z,y;) is convex within the region @ = {z € RE
exp(zk)/ Zjil exp(z;) > 0.21}. The set € contains a relative large region including the global
exp(zk)
Ef:l exp(zj')
scape for the training problem (7) with FL.

minimizer which has the value approaching 1. Thus, we obtain a benign local land-

Corollary 2 (Benign Landscape with FL). Assume that the feature dimension d is larger than the
number of classes K, i.e., d > K. Then the objective function f in (7) with FL loss Ly, has a
benign local landscape: f is a strict saddle function with no spurious local minimum within the
region {W,H,b): Why,; +beQ, 1 <k<K,1<i<n}

While Corollary 2 only provides a local benign landscape for the FL, we observe from experiments
that gradient descent with random initialization always converges to a global solution with N'C
properties for (7). So we expect the training problem in (7) with FL loss has benign landscape in a
much larger region. One direction is to show Lgr, (-, yy) is locally convex in a much larger region
Q, but we leave the thorough investigation to future work. Noting that the CE and MSE losses are
also convex, these results imply that (stochastic) gradient descent with random initialization [23,36]
almost surely finds the global solutions of the training problem in (7) with different training losses.
This together with Theorem 1 implies that for different losses, gradient descent will always learn
similar features and classifiers—those that exhibit the A’'C phenomenon.

4 Experiments

We conduct experiments with practical network architectures on standard image classification
datasets to study the effect of different loss functions. First, Section 4.1 provides results to show
that the A/C phenomena are not restricted to networks trained via the CE and MSE losses. Rather,
there is a family of loss functions, and for the purpose of illustration we pick FL and LS as two
prominent special cases, that exhibit the same N'C phenomena. Such results verify our theoretical
results in Section 3. To demonstrate the implication of A'C for test performance, we present exper-
imental results in Section 4.2 with a varying number of training iterations and a varying width of
networks, showing that all losses with A'C global optimality have similar performance on the test
dataset when the network is sufficiently large and trained long enough.

Before presenting the experiment results, we first introduce our experimental setup, including
datasets, network architectures, training procedure, and metrics for measuring NC .

Setup of Loss Function, Network Architecture, Dataset, and Training We focus on the CE, FL,
LS and MSE loss functions for which we use v = 3 for FL, « = 0.1 for LS, and xk = 1 and 8 = 15
for MSE, except otherwise specificed. We train a WideResNet50 network [45] on CIFAR10 and
CIFAR100 datasets [46] and a WideResNet18 network on minilmageNet [47] with various widths
and number of iterations for image classification using these four different losses.® To examine the

3Similar results are expected on other architectures and dataset as AV'C is observed across a range of archi-
tectures and dataset in [5].



effect of model size, we experiment with four versions of WideResNet, denoted as WideResNet-X,
where X € {0.25,0.5, 1,2} is a multiplier on the width of its corresponding standard WideResNet.
Due to the page limit, we put all results on CIFAR100 and minilmageNet in the Appendix. We use
standard preprocessing such that images are normalized (channel-wise) by their mean and standard
deviation, as well as standard data augmentation. For optimization, we use SGD with momentum
0.9 and an initial learning rate 0.1 decayed by a factor of 0.1 at % and % of the total number of
iterations. Following [28], the norm of gradient is clipped at 2 which can improve performance for
all losses. For CIFAR10 and minilmageNet, the weight decay is set to 5 x 10* for all configurations
with all losses. For CIFAR100, the weight decay is fine-tuned to achieve best accuracy for every
configuration and loss.

Three N'C Metrics N'C1-NC3 during Network Training We use the same three metrics NCy-
NC3 for the last-layer features and classifier as in [5,16,22] to measure the first three A'C properties
in Section L Before we describe these three metrics, let us denote the global mean hg and k-th
class mean hy, of last-layer features {hy ;} as
1 K n 1 n
heg = — hii, hy = =Y hi; 1<k<K).
¢ nkK Z " ¥ n Z i { )
k=11i=1 i=1
Within-class variability collapse is measured by A'C; which depicts the relative magnitude of
the within-class covariance Xy = # Z,i(:l Z?zl (hk,i - Ek) (h;“ - Ek)T € R¥>d writ. the
between-class covariance 5 = - Z,[le (hi, — he) (hi — hg)T € R4 of the last-layer fea-
tures as following:

1
NC, = o trace (EWZ}E) ,

where EE is the pseudo inverse of 3.

Convergence to simplex ETF is measured by A'Cy which reflects the /5 distance between the
normalized simplex ETF and the normalized WW T as following:

wwT 1 1
NCsy = - I — =151}
? HHWWTHF K—1 ( RS K)

)

F
where W € RE* is the weight matrix of learned classifier.

Convergence to self-duality is measured by N /C3 which calculates the ¢> distance between the
normalized simplex ETF and the normalized W H as following:

WH 1 1
NC; = — - Iy ——1 1T)
C | vE], Kl(K KR
F
where H = [El —hg -+ hg-— hg] € R4¥K s the centered class-mean matrix.

4.1 Prevalence of NC Across Varying Training Losses

We show that all loss functions lead to A'C solutions during the terminal phase of training. The
results on CIFAR10 using WideResNet50-2 and different loss functions is provided in Figure 1. We
consistently observe that all three N'C metrics across different losses converge to a small value as
training progresses. This supports our theoretical results in Section 3 that the last-layer features
learned under different losses are always maximally linearly separable and perfectly aligned with
the linear classifier, and the features and the weight of linear classifier learned by different losses
are almost equivalent up to a rotation and a scale of the feature space. The evolution of three N'C
metrics across different losses on CIFAR100 is in Appendix A.2.

4.2 All Losses Lead to Largely Identical Performance

We show that all loss functions have largely identical performance once the training procedure con-
verges to the N'C global optimality. In Figure 2, we plot the evolution of the training accuracy,
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Figure 1: The evolution of A'C metrics across different loss functions. We train the WideResNet50-2 on
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N3 (convergence to simplex ETF) and N'C3 (convergence to self-duality).
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Figure 2: The evolution of performance across different loss functions. We train the WideResNet50-2 on
CIFAR10 dataset for 800 epochs using different loss functions. From left to right: training accuracy, validation
accuracy and test accuracy.

validation accuracy and test accuracy as training progresses, where all losses are optimized on the
same WideResNet50-2 architecture and CIFAR10 for 800 epochs. To reduce the randomness, we
average the results from 3 different random seeds per width-iteration configuration, and the test ac-
curacy is reported based on the model with best accuracy on validation set, where we organize the
validation set by holding out 10 percent data from the training set. The results consistently show that
for all cases the training accuracy converges to one hundred percent (reaching to terminal phase),
and the validation accuracy and test accuracy are largely the same, as long as the network is trained
longer enough and converges to the A'C global solution.

While previous work advocates the advantage of some losses over other others, our experiments
show that when conditions between dataset and model allow for SGD to find an AC solution, all
losses we tested produced indistinguishable results. In Figure 3, we plot the average test accuracy
of different losses under different pairs of width and iterations. We consistently observe three phe-
nomenon. First, with a fixed number of iterations, increasing the width of network improves the
test accuracy for all losses. This is because the wider networks (more over-parameterized) are more
powerful to fit the underlying mapping from input data to the targets. Second, with a fixed width
of network, increasing the number of iterations improves the test accuracy for all losses. This is
because the longer optimization leads the last-layer features and the linear classifer closer to the
NC global solutions. Finally, while there are some unignorable difference between different losses
in some width-iteration configurations, the results consistently show that all losses lead to largely
identical performance when the network is sufficiently large and trained long enough to achieve a
global N'C solution (e.g. width=2 and epochs=800).

5 Conclusion

In this work we provided a theoretical study to extend the scope of N'C, a curious phenomenon
associated with last-layer features and classifier weight of a classification network, from networks
trained with particular losses (i.e., CE and MSE) to those trained via a broad family of loss functions
including the popular LS and FL as special cases. Our theory not only establishes A'C as the only
global solutions, but also shows a benign optimization landscape that explains why A/'C solutions
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Figure 3: Illustration of test accuracy across different iterations-width settings. The figure depicts the test
accuracy of various iteration-width configurations for different loss functions on CIFAR10.

are easy to obtain in practice. Such results readily suggest that all relevant losses (i.e., CE, MSE, LS,
and FL) produce entirely equivalent features on the training data. Although N'C is an optimization
phenomenon pertaining to training data only, we found through experiments that all relevant losses
(i.e., CE, MSE, LS, and FL) lead to very similar test performance as well. Such a result may come as
a surprise to the common belief that some losses are intrinsically better than the others, and clarify
some mystery on how different losses affect the performance.

The family of loss functions considered in this paper by no means is inclusive of all possible loss
functions that lead to A/C. There are many other popular loss functions, such as center loss [48],
large-margin softmax (L-Softmax) loss [49] and many of its variants [50-52], which are all de-
signed with the intuition of encouraging intra-class compactness and inter-class separability between
learned features. In addition, many generalized versions of the cross-entropy loss such as those for
robust learning under label noise [53-55] and long-tail distribution [56,57] may have similar prop-
erty as the vanilla cross-entropy loss. We conjecture that many of them provably produce N'C solu-
tions under unconstrained feature models, while leave a formal justification to future work. Beyond
losses for classification task, N’'C may also arise with popular losses used in metric learning [58,59]
evidenced by recent study [60]. This means that the observations from this paper, namely all losses
lead to largely the same test performance, may apply for all such losses as well.

Loss functions that do not lead to N'C. While the study in this paper covers many of the most
commonly used loss functions for classification tasks, we note that there are alternative choices in the
literature which do not induce N'C features. Many of such losses such as [60-63] are particularly
designed to discourage variability collapse and learn diverse features, which are shown to benefit
model transferability [64] and robustness.
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Appendices

Organizations and Basic. The appendix is organized as follows. We first introduce the basic
definitions and inequalities used throughout the appendices. In Appendix A, we provide more details
about the datasets, computational resources, and more experiment results on CIFAR10, CIFAR100
and minilmageNet datasets. In Appendix B, we prove that CE, FL and LS satisfy the contrastive
property in Definition 1. In Appendix C, we provide a detailed proof for Theorem 1, showing that the
Simplex ETFs are the only global minimizers, as long as the loss function satisfies the Definition 1.
Finally, in Appendix D, we present the whole proof for Theorem 2 that the FL function is a locally
strict saddle function with no spurious local minimizers existing locally and LS function is a globally
strict saddle function with no spurious local minimizers existing globally.

Definition 2 (K -Simplex ETF). A standard Simplex ETF is a collection of points in R specified

by the columns of
K 1
M = \|—— (Ix — =1g1j

where Iy € REXE js the identity matrix, and 1 € RX is the all ones vector. In the other words,
we also have

K 1
MM = MM' = 1 (IK—KlKlI{).

As in [5,12], in this paper we consider general Simplex ETF as a collection of points in R? specified
by the columns of 4/ %P (IK - %IKIIT(), where P € R X (d > K) is an orthonormal matrix,
ie, PTP =Ig.
Lemma 1 (Young’s Inequality). Let p, q be positive real numbers satisfying % + % = 1. Then for
any a,b € R, we have
p b q
lab] < Jal” + u7
p q

where the equality holds ifand only if |a|’ = |b|?. The case p = q = 2 is just the AM-GM inequality
fora?, b%: |ab| < 1 (a® + b?), where the equality holds if and only if |a| = [b].

The following Lemma extends the standard variational form of the nuclear norm.
Lemma 2. For any fixed W € RE*? H;, 6 R*K Z. = WH,; ¢ REXE gnd o > 0, we have
2. < 5= (Wl +alm). ()

3|l denotes the nuclear norm of Z;:
*

HZH* = Zak(zi):trace(ﬁ), with Z; = USV ",

where {O'k};{:l denotes the singular values of Z;, and Z; = UV " is the singular value decom-
position (SVD) of Z;.

Proof of Lemma 2. Let Z; =UZXV be the SVD of Z,. For any WH,; = Z;, we have
|Zi]|, = trace(X) = trace (U' Z;V) = trace (UTWHxV)

L P BV < 5 (W1 + 0 ).

where the first inequality utilize the Young’s inequality in Lemma 1 that |trace(AB)| < 5 ||AH I

2
W[+

¢||B H w for any ¢ > 0 and A, B of appropriate dimensions, and the last inequality follows because
ﬁUH = 1 and |V|| = 1. Therefore, we have

|z IWIE + o | HL)

< 25

We complete the proof. O
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Lemma 3 (Eigenvalues of Diagonal-Plus-Rank-One Matrices). Let 7 < 0, z € R", and D be an
n X n diagonal matrix with diagonals d1, . . . ,d,. Let A1, ..., A\, be the eigenvalues of the diagonal-
plus-rank-one matrix D + 12z 7.

Case 1: Ifdy > ds > -+ >dyand z; # 0 foralli =1,--- ,n, then the eigenvalues {\;}
are equal to the n roots of the rational function [65, 66]

<.

n 22
A =1 T(D-))"'z=1
wA\) =147z ( )z +T;dj_x

and the diagonals {d;} strictly separate the eigenvalues as following:

di>XM >do>Xg > >dy, > Ny (12)

Case 2:If z; = 0 for some i, then d; is an eigenvalue of D + Tzz" with corresponding
eigenvector e; since

(D + TzzT)ei =d;e; +Tzz; = d;e;.
The remaining n — 1 eigenvalues of D + 1zz " are equal to the eigenvalues of the smaller
matrix D' +12'2' T, where D' € R"=D*(n=1) gng 2" € R"=1 are obtained by removing
the i-th rows and columns from D and the i-th element from z, respectively. One can repeat
this process if z' still has zero element.

Case 3: If there are m mutually equal diagonal elements, say d;11 = -+ = dipm = d,
then for any orthogonal m x m matrix P, D + 72z has the same eigenvalues as

I;
TDT' +7(Tz2)(Tz)" = D+ 122", where T = [ P ] ,2=Tz.
Infifm
We can then choose P as a Householder transformation such that
T i+m
Plzit1 Ziq2 - Zigm] = {0 0 - Z;Hl 2]2

Thus, according to Case 2, d is an eigenvalue of D + 722" repeated m — 1 times and the
remaining eigenvalues can be computed by checking the smaller matrix.

Based on Lemma 3, we can prove the following Lemma.

Lemmad. Let K > 3and Z = — (Ix — +117) diag (p1,p2, -+ , pr) with |p1]| > |pa| > -+ >
lpx| and |p1| > 0. Also let o; > 0 be the i-th largest singular value of Z. Suppose there exists k
withl < k < K — 1 such that

0] ="+ =0} =0Omax > 0andog41 =---=0g =0. (13)
Then |p1|,- -, |px | must satisfy either
lprl = lp2| = -+~ = lpkl, with  omax = |p1],

or

. K-1
po=-=pg =0, Wwith opax = \/7|Pl|~

Proof of Lemma 4. Because

. 1 .
Z'Z = diag (p1,p2," , pK) <IK - KllT) diag (p1,p2, -, PK)

. 1
= diag (p3, 03, k) — gppT

wherep=[p1 p2 -+ p K]T, Z " Z satisfies the form of Diagonal-Plus-Rank-One in Lemma 3
with D = diag (p3,03,- -+ ,p%). 2 = pand 7 = —%. Let Ay > Xy > --- Ag > 0 denote the n
eigenvalues of Z7Z. Duetol"Z =0T, we can have Ax = 0.
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* If |p1] = [p2| = -+ = |px|: we have

p%:)\lz"':)\K_lzpi(>)\K:0.
ThU.S, Omax — \/)\1 = |p1|.
o If |p1]| > |p2| = -+ = |pk| = 0: according to Case 2 in Lemma 3, we have

M= (1=1/K)pi>ps=Xo-- = pie = A = 0.

Thus, o = /(1= 1/K) 5% = /(K — /K |pu].

o If |p1| > |p2| = -+ = |pk| # 0: according to Case 3 in Lemma 3, we have

AQ"':AK—lng
2
and the remaining two eigenvalues are the same to those of {1 p2:| +
K

(,

==

) [\/%PK} [pl vK — 1pK]. According to (12) in Lemma 3, we can obtain

P> A > pr > Ag = 0.
Combing them together, we can have
p%>)\1>p§:)\2~--:p%<>)\;(=0

thus, 0 = Ag < A2 < A1 = Apax, which violates the assumption (13).

o If|p1| = =|pi| > |pix1l = =|px| =0and 1 < i < K: according to the Case 2
and Case 3 in Lemma 3, we can have
Al ==X :P%

and 0 < \; = p? — %pf < p? = Amax, Which violates the assumption (13).

o If [p1] = -+ = |pil > |pix1l =+ = |pr| # 0and 1 < i < K: according to Case 3 in
Lemma 3, we have
AL ==X 2,0%
)\iJrl :.-.:)\K71 :p%(
2
and the remaining two eigenvalues are the same to those of D = {p ! pg] +
K

1 ﬂpl - - . . .
(—%) [mpK] [Vipr VK —ipr]. According to (12) in Lemma 3, we can obtain

P =p; > Xi > pk > Ak =0.
Combing them together, we can have
pPl=M=-=p>XN>pl=dip1==pk>Ag =0
thus, 0 = Ag < A\; < A1 = Amax, Which violates the assumption (13).

o If |p1]| > |pi| > |pk]| for some 1 < i < K: Suppose [p1| = -+ = |pm], |ps| = -+ =
|pitn—1]|and |pg—t41| =+ = |pk]|, wherem < i,i+n—1 < K —t+1andm,n,t > 1.
According to the (12), Case 2 and Case 3 in Lemma 3, we can find

an>)\m>052/\i+n—1>0§(2/\f(=0

thus, 0 = Ax < Ajtn—1 < Am < Amax, Which violates the assumption (13).

We complete the proof. O
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Figure 4: Illustration of A'C'; and test accuracy across different iterations-width configurations. The
figure depicts the N'C’y and test accuracy of various iteration-width configurations for different loss functions
on CIFAR10.

A Experiments

In this section, we first describe more details about the datasets and the computational resource
used in the paper. Particularly, all CIFAR10, CIFAR100 and minilmageNet are publicly available
for academic purpose under the MIT license, and we run all experiments on a single RTX3090
GPU with 24GB memory. Moreover, additional experimental results on CIFAR10, CIFAR100 and
minilmageNet are presented in Section A.1, Section A.2, and Section A.3, respectively.

A.1 Additional experimental results on CIFAR10

In Section 4, we present the test accuracy for different losses function across various different
iteration-width configurations. Moreover, we further show the A/C'; for different loss functions
across different iteration-width configurations , and we reuse the results of test accuracy in Figure 3
for better investigation. The experiment results in Figure 4 consistently show that the value of N'C
of training WideResNet50-0.25 for 100 epochs is around three orders of magnitude larger than it
of training WideResNet50-2 for 800 epochs, which indicates that the previous configuration setting
is much less collapsed than the latter one. In terms of test accuracy, the maximal difference across
different losses for width = 0.25 and epochs = 100 configuration is 1.037%, which is larger than
0.36% for width = 2 and epochs = 800 configuration. These results support our claim that all
losses lead to identical performance, as long as the network has sufficient approximation power and
the number of optimization is enough for the convergence to the A/C global optimality.

A.2 Additional experimental results on CIFAR100

In this parts, we show the additional results on CIFAR100 dataset.

Prevalence of A'C Across Varying Training Losses We show that all loss functions lead to N'C
solutions during the terminal phase of training on CIFAR100 dataset. The results on CIFAR100
using WideResNet50-2 and different loss functions is provided in Figure 5. We consistently observe
that all three N'C metrics of FL and MSE converge to a small value as training progresses, and
metrics of CE and FL still continue to decrease at the last iteration, because CIFAR100 is more
difficult than CIFAR10 and requires networks to be optimized longer. The decreasing speed of FL.
is slowest, which is consistent with our global landscape analysis that FL has benign landscape in
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Figure 5: The evolution of A'C metrics across different loss functions. We train the WideResNet50-2 on
CIFAR100 dataset for 800 epochs using different loss function. From left to right: NC'; (variability collapse),
NC> (convergence to simplex ETF) and NC3 (convergence to self-duality).
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Figure 6: The evolution of performance across different loss functions. We train the WideResNet50-2 on
CIFAR100 dataset for 800 epochs using different loss function. From left to right: training accuracy, validation
accuracy and test accuracy.

the local region near optimality. These results imply that all losses exhibit A'C at the end, regardless
of the choice of loss functions.

All Losses Lead to Largely Identical Performance Same as the results on CIFAR10 dataset, the
conclusion on CIFAR100 also holds that all loss functions have largely identical performance once
the training procedure converges to the A/C global optimality. In Figure 6, we plot the evolution
of the training accuracy, validation accuracy and test accuracy with training progressing, where all
losses are optimized on the same WideResNet50-2 architecture and CIFAR100 for 800 epochs. To
reduce the randomness, we average the results from 3 different random seeds per iteration-width
configuration, and the test accuracy is reported based on the model with best accuracy on valida-
tion set, where we organize the validation set by holding out 10 percent data from the training set.
The results consistently shows that the training accuracy trained by different losses all converge to
one hundred percent (reaching to terminal phase), and the validation accuracy and test accuracy
across different losses are largely same, as long as the optimization procedure converges to the AN'C
global solution. In Figure 7, we plot the average N'C; and test accuracy of different losses under
different pairs of width and iterations for CIFAR100 dataset. The three phenomenon mentioned in
Section 4.2 also exist on CIFAR100 in most cases. Moreover, the values of A'C; for width=0.25
and epochs=100 configuration are also around three orders magnitude larger than them for width=2
and epochs=800 configuration and the less collapsed configuration leads to larger difference gap
across different loss functions. While there are some small difference between different losses in
width = 2 and epochs = 800 configurations, We guess that it is because CIFAR100 is much harder
than CIFAR10 datasets, and network is not sufficiently large and trained not long enough for all
losses to achieve a global solution.

A.3 Additional experimental results on minilmageNet
In this parts, we show the additional results on minilmageNet dataset. We trained WideResNet18-

0.25 and WideResNet18-2 on minilmageNet for 100 epochs and 800 epochs, respectively. To reduce
the randomness, we average the results from 3 different random trials. The N'C and test accu-
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Figure 7: Illustration of A'C; and test accuracy across different iterations-width configurations. The
figure depicts the N'C'y and test accuracy of various iteration-width configurations for different loss functions

on CIFAR100.
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Figure 8: The evolution of A'C; and test accuracy across different loss functions. We train the
WideResNet18-0.25 for 100 epochs and WideResNet18-2 for 800 epochs on minilmageNet using different
loss functions.

racy of different loss functions are provided in Figure 8 for comparison. We consistently observe
that the A/C'; metric of all losses converges to a small value as training progress, when the neural
network has sufficient approximation power and the training is performed for sufficiently many it-
erations, such as WideResNet18-2 for 800 epochs. Additionally, the conclusion on minilmageNet
also holds that all loss functions have largely identical performance once the training procedure con-
verges to the AN'C global optimality. Specifically, while the last-iteration test accuracy of training
WideResNet18-0.25 for 100 epochs is 0.7195, 0.6915, 0.7020 and 0.7040, respectively, the last-
iteration test accuracy of training WideResNet18-2 for 800 epochs is 0.7930, 0.7962, 0.7932 and
0.8020 for CE, MSE, FL and LS, respectively. The experiment results on minilmageNet also sup-
port our claim that (7) the test performance may be different across different loss functions when
the network is not large enough and is optimized with limited number of iterations, but (i) the test
accuracy across different loss are largely identical, once the networks has sufficient capacity and the
training is optimized to converge to the N'C global solution.

B Proof of CE, FL and LS included in GL

In this section, we prove that CE, FL and LS belong to GL in Section B.1, Section B.2 and Sec-
tion B.3, respectively. Before starting the proof for each loss, let us restate the definition of the GL
in Definition 1:
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Definition 3 (Contrastive property). We say a loss function Lc1,(z,yx) satisfies the contrastive
property if there exists a function ¢ such that Lg1,(z,yx) can be lower bounded by

Lov(zuk) 2 6 [ Y (25— ) (14)
J#k

where the equality holds only when z; = zg Sorall j,j' # k. Moreover, (t) satisfies

t* = arg mtin¢ (t) + c|t| is unique for any ¢ > 0,and t* < 0. (15)

B.1 CEisin GL

In this section, we will show that the CE defined in (3) belongs to the GL defined in Definition 3.
First, let us rewrite the CE definition in GL form as following:

K
= log |1+ Zexp(zj - 2k)
Ji#k

Lce(z,yx) = —log (ZEXP(ZIC)>

i1 exp(z;)

Y

log <1 (K —1)exp (ﬂ)) = e | D (2 — )

i#k
where the inequality is due to the log is an increasing and function and exp is a strictly convex

function, and it achieves equality only when z; = z;: for all j, j' # k. Therefore, there exists such
a function @cg to lower bound original CE loss Lcog(z, yx) as following:

de(t) = tog (14 (5 = Deww () ).

which satisfies the condition of (14). Next, we will show ¢cg(t) satisfies the condition (15). The
first-order gradient of ¢cg(¢) is following:
exp (—Kt_l)

1+ (K —1)exp (ﬁ)

Vocg(t) =

which is an increasing function and greater than 0 for ¢ € R. Let denote ¢cg(t) = ¢cg(t) + clt|,
then

* Whent > 0: Vicg(t) = Vce(t) + ¢ > 0, thus the ¢cg(¢) is an increasing function w.r.t.
t, and the minimizer is achieved when ¢ = 0.

* When t < 0: Vi¢ce(t) = Vcr(t) — ¢, and Vécg(t) is an increasing function, which
achieves minimizer when ¢ = 0 such that Vocg(t) = +.

- ife > %, Vipee(t) < 0, and ¢(t) is a decreasing function for ¢ < 0, and the minimizer
is achieved when ¢ = 0;

- if 0 < ¢ < £, there exist such ¢* such that Vi)cg(t) = 0. When t < t*, dcg(t)
is a decreasing function; and when t* < t < 0, ¢cg(t) is an increasing function.
Therefore, the minimizer is achieved when ¢t = ¢t* < 0

Combing them together, we can prove that ¢cg satisfies the condition of (15).
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B.2 FLisin GL

In this section, we will show that the FL defined in (4) belongs to the GL defined in Definition 3. let
us rewrite the FL definition in GL form as following:

Co(iun) = — 1_exp<2k>>710 <Xm>>
ez ( ZfﬂeXP(Zj) © Zleexp(zj)

= (1 — W)Wlog iexp(zj — 2k)
> (25) =1

j=1€Xp

v K
1
1- log | 1+ g exp(z; — 2zx)
K J
( 1+3 i exp(z — Zk)) £k

K
7 (1 + Zexp(zj — zk))

7k
where the function () = (1 — )7 log (¢) is an increasing function for ¢ > 1 because

Vn(t) = 7()(1— 1) og(t) + (1 - 1) >0

Thus, we can find the lower bound function by

K
LrL(z,yk) > 1 (1 + (K —1)exp ( Z[j(__zlk))
J#k
K
=7 (5 (Z(Zj Zk)))
J#k

K
= ¢rL (Z(Z] - Zk))

J#k

where ¢p(t) =1 (£ (t)) and {(t) = 14 (K — 1) exp =5 € [1, K], which satisfies the condition
of (14). Next, we will show ¢ () satisfies the condition (15). The first-order gradient of ¢gy () is
following:

Ver(t) = Vi (dr () +cltl) = Ve (€ (1) Vet (1) + ﬁ

() (eta) s g (i) ) (oo (w51)) e
2 N1 N _
(” () (-em) €0 (1 e) ) (5=7)
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Similarly, by chain rule, the second-order derivation is:

Vi(t) = Vig(t) = Vews (E(1) Ve(t)

1 1 5
=(v+1) Ok (1- @)
C - 2y (ote) - BED Y (L -
cor" @@ (roste) ~17g6 7 —) (Gegte )

log(£(1)) v+
-1 7
9(E(L))

—log(&(t)) + v

When t > 0: Vg (t) = ﬁf(t) + ¢ > 0, thus the ¥cg(t) is an increasing function w.r.t.
t, and the minimizer is achieved when x = 0.

« When t < 0: Vip(t) = 225£(t) — ¢ > 0. Moreover, we can find 9(£(t)) is a decreas-

ing function w.r.t. £(t) and £(¢) is an increasing function w.r.t. ¢, therefore, ¥(£(t)) is a
decreasing function w.r.t. .

- If9(£(0)) = ¥(K) > 0, then V21)(z) > 0 for z < 0, which means that V,£(¢) is an
increasing function. Because ¢(£(—00)) = ¢(1) = 0, here we need to consider two
cases(Please refer to Figure 9):

% if ¢(€(0) = ¢(K) < ¢(K —1), then Vitppr(t) > 0, thatis, ¥y, (t) is a decreasing
function. Therefore, the global minimizer is achieved when x = 0 (the blue curve
in Figure 9).

x if ¢(£(0) = ¢(K) > ¢(K — 1), so ¢pr(x) will first decrease and then increase.
Therefore the global minimizer is unique (the red curve in Figure 9).

- If 9(£(0)) = J(K) < 0, then for t € [—o0,t], Vitbpr(2) is an increasing function
wrt. t; fort € [t',0), Vi®pp(t) is a decreasing function w.r.t. ¢. Here we need to
consider three cases(please refer to Figure 10):

# if ¢(€(t')) < (K — 1), then Vyppp(t) < 0, that is, ¥pr(t) is a decreasing
function. Therefore, the global minimizer is achieved when x = 0 (the green
curve in Figure 10).

% if ¢(£(0)) = ¢(K) > ¢(K — 1), so ¢pr(z) will first decrease and then increase.
Therefore the global minimizer is unique (the red curve in Figure 10).

x if ¢(£(t)) > ¢(K — 1) and ¢(£(0)) = ¢(K) < ¢(K — 1), then Vi¢pr () = 0 has
two solutions ¢; and ¢5. For t € [—o0,t1], ¥ (t) is an decreasing function w.r.t.
t; for t € [t1,t2], Prp(t) is an increasing function w.r.t. ¢; and for ¢ € [to,0),
Y1 (t) is a decreasing function w.r.t. ¢. The unique minimizer is achieved when
either ¢t = 0 or t = t1, as long as ¥, (0) # Ypr(t1). As for the minor case
Yrr(0) = ¥rr(t1), it requires carefully chosen penalized parameters, which can
be omitted (the blue curve in Figure 10).

In conclusion, for focal loss, ¥y, (t) has a unique minimum in terms of ¢ < 0, which satisfies the
condition of (15).
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Figure 10: Illustration of the case of J(£(0)) < 0, where c = Kv/nAw Ax.

B.3 LSisin GL

In this section, we will show that the LS defined in (5) belongs to the GL defined in Definition 3.
First, let us rewrite the LS definition in GL form as following:

ey = (1D (o) ) as el
Lis(z,yx) = <1 = >1g<ZKZ1eXp(Zj)> KZIg(Z]K:lexp(zj)>

j Z;élc
_(,_E=1a, (S ewn() ¥ exp(z)
N <1 K >log< exp(zg) > #Zklo ( exp(z¢) )
(o E=nay [ i explz; = 2)
= (1 = >log jz:;exp(zj #Zkl ( " pa— )
K 0 K
= log Zexp(zj —zi) | — Ve Z(Zz — 2k)
=1 £k

K
> log (1 + (K —1)exp (ﬂ)) - % #k(zy — 2k)

where the inequality is due to the log is an increasing and function and exp is a strictly convex
function, and it achieves equality only when z; = z;: for all j, j' # k. Therefore, there exists such
a function ¢ to lower bound original LS loss L1,5(z, yx) as following:

Pus(t) = log (1 + (K —1)exp (t)) _ 2y

K-1 K"
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which satisfies the condition of (14). Next, we will show ¢1s(t) satisfies the condition (15). The
first-order gradient of ¢y s(t) is following:

Vrs(t) = -

Let denote ¢ s(t) = ¢rs(t) + ¢|t], then

* Whent > 0: Vis(t) = Vrs(t) + ¢ > 0due to Vgrs(t) > 0 for ¢ > 0, thus the
s (t) is an increasing function w.r.t. ¢, and the minimizer is achieved when x = 0.

* When ¢t < 0: V¢Ls( ) = Vérs(t) — ¢, and V¢ s(t) is an increasing function, which
achieves minimizer when ¢ = 0 such that ¢rs(t) = 122.

- if ¢ > 122, Viis(t) < 0, and 9(t) is a decreasing function for ¢ < 0, and the
minimizer is achieved when t = 0;

- if 0 < ¢ < 122 there exist such t* such that Vis(t) = 0. When ¢ < t*, ¢rs(t)
is a decreasmg functlon and when t* < ¢ < 0, ¢rs(t) is an increasing function.
Therefore, the minimizer is achieved when ¢t = t* < 0

Combing them together, we can prove that ¢ g satisfies the condition of (14).

C Proof of Theorem 1 for GL

In this part of appendices, we prove Theorem 1 in Section 3 that we restate as follows.

Theorem 3 (Global Optimality Condition of GL). Assume that the number of classes K is smaller
than feature dimension d, i.e., K < d, and the dataset is balanced for each class, n =n, = --- =
ng. Then any global minimizer (W*, H* b*) of

A
: — T w AH b
ynin, f(W,H,b) := g(WH +b1 ) + — W ||F+ ||H||F+ ® |1b]]3,

(16)
with

gWH +b17): Zg (WH; +b1"): NZZE Why,; + b, yp); (17)
i=1 k=11i=1

LWhy; +b,yr) = L(2k,i, Yi) satisfying the the Contrastive property in Definition 3;  (18)

obeys the following
lw*lly = [lw]], = fw™|, = - = [lw and b =b"1,
s AW Vke|K],i€[n], and h, := iih* =0, Vie[n
kg — )\Hn ) ) ) i T K,,_ gy ) )

where either b* = 0 or \p = 0, and the matrix W*" is in the form of K-simplex ETF structure
defined in Definition 2 in the sense that

K 1
T 2 T
W*'w* = ||w*||2m (IK—K1K1K>.

C.1 Main Proof

At a high level, we lower bound the general loss function based on the contrastive property (14),
then check the equality conditions hold for the lower bounds and these equality conditions ensure
that the global solutions (W™*, H*, b*) are in the form as shown in Theorem 3.
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Proof of Theorem 3. First by Lemma 5, Lemma 6 and Lemma 7, we know that any critical point
(W, H,b) of fin (16) satisfies

Ww = )\—HHHT;

Aw
AgH; = —WTVZi:WHi gWH,; + blT);
H+b1"
b= —vg(W)\ o)y
b

For the rest of the proof, let G; = Vz,—wr, g(WH;+bl1")and 7 = —%;bm

the notations, and thus ||H||f, = i‘—v“"/ HW||§, AgH;, = -W'TG;andb = 71.

to simplify

We will first provide a lower bound for the general loss term g(W H + b1 ") according to the
Definition 3, and then show that the lower bound is attained if and only if the parameters are in the
form described in Theorem 3. By Lemma 8, we have

Aw AH Ab
J(W,H.b) = gWH +b17) + S| WIlL + =5 [ H 5+ 5 (bl

= ¢ (p") + Kv/nAw Am|p”|
where ¢ is lower bound function satisfying the Definition 3, p* = arg min, ¢ (p) +
Kv/nAwAmlpl < 0. Furthermore, by Lemma 8, we know that Z; = W*H} =

—p* (I K — %1 KIIT(), which satisfies the K -simplex ETF structure defined in Definition 2. In
Lemma 9, we show the any minimizer (W*, H*, b*) of f(W, H,b) has following properties via
check the equality conditions hold for the lower bounds in Lemma 8:

@ fwrlly = [wtfl, = [l = - = [l

(b) b* = b*1, where either b* = 0 or Ap, = 0;

*K‘

9

© h, = %Zjil hi, = 0, Vi€ [n], and Aw_qpkx — hi . Vkel[K] i€[n];

AHN
) WWT = |Jw|? 521 (Ix — L1x1%);
The proof is complete. O

C.2 Supporting Lemmas

We first characterize the following balance property between W and H for any critical point
(W, H,b) of our loss function:

Lemma 5. Let p = ||WH§, Any critical point (W, H, b) of (16) obeys

A A
WTW = ﬁHHT and p = |W|% = ﬁnﬂui. (19)

Proof of Lemma 5. By definition, any critical point (W', H b) of (16) satisfies the following:
Vwf(W,H,b) = Vg_wu gWH+b1")H™ + \wW = 0, (20)
Vaf(W,H,b) = W Vz_wu gWH +b1") + \gH = 0. (21)

Left multiply the first equation by W T on both sides and then right multiply second equation by
H T on both sides, it gives

WiVewua gWH+b1T)H™ = AW W,
WiVeewn gWH+b1")H' = - AgH'"H.
Therefore, combining the equations above, we obtain

MWW = \yHH'.
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Moreover, we have

AH AH A
= |[W]3% = trace (WTw) = Etrace (HH') = Etrace (H'H) = ﬁHHH?,,
as desired. O

Next, we characterize the following relationship per group between W and H; for i € [n] for any
critical (W, H, b) of (16) satisfies the following:

Lemma 6. Let G; = Vz,—wr, g(WH; +bl"). Any critical point (W, H,b) of (16) obeys

W'G, = —\gH,. (22)
Proof of Lemma 5. By definition, any critical point (W', H | b) of (16) satisfies the following:
Vi, f(W,H,b) = W'Vz_wu, gWH; +b1") + A\gH; = 0; (23)
W'G, = —\gH,. (24)
as desired. O

We then characterize the following isotropic property of b for any critical point (W, H, b) of our
loss function:

Lemma 7. Let 7 = —%}ibm. Any critical point (W, H,b) of (16) obeys
b =l (25)

Proof of Lemma 7. By definition, any critical point (W', H , b) of (16) satisfies the following:
Vof(W,H,b) = VgWH +bl")1+ b =

-
p— VOWHIO ), (26)
Ab
as desired. O
(wh)"
Lemma 8. Let W = : e REX\ H = [H, Hy --- H, € RN H; =
(w) "
[hii - hii €R>*E Z=WH c R>N N =nK, and b= 71. Given g(W H + blIT()
defined in (17), for any critical point (W, H b) of (16), it satisfies
FW,H,b) > ¢ (p" — DV w Ao 7
_ 1
Zr=—p* <IK — KlKlfo) I (28)

where ¢ is lower bound function satisfying the Definition 3, p* = arg min, ¢ (p) NAW AH

and Z* = W*H™*.

Proof of Lemma 8. With Z; = W H;, and || Z; ||, = o}, we have the following lower bound for
f(W,H,b) as

f(W,H,b)

I
2
N
&
_|_

=
[
_

w 2 . AH 2 Ab 2
2w 2 4 22

[
(]

>\W 2 )\H 2 )\b 2
<9(WHZ- F1T) o+ S W 2B ) + 2 o)

Y%
N
p=N
N
+
o
[

4‘
+
>
N
>
T

~
=
N
NI
+

|

=

%
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where the first inequality is from Lemma 2, and the second inequality becomes equality only when
Z; # 0 and

Vk,on(Z;) =0 or0

_ 2
I k0n(Z:) £ 0 29

where 0 (Z;) is the k-th singular value of Z;. While we only consider Z; # 0, we will show the
Z; = 0 can be included in an uniform form as following proof. We can further bound f(W, H,b)
by

_ A AwA - A
fW,H,b) > > <g<zi+bf>+“”"/” ||zi||§> + 5 b1l

max
0

L~y i _ AW/ | 4 A
ZNZ ¢ Z Zkij — Zkik +0; — by +;\/;‘;n7||Zz||i,+;||b||§,

k=1 i=1 J#k

=0
1 K& N _ KvnAwAmg o Ab o2

=7 222 | 9| 2 G = i) |+ = IEally | + 5 Bl (30)
i=1 k=1 j#k i

where the first inequality is from the first condition (14) of loss function £ and the equality achieves
only when Zj, ; ; = Zi; j for j # k,j' # k, and b; — by, = 0 is due to Lemma 7. If we denote by

Pri =Yoo (Frij — Zrin) /(K — 1), then

_ 2 _ _
||zkr,i||2 = Z ZI%Z] + Zl%zk

7k
2
Zhij B
> (K —1) > K1 ijl + Zik
J#k
2
Z P Zk ik _ _
= (K —1) . ]“;(7_11 + Zeik |+ Zrik
J#k
= (K = 1) (pryi + Zh,ik)” + Znik
K-1,
> i Phi
where the first inequality achieves equality only when Zy ; ; = 2k for j # k,j’ # k, and the
last line achieves equality only when 2, ; , = —£=Lpj, ;, thus 2, ; ; = % py; for j # k. Denoting
pi = [pin pi2 - pixk]and diag(p;) is a diagonal matrix using p; as diagonal entries, and

supposing |p1| > |p2| > -+ > |pk|, we can express Z; as:

_ 1 .
Z; = —(Ix — 2 1x1j)diag(py), 31

and we can extend the expression of (30) as following

n K
1 K —1)vnAwA A
FOWHD) 2 L3S oo+ ETILEAWR G ]Sy, o)
1=1 k=1
Y(pr,i)

which is decouplable if we treat the ¢-th samples per class as a group, thus we only consider the i-th
samples per class. In the next part, denote p* = argmin, ¢ (p) + (K — 1)vV/nAw Am|p|.

When K > 3, according to the Z = —(Ix — %11} )diag(p;), the condition of (29) and
Lemma 4, we know Z has only two possible forms corresponding to two different objective value

of Zszl ¥ (py) such that
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o |p1] = |p2| = -+ = |pk|: we can have oy = |p1] and

K K
> Wlor) = <¢> (on) + = fmgfwm pi)
k=1 k=1

K

:Z<¢(pk K—1) \/mw>
k=1

> K (¢ () + (K — 1)MIp*I)

where the last line holds equality only when |p1| = |p2| = -+ = |pk]| = p*.
* |p2| =+ =|pk| = 0: we can have opmax = /(K — 1)/K|p1| and

K
> 0o =0 () + (€ - DV | o]+ (K 16 0)
= ¢ (p1) + (K = 1)vVniwAu|pil

+ (K — 1)vVnA\w g (\/ % - 1) lp1l + (K —1)¢ (0)
> K (60 + (K = Dv/mwa o)

where the last line holds equality only when |p1| = --- = |px| = |p*| = 0.

2 2
When K = 2, according to the Lemma 3, we can calculate 0. = 1/ pbﬂ, then

2 K — 1)V w A
D blp) =0 (p1) + 6 (p2) + ( im’i 2 (1 + 03)
k=1

( )+¢(P2 —1 VN)\W)\H\/ P1 +P2
(p1) -1) \/”/\W/\HIP1| + ¢ (p2) — 1)vVnAw e |p2|
- 1>¢nAWAH ( 2%+ 2) — pal - |p2|)

> 9 (¢(p*) + (K — wmw)

where the last line holds equality only when |p1| = |p2| = |p*|-

=9
¢

Combining them together, for K > 2, we can further extend the expression of (32) as following

n K
f(W,H,b) > %ZZ (aﬁ (Pri) + K1) MWAH,O%,Z-) + % bl

max
i=1 k=1

0,
1< A

= ZK (¢ (0") + (K = )Vmw Aalo']) + 5 1l

> 6 (p* — DVnAw || (33)

where the last equation is ach1eved When b = 0or Ay, = 0. According to the condition (15) of
loss function £ that the minimizer p* of ¢(p) + ¢|p| is unique for any ¢ > 0, and by denoting
It =[Ix - Ig]eREX"E wehave

vV

= 1

Zi=—p" (IK — K1K1£) (34)

- 1

Zr=—p* (IK - KlKl}) I (35)
as desired. O
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Next, we show that the lower bound in (27) is attained if and only if (W', H , b) satisfies the follow-
ing conditions.

Lemma 9. Under the same assumptions of Lemma 8, the lower bound in (27) is attained for any
minimizer (W*, H*, b*) of (16) if and only if the following hold

lw*lly = flw™|l, = [Jw?[, = - = [w™|,, and b"=0b"1,
Aw 1 &
ri = THn“’*k’ Vke[K],ie[n], and h, := Ej}:l:hﬁi =0, Vieln],

where either b* = 0 or \p = 0, and the matrix W* T is in the form of K -simplex ETF structure (see
appendix for the formal definition) in the sense that

K 1

The proof of Lemma 9 utilizes the Lemma Lemma 5, Lemma 6 and Lemma 7, and the conditions
(33) and the structure of Z* (35) during the proof of Lemma 8.

Proof of Lemma 9. From the (35), we know that Z; = Z; = .- = Z* and then G} =
Vzi—wem: 9(W*H? +b1T) is equivalent for i € [n]. Letdenote G* = G5 = G = --- = G,
the (22) in Lemma 6 can be expressed as:
W*'G* = —\pH}
Therefore, H* = H} = H} = --- = H}, which means the last-layer features from different
classes are collapsed to their corresponding class-mean hj ; = hy, = -+ = hj ., fork € [K].
Furthermore, H*H*T = nH*H *T combining this with (19) in Lemma 5, we know that
AW TW* = \gH*H*T =n\gH*H*"
By denoting W* = Uw Xw V4, and H* = UHEI;-VF;, where Uy, Zw, V4, are the left

singular vector matrix, singular value matrix, and right singular vector matrix of W*, respectively;
and Ug., Xg., Vg* are the left singular vector matrix, singular value matrix, and right singular

vector matrix of H, respectively, we can get

Vi =Ug
Swo= Mlgﬁ
Aw
Therefore, Z* = W*H* = 7;\A—"VHUV[,-E%,VVI:{'—. According to the Z; = —p*(Ix — %IKI})

in (34) and p* < 0, which is symmetric, thus, Uy = Vg, W* = ,/%ﬂ”, that is, w** =

Bupy o Vke[K], i€ [n]and

Zr = [T =AW ey
’ nAH NAH
* 1 T * 1 T 1 T
=—p"(Ix — 71klg) = —p"(Ix — 2 1xlg) Ik — 3-1k1k)
*2
«_ (PPNAH 1 1 T
=(— Ip — —1x1
W = ( pu- )i (I 7o 1K i)
2
rT* P )‘W 1 1 T
= I —1x1
( jyn )i Ik 71K i)
Therefore,
*1 _ *2 _ _ *K
[w ], = [w?|, = = [Jw™],

_ 1 &
h, = ?Zh;i =0, Vieln
j=1

where h; = Zle(h;L) and according to the condition of (33) and Lemma 7, b* = 0 or A\ =
0. ’ O
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D Proof of Corollary 1 and Corollary 2

Following Theorem 2, we only need to prove convexity for label smoothing and local convexity for
focal loss.

For any output (logit) z € R¥, define

exp(z;)
—%
> j=1 exp(z;)

Let y*™°h € RX be the label vector with 0 < yfm°" < 1 and Y, yi™°" = 1. The three loss
functions can be written as
Z ysmooth f

p =o0(z) € RE, where p; =

Some useful properties:

! _n2 P —
9:,8(pr) = {f_é/ k;g;kpipk% z 4 Z’ = V:&(px) = & (pr)pr(er — p)

D20k = {pk G, —> V.p = V.0(z) = diag(p) — pp"
" —PkPi, /L# ka * i

Therefore, the gradient and Hessian of f(z) are given by

ny““"“hv ¢(pi) nym"‘“hﬁ (pi)pi(Li — p) (36)
- n(pz)
Vif(z) = Z g™ [ ' (pi)pi (1 — p)(1i — p) " —n(pi) (diag(p) —pp")
~——_— ———
0 >0

Thus, V2 f(2) is PSD when 1(p;) < 0 and n’(p;) > 0 for all i, i.e.,
§'(pi) <0, &'(pi)pi + € (pi) 2 0. 37

Now we consider the following cases:
¢ CE loss with y*™°" = ¢, and £(t) = —log(t). In this case, &'(p;) = 71% and n(p;) =
& (pi)p; = —1, and thus
V2f(2) = diag(p) —pp' = 0,
where the inequality can be obtained by the Gershgorin circle theorem.
* Label smoothing with y*™°" = (1 — a)e, + %1 and £(t) = —log(t). In this case,
¢ (pi) = —- and n(p;) = &' (pi)pi = —1, and thus

V2 £( Zygmo"th diag(p) —pp") = diag(p) —pp' =0

i=1
since S, yimeoth — 1,
* Focal loss with 3™ = e, and £(¢) = —(1 — t)” log(t). In this case,

_n.\B
€(ps) = B(1 — po)°log(p) — L2
n(o7)

bi
' (pi)

& (pi)pi = Bpi(1 — i) og(pi) — (1 = p)? <0, V5> 0,p; € [0,1],
B(
= B(
B(

— i)’ (1 = Bps) log(p:) + 2(1 — p;))
—p)? 72 (log(pi) +2(1 — py)) -

I V

31

—pi)? M log(pi) — B(B — 1)pi(1 — pi)? 2 log(ps) + B — pi)? ' + B(1 — py)?

-1



Thus, 7’ (p;) > 0 whenever 0.21 < p; < 1. The Hessian becomes

V2f(2) =n'(pe)pk (ex — p)(er — p) " —n(px) (diag(p) —pp ")
—_————

=0 =0

which is PSD when 0.21 < p;. < 1.
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