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Abstract
Recently, over-parameterized deep networks, with
increasingly more network parameters than train-
ing samples, have dominated the performances
of modern machine learning. However, when
the training data is corrupted, it has been well-
known that over-parameterized networks tend to
overfit and do not generalize. In this work, we
propose a principled approach for robust training
of over-parameterized deep networks in classifi-
cation tasks where a proportion of training labels
are corrupted. The main idea is yet very sim-
ple: label noise is sparse and incoherent with the
network learned from clean data, so we model
the noise and learn to separate it from the data.
Specifically, we model the label noise via another
sparse over-parameterization term, and exploit
implicit algorithmic regularizations to recover and
separate the underlying corruptions. Remarkably,
when trained using such a simple method in prac-
tice, we demonstrate state-of-the-art test accuracy
against label noise on a variety of real datasets.
Furthermore, our experimental results are corrobo-
rated by theory on simplified linear models, show-
ing that exact separation between sparse noise
and low-rank data can be achieved under incoher-
ent conditions. The work opens many interesting
directions for improving over-parameterized mod-
els by using sparse over-parameterization and im-
plicit regularization. Code is available at https:
//github.com/shengliu66/SOP.

1. Introduction
One of the most important factors for the success of deep
models is their large model size and high expressive power,
which enable them to learn complicated input-output rela-
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tions. As such, over-parametrized deep networks or large
models, with more parameters than the size of training data,
have dominated the performance in computer vision, natu-
ral language processing, and so on. The adoption of large
models is justified by the recent discovery that deep models
exhibit a “double descent” (Belkin et al., 2019) and “uni-
modal variance” (Yang et al., 2020) generalization behavior,
where their performance continues to improve beyond the
interpolation point, extending the classical learning theory
of bias-variance trade-off. While there are infinitely many
global solutions that overfit to training data, the choice of op-
timization algorithm imposes certain implicit regularization
(Neyshabur et al., 2014) so that over-parameterized models
converge to those that are generalizable.

Nonetheless, the success of over-parameterization of deep
networks critically depends on the availability of clean train-
ing data, while overfitting inevitably occurs when training
data is corrupted. Consider the task of image classification
with a training dataset {(xi,yi)}Ni=1, with xi being an input
image and yi being the corresponding one-hot label. With
an over-parameterized deep network f(·; θ), model training
is achieved by solving an optimization problem with respect
to (w.r.t.) the network parameter θ as follows:

min
θ

L(θ) =
1

N

N∑
i=1

`
(
f(xi; θ), yi

)
, (1)

where `(·, ·) is a loss function that measures the distance
between network prediction f(xi; θ) and the label yi. If a
proportion of the images in the training set is mislabelled
(Song et al., 2020), it is well-known that the network will be
optimized to zero training error hence produce f(xi;θ) ≈
yi for all i ∈ {1, · · · , N}, even for yi’s that are incorrect
(Zhang et al., 2021a). Overfitting to wrong labels inevitably
leads to poor generalization performance (see Fig. 1).

In this paper, we introduce a principled method to address
the challenges of overfitting over-parameterized deep net-
works in the presence of training data corruptions. We focus
on the task of classification trained with noisy label, a ubiq-
uitous problem in practice due to the extreme complexity
of data annotation even for experienced domain experts
(Frénay & Verleysen, 2013). Our idea leverages the prop-
erty that the label noise is sparse, namely only a fraction
of the labels are corrupted and the rest are intact. Princi-
pled methods for dealing with sparse corruption have a rich
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Figure 1. Sparse over-parameterization prevents overfitting to
label noise. Training and test accuracy of a PreActResNet18
network trained with a standard cross entropy (CE) loss (dashed
lines) and our Sparse Over-parameterization (SOP) (solid lines) for
image classification on the CIFAR-10 dataset with 0%, 20%, and
40% of the labels flipped at random. SOP prevents overfitting to
the wrong training labels, obtaining near 100%, 80%, 60% training
accuracy respectively, therefore achieves better generalization on
the test set without an accuracy drop at the end of training.

history, which can be retraced back to compressed sensing
(Candes & Tao, 2005), robust subspace recovery (Candès
et al., 2011; Wright et al., 2008), and even earlier (Claerbout
& Muir, 1973). Such methods are based on using a robust
loss function, such as the `1 norm which is less sensitive
to large outlying entries. While it is tempting to use sparse
modeling for the label noise problem by setting the loss
`() in (1) as the `1 loss, such an approach cannot solve the
overfitting issue since all global solutions are still given
by those that satisfy f(xi;θ) ≈ yi for all i ∈ {1, · · · , N}.
Hence, handling sparse corruptions with over-parameterized
models requires the development of techniques beyond the
classical `1 loss for sparse modeling.

Overview of our method and contribution. To handle
sparse corruption with over-parameterized models, our idea
is simply to use an extra variable si to model the unknown
label noise s?i, which is the difference between the observed
label yi and the corresponding clean label. Hence, the goal
is to minimize the discrepancy between f(xi;θ)+si and yi.
Inspired by a line of recent work (Vaskevicius et al., 2019;
Zhao et al., 2019; You et al., 2020), we enforce sparsity of
si by the over-parameterization si = ui � ui − vi � vi
and optimize the following training loss

min
θ,{ui,vi}Ni=1

L
(
θ, {ui,vi}Nk=1

)
), (2)

where
L (θ, {ui,vi})) = 1

N

∑N
i=1 ` (f(xi;θ) + ui � ui − vi � vi,yi)),

with � denoting an entry-wise Hadamard product. We term
our method Sparse Over-Parameterization (SOP).

At the first glance, our SOP approach is seemingly problem-

atic, because adding more learnable parameters {ui,vi}Ni=1

to an over-parameterized network f(·,θ) would aggravate
rather than alleviate the overfitting issue. Indeed, a global
solution to (2) is given by ui ≡ vi ≡ 0 and f(xi,θ) ≡ yi
for all i ∈ {1, · · · , N} where the network overfits to noisy
labels. Here, we leverage the choice of a particular training
algorithm to enforce an implicit bias towards producing the
desired solutions. Technically, we run gradient descent on
the objective in (2) starting from a small initialization for
{ui,vi}Ni=1:

θ ← θ − τ · ∂L(θ, {ui,vi})
∂θ

,

ui ← ui − ατ ·
∂L(θ, {ui,vi})

∂ui
, i = 1, . . . , N,

vi ← vi − ατ ·
∂L(θ, {ui,vi})

∂vi
, i = 1, . . . , N,

(3)

where α > 0 is the ratio of learning rates for different train-
ing variables. Such a simple algorithm enables our method
of SOP to train a deep image classification networks without
overfitting to wrong labels and obtain better generalization
performance (see Fig. 1). A more comprehensive empirical
study with a variety of datasets is presented in Section 2.

To rigorously justify our method, we theoretically investi-
gate our method based upon a simplified over-parameterized
linear model with sparse corruptions. As justified by a line
of recent work (Jacot et al., 2018; Chizat et al., 2019), over-
parameterized linear models capture similar phenomena
because they well approximate over-parameterized deep
networks in a linearized regime around the initial points.
Under sparse corruption and certain low-rank assumptions
on the data, we show that the gradient descent (3) with an
α below a certain threshold recovers the underlying model
parameters with sparse corruptions. Our result is obtained
by explicitly characterizing the implicit regularization for
the term ui � ui − vi � vi. In particular, we explicitly
show that it leads to an `1-norm regularization on the sparse
corruption, hence connecting our method to classical `1 loss
approaches for model robustness. For more details, we refer
readers to Section 3.

In summary, our contributions are two-folds:
• Method. We proposed a simple yet practical SOP method

that can effectively prevent overfitting for learning over-
parameterized deep networks from corrupted training data,
demonstrated on a variety of datasets.

• Theory. Under a simplified over-parameterized linear
model, we rigorously justify our approach for exactly
separating sparse corruption from the data.

Moreover, we believe the methodology we developed here
could be far beyond the label noise setting, with the potential
for dealing with more challenging scenarios of preventing
overfitting in learning modern over-parametrized models of
an ever-increasing size.
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2. Robust Classification with Label Noise
In this section, we show how our SOP method plays out on
image classification problems with the noisy label. In partic-
ular, we discuss extra implementation details of our method,
followed by experimental demonstrations on a variety of
datasets with synthetic and real label noise.

2.1. Implementation Details of SOP

We train an over-parameterized deep neural network f(·;θ)
from the noisy training data {(xi,yi)}Ni=1 using the method
briefly discussed in Section 1. Specifically, we train the net-
work f(·;θ) using the objective (2) with stochastic gradient
descent (SGD) (i.e. a batch version of (3)).

Notice that there is additional prior information on label
noise s?i associated with a sample {xi,yi}, namely, the pos-
itive and negative entries of s?i must correspond to nonzero
entry and zero entries of yi, respectively. Moreover, all
entries of s?i must lie in the range of [−1, 1]. To leverage
such information, we optimize a variant of (2) given by

min
θ,{ui,vi}Ni=1

1

N

N∑
i=1

`
(
f(xi; θ) + si, yi

)
, (4)

s.t. si
.
= ui � ui � yi − vi � vi � (1− yi), and (5)

ui ∈ [−1, 1]K , vi ∈ [−1, 1]K , (6)
where K is the number of classes. In above, constraints
on ui,vi are realized by performing a projection step after
each gradient descent update.

Choice of the loss function `(·, ·) in (4). The most com-
monly used loss function for classification tasks is the cross-
entropy loss `CE(·, ·) (Krizhevsky et al., 2012). Because the
`CE(·, ·) loss requires a probability distribution as an input,
we define a mapping

φ(w)
.
=

max{w, ε1}
‖max{w, ε1}‖1

, (7)

and set the loss `(·, ·) in (4) to be

LCE

(
θ,ui,vi;xi,yi

) .
= `CE

(
φ
(
f(xi; θ) + si

)
, yi

)
.

(8)

On the other hand, the cross-entropy loss cannot be used to
optimize the variables {vi} (see Section A.1 for an explana-
tion). Hence, we use the mean squared error loss `MSE and
set the loss in (4) to be

LMSE

(
θ,ui,vi;xi,yi

) .
= `MSE

(
f(xi; θ) + si, yi

)
,

(9)
when optimizing {vi} 1. We summarize our training method
in Algorithm 1.

1We also project f(xi; θ) to a one-hot vector when using MSE
loss which is empirically found to accelerate convergence of {vi}.

Algorithm 1 Image classification under label noise by the
method of Sparse Over-Parameterization (SOP).

1: Input: Training data {(xi,yi)}Ni=1, network backbone
f(·,θ), variables {ui,vi}Ni=1, number of epochs T ,
learning rate τ , learning rate ratio αu, αv , batch size β

2: Initialization: Draw entries of ui,vi from i.i.d. Gaus-
sian distribution with zero-mean and s.t.d. 1e− 8

3: for each t ∈ {1, · · · , T} do
4: # Train network f(·,θ) with SGD
5: for each b ∈ {1, · · · , N/β} do
6: Sample a batch B ⊆ {1, . . . , N} with |B| = β

7: Set θ ← θ − τ ·
∑
i∈B

∂LCE(θ,ui,vi;xi,yi)
∂θ

8: end for
9: # Update {ui,vi}

10: for each i ∈ {1, · · · , N} do
11: Set ui ← P[−1,1]

(
ui − αuτ ∂LCE(θ,ui,vi;xi,yi)

∂ui

)
12: Set vi ← P[−1,1]

(
vi − αvτ ∂LMSE(θ,ui,vi;xi,yi)

∂vi

)
13: end for
14: end for
15: Output: Network parameters θ and {ui,vi}Ni=1

2.2. Experiments

We experimentally demonstrate the effectiveness of our pro-
posed SOP method on datasets with both synthetic (i.e.,
CIFAR-10 and CIFAR-100) and realistic (i.e., CIFAR-N,
Clothing-1M, and WebVision) label noise. In addition to
the SOP described in Algorithm 1, we also implement an
improved version, termed SOP+, which incorporates two
commonly used regularization techniques in the literature
of label noise, namely the consistency regularization and
the class-balance regularization. We explain SOP+ in more
detail in Appendix A.3.

Dataset descriptions. We use datasets with synthetic
label noise generated from CIFAR-10 and CIFAR-100
datasets (Krizhevsky et al., 2009). Each dataset contains 50k
training images and 10k test images, all with clean labels,
where each image is of size 32 × 32. Following previous
works (Han et al., 2018; Liu et al., 2020; Xia et al., 2020),
we generate symmetric label noise by uniformly flipping
labels for a percentage of the training set for all classes, as
well as asymmetric label noise by flipping labels for partic-
ular pairs of classes. For datasets with realistic label noise,
we test on CIFAR-10N/CIFAR-100N (Wei et al., 2021b)
which contains a re-annotation of CIFAR-10/CIFAR-100
with human workers. Specifically, each image in CIFAR-
10N contains three submitted labels (i.e., Random 1, 2, 3)
which are further combined to have an Aggregate and a
Worst label. Each image in CIFAR-100N contains a single
submitted label for the fine classes. We also test on Clothing-
1M (Xiao et al., 2015) which is a large-scale dataset with
images clawed from online shopping websites and labels
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Table 1. Test accuracy with synthetic label noise on CIFAR-10 and CIFAR-100 with {20%, 40%, 60%, 80%} percent of labels for
training data randomly flipped uniformly to another class. All methods use ResNet34 as the architecture. Mean and standard deviation
over 5 independent runs are reported.

METHODS
CIFAR-10 CIFAR-100

20% 40% 60% 80% 20% 40% 60% 80%

CE 86.32±0.18 82.65±0.16 76.15±0.32 59.28±0.97 51.43±0.58 45.23±0.53 36.31±0.39 20.23±0.82

FORWARD 87.99±0.36 83.25±0.38 74.96±0.65 54.64±0.44 39.19±2.61 31.05±1.44 19.12±1.95 8.99±0.58

GCE 89.83±0.20 87.13±0.22 82.54±0.23 64.07±1.38 66.81±0.42 61.77±0.24 53.16±0.78 29.16±0.74

SL 89.83±0.32 87.13±0.26 82.81±0.61 68.12±0.81 70.38±0.13 62.27±0.22 54.82±0.57 25.91±0.44

ELR 91.16±0.08 89.15±0.17 86.12±0.49 73.86±0.61 74.21±0.22 68.28±0.31 59.28±0.67 29.78±0.56

SOP (OURS) 93.18±0.57 90.09±0.27 86.76±0.22 68.32±0.77 74.67±0.30 70.12±0.57 60.26±0.41 30.20±0.63

Table 2. Comparison with the state-of-the-art methods that use
two network ensembles and semi-supervised learning on CIFAR-
10 and CIFAR-100 under symmetric (with 20%, 50%, 80%) and
asymmetric (with 40%) label noise. All methods use ResNet34 as
the architecture.

METHODS
CIFAR-10 CIFAR-100

SYMMETRIC ASYM SYMMETRIC ASYM
20% 50% 80% 40% 20% 50% 80% 40%

CE 87.2 80.7 65.8 82.2 58.1 47.1 23.8 43.3
MIXUP 93.5 87.9 72.3 - 69.9 57.3 33.6 -
DIVIDEMIX 96.1 94.6 93.2 93.4 77.1 74.6 60.2 72.1
ELR+ 95.8 94.8 93.3 93.0 77.7 73.8 60.8 77.5

SOP+ (OURS) 96.3 95.5 94.0 93.8 78.8 75.9 63.3 78.0

Table 3. Test accuracy with realistic label noise on Clothing1M
and WebVision. We use a pre-trained ResNet50 for Clothing1M
and an InceptionResNetV2 for WebVision dataset. The results of
the comparing methods are taken from their respective papers.

METHODS CLOTHING1M WEBVISION ILSVRC12

CE 69.1 - -
FORWARD 69.8 61.1 57.3
CO-TEACHING 69.2 63.6 61.5
ELR 72.9 76.2 68.7
CORES2 73.2 - -

SOP (OURS) 73.5 76.6 69.1

generated based on surrounding texts. Clothing-1M con-
tains 1 million training images, 15k validation images, and
10k test images with clean labels. Finally, we also test on
the mini WebVision dataset (Li et al., 2017) which contains
the top 50 classes from the Google image subset of WebVi-
sion (approximately 66 thousand images). Models trained
on mini WebVision are evaluated on both WebVision and
ImageNet ILSVRC12 validation set. Details on the label
noise for these datasets is provided in Section A.2.

Network structures & hyperparameters. We implement
our method with PyTorch v1.7. For each dataset, the choices
of network architectures and hyperparameters for SOP are
as follows. Additional details, as well as hyper-parameters
for both SOP and SOP+, can be found in Appendix A.4.

• CIFAR-10/100 and CIFAR-10N/100N. We follow (Liu
et al., 2020) to use ResNet-34 and PreActResNet18 archi-
tectures trained with SGD using a 0.9 momentum. The
initial learning rate is 0.02 decayed with a factor of 10

at the 40th and 80th epochs for CIFAR-10/CIFAR-10N
and at the 80th and 120th epochs for CIFAR-100/CIFAR-
100N, respectively. Weight decay for network parameters
θ is set to 5× 10−4. No weight decay is used for parame-
ters {ui,vi}Ni=1.

• Clothing-1M. We follow the previous work (Liu et al.,
2020) to use a ResNet-50 (He et al., 2016) pre-trained
on ImageNet (Krizhevsky et al., 2012). The network is
trained with batch size 64 and an initial learning rate
0.001, which is reduced by a factor of 10 after 5th epoch
(10 training epochs in total). Optimization is performed
using SGD with a momentum 0.9. Weight decay is 0.001
for parameters θ and is zero for parameters {ui,vi}Ni=1.

• Mini Webvision. We use InceptionResNetV2 as the back-
bone architecture. All other optimization details are the
same as for CIFAR-10, except that we use weight decay
0.0005 and batch size 32.

Experimental results. We compare with methods based on
estimation of the transition matrix (Forward (Patrini et al.,
2017)), design of loss functions (GCE (Zhang & Sabuncu,
2018) and SL (Wang et al., 2019)), training two networks
(Co-teaching (Han et al., 2018) and DivideMix (Li et al.,
2020a)), and label noise correction (ELR (Liu et al., 2020)
and CORES2 (Cheng et al., 2021)).

Table 1 reports the performance of our method on syntheti-
cally generated symmetric label noise using CIFAR-10 and
CIFAR-100. To compare with state-of-the-art methods, we
also report the performance of SOP+ which contains ad-
ditional regularization on both symmetric and asymmetric
label noise and report the results in Table 2. It can be ob-
served that our method is robust to a fairly large amount of
label noise, and compares favorably to existing techniques.

We further demonstrate that our method can effectively han-
dle datasets with realistic label noise by reporting its per-
formance on Clothing1M & WebVision (see Table 3) and
CIFAR-N (see Table 4) datasets. We can observe a perfor-
mance gain over all comparing methods.

Finally, we compare the training time (on a single Nvidia
V100 GPU) of our method to the baseline methods in Ta-
ble 5. We observe that our algorithm SOP/SOP+ achieves
the fastest speed across all baselines.
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Table 4. Test accuracy with realistic label noise on CIFAR-N. Mean and standard deviation over 5 independent runs are reported.
The results of the baseline methods are taken from (Wei et al., 2021b) which all use ResNet34 as the architecture. For SOP+, we use
PreActResNet18.

METHODS
CIFAR-10N CIFAR-100N

CLEAN RANDOM 1 RANDOM 2 RANDOM 3 AGGREGATE WORST CLEAN NOISY

CE 92.92±0.11 85.02±0.65 86.46±1.79 85.16±0.61 87.77±0.38 77.69±1.55 76.70±0.74 55.50±0.66

FORWARD 93.02±0.12 86.88±0.50 86.14±0.24 87.04±0.35 88.24±0.22 79.79±0.46 76.18±0.37 57.01±1.03

CO-TEACHING 93.35±0.14 90.33±0.13 90.30±0.17 90.15±0.18 91.20±0.13 83.83±0.13 73.46±0.09 60.37±0.27

ELR+ 95.39±0.05 94.43±0.41 94.20±0.24 94.34±0.22 94.83±0.10 91.09±1.60 78.57±0.12 66.72±0.07

CORES∗ 94.16±0.11 94.45±0.14 94.88±0.31 94.74±0.03 95.25±0.09 91.66±0.09 73.87±0.16 55.72±0.42

SOP+(OURS) 96.38±0.31 95.28±0.13 95.31±0.10 95.39±0.11 95.61±0.13 93.24±0.21 78.91±0.43 67.81±0.23

Table 5. Comparison of total training time in hours on CIFAR-
10 with 50% symmetric label noise.

CE CO-TEACHING+ DIVIDEMIX ELR+ SOP SOP+

0.9H 4.4H 5.4H 2.3H 1.0H 2.1H

3. Theoretical Insights with Simplified Models
This section provides theoretical insights into our SOP
method by studying structured data recovery with sparse
corruption in the context of over-parameterized linear mod-
els. We will start with model simplification, followed by
our main theoretical results and experimental verification.

3.1. Problem Setup & Main Result

Given a highly overparameterized network f(·;θ), recent
work (Jacot et al., 2018; Kalimeris et al., 2019) suggests
that the parameter θ ∈ Rp may not change much from its
initialization θ0 before obtaining zero training error. Hence,
a nonlinear network f(·;θ) : Rn 7→ R can be well approxi-
mated by its first-order Taylor expansion:

f(x;θ) ≈ f(x;θ0) + 〈∇θf(x;θ0), θ − θ0〉, (10)

where we consider f(·;θ) as a scalar function for simplic-
ity. Since the bias term f(x;θ0) − 〈∇θf(x;θ0), θ0〉 is
constant w.r.t. θ, for simplicity we may further assume that

f(x;θ) ≈ 〈∇θf(x;θ0), θ〉. (11)

Thus, for a dataset {xi}Ni=1 of N points, collectively f(x1;θ)
...

f(xN ;θ)

 ≈
∇θf(x1;θ0)

...
∇θf(xN ;θ0)

 · θ = J · θ, (12)

where J ∈ IRN×p is a Jacobian matrix. This observation
motivates us to consider the following problem setup.

Problem setup. Based upon the above linearization, we
assume that our corrupted observation y ∈ RN (e.g., noisy
labels) is generated by

y = J · θ? + s?, (13)
where θ? ∈ Rp is the underlying groundtruth parameter,
and the noise s? ∈ RN is sparse so that only a subset
of observation (e.g., labels) is corrupted. Given J and y

generated from (13), our goal is to recover both θ? and s?.

However, as we are considering the problem in an over-
parameterized regime with p > N , the underdetermined
system (13) implies that there are infinite solutions for θ?
even if s? is given. Nonetheless, recent work showed that
the implicit bias of gradient descent for overparameterized
linear models and deep networks tend to find minimum `2-
norm solutions (Zhang et al., 2021a). To make our problem
more well-posed, motivated by these results, we would like
to find an θ? with minimum `2-norm, namely,

θ? = argmin
θ
‖θ‖22 s.t. y = Jθ + s?. (14)

Analogous to (2), we will show that θ? and s? can be prov-
ably recovered by solving the problem

min
θ,u,v

h(θ,u,v)
.
=

1

2
‖Jθ + u� u− v � v − y‖22, (15)

using the gradient descent algorithm with learning rates τ
and ατ on θ and {u,v}, respectively:

θk+1 = θk − τ · J>rk,
uk+1 = uk − 2ατ · uk � rk,
vk+1 = vk + 2ατ · vk � rk,

(16)

where rk
.
= Jθk + uk � uk − vk � vk − y. Based on

these, our result can be summarized as follows.

Theorem 3.1 (Main result, informal). Suppose J is rank-
r and µ-incoherent defined in Section 3.3, and s? is k-
sparse. If k2r < N/(4µ), with τ → 0 and a proper choice
of α depending on (J ,θ?, k), the gradient dynamics of
(16) converges to the ground truth solution (θ?, s?) in (13)
starting from a small initialization of (θ,u,v).

We state our result at a high level with more technical details
in Section 3.2 and Section 3.3. The overall idea of the proof
can be sketched through the following two steps.

• First, although the problem (15) is nonconvex, in Sec-
tion 3.2 we show that it has benign global landscape,
and that the gradient descent (16) converges to particular
global solutions that are the same as solutions to a convex
problem with explicit regularizations on θ and s.

• Building upon above results, in Section 3.3 we complete
our analysis by showing that θ? and s? can be exactly
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recovered by the convex problem with a small enough
value for α.

Throughout the analysis, we corroborate our findings with
numerical simulations.

3.2. Landscapes & Implicit Sparse Regularization

Benign global landscape. We start by characterizing the
nonconvex landscape of (15), showing the following result.

Proposition 3.2. Any critical point of (15) is either a global
minimizer, or it is a strict saddle (Ge et al., 2015) with its
Hessian having at least one negative eigenvalue.

For a strict saddle function, recent work (Lee et al., 2016)
showed that gradient descent with random initialization
almost surely escapes saddle points and converges to a local
minimizer. Thus, Proposition 3.2 ensures that the algorithm
in (16) almost surely converges to a global solution of (15).

However, because there are infinite many global solutions
for the overparameterized model (15) and not all global so-
lutions are of equal quality, convergence to a global solution
alone is not sufficient for us to establish the correctness of
our method. Nonetheless, as we will show in the following,
the particular choice of the algorithm in (16) enables it to
converge to a particular regularized global solution.

Implicit sparse regularization. To understand which solu-
tion the algorithm (16) converges to, we study its gradient
flow counterpart by taking the stepsize τ → 0 in (16). Thus,
the dynamics of such a gradient flow is governed by the
following differential equations

θ̇t(γ, α) = −J>rt(γ, α),
u̇t(γ, α) = −2α · ut(γ, α)� rt(γ, α),
v̇t(γ, α) = 2α · vt(γ, α)� rt(γ, α),

(17)

where we define

rt(γ, α) = Jθt(γ, α) + ut(γ, α)� ut(γ, α)
− vt(γ, α)� vt(γ, α)− y. (18)

Here, we assume that θ,u, and v are initialized at
θ0(γ, α) = 0, u0(γ, α) = γ1, v0(γ, α) = γ1, (19)

with some small γ > 0. Solving the differential equations
in (17) gives the gradient flow

θt(γ, α) = J
>νt(γ, α),

ut(γ, α) = γ exp(2ανt(γ, α)),

vt(γ, α) = γ exp(−2ανt(γ, α)),
(20)

where we define

νt(γ, α)
.
= −

∫ t

0

rτ (γ, α)dτ. (21)

The following result shows that the solution that the gradient
flow

(
θt(γ, α),ut(γ, α),vt(γ, α)

)
in (20) converges to at

t→∞ is a global solution to (15) that is regularized with a

particular of (γ, α).
Proposition 3.3. Consider the gradient flow in (20) with
the initialization in (19).

• (Global convergence) For any (γ, α), if the limit(
θ∞(γ, α), u∞(γ, α), v∞(γ, α)

)
.
= lim
t→∞

(
θt(γ, α), ut(γ, α), vt(γ, α)

)
(22)

exists, then it is a global solution to (15).

• (Implicit regularization) Fix any λ > 0 and let α be a
function of γ as

α(γ) = − log γ

2λ
. (23)

If the limit(
θ̂, û, v̂

)
.
= lim
γ→0

(
θ∞(γ, α(γ)),

u∞(γ, α(γ)), v∞(γ, α(γ))
)

(24)

exists, then
(
θ̂, û, v̂

)
is a global solution to (15). In

particular, let

ŝ
.
= û� û− v̂ � v̂, (25)

then (θ̂, ŝ) is an optimal solution to the convex program

min
θ, s

1

2
‖θ‖22 + λ ‖s‖1 , s.t. y = Jθ + s. (26)

As we observe from the above result, because (θ̂, ŝ) that the
gradient flow (17) converges to is also an optimal solution
of (26), it implies that (θ̂, ŝ) is regularized. In particular,
the `1-norm regularization on s comes as a result of implicit
regularization on overparameterization s = u�u− v� v,
leading to a sparse solution on s as we desired. On the other
hand, the `2 regularization on θ leads to the desired mini-
mum `2-norm solution as we discussed in (14). Thus, the
only question remains is whether the ground truth (θ?, s?)
in (13) can be identified through solving the convex problem
(26), which we will discuss in the following Section 3.3.

Numerical verification. While Proposition 3.3 is proved
for gradient flow with both learning rate τ → 0 and initial-
ization scale γ → 0, we numerically show that such a result
also holds non-asymptotically with finitely small τ and γ.

Given a tuple (N, p, r, k) of model parameters, we generate
simulation data (J ,θ?, s?,y) as follows. The matrix J ∈
RN×p is generated by multiplying two randomly generated
matrices of shape N × r and r× p, respectively with entries
drawn i.i.d. from a standard Gaussian distribution. The
sparse vector s? ∈ RN is generated by randomly choosing
k entries to be i.i.d. standard Gaussian, with the rest of
entries zero. Then, we generate a vector θ ∈ Rp with all
entries drawn i.i.d. from a standard Gaussian distribution,
and let y = Jθ + s?. Finally, we set θ? as the minimum
`2-norm solution according to (14).
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Figure 2. The gradient descent in (16) and the convex problem in
(26) produce the same solutions with α = − log γ

2λ
. For fixed data

(J ,y), left figure shows the relative difference ‖θα−θλ‖2
max{‖θα‖2,‖θλ‖2}

between the solution θα to (16) with varying values of α (in y-axis)
and the solution θλ computed from (26) with varying values of
λ (in x-axis). Likewise, right figure shows the relative difference
for s. Blue line shows the curve α = − log γ

2λ
where γ is fixed to

exp (−8) in all experiments.

In this experiment, we choose and fix (N, p, r, k) =
(20, 40, 3, 3) for the data generation described above. With
a varying learning rate α ∈ [4, 4000], we compute (θα, sα)
as the solution provided by gradient descent in (16) with
an initialization by (19) with γ = e−8. With a varying
regularization λ ∈ [0.0001, 1] in (26), we compute (θλ, sλ)
as the solution provided by the convex problem in (26)
with weight parameter λ, using the ECOS solver (Domahidi
et al., 2013) provided in CVXPY (Diamond & Boyd, 2016).
Figure 2 provides a visualization of the relative difference
ρ = ‖θα−θλ‖2

max{‖θα‖2,‖θλ‖2} between θα and θλ (and likewise
for s), across all pairs of (α, λ). We can observe that as
long as (α, λ) satisfies the relationship in (23), the relative
difference ρ is small for θ, which is also true for s. On the
other hand, the relative differences can be large if (23) is
not satisfied, corroborating Proposition 3.3.

3.3. Exact Recovery under Incoherence Conditions

Given the overparameterized model (13) with y ∈ RN ,
θ ∈ Rp, and p� N , there is no enough information from
y to recover θ? and s? even with the prior information that
s? is sparse – any given vector y ∈ Rp can be decomposed
as a summation of an arbitrary sparse vector s and a vector
θ cooked up from the column space of J as long as J has
full row rank.

For the solution θ? and s? to be identified, first, we assume
that J is low-rank, motivated by empirically observation in
practical deep neural network fθ that the Jacobian matrix
J of fθ is approximately low-rank (Oymak et al., 2019).2

However, the low-rank condition of J alone does not guaran-
tee identifiability, because it cannot address the separability

2The low-rank assumption simplifies our analysis but at the
cost that our model is not able to overfit to any corrupted labels
as a deep neural network. We leave the study under a realistic
approximate low-rank assumption to future work.

(a) Varying k with fixed r = 20.

(b) Varying r with fixed k = 20.

Figure 3. Effect of model parameter λ for exact recovery by (26).
The y-axis is the relative error of θ (left) and s (right) defined as
‖θ−θ?‖2
‖θ?‖2

and ‖s−s?‖2‖s?‖2
, respectively, where (θ, s) is the solution

to (26). The curves are averages over 10 independent trials.

between Jθ? and s? – following a similar argument as that
in (Candès et al., 2011), if any column of J has a single
nonzero entry, then any s? that is supported on the same
entry cannot be recovered without ambiguities. Hence, we
further assume that the column space of J and the stan-
dard basis [e1, . . . , eN ]

.
= diag{1, . . . , 1} ∈ IRN×N are

incoherent, defined as follows.

Definition 3.4 (Candès et al. (2011)). Let J = UΣV > ∈
IRN×p be the compact SVD of J and r be the rank of J .
The coherence of J (w.r.t. the standard basis) is defined as

µ(J) =
N

r
max

1≤i≤N
‖U>ei‖22. (27)

It should be noted that the low-rank and incoherence as-
sumptions are common for matrix recovery (Davenport &
Romberg, 2016; Chi et al., 2019). Based upon the above
assumptions on J and s?, we show the following.

Proposition 3.5. Let r be the rank of J and k be the number
of nonzero entries of s?. If we have

k2r <
N

4µ(J)
, (28)

then the solution to (26) is (θ?, s?) for any λ > λ0, where
λ0 > 0 is a scalar depending on (J ,θ?, k).

Thus, combining this result with Proposition 3.3, the gradi-
ent flow in (17) with initialization (19) converges to (θ?, s?)
when the choice of learning rate ratio α in (17) is smaller
than a certain threshold, justifying our claim in Theorem 3.1.

Numerical verification. To corroborate Proposition 3.5,
we numerically solve (26) under varying conditions of λ,
r, and k. The simulated data (J ,θ?, s?,y) is generated
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Figure 4. Phase transition for solving (26) over 20 trials, with
fixed λ = 0.1 and varying k, r. Recovery is declared success
if ‖θ−θ?‖2‖θ?‖2

< 0.001 (left) and ‖s−s?‖2‖s?‖2
< 0.001 (right).

the same way as the experimental part in Section 3.2 with
N = 100 and p = 150, and for an obtained solution (θ, s)
via solving (26), we measure the relative recovery error
εθ = ‖θ−θ?‖2

‖θ?‖2 and εs =
‖s−s?‖2
‖s?‖2 .

• Effects of the parameter λ. Here, we consider the recovery
with varying λ ∈ [0.0001, 1]. First, we fix r = 20 and
vary k ∈ {10, 20, 40, 60, 80}, showing the relative recov-
ery errors εθ and εs in Figure 3(a). Second, we fix k = 20
and vary r ∈ {10, 20, 40, 60, 80}, showing the results in
Figure 3(b). The results show a clear phase transition that
correct recovery is obtained only when λ is greater than a
particular threshold λ0. Moreover, λ0 varies depending
on k and r, consistent with Proposition 3.5.

• Relationships between the rank r and sparsity k. Here,
we fix λ = 0.1 and plot the phase transition with respect
to r and k. For each (r, k), the simulation is repeated for
20 random instances, and for each instance we declare the
recovery to be successful if εθ < 0.001 and εs < 0.001.
As shown in Figure 4, the phase transition is consistent
with Proposition 3.5 that successful recovery is achieved
only when both k and r are small.

4. Related Work and Discussion
4.1. Prior Arts on Implicit Regularization

Since overparameterized deep neural networks do not overfit
(in the absence of data corruption) even without any explicit
regularization (Zhang et al., 2021a), it is argued that there
are implicit regularizations pf learning algorithms that en-
able the models to converge to desired solutions. Under the
assumption of linear or deep linear models, many work char-
acterized the mathematics of such implicit bias via explicit
regularizations (Soudry et al., 2018; Gunasekar et al., 2018;
Li et al., 2018; Oymak & Soltanolkotabi, 2019; Arora et al.,
2019; Razin & Cohen, 2020; Li et al., 2020c; Ji et al., 2020;
Stöger & Soltanolkotabi, 2021; Jacot et al., 2021). Among
those, the closest related to ours include (Vaskevicius et al.,
2019; Zhao et al., 2019; Woodworth et al., 2020; Li et al.,
2021a; Chou et al., 2021), which studied the implicit sparse
regularization induced by a term of the form u�u−v�v.

While all the above works aim to understand implicit regu-
larization by studying linear models, the practical benefits
of such studies are unclear. Our work provides an inspiring
result showing that principled design with implicit regu-
larization leads to robust learning of over-parameterized
models. In particular, our model in (2) is motivated by ex-
isting studies on the implicit sparse regularization, but adds
such a regularization to an (already) implicitly regularized
model for handling sparse corruptions. In other words, two
forms of implicit regularization are involved in our model
which poses new problems in the design of the optimization
algorithm and in mathematical analysis. To the best of our
knowledge, the only prior works that use implicit sparse reg-
ularization for robust learning are (You et al., 2020; Ma &
Fattahi, 2021; Ding et al., 2021) which studied the robust re-
covery of low-rank matrices and images. Among them, our
work extends (You et al., 2020) to the problem of image clas-
sification with label noise, demonstrates its effectiveness,
and provides dedicated theoretical analyses. Additionally,
methods in (Ma & Fattahi, 2021; Ding et al., 2021) require a
particular learning rate schedule that may not be compatible
with commonly used schedules such as cosine annealing
(Loshchilov & Hutter, 2016) in image classification.

4.2. Relationship to Existing Work on Label Noise

Deep neural networks are over-parameterized hence prone
to overfitting to the label noises. While many popular regu-
larization techniques for alleviating overfitting, such as label
smoothing (Szegedy et al., 2016; Lukasik et al., 2020; Wei
et al., 2021a) and mixup (Zhang et al., 2018), are useful for
mitigating the impact of label noise, they do not completely
solve the problem due to a lack of precise noise modeling.
In the following, we discuss three of the most popular line
of work dedicated to the label noise problem; we refer the
reader to the survey papers (Algan & Ulusoy, 2021; Song
et al., 2020; Wei et al., 2021b) for a comprehensive review.

Loss design. Robust loss function, such as the `1 loss
(Ghosh et al., 2017), is one of the most popular approaches
to the label noise problem which has many recent extensions
(Zhang & Sabuncu, 2018; Wang et al., 2019; Amid et al.,
2019; Ma et al., 2020; Yu et al., 2020; Wei & Liu, 2021). The
method is based on reducing the loss associated with large
outlying entries, hence the impact of label noise. A simi-
lar idea is also explored in gradient clipping (Menon et al.,
2019) and loss reweighting (Liu & Tao, 2015; Wang et al.,
2017; Chang et al., 2017; Zhang et al., 2021b; Zetterqvist
et al., 2021) methods. While robust loss enables the model
to learn faster from correct labels, the global solution still
overfits to corrupted labels with over-parameterized models.

Label transition probability. Another popular line of work
for label noise is based on the assumption that the noisy la-
bel is drawn from a probability distribution conditioned on
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the true label. Here, the main task is to estimate the underly-
ing transition probabilities. The early work (Chen & Gupta,
2015; Goldberger & Ben-Reuven, 2017) encapsulates the
transition probabilities as a noise adaptation layer that is
stacked on top of a classification network and trained jointly
in an end-to-end fashion. Recent work (Patrini et al., 2017)
uses separated procedures to estimate the transition proba-
bilities, the success of which requires either the availability
of a clean validation data (Hendrycks et al., 2018) or addi-
tional data assumptions (Xia et al., 2019; Zhu et al., 2021;
Li et al., 2021b; Zhang et al., 2021c). Even if the underlying
transition probabilities can be correctly recovered, overfit-
ting is only prevented asymptotically, requiring sufficiently
many samples of corrupted labels for each input (Patrini
et al., 2017), which is not practical.

Label correction. In contrast to the above methods, our
method completely avoids overfitting even with finite train-
ing samples. This is achieved by the over-parameterization
term u� u− v � v in (2) which recovers the clean labels.
Hence, our method is related to techniques based on noisy
label detection and refurbishment. Nonetheless, existing
techniques are based on heuristic argument about different
behaviors of clean and corrupted samples in the training
process, such as properties of learned representations (Kim
et al., 2021; Ma et al., 2018; Jiang et al., 2020), prediction
consistency (Reed et al., 2014; Song et al., 2019a), learning
speed (Li et al., 2020b; Liu et al., 2020; 2021a), margin
(Lin & Bradic, 2021), confidence (Cheng et al., 2021). They
often need to be combined with engineering tricks such as
moving average (Huang et al., 2020; Liu et al., 2020) and
burning-in (Zheng et al., 2020) to make them work well.
Finally, the work (Hu et al., 2019) introduces a variable to
estimate the label noise in a way similar to (2). However,
the variable is not over-parameterized to induce sparsity,
and their method does not have competitive performance.

4.3. Sparsity in Deep Learning

Our method is broadly related to existing efforts on intro-
ducing sparsity into deep learning (Hoefler et al., 2021),
but is notably different in both the objective of introducing
sparsity, the origin of sparsity, and how sparsity is enforced.
First, previous exploration of sparsity primarily aims to
improve training and inference efficiency with large-scale
models, while our paper focuses on robust training under la-
bel noise. Second, previous introduction of sparsity is often
motivated by its presence in biological brains, but there is
still a lack of clean understanding of how sparsity helps with
learning. In contrast, sparsity in our method has the clear
mathematically meaning that the percentage of corrupted la-
bels is small. Finally, while pruning (Liu et al., 2021b; Chen
et al., 2021) is a dominant approach for obtaining sparsity,
our method leverages the implicit bias of gradient descent
associated with a particular sparse over-parameterization.

4.4. Limitations and Future Directions

Choice of optimization algorithms. Our SOP method is
based on introducing more parameters to an already over-
parameterized model, hence relies critically on the choice
of the optimization algorithm to induce the desired implicit
regularization. For vanilla gradient descent, our analysis
in Section 3 shows that it has the desired implicit regular-
ization by design. In practical deep network training, it is
more common to use the stochastic gradient descent with
momentum. While not theoretically justified, experiments in
Section 2 show that our method works with such practical
variants. This may not come as a surprise, because existing
studies already show that stochastic gradient descent (Nac-
son et al., 2019) and momentum acceleration (Wang et al.,
2021) have the same implicit bias as the vanilla gradient
decent under certain models. We leave the extension of such
results to our method as future works.

Modeling of label noise. Our method is based on the as-
sumption that the label noise matrix S? = [s?1, . . . , s?N ],
where s?i is the difference between the observed label yi
and the underlying true label, is a sparse matrix. We made
no additional assumption on the sparsity pattern of S?, other
than the non-negative and non-positive constraints discussed
in (4). In practice, it is usually the case that certain pairs of
classes are more similar hence more easily confusing with
each other than other pairs. As a result, certain blocks of S?
tend to have more non-zero entries than the others. When
there is a prior on which blocks may have more non-zero
entries, our method may be adapted by using a weighted
sparse regularization for the corresponding blocks. When
there is no such prior, our method may be adapted by us-
ing a group sparse regularization (Neyshabur et al., 2014;
Tibshirani, 2021).
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Appendices
This appendix is organized as follows. In Section A we provide additional details for reproducing experimental results
presented in Section 2. In Section B we provide proofs for the theoretical results presented in Section 3.

A. Training Details for Robust Classification with Label Noise
A.1. Choice of Loss Function

The cross-entropy loss in (8) cannot be used to optimize {vi} as we explain below. Consider a data point x with a one-hot
label y. With the CE loss in (8) rewritten below for convenience:

LCE(θ,u,v;x,y)
.
= `CE

(
φ
(
f(x,θ) + s

)
, y
)
, with s .

= u� u� y − v � v � (1− y), (A.1)

we may compute its gradient with respect to (w.r.t.) v as
∂LCE(θ,u,v;x,y)

∂v
=

2v � (1− y)
1>(f(x,θ) + s)

. (A.2)

This shows that the gradient w.r.t. different entries of v does not depend on the output f(x,θ) of the model at all modulo
the divider shared by all entries. Hence, v cannot correctly learn the label noise.

We now consider the MSE loss in (9) rewritten below for convenience:

LMSE(θ,u,v;x,y)
.
= `MSE

(
f(x,θ) + s, y

)
, with s .

= u� u� y − v � v � (1− y). (A.3)

The gradient w.r.t. v can be computed as
∂LMSE(θ,u,v;x,y)

∂v
= 4(f(x,θ) + s− y)� v � (1− y). (A.4)

Here the gradient w.r.t. different entries of v varies depending on how well the model prediction f(x,θ) + s matches the
given label y at the corresponding entry. Hence, when the model prediction deviates from the given label which may occur
when the label is corrupted, v is able to learn the underlying corruption to the label.

A.2. Definition of Label Noise

In this paper, we consider two types of widely existed label noise, namely symmetric label noise and asymmetric label noise.
For symmetric noise with noise level α, the labels are generated as follows:

y =

{
yGT with the probability of 1− α
random one hot vector with the probability of α.

We consider noise level α ∈ {0.2, 0.4, 0.5, 0.6, 0.8}. For asymmetric noise, following (Patrini et al., 2017), we flip labels
between TRUCK→AUTOMOBILE, BIRD→ AIRPLANE, DEER→ HORSE, and CAT↔ DOG. We randomly choose
40% training data with their labels to be flipped according to this asymmetric labeling rule. For real world datasets,
Clothing1M has noise level estimated at around 38.5% (Song et al., 2019b), and for WebVision, the noise level is estimated
to be at around 20% (Li et al., 2017).

A.3. Implementation Details of SOP+

We considered two separate regularization terms to further boost the results and stabilize training. We will describe the
definitions and roles of them below:

Consistency regularizer LC . We use a regularizer LC to encourage consistency of network prediction on a original image
and the corresponding augmented image. Such a regularizer is commonly used in semi-supervised learning and label noise
learning literature, see e.g., (Berthelot et al., 2019; Li et al., 2019). Specifically, the consistency regularizer LC is defined as
the Kullback-Leibler (KL)-divergence between the softmax predictions from the images with augmentations (described in
Section A.4) and the softmax predictions for the corresponding images generated with Unsupervised Data Augmentation
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Table A.1. Hyper-parameters for SOP on CIFAR-10/100, Clothing-1M and Webvision datasets.

CIFAR-10 CIFAR-100 Clothing-1M Webvision

architecture ResNet34 PreAct PresNet18 ResNet34 PreAct PresNet18 ResNet-50 (pretrained) InceptionResNetV2
batch size 128 128 128 128 64 32

learning rate (lr) 0.02 0.02 0.02 0.0 2 0.002 0.02
lr decay 40th & 80th Cosine Annealing 40th & 80th Cosine Annealing 5th 50th

weight decay (wd) 5× 10−4 5× 10−4 5× 10−4 5× 10−4 1× 10−3 5× 10−4

training epochs 120 300 150 300 10 100
training examples 45,000 50,000 45,000 50,000 1,000,000 66,000

lr for {ui,vi}
Sym: αu = 10, αv = 10 Sym: αu = 10, αv = 10 Sym: αu = 1, αv = 10 Sym: αu = 1, αv = 10

αu = 0.1 , αv = 1 αu = 0.1 , αv = 1
Asym: αu = 10, αv = 100 Asym: αu = 10, αv = 100 Asym: αu = 1, αv = 100 Asym: αu = 1, αv = 100

wd for {ui,vi} 0 0 0 0 0 0
init. std for {ui,vi} 10−8 10−8 10−8 10−8 10−8 10−8

λC 0.0 0.9 0.0 0.9 0.0 0.0
λB 0.0 0.1 0.0 0.1 0.0 0.0

(UDA) (Xie et al., 2020):

Lc(θ) =
1

N

N∑
i=1

DKL (f(xi;θ) ‖ f(UDA(xi); θ)) .

Class-balance regularizer LB . We use a regularizer LB to prevent the network from assigning all data points to the same
class. Following (Tanaka et al., 2018), we use the prior information on the probability distribution p of class labels and
minimize its distance in terms of KL-divergence to the mean prediction of each batch B:

Lb(θ) =
K∑
k=1

pk log
pk

fk(x,θ)
= −

K∑
k=1

pk log fk(x;θ),

where fk(x;θ) ≈ 1
|B|
∑
x∈B f(x;θ), and pk stands for the prior probability of the kth class.

The final loss function for SOP+ is therefore constructed by three terms as follows
L(θ, {ui,vi}) + λCLC(θ) + λBLB(θ),

where λc, λB > 0 are the hyper-parameters.

A.4. Experimental Settings

Data processing: For experiments on CIFAR10/100 (Krizhevsky et al., 2009) without extra techniques, we use simple
data augmentations including random crop and horizontal flip following previous works (Patrini et al., 2017; Liu et al.,
2020). For SOP+, we use the default setting from unsupervised data augmentation (Xie et al., 2020) to apply efficient data
augmentation to create another view of the data for consistency training. For Clothing-1M (Xiao et al., 2015), we first resize
images to 256 × 256, and then random crop to 224 × 224, following a random horizontal flip. For WebVision (Li et al.,
2017), we randomly crop the images into size of 227× 227. All images are standardized by their means and variances.

Hyper-parameters of SOP: We adopt a SGD optimizer without weight decay for U and V . We keep all the hyper-
parameters fixed for different levels of noise. For fair comparison, we adopt two settings of hyper-parameters and
architectures for SOP and SOP+. More details of hyper-parameters can be found in Table A.4. Note that the method is not
very sensitive to hyper-parameters λC and λB .

B. Proofs for Theoretical Analysis with Linear Models
B.1. Proof of Proposition 3.2

We first present a simple but useful lemma.

Lemma B.1. Let (θ,u,v) be a critical point to (15) that is not a global minimum, i.e.,

r := Jθ + u� u− v � v − y 6= 0.



Robust Training under Label Noise by Over-parameterization

Then there exists an index i such that

ui = vi = 0, ri 6= 0, (B.1)
where ui, vi, and ri denote the i-th elements of u, v and r, respectively.

Proof. We may compute the gradient of the objective function h in (15) as
∇θh(θ,u,v) = J>r,
∇uh(θ,u,v) = 2r � u,
∇vh(θ,u,v) = −2r � v.

Since r 6= 0 but∇uh(θ,u,v) = ∇vh(θ,u,v) = 0, we must have ui = vi = 0 and ri 6= 0 for some i.

We now prove Proposition 3.2 as follows.

Proof of Proposition 3.2. We compute the hessian∇2h of the objective function h in (15) as

∇2h(θ,u,v) =

 J>J 2J> diag(u) −2J> diag(v)
2 diag(u)J 2 diag (r + 2u� u) −4 diag(v � u)
−2 diag(v)J −4 diag(v � u) −2 diag (r − 2v � v)

 .
For any direction d =

[
d>θ d>u d>v

]>
, the quadratic form of the Hessian∇2h along this direction is given by

d>∇2h(θ,u,v)d = ‖Jdθ‖22 + 4‖u� du‖22 + 4‖v � dv‖22
+ 2 〈r,du � du − dv � dv〉+ 4 〈Jdθ,u� du − v � dv〉 − 8 〈u� du,v � dv〉 . (B.2)

We now consider an arbitrary critical point (θ,u,v) of (15) that is not a global minimum. By Lemma B.1, there exists an i
such that ri 6= 0 while ui = vi = 0. We divide the discussion into two cases.

• Case 1: ri > 0. We set dθ = 0,du = 0, and dv to be such that all of its entries are zero except for the i-th entry which is
given by div = 1. Plugging this direction into (B.2), we obtain

d>∇2h(θ,u,v)d = 4 [vi]2︸︷︷︸
vi=0

[div]
2 − 2ri [div]

2︸︷︷︸
div=1

= −2ri < 0

• Case 2: ri < 0. We set dθ = 0,dv = 0, and du to be such that all of its entries are zero except for the i-th entry which is
given by diu = 1. Plugging this direction into (B.2), we obtain

d>∇2h(θ,u,v)d = 4 [ui]2︸︷︷︸
ui=0

[diu]
2 + 2ri [diu]

2︸ ︷︷ ︸
diu=1

= 2ri < 0

In both cases above we have constructed a direction of negative curvature, hence (θ,u,v) is a strict saddle.

B.2. Proof of Proposition 3.3

The proof is based on the following lemma which follows trivially from KKT conditions:

Lemma B.2 (KKT condition). Given any J and y, if there exists (θ̂, ŝ, ν̂) satisfying

y = Jθ̂ + ŝ,

θ̂ = J>ν̂, and

ν̂ ∈ λsign(ŝ),
(B.3)

then (θ̂, ŝ) is an optimal solution to (26). In above, sign(z) is defined entrywise on z as

sign(z) =

{
z/|z| if ẑ 6= 0,

[−1, 1] if ẑ = 0.
(B.4)

Proof of Proposition 3.3. We divide the proof into two parts.
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Global convergence. In this part we show that
(
θ∞(γ, α),u∞(γ, α),v∞(γ, α)

)
is a global solution to (15) for any fixed

(γ, α). Denote
r∞(γ, α)

.
= lim
t→∞

rt(γ, α). (B.5)

It follows from (18) and (22) that the limit r∞(γ, α) exists and can be written as
r∞(γ, α) = Jθ∞(γ, α) + u∞(γ, α)� u∞(γ, α)− v∞(γ, α)� v∞(γ, α). (B.6)

Suppose for the purpose of obtaining a contradiction that
(
θ∞(γ, α),u∞(γ, α),v∞(γ, α)

)
is not a global solution to (15).

It follows from Lemma B.1 that there exists an i such that
ui∞(γ, α) = vi∞(γ, α) = 0, and ri∞(γ, α) 6= 0. (B.7)

Without loss of generality we assume that C .
= ri∞(γ, α) > 0 so that rit(γ, α)→ C with t→∞. For any ε ∈ (0, C), there

exists a t0 > 0 such that
C − ε ≤ rit(γ, α) ≤ C + ε, ∀t > t0. (B.8)

It follows from (B.8) and (21) that

νit(γ, α) = −
∫ t

0

riτ (γ, α)dτ = νit0(γ, α)−
∫ t

t0

riτ (γ, α)dτ

∈
(
νit0(γ, α)− (C + ε)(t− t0), νit0(γ, α)− (C − ε)(t− t0)

)
, ∀t > t0. (B.9)

Using this bound on νit(γ, α) in (20), we obtain

vit(γ, α) = γ exp
(
− 2ανit(γ, α)

)
≥ γ exp

(
− 2ανit0(γ, α)

)
exp

(
2α(C − ε)(t− t0)

)
, ∀t > t0. (B.10)

Taking the limit of t→∞, we obtain vi∞(γ, α) =∞ which contradicts vi∞(γ, α) = 0 in (B.7). Therefore, we conclude
that

(
θ∞(γ, α),u∞(γ, α),v∞(γ, α)

)
is a global solution to (15).

Implicit regularization. In this part we prove that (θ̂, ŝ) is an optimal solution to the regularized convex optimization
problem in (26). Let ν∞(γ, α) be the limit of νt(γ, α) in (21) at t→∞, and let

ν̂
.
= lim
γ→0

ν∞(γ, α(γ)), (B.11)

with α(γ) defined in (23). We only need to show that the triplet (θ̂, ŝ, ν̂) with θ̂ defined in (24), ŝ defined in (25) and ν̂
defined in (B.11) satisfies the KKT conditions in (B.3).

1. Because
(
θ∞(γ, α),u∞(γ, α),v∞(γ, α)

)
is a global solution to (15), we have

Jθ∞(γ, α) + u∞(γ, α)� u∞(γ, α)− v∞(γ, α)� v∞(γ, α) = y, ∀γ > 0, α > 0. (B.12)
Taking the limit of γ → 0 with α = α(γ) and noting the assumption that all limits in (24) exist, we obtain

Jθ̂ + û� û− v̂ � v̂ = y. (B.13)
Plugging in the definition of ŝ in (25), we obtain

y = Jθ̂ + ŝ.

2. By taking the limit of the relation θt(γ, α) = J>νt(γ, α) in (20) and noting the assumptions that all relevant limits
exist, we obtain

θ̂ = lim
γ→0

lim
t→∞

θt(γ, α(γ)) = lim
γ→0

lim
t→∞

J>νt(γ, α(γ)) = J
>ν̂. (B.14)

3. Denote s∞(γ, α)
.
= u∞(γ, α)� u∞(γ, α)− v∞(γ, α)� v∞(γ, α). By (20), we have

si∞(γ, α)
.
= ui∞(γ, α)2 − vi∞(γ, α)2 = γ2 exp(4ανi∞(γ, α))− γ2 exp(−4ανi∞(γ, α)). (B.15)

For each entry of ŝ = limγ→0 s∞(γ, α(γ)) (recall that α(γ) is defined in (23)), we may have three cases:

• Case 1: ŝi > 0. From (B.15), we must have α(γ)νi∞(γ, α(γ))→ +∞ as γ → 0 so that

lim
γ→0

exp
(
4α(γ)νi∞(γ, α(γ))

)
=∞, and lim

γ→0
exp

(
− 4α(γ)νi∞(γ, α(γ))

)
= 0. (B.16)
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Hence,

lim
γ→0

γ2 exp
(
4α(γ)νi∞(γ, α(γ))

)
= ŝi

=⇒ lim
γ→0

2 log γ + 4α(γ)νi∞(γ, α(γ)) = log ŝi

=⇒ lim
γ→0

νi∞(γ, α(γ)) = lim
γ→0

(
log ŝi

4α(γ)
− log γ

2α(γ)

)
.

(B.17)

Plugging in the relation α(γ) = − log γ
2λ in (23), we have

lim
γ→0

νi∞(γ, α(γ)) = − lim
γ→0

λ log ŝi

2 log γ
+ λ = λ.

• Case 2: ŝi < 0. Similar to case 1, from (B.15) we must have

lim
γ→0

exp
(
4α(γ)νi∞(γ, α(γ))

)
= 0, and lim

γ→0
exp

(
− 4α(γ)νi∞(γ, α(γ))

)
=∞. (B.18)

Hence,

lim
γ→0
−γ2 exp

(
− 4α(γ)νi∞(γ, α(γ))

)
= ŝi

=⇒ lim
γ→0

2 log γ − 4α(γ)νi∞(γ, α(γ)) = log(−ŝi)

=⇒ lim
γ→0

νi∞(γ, α(γ)) = lim
γ→0

(
− log(−ŝi)

4α(γ)
+

log γ

2α(γ)

)
.

(B.19)

Plugging in the relation α(γ) = − log γ
2λ in (23), we have

lim
γ→0

νi∞(γ, α(γ)) = −λ.

• Case 3: ŝi = 0. From (B.15), we must have

lim
γ→0

γ2 exp
(
4α(γ)νi∞(γ, α(γ))

)
= 0, and lim

γ→0
γ2 exp

(
− 4α(γ)νi∞(γ, α(γ))

)
= 0. (B.20)

Hence, for any small ε ∈ (0, 1), there exists γ0 > 0 such that for all γ ∈ (0, γ0), we have

γ2 ·max
{
exp

(
4α(γ)νi∞(γ, α(γ))

)
, exp

(
− 4α(γ)νi∞(γ, α(γ))

)}
< ε

=⇒ 2 log γ + 4α(γ) · |νi∞(γ, α(γ))| < log ε

=⇒ |νi∞(γ, α(γ))| < log ε

4α(γ)
− log γ

2α(γ)
.

(B.21)

Now, plugging α(γ) = − log γ
2λ in, we have

|νi∞(γ, α(γ)))| < −λ log ε
2 log γ

+ λ < λ.

Therefore, we have
lim
γ→0

∣∣νi∞(γ, α(γ))
∣∣ < λ.

Synthesizing all the above three cases, we obtain:
ν̂ ∈ λsign(ŝ).

B.3. Proof of Proposition 3.5

We begin with introducing the null space property that is widely used for providing necessary and sufficient conditions for
exact recovery of sparse signals in compressive sensing.
Definition B.3 ((Cohen et al., 2009)). We say a matrixA ∈ Rm×n satisfies the null space property with constant ρ ∈ (0, 1)
relative to S ∈ [n] if

‖vS‖1 ≤ ρ‖vSc‖1 for all v ∈ kerA,

where kerA is the null space ofA.
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With Definition B.3, we prove Proposition 3.5 by using the following two lemmas. The first lemma establishes correct
recovery of (θ?, s?) from (26) under the null space property.
Lemma B.4. Given matrix J and a matrix A that annihilates J on the left (i.e. such that AJ = 0). If A satisfies the
stable null space property with constant ρ ∈ (0, 1) relative to the support of s?, then the solution to (26) is (θ?, s?) for any
λ > λ0 where λ0 is a scalar that depends only on (J ,θ?, ρ).

The second lemma shows that the null space property is satisfied under the incoherent condition in (28).
Lemma B.5. Given matrix J and a matrixA that annihilates J on the left, if

k2r ≤ N

µ(J)

(
ρ

ρ+ 1

)2

, (B.22)

thenA satisfies null space property with constant ρ relative to any S that satisfies |S| = k.

Proof of Proposition 3.5. Assume that the condition in (28) is satisfied. Then there exists a ρ ∈ (0, 1) such that the
condition in (B.22) holds. Hence, A satisfies null space property with constant ρ relative to any S that satisfies |S| = k.
Since s? is k-sparse, we have that A satisfies null space property with constant ρ relative to the support of s?. Then the
conclusion of Proposition 3.5 follows from applying Lemma B.4. Finally, from Lemma B.4 we have that λ0 is a function of
(J ,θ?, ρ), wherein ρ is determined byA (hence J ) and the associated sparsity k. Hence λ0 can be determined with a given
(J ,θ?, k).

In the rest of this section we prove Lemma B.4 and Lemma B.5.

Proof of Lemma B.4. We first introduce the following result on a useful property of the stable null space property.
Theorem B.6 (Useful property of stable null space property). Suppose a matrixA ∈ Rm×n satisfies the null space property
with constant ρ ∈ (0, 1) relative to S ∈ [n]. Then for every vector x supported on S, we have

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1)

for any z withAz = Ax.

Proof of Theorem B.6. SinceA(z − x) = 0, i.e., z − x ∈ kerA, the null space property ofA implies
‖(z − x)Sc‖1 ≤ ρ‖(z − x)Sc‖1,

which further gives that
‖z − x‖1 ≤ (1 + ρ)‖(z − x)Sc‖1.

We now use these properties to prove the main result as
‖z‖1 = ‖zS‖1 + ‖zSc‖1 = ‖(z − x+ x)S‖1 + ‖zSc‖1

≥ ‖x‖1 − ‖(z − x)S‖1 + ‖(z − x)Sc‖1
≥ ‖x‖1 + (1− ρ)‖(z − x)Sc‖1

≥ ‖x‖1 +
1 + ρ

1− ρ
‖z − x‖1,

where the first inequality follows because x is only supported on S.

We are now ready to prove Lemma B.4.

Proof of Lemma B.4. Let J = UΣV > be the compact SVD of J and V ⊥ be an orthonormal basis that complements V .
Then, the constraint in (26) is equivalent to

Ay = As, θ = V Σ−1U>(y − s) + V ⊥h.

Thus, the problem (26) is equivalent to

min
s,h

1

2
‖V Σ−1U>(y − s) + V ⊥h‖22 + λ‖s‖1

s.t. Ay = As,

(B.23)
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which is further equivalent to

min
s
g(s) :=

1

2
‖V Σ−1U>(y − s)‖22 + λ‖s‖1

s.t. As? = As.
(B.24)

AssumeA satisfies the stable null space property with constant ρ ∈ (0, 1) relative to the support of s?. Now for any s with
As? = As, by Theorem B.6, we have

‖s‖1 − ‖s?‖1 ≥
1− ρ
1 + ρ

‖s− s?‖1,

which ensures s = s? if we only minimize ‖s‖1. The first term in (B.24) can be written as
‖V Σ−1U>(y − s)‖22 = ‖V Σ−1U>(s? − s+ Jθ?)‖22,

where
θ? = V Σ−1U>(y − s?).

This together with the previous equation gives
g(s)− g(s?)

≥ λ1− ρ
1 + ρ

‖s− s?‖1 + ‖V Σ−1U>(s? − s+ Jθ?)‖22 − ‖V Σ−1U>Jθ?‖22

= λ
1− ρ
1 + ρ

‖s− s?‖1 + ‖V Σ−1U>(s? − s)‖22 + 2〈s? − s,UΣ−1V >θ?〉

≥ λ1− ρ
1 + ρ

‖s− s?‖1 − 2‖UΣ−1V >θ?‖∞‖s− s?‖1

=

(
λ
1− ρ
1 + ρ

− 2‖UΣ−1V >θ?‖∞
)
‖s− s?‖1.

Thus, if λ > λ0 with

λ0 = 2
1 + ρ

1− ρ
‖UΣ−1V >θ?‖∞, (B.25)

we have g(s)− g(s?) > 0 whenever s 6= s?.

Proof of Lemma B.5.

Proof. Let J = UΣV > be the compact SVD of J . From (B.22) we have

(ρ+ 1)k

√
r

N
µ(J) ≤ ρ. (B.26)

Let S ⊆ [N ] with |S| = k and a ∈ IRr be an arbitrary vector. We have

‖[Ua]S‖1 =
∑
i∈S
|e>i Ua| =

∑
i∈S
|〈U>ei,a〉| ≤ k‖a‖2 ·max

i∈S
‖U>ei‖2 ≤ k‖a‖2

√
r

N
µ(J), (B.27)

where the last inequality is obtained from Definition 3.4. In addition, we have
‖Ua‖1 ≥ ‖Ua‖2 = ‖a‖2. (B.28)

Combining (B.26), (B.27) and (B.28), we get

(ρ+ 1)‖[Ua]S‖1 ≤ (ρ+ 1)k‖a‖2
√

r

N
µ(J) ≤ ρ‖a‖2 ≤ ρ‖Ua‖1, (B.29)

hence,
‖[Ua]S‖1 ≤ ρ‖[Ua]Sc‖1. (B.30)

Noting that {Ua|a ∈ IRr} = kerA, this finishes the proof by Definition B.3.


