
Hidden State Variability of Pretrained Language Models
Can Guide Computation Reduction for Transfer Learning

Shuo Xie∗1,2 Jiahao Qiu3 Ankita Pasad2 Li Du4 Qing Qu3 Hongyuan Mei2
1University of Chicago 2Toyota Technological Institute at Chicago

3University of Michigan 4Johns Hopkins University
shuox@uchicago.edu,hongyuan@ttic.edu

Abstract

While transferring a pretrained language
model, common approaches conventionally at-
tach their task-specific classifiers to the top
layer and adapt all the pretrained layers. We
investigate whether one could make a task-
specific selection on which subset of the lay-
ers to adapt and where to place the classi-
fier.The goal is to reduce the computation cost
of transfer learning methods (e.g. fine-tuning
or adapter-tuning) without sacrificing its per-
formance.

We propose to select layers based on the vari-
ability of their hidden states given a task-
specific corpus. We say a layer is already
“well-specialized” in a task if the within-class
variability of its hidden states is low relative to
the between-class variability. Our variability
metric is cheap to compute and doesn’t need
any training or hyperparameter tuning. It is ro-
bust to data imbalance and data scarcity. Ex-
tensive experiments on the GLUE benchmark
demonstrate that selecting layers based on our
metric can yield significantly stronger perfor-
mance than using the same number of top lay-
ers and often match the performance of fine-
tuning or adapter-tuning the entire language
model.

1 Introduction
Transfer learning from a pretrained language

model (PLM) is now the de-facto paradigm in nat-
ural language processing (NLP). The conventional
approaches of leveraging PLMs include fine-tuning
all the parameters in the language model (LM)
and some lightweight alternatives that can decrease
the number of tuning parameters such as adapter-
tuning (Houlsby et al., 2019; Hu et al., 2022; He
et al., 2022) and prefix-tuning (Li and Liang, 2021).
These methods have one thing in common: they
all involve the entire PLM and attach a classifier to
its top layer. However, PLMs were optimized via

∗Work done during internship at TTI-Chicago.

the language modeling objective and thus their top
layers have been specialized in producing represen-
tations which facilitate optimizing that objective.
Such mismatch between the pretraining and fine-
tuning objectives poses the following questions:

¬ Given a pretrained language model and a down-
stream task, can we measure how “well-specialized”
each layer has already been in that task, without
any task-specific tuning?

­ If the answer to ¬ is yes, can we use the
layer-wise “task-specialty” as a guide in improving
the computation efficiency of the transfer learning
methods such as fine-tuning and adapter-tuning?

In this paper, we take a technically principled
approach to investigate the research questions ¬

and ­. First, we define a metric in section 3.1
to measure the “task-specialty” of each layer in a
given PLM. Our task-speciality score is inspired
by the neural collapse (NC) phenomenon which
has been widely observed in the computer vision
community (Papyan et al., 2020): as training con-
verges, the top-layer representations of the images
with the same label form an extremely tight cluster.
In our setting, we examine the variability of the
representations of the linguistic sequences given
by each layer of the PLM, and define our layer-
wise task-specialty to be the within-class variability
normalized by the between-class variability. Com-
puting our metric does not require any training or
hyperparameter tuning. Experiments on the GLUE
benchmark demonstrate that it is highly correlated
with layer-wise probing performance, thus giving a
clear “yes” to the question ¬ above.

We propose several layer-selecting strategies in
section 3.2 based on our proposed task-specialty
metric. Our strategies are complementary to all
the major paradigms of transfer learning (such as
fine-tuning and adapter-tuning) and thus can take
advantages of the state-of-the-art at the time: only

ar
X

iv
:2

21
0.

10
04

1v
2 

 [c
s.C

L]
  1

9 
O

ct
 2

02
2



the selected layers will be tuned (e.g., via fine-
tuning or using adapters) such that the computation
cost of the tuning methods can be further reduced.
Experiments on the GLUE benchmark demonstrate
that our proposed strategies are highly effective: un-
der comparable computation budget, fine-tuning or
adapter-tuning the layers selected by our strategies
can achieve significantly higher performance than
using the layers selected by the widely adopted
baseline strategies; it can even often match the per-
formance of fine-tuning or adapter-tuning the entire
PLM which takes 500% more computation cost.

Through extensive ablation studies, we demon-
strate the comparable advantages of our proposed
task-specialty metric over potential alternatives
(such as CCA and mutual information) as well as
its robustness to data scarcity and data imbalance.

2 Technical Background
In this paper, we focus on classification tasks.

Technically, each classification task has a corpus
of training data {(xn, yn)}Nn=1 where each xn =
(xn,1, . . . , xn,T ) is a sequence of linguistic tokens
and each yn ∈ Y is a discrete class label. Such
tasks include
• Sentiment analysis. Each x is a single sequence

of words such as “This movie is fantastic” and
y is a sentiment label from {positive, negative}.
Thus, the sentiment analysis can be cast as a
binary-class classification problem.

• Natural language inference. Each x is of the
form “premise [SEP] hypothesis” such as “Fun
for adults and children. [SEP] Fun for only chil-
dren.” where “[SEP]” is a special separator to-
ken. The label y ∈ {yes, neutral, no} indicates
whether the premise entails the hypothesis. It is
a three-class classification problem.

A PLM performs a classification task as follows:
1. It reads each given sequence xn and embed it

into a series of hidden state vectors
layer L h

(L)
n,0 h

(L)
n,1 . . . h

(L)
n,t . . . h

(L)
n,T

. . .

layer ` h
(`)
n,0 h

(`)
n,1 . . . h

(`)
n,t . . . h

(`)
n,T

. . .

layer 1 h
(1)
n,0 h

(1)
n,1 . . . h

(1)
n,t . . . h

(1)
n,T

where h
(`)
n,t denotes the hidden state of token xn,t

given by layer ` and xn,0 = CLS is a special
classification (CLS) token.

2. The top-layer hidden state h
(L)
n,0 of the CLS to-

ken is read by a neural network f followed by a

(a) High within-class vari-
ability and low between-class
variability.

(b) Low within-class variabil-
ity and high between-class
variability.

Figure 1: An illustration of our variability-based task-
specialty metric with hypothetical data. Each dot de-
notes a two-dimensional hidden state vector and its
color denotes its target label. Each colored star denotes
the mean vector of its class.

softmax layer, which gives the probability dis-
tribution over the target label y ∈ Y:

p(y | xn) = softmaxy(f(h
(L)
n,0)) (1)

The net f is also called “classification head”.
Transfer learning is to maximize the log

probability of the ground-truth label yn—i.e.,
log p(yn | xn)—by learning the parameters of the
classification head f as well as certain method-
specific parameters:
• Fine-tuning updates all the PLM parameters (Pe-

ters et al., 2018; Devlin et al., 2018).
• Adapter-tuning inserts adapters (i.e., small neural

networks) into the LM layers and updates the
new adapter parameters (Houlsby et al., 2019;
Hu et al., 2022; He et al., 2022).

• Prefix-tuning augments trainable tokens to the
input x and tunes the new token embeddings (Li
and Liang, 2021; Qin and Eisner, 2021; Ham-
bardzumyan et al., 2021).

3 The Method
Our goal is to answer the research questions ¬

and ­ introduced in section 1. That involves find-
ing a layer-specific metric ν(1), . . . , ν(`), . . . , ν(L)

where each ν(`) measures the task-specialty of layer
`. Suppose that we use s(`) to denote the task score
that we can achieve by letting the classification
head read the layer ` hidden state h

(`)
n,0 of the CLS

token. If ν(`) is highly (positively or negatively)
correlated with s(`), then the answer to question ¬

is yes. To answer question ­ involves designing
ν-based strategies that select a subset of layers to
use in transfer learning approaches.

In this section, we introduce our task-specialty
metric ν(`) (section 3.1) along with a few strategies
for selecting layers (section 3.2). In section 4, we
will empirically demonstrate the effectiveness of
our proposed metric and strategies.



3.1 Hidden State Variability Ratio
For a given task, we define our task-specialty

metric ν(1), . . . , ν(L) based on the variability of
the hidden state vectors that the PLM produces by
embedding the training input sequences {xn}Nn=1.
We use hypothetical data to illustrate our intuition
in Figure 1: after grouped based on the target labels
yn, the variability of the hidden states within the
same group (dots of same color) measures the dif-
ficulty of separating them, while the variability of
the mean states (stars of different colors) quantifies
how easy it is to tell the different groups apart.

Technically, for each layer `, we first define the
sequence-level hidden state h

(`)
n for each input xn

to be the average of the hidden states of all the
(non-CLS) tokens h

(`)
n

def
= 1

T

∑T
t=1 h

(`)
n,t. These

sequence-level states correspond to the dots in Fig-
ure 1. Then we group all the h

(`)
n based on the

target labels yn: G(`)y
def
= {h(`)

n : yn = y}. The
mean vector of each group is defined as h̄

(`)
y

def
=

1

|G(`)
y |

∑
h∈G(`)

y
h and they correspond to the stars

in Figure 1. The mean vector between classes is
defined as h̄

(`) def
= 1
|Y|
∑

y∈Y h̄
(`)
y . Then the within-

group variability Σ
(`)
w and between-group variabil-

ity Σ
(`)
b are defined using the sequence-level states

and mean states:

Σ
(`)
w

def
= 1
|Y|

∑
y∈Y

1

|G(`)
y |

∑
h∈G(`)

y

(h− h̄
(`)
y )(h− h̄

(`)
y )>

Σ
(`)
b

def
= 1
|Y|

∑
y∈Y

(h̄
(`)
y − h̄

(`)
)(h̄

(`)
y − h̄

(`)
)>

Both Σ
(`)
w and Σ

(`)
b are a lot like covariance matri-

ces since they measure the deviation from the mean
vectors. Finally, we define our task-specialty met-
ric to be the within-group variability Σ

(`)
w scaled

and rotated by the pseudo-inverse of between-class
variability Σ

(`)
b

ν(`)
def
= 1
|Y|trace

(
Σ

(`)
w Σ

(`)†
b

)
(3)

The pseudo-inverse in equation (3) is why we use
the average state as our sequence-level representa-
tion: averaging reduces the noise in the state vec-
tors and thus leads to stable computation of ν(`).

We believe that the layers with small ν(`) are
likely to do better than those with large ν(`) when
transferred to the downstream task. Our belief
stems from two key insights.

Remark-I: neural collapse. Our proposed metric
is mainly inspired by the neural collapse (NC) phe-
nomenon: when training a deep neural model in
classifying images, one can see that the top-layer
representations of the images with the same label
form an extremely tight cluster as training con-
verges. Extensive theoretical and empirical studies
show that a lower within-class variability can in-
dicate a better generalization (Papyan et al., 2020;
Hui et al., 2022; Galanti et al., 2022). Thus we
examine the variability of the layer-wise represen-
tations of the linguistic sequences and hope that it
can measure the task-specialty of each layer of the
given PLM. Our metric is slightly different from
the widely accepted neural collapse metric; please
see Appendix A.1 for a detailed discussion.
Remark-II: signal-to-noise ratio. In multivariate
statistics (Anderson, 1973), trace

(
ΣwΣ†b

)
is able

to measure the inverse signal-to-noise ratio for clas-
sification problems and thus a lower value indicates
a lower chance of misclassification. Intuitively, the
between-class variability Σb is the signal which
one can use to tell different clusters apart while the
within-class variability Σw is the noise that makes
the clusters overlapped and thus the separation dif-
ficult; see Figure 1 for examples.
Remark-III: linear discriminant analysis. A
low ν implies that it is easy to correctly clas-
sify the data with linear discriminant analysis
(LDA) (Hastie et al., 2009). Technically, LDA
assumes that the data of each class is Gaussian-
distributed and it classifies a new data point h by
checking how close it is to each mean vector h̄y

scaled by the covariance matrix Σ which is typ-
ically shared across classes. Though our metric
does not make the Gaussian assumption, a low ν
suggests that the class means h̄y are far from each
other relative to the within-class variations Σw,
meaning that the decision boundary of LDA would
tend to be sharp. Actually, our Σw is an estimate
to the Gaussian covariance matrix Σ of LDA.

3.2 Layer-Selecting Strategies
Suppose that our metric ν can indeed measure

the task-specialty of each layer. Then it is natural to
investigate how the knowledge of layer-wise task-
specialty can be leveraged to improve the transfer
learning methods; that is what the question ­ in
section 1 is concerned with. Recall from section 2
that the major paradigms of transfer learning use
all the layers of the given PLM by default. We
propose to select a subset of the layers based on



Classification head

…[CLS] x1 x2 xT

Layer 1

Layer 3

Layer 5

Layer 2

Layer 4

(a) (2, 3, 5)

Classification head

…[CLS] x1 x2

Layer 1

Layer 3

xT

Layer 5

Layer 2

Layer 4

(b) (1, 3, 3)

Classification head

…[CLS] x1 x2

Layer 1

Layer 3

xT

Layer 5

Layer 2

Layer 4

(c) (2, 3, 3)

Classification head

…[CLS] x1 x2 xT

Layer 1

Layer 3

Layer 5

Layer 2

Layer 4

(d) (4, 5, 5)

Figure 2: We present our strategies with a toy model of L = 5 layers and `∗ = 3. The green layers will be tuned
(e.g. fine-tuned or adapter-tuned) during the task-specific training while the grey layers are not. The white layers
are dropped from the tuning and inference procedures, thus further reducing the computation and memory cost.

the their task-specialty which will benefit all the
paradigms of transfer learning: they may be able to
only use the selected layers yet still achieve strong
performance. Only using the selected layers will
result in significant reduction of computation cost:
• In fine-tuning, only the parameters of the selected

layers will be updated.
• In adapter-tuning, adapters are only added to the

selected layers but not all the layers.
• In prefix-tuning, we “deep-perturb” fewer layers.
A smaller number of task-specific parameters
means not only less training cost but also less stor-
age cost and less inference cost.
Strategy-I: `∗-down. We use `∗ to denote the
layer which achieves the best task-specialty: i.e.,
`∗

def
= argmin` ν

(`). Our first strategy is motivated
by the following intuition: if layer `∗ has already
been well-specialized in the given task, then it may
suffice to just mildly tune it along with a few layers
below it. Meanwhile, we may keep the classifi-
cation head on the top layer L or move it to the
best-specialized layer `∗: the former still utilizes
the higher layers in training and inference; the latter
does not and thus will result in even less computa-
tion and memory cost.

Technically, we use (`bottom, `top, `head) to denote
the strategy of selecting the layers `bottom, `bottom +
1, . . . , `top and connect the classification head to
the layer `head. Then all the instances of our
first strategy can be denoted as (`bottom, `

∗, L) or
(`bottom, `

∗, `∗) with appropriately chosen `bottom.
Figures 2a–2c illustrate a few specific instances of
our `∗-down strategy.
Strategy-II: `∗-up. Alternative to the `∗-down
strategy, our second strategy is to select the layers
above the best-specialized layer `∗ and we call it `∗-
up strategy. Intuitively, if layer `∗ is already well-
specialized in the given task, then what we need is
perhaps just a powerful classification head. That
is, we can regard the higher layers `∗ + 1, . . . , L
along with the original classification head f as a

new “deep” classification head and then tune it to
better utilize the layer `∗ representations.

In principle, all the instances of our second
strategy can be denoted as (`∗ + 1, `top, `top) or
(`∗ + 1, `top, L) since we may select the layers up
through `top ≤ L and move the classification head
f to layer `top. Figure 2d shows an instance of our
`∗-up strategy.

Note that our (`bottom, `top, `head) notation can
apply to the conventional layer-selecting strategies
as well. For example, (1, L, L) denotes the naive
option of tuning all the layers of the given PLM;
(L − 2, L, L) denotes a baseline method of only
selecting the top three layers.

4 Experiments
We evaluated the effectiveness of our task-

specialty metric along with our layer-selecting
strategies through extensive experiments on the six
classification tasks of the GLUE benchmark (Wang
et al., 2019). The tasks are: CoLA, MNLI, MRPC,
QNLI, QQP, and SST-2.All of them are sequence-
level classification tasks related to natural language
understanding, thus being very different from how
language models are pretrained.

We chose the widely accepted RoBERTa
model (Liu et al., 2019b) to be our PLM and used
the pretrained roberta-large instance (355M pa-
rameters) downloaded from HuggingFace (Wolf
et al., 2020). Our experiments are mainly con-
ducted with this model. We also experimented with
DeBERTa (He et al., 2020) to investigate whether
our methods generalize across models:1 those re-
sults are in Appendix C.2 and are similar to the
RoBERTa results. Prior work (Mosbach et al.,
2020a) found that fine-tuning RoBERTa on GLUE
could be unstable, so we ran each of our exper-
iments with five random seeds and reported the
means and standard errors. Experiment details (e.g.,

1Bowman (2022) advocate that it is important to experi-
ment with more than one pretrained models before drawing
any general conclusions about “pretrained language models”.



0 10 20
Output layer

5

10

15

0.2

0.3

0.4

0.5

(a) CoLA

0 10 20
Output layer

20

40

60

0.55

0.60

0.65

(b) MNLI

0 10 20
Output layer

3

4

5

6

0.84

0.86

(c) MRPC

0 10 20
Output layer

2

4

6

8

10

0.70

0.75

0.80

(d) QNLI

0 10 20
Output layer

2

3

4

0.750

0.775

0.800

0.825

(e) QQP

0 10 20
Output layer

1.0

1.5

2.0

2.5

0.85

0.90

(f) SST-2

Figure 3: The task-specialty metric (blue) and prob-
ing performance (red) of each layer of a pretrained
RoBERTa model. Each figure is a GLUE task.

hyperparameters) can be found in Appendix B.
Our code is implemented in PyTorch (Paszke

et al., 2017) and heavily relies on HuggingFace. It
will be released after the paper is published. Imple-
mentation details can be found in Appendix B.2.

4.1 Answer to Question ¬: Hidden State
Variability Ratio Measures
Task-Specialty

For each task, we computed the task-specialty
ν(1), . . . , ν(24) (defined in section 3.1) for all the 24
layers. They are plotted as blue curves in Figure 3:
as we can see, the middle layers (10 ≤ ` ≤ 15)
tend to have the lowest ν on most tasks.

Then we probed the pretrained RoBERTa: for
each layer `, we trained a classification head (see
section 2) that reads the hidden state h

(`)
n and eval-

uated it on the held-out development set. The prob-
ing performance is plotted as red curves in Figure 3:
as we can see, the middle layers (10 ≤ ` ≤ 15)
tend to achieve the highest scores.

How much is the probing performance correlated
with the task-specialty metric ν? To answer that
question, we regressed the probing performance on
ν and found that they are highly correlated. All
the slope coefficients are negative, meaning that a
low ν predicts a high score. All the R2 are high,
meaning that a large fraction of the probing perfor-
mance variation can be explained by the variation
in the task-specialty score. Remarkably,R2 = 0.97

on QQP. Detailed results (e.g., fitted lines) are in
Figure 11 of Appendix C.3.

This set of experiments answers our question ¬

(section 1): yes, we can measure the task-specialty
of each layer of a given PLM on a given task and
our metric ν doesn’t require task-specific tuning.

Furthermore, we fully fine-tuned a RoBERTa on
each task and obtained the ν and probing perfor-
mance of the fine-tuned models. The results are
presented in Figures 12 and 13 of Appendix B.4.
After full fine-tuning, strong correlation between
the probing performance and the task-specialty ν
is still observed, but now higher layers are ob-
served to have lower ν and stronger probing perfor-
mance. That is because the parameters of higher
layers have received stronger training signals back-
propagated from the classification heads, which
aim to specialize the full model on the tasks.

4.2 Answer to Question ­: Task-Specialty
Helps Layer Selection

As discussed in section 3.2, our task-specialty-
based layer-selecting strategies are supposed to
help improve the computation efficiency of transfer
learning and they are compatible with all the major
paradigms of transfer learning. We evaluated our
strategies by pairing them with the widely adopted
fine-tuning and adapter-tuning methods. In this
section, we show and discuss our empirical results.
Layer selection for fine-tuning. For each task,
we experimented with our `∗-down and `∗-up strate-
gies. The best-specialized layers `∗ are those with
the lowest task-specialty ν(`). They are

CoLA MNLI MRPC QNLI QQP SST-2
`∗ 18 14 14 13 14 16

Our experiment results are shown in Figure 4.
For the `∗-down strategy, we experimented with
(`bottom, `

∗, `head) where `bottom ∈ {1, `∗ − 2, `∗ −
1, `∗} and `head ∈ {`∗, L}. They are plotted as blue
dots. For the `∗-up strategy, we experimented with
(`∗ + 1, L, L) and they are shown as green dots.
For a comparison, we also experimented with the
conventionally adopted baseline strategies (1, L, L)
and (`bottom, L, L) with `bottom ∈ {L−2, L−1, L}.
They are red dots. The actual performance scores
of the dots along with standard errors are in Table 6
of Appendix C.1.

As shown in Figure 4, when we are constrained
by a budget of tuning only ≤ 3 layers, our strate-
gies can almost always lead to significantly higher
performances than the baseline strategies. More-



(a) CoLA (b) MNLI

(c) MRPC (d) QNLI

(e) QQP (f) SST-2

Figure 4: Task performance vs. the number of selected
layers for fine-tuning. The annotation of each dot is its
strategy identifier (`bottom, `top, `head).

over, the (`bottom, `
∗, L) strategies consistently out-

perform the (`bottom, `
∗, `∗) strategies across all the

tasks. It means that the higher layers `∗ + 1, . . . , L
are still very useful for performing well on the
given task even if their parameters are not updated:
they are perhaps able to help shape the training
signals back-propagated through the tuned layers.

Furthermore, the performance of only tuning
the selected layers is often close to that of full
fine-tuning. Remarkably, on QQP, our (1, `∗, `∗)
strategy even matches the performance of full fine-
tuning yet only uses the bottom 14 layers; that is, it
reduces the computation and storage cost by more
than 40%. Detailed discussion about wall-clock
time saving can be found in Appendix C.1.

Because most `∗ are in the middle of the PLM,
we experimented another baseline of directly us-
ing the middle layer `mid = 13 for the 24-layer
RoBERTa-large. This baseline is only implemented
on CoLA and SST-2 because `∗ of other tasks is
already the same as or very close to `mid. We found
that tuning around layer `∗ always outperforms tun-
ing around `mid although the improvement is not
large. Result details are in Table 8 of Appendix C.1.

Layer selection for adapter-tuning. For adapter-
tuning, we implemented the earliest adapter archi-
tecture designed by Houlsby et al. (2019). We
experimented with the same set of our strategies
and baseline strategies as in the fine-tuning experi-

(a) CoLA (b) MNLI

(c) MRPC (d) QNLI

(e) QQP (f) SST-2

Figure 5: Task performance vs. the number of selected
layers for adapter-tuning. The annotation of each dot is
its strategy identifier (`bottom, `top, `head).

ments. The results are plotted in Figure 5. Detailed
numbers including standard errors are listed in Ta-
ble 7 in Appendix C.1.

Like for fine-tuning, in most cases, our strategies
are significantly better than the baseline strategies
under the budget of tuning only ≤ 3 layers. The
(`bottom, `

∗, L) strategies also tend to outperform
the (`bottom, `

∗, `∗) strategies.

What’s impressive is that the performance of
only adapter-tuning the selected layers is often
comparable to that of full adapter-tuning. Surpris-
ingly, on MNLI and QNLI, our (`∗ − 2, `∗, L) and
(`∗ − 1, `∗, L) strategies match the full adapter-
tuning but only need 12% and 8% of the trainable
parameters as full adapter-tuning respectively.

We also implemented the middle layer baseline
for adapter-tuning on CoLA and SST-2. The results
are listed in Table 9 of Appendix C.1. In most
cases, `∗ outperforms `mid with the same number
of adapted layers.

Interestingly, Houlsby et al. (2019) also found
that not every layer in the PLM is equally impor-
tant for adapter-tuning. For example, they experi-
mented with a 12-layer BERT model and found that
ablating the layer-7 adapters will lead to a much
larger performance drop than ablating those of the
top three layers on the CoLA task.



4.3 Is Our Metric the Only Option?
In this section, we will discuss a few potential

alternatives to our proposed task-specialty metric
ν. The introduction of the alternatives will be brief
and only focused on their definitions and intuitions;
more details can be found in Appendix C.7.

Task ρ(ν, s) ρ(CCA, s) ρ(%, s)
CoLA -0.901 0.977 -0.914
MNLI -0.885 0.977 -0.493
MRPC -0.874 0.934 -0.593
QNLI -0.915 0.988 -0.514
QQP -0.984 0.989 -0.723
SST-2 -0.913 0.986 -0.798

Table 1: Correlations between different metric (our ν,
CCA, effective rank) and probing performance s

Canonical correlation analysis. A potential al-
ternative to our proposed metric is the canoni-
cal correlation between the hidden states h

(`)
n and

the class labels yn. Canonical correlation anal-
ysis (CCA) involves learning a series of projec-
tion parameters (v1,w1), . . . , (vJ ,wJ) such that
each (vj ,wj) maximizes the correlation between
v>j h

(`)
n and w>j yn under certain constraints: yn is

a one-hot vector with its ynth entry being one.
Numerical Rank. Another potential alternative
is the rank-based metric proposed by Zhou et al.
(2022). It is also inspired by the neural collapse
phenomenon. The intuition is: if the sequence-level
representations h

(`)
n of the same G(`)y exhibit a low

variability, then the matrix H
(`)
y = [. . .h

(`)
n . . .]

formed by the vectors in G(`)y will have a low rank
since its columns will be similar. The rank of H

(`)
y

can be estimated by %(`)y
def
=
‖H(`)

y ‖2∗
‖H(`)

y ‖2F
where ‖‖∗ is

the nuclear norm (i.e., the sum of singular values)
and ‖‖F is the Frobenius norm. The rank-based
metric is the average over y: %(`) def

= 1
|Y|
∑

y∈Y %
(`)
y .

The correlation between %(`) and the probing per-
formance is presented in Table 1.
Analysis. As we can see in Table 1, our variability-
based metric ν and CCA score both exhibit a high
correlation (above 0.85) with the probing perfor-
mance. The correlation of CCA is moderately bet-
ter than ours and it is higher than 0.9 on all the
tasks. However, CCA optimization is dependent
on the regularization terms (see Appendix C.7) and
thus requires cross-validation to choose the right set
of hyperparameters. This makes it more involved
to compute than the proposed variability metric.
Technically, CCA requires a “training procedure”
to fit a set of parameters (vj and wj) though the

computation of that part is as light as calculating
our metric. Both CCA and our metric are scale
invariant. Overall, the rank-based metric % has
a lower correlation. That is because it only con-
siders the within-group properties but ignores the
between-group properties.
4.4 Ablation Studies and Analysis
Averaged state vs. CLS state. The ν that we have
reported so far are all computed using the average
hidden state of each xn as defined in section 3.1.
We also experimented with the CLS token hidden
states—i.e., h

(`)
n

def
= h

(`)
n,0—and found that the com-

putation of ν became much less stable: e.g., on
SST-2, the metrics ν(`) of the pretrained RoBERTa
are below 50 for most of the layers but can jump
above 500 for a couple of layers. Intuitively, one
would like to trust a ν(`) curve that is at least lo-
cally smooth. Technically, local smoothness means
a small local second-order derivative, which can
be estimated by finite differences. Therefore, we
measure the local smoothness of a ν(`) curve by
the following quantity ζ

ζ
def
=

L−2∑
`=1

(ν(`+2) − 2ν(`+1) + ν(`))2

The results2 are presented in Table 2. As we can

Task ζ with averaged state ζ with CLS state
CoLA 0.950 0.949
MNLI 1.347 88.162
MRPC 1.994 33.038
QNLI 3.256 13.566
QQP 1.640 7.629
SST-2 3.604 58.040

Table 2: Overall local smoothness ζ.

see, the ζ computed using the CLS token states
is dramatically larger than that of using the aver-
aged states on all the tasks except CoLA. It means
that using the averaged states will give us a more
trustable ν(`) curve.Thus, we used the average hid-
den states throughout our experiments; we made
this choice before seeing any task performance.

The actual ν(`) curves computed using the CLS
states are presented in Figure 14 of Appendix C.5.
Robustness to data imbalance. The datasets of
GLUE tasks are almost perfectly balanced. So
it remains a question whether our proposed task-

2We normalized the ν(`) values before computing ζ so that
the ν(`) and ζ are more comparable across different choices
of the sequence-level representation. Our normalization is:
ν(`) ← ν(`)−ν̄

σ
where ν̄ and σ is the mean and standard

deviation of the original ν(`).



0 10 20
Output layer

0.5

1.0

1.5

2.0

2.5 p=0.5
p=0.25
p=0.1
p=0.05

(a) ν curves

0.05 0.1 0.25 0.5
p

10

15

20

25

0.825

0.850

0.875

0.900

(b) ζ (blue) and |ρ| (red)
Figure 6: Results of data-imbalanced experiments on
SST-2.

0 10 20
Output layer

1

2

N=40000
N=20000
N=5000
N=200

(a) ν curves

200 5000 20000 40000
N

25

50

75

100

0.5

0.6

0.7

0.8

0.9

(b) ζ (blue) and |ρ| (red)

Figure 7: Results of data-scarce experiments on SST-2.

specialty ν is still effective when the data is not im-
balanced. To answer this question, we synthesized
a series of data-imbalanced experiments on SST-2.
In each experiment, we randomly sampled N =
20000 training examples with a portion p from
the negative class where p ∈ {0.5, 0.25, 0.1, 0.05}.
We did the same analysis on MNLI; see results in
Appendix C.6.

For each experiment, we plot the ν(`) curve in
Figure 6a. We also computed the local smoothness
score ζ and the absolute value of the correlation
ρ(ν, s) (defined in section 4.3) and plot them in
Figure 6b. Interestingly, the ζ in the case of p =
0.25 is as low as that of p = 0.5, though it becomes
much larger when the data is extremely imbalanced
(e.g., p < 0.1). Moreover, the ρ(ν, s) is still above
0.85 even when p = 0.1. Those findings mean that
our task-specialty metric is reasonably robust to
data imbalance. More details are in Appendix C.6.
Robustness to data scarcity. We also examined
the robustness of our metric to data scarcity. On
SST-2, we conducted a series of experiments
with varying number of training samples: N ∈
40000, 20000, 5000, 200. For each experiment, we
made the sampled dataset label-balanced. See the
results on MNLI in Appendix C.6.

Like in the data-imbalanced experiments, we
plot ν and ζ and |ρ| in Figure 7. As we can see, for
N ≥ 5000, the ν curves almost perfectly overlap
and the ζ and |ρ| only slightly change with N . It
means that the ν values are trustable as long as
they are computed using thousands of examples.
In the extremely data-scarce case of N = 200, the
ν curve becomes not trustable: after all, it will be

extremely difficult to estimate Σw and Σb with so
few samples. However, even in the case of N =
200, the middle layers tend to have the lowest ν(`)

which agree with the data-adequate cases. More
details are in Appendix C.6.

5 Related Work
Analysis of PLMs. Representations from PLMs
have been widely studied using probing methods.3

There is evidence showing that pre-trained fea-
tures from intermediate layers are more transfer-
able (Tenney et al., 2019; Rogers et al., 2020). Ad-
ditionally, Voita et al. (2019a) show that masked
language modelling objective introduces an auto-
encoder like structure in the PLM, meaning the
behaviour of the top most layers is similar to the
bottom layers. Studies have also shown that the
effects of fine-tuning are non-uniformly spread
across different layers (Peters et al., 2019; Mer-
chant et al., 2020; Liu et al., 2019a; Phang et al.,
2021). Those findings challenge the default choice
of tuning the entire PLM for adapting it to down-
stream tasks. While probing tools have been used
to study task-specific layer importance (Tamkin
et al., 2020; Mosbach et al., 2020b), the probing
paradigm is parametric, hard to interpret, and is
known to be unreliable (Ravichander et al., 2020;
Belinkov, 2022; Hewitt and Liang, 2019; Voita and
Titov, 2020; Pimentel et al., 2020). Instead, we
propose to measure the layer-wise task-specialty of
PLMs using a non-parametric tool that quantifies
the task-specific variability of the hidden features.
PLM-based transfer learning. PLMs are widely
used in the transfer learning setup to improve per-
formance on a variety of downstream tasks. Typ-
ically, a task-specific classification layer is added
on the top of the network and the entire network is
trained to minimize the supervised task loss. Re-
cently there has been growing interest in parameter-
efficient alternatives to this approach. A subset
of these methods add a few new trainable param-
eters to the PLM while the pre-trained weights
are frozen and are thus kept consistent across
tasks (Houlsby et al., 2019; Guo et al., 2020; Li and
Liang, 2021). Another set of methods either repa-
rameterizes PLMs (Hu et al., 2022) or chooses only
a subset of the PLM parameters (Voita et al., 2019b;
Sajjad et al., 2020; Gordon et al., 2020; Zaken et al.,

3In this paper, we focus on the models that are pretrained
only with the language modeling objective. Other pretraining
objectives such as those of Sun et al. (2019); Wang et al.
(2021); Raffel et al. (2020) are out of our current scope.



2021), thus reducing the number of trainable pa-
rameters for transfer learning. In particular, the
“early exit” methods (Xin et al., 2020, 2021; Zhou
et al., 2020) allow samples to pass through part of
PLM if the prediction from a middle layer is trusted
by the off-ramp following that layer. This method
can reduce inference cost but increase training cost
because it adds a classification head to each hidden
layer. Our technique can reduce both training and
inference cost by tuning fewer layers and moving
classification head to an intermediate layer.

In this work we leverage our proposed metric of
layer-wise task-specificity to make an informed de-
cision to retain/drop and tune/freeze layers on the
downstream task. There has been work studying
the effect of dropping PLM layers (Sajjad et al.,
2020; Phang et al., 2021; Tamkin et al., 2020)
but their decision is driven by the performance
on the downstream task itself and thus every new
task will require a slew of ablation studies to find
the applicability of each layer. Whereas, our task-
specificity measure is completely parameter-free
and is also agnostic to the specific transfer learn-
ing approach (fine-tuning, adapter-tuning, prefix-
tuning) and thus complements the existing methods
on parameter-efficient approaches (He et al., 2022).

Neural collapse. Our task-specialty metric ν is in-
spired by the neural collapse phenomenon. A surg-
ing line of work has been demystifying the training,
generalization, and transferability of deep networks
through NC (Kothapalli et al., 2022). For train-
ing, recent works showed that NC happens for a
variety of loss functions such as cross-entropy (Pa-
pyan et al., 2020; Zhu et al., 2021; Fang et al.,
2021; Ji et al., 2022), mean-squared error (Mixon
et al., 2020; Han et al., 2022; Zhou et al., 2022;
Tirer and Bruna, 2022), and supervised contrastive
loss (Graf et al., 2021). For generalization, Galanti
et al. (2022); Galanti (2022) show that NC also hap-
pens on test data drawn from the same distribution
asymptotically, but not for finite samples (Hui et al.,
2022); Hui et al. (2022); Papyan (2020) showed
that the variability collapse is happening progres-
sively from shallow to deep layers; Ben-Shaul and
Dekel (2022) showed that test performance can be
improved when enforcing variability collapse on
features of intermediate layers; Xie et al. (2022);
Yang et al. (2022) showed that fixing the classi-
fier as simplex ETFs improves test performance on
imbalanced training data and long-tailed classifica-
tion problems. For transferability, Kornblith et al.

(2021) showed that there is an inherent tradeoff
between variability collapse and transfer accuracy.

6 Conclusion
In this paper, we present a comprehensive study

on how to measure the task-specialty of each layer
of a pretrained language model as well as how to
leverage that knowledge to improve transfer learn-
ing. Our proposed layer-wise task-specialty metric
is based on the variability of the hidden states of
each layer given a task-specific corpus. Our metric
is highly correlated with the layer-wise probing per-
formance, though it is cheap to compute and does
not require any training or hyperparameter tuning.
We propose a couple of strategies based on the met-
ric for selecting a subset of the layers to use in the
PLM-based transfer learning methods. Extensive
experiments demonstrate that our strategies can
help fine-tuning and adapter-tuning achieve strong
performance under a greatly reduced computation
budget. Our strategies are complementary to all the
major paradigms of PLM-based transfer learning
and thus they will also benefit other methods.

Acknowledgements
This work was supported by a research gift to

the last author by Adobe Research. We thank the
anonymous EMNLP reviewers and meta-reviewer
for their constructive feedback. We also thank
our colleagues at Toyota Technological Institute
at Chicago as well as Dongji Gao (JHU), Yiyuan
Li (UNC), Hao Tan (Adobe Research), and Zhihui
Zhu (OSU) for helpful discussion.

Limitations
Our main technical limitation is that the pro-

posed metric only measures the task specificity
from the perspective of variability. Thus, it might
underestimate the task specificity if the features has
other kinds of good spacial structures with large
within-class variability. For example, concentric
rings are separable but not linearly separable; see
Fig-3 in Hofmann (2006). Although we have seen
that our proposed ν is a good predictor for the final
performance in all our experiments (section 4), it is
still possible that, for some tasks and some models,
the layers with high ν can actually achieve good
performance. Fortunately, such clustering structure
is rare in the hidden space of deep neural networks.

Another technical limitation is that our proposed
hidden state variability ratio only works for classi-
fication tasks. An open research question is how to
generalize it to regression or generation tasks.



Ethics Statement
In this work, we introduce a simple yet effective

approach for substantially reducing the computa-
tion for transferring PLMs to downstream tasks.
Our proposed strategies obviate the need for tuning
the entire model, which can significantly reduce
the cost of computation and memory. Therefore,
they can help reduce greenhouse gas emissions and
combat climate change.

However, our technical approaches involve pre-
trained language models for which a range of ethi-
cal concerns exist including privacy leakage, data
bias, and vulnerablility to adversarial attacks.

References
Theodore W Anderson. 1973. Asymptotically efficient

estimation of covariance matrices with linear struc-
ture. The Annals of Statistics, 1(1):135–141.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Lin-
guistics.

Ido Ben-Shaul and Shai Dekel. 2022. Nearest class-
center simplification through intermediate layers.
arXiv preprint arXiv:2201.08924.

Samuel Bowman. 2022. The dangers of underclaiming:
Reasons for caution when reporting how nlp systems
fail. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7484–7499.

Tijl De Bie and Bart De Moor. 2003. On the regular-
ization of canonical correlation analysis. Interna-
tional Symposium on Independent Component Anal-
ysis and Blind Signal Separation.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Cong Fang, Hangfeng He, Qi Long, and Weijie J Su.
2021. Exploring deep neural networks via layer-
peeled model: Minority collapse in imbalanced
training. Proceedings of the National Academy of
Sciences (PNAS).

Tomer Galanti. 2022. A note on the implicit bias to-
wards minimal depth of deep neural networks. arXiv
preprint arXiv:2202.09028.

Tomer Galanti, András György, and Marcus Hutter.
2022. On the role of neural collapse in transfer learn-
ing. In Proceedings of the International Conference
on Learning Representations (ICLR).

Mitchell A Gordon, Kevin Duh, and Nicholas Andrews.
2020. Compressing bert: Studying the effects of
weight pruning on transfer learning. arXiv preprint
arXiv:2002.08307.

Florian Graf, Christoph Hofer, Marc Niethammer, and
Roland Kwitt. 2021. Dissecting supervised con-
strastive learning. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML).

Demi Guo, Alexander M Rush, and Yoon Kim. 2020.
Parameter-efficient transfer learning with diff prun-
ing. arXiv preprint arXiv:2012.07463.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. WARP: Word-level Adversar-
ial ReProgramming. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

X.Y. Han, Vardan Papyan, and David L. Donoho. 2022.
Neural collapse under MSE loss: Proximity to and
dynamics on the central path. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Trevor Hastie, Robert Tibshirani, Jerome H Friedman,
and Jerome H Friedman. 2009. The elements of sta-
tistical learning: data mining, inference, and predic-
tion. Springer.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In Proceedings of the International Conference on
Learning Representations (ICLR).

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. DeBERTa: Decoding-
enhanced bert with disentangled attention. arXiv
preprint arXiv:2006.03654.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. arXiv preprint
arXiv:1909.03368.

Martin Hofmann. 2006. Support vector machines-
kernels and the kernel trick. Notes, 26(3):1–16.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In Proceedings of the International Conference on
Machine Learning (ICML).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR).

Like Hui, Mikhail Belkin, and Preetum Nakkiran.
2022. Limitations of neural collapse for understand-
ing generalization in deep learning. arXiv preprint
arXiv:2202.08384.

Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, and
Weijie J Su. 2022. An unconstrained layer-peeled
perspective on neural collapse. In Proceedings of

https://projecteuclid.org/journals/annals-of-statistics/volume-1/issue-1/Asymptotically-Efficient-Estimation-of-Covariance-Matrices-with-Linear-Structure/10.1214/aos/1193342389.full
https://projecteuclid.org/journals/annals-of-statistics/volume-1/issue-1/Asymptotically-Efficient-Estimation-of-Covariance-Matrices-with-Linear-Structure/10.1214/aos/1193342389.full
https://projecteuclid.org/journals/annals-of-statistics/volume-1/issue-1/Asymptotically-Efficient-Estimation-of-Covariance-Matrices-with-Linear-Structure/10.1214/aos/1193342389.full
https://aclanthology.org/2022.cl-1.7.pdf
https://aclanthology.org/2022.cl-1.7.pdf
https://arxiv.org/pdf/2201.08924.pdf
https://arxiv.org/pdf/2201.08924.pdf
https://aclanthology.org/2022.acl-long.516.pdf
https://aclanthology.org/2022.acl-long.516.pdf
https://aclanthology.org/2022.acl-long.516.pdf
https://www.rd.ntt/cs/team_project/icl/signal/ica2003/cdrom/data/0092.pdf
https://www.rd.ntt/cs/team_project/icl/signal/ica2003/cdrom/data/0092.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://www.pnas.org/doi/pdf/10.1073/pnas.2103091118
https://www.pnas.org/doi/pdf/10.1073/pnas.2103091118
https://www.pnas.org/doi/pdf/10.1073/pnas.2103091118
https://arxiv.org/pdf/2202.09028.pdf
https://arxiv.org/pdf/2202.09028.pdf
https://openreview.net/forum?id=SwIp410B6aQ
https://openreview.net/forum?id=SwIp410B6aQ
https://aclanthology.org/2020.repl4nlp-1.18.pdf
https://aclanthology.org/2020.repl4nlp-1.18.pdf
http://proceedings.mlr.press/v139/graf21a/graf21a.pdf
http://proceedings.mlr.press/v139/graf21a/graf21a.pdf
https://arxiv.org/pdf/2012.07463.pdf
https://arxiv.org/pdf/2012.07463.pdf
https://aclanthology.org/2021.acl-long.381
https://aclanthology.org/2021.acl-long.381
https://openreview.net/forum?id=w1UbdvWH_R3
https://openreview.net/forum?id=w1UbdvWH_R3
https://hastie.su.domains/Papers/ESLII.pdf
https://hastie.su.domains/Papers/ESLII.pdf
https://hastie.su.domains/Papers/ESLII.pdf
https://openreview.net/pdf?id=0RDcd5Axok
https://openreview.net/pdf?id=0RDcd5Axok
https://arxiv.org/pdf/2006.03654.pdf
https://arxiv.org/pdf/2006.03654.pdf
https://arxiv.org/pdf/1909.03368.pdf
https://arxiv.org/pdf/1909.03368.pdf
https://cogsys.uni-bamberg.de/teaching/ss07/hs_rc/slides/SVM_Seminarbericht_Hofmann.pdf
https://cogsys.uni-bamberg.de/teaching/ss07/hs_rc/slides/SVM_Seminarbericht_Hofmann.pdf
http://proceedings.mlr.press/v97/houlsby19a/houlsby19a.pdf
https://openreview.net/pdf?id=nZeVKeeFYf9
https://openreview.net/pdf?id=nZeVKeeFYf9
https://arxiv.org/pdf/2202.08384.pdf
https://arxiv.org/pdf/2202.08384.pdf
https://openreview.net/forum?id=WZ3yjh8coDg
https://openreview.net/forum?id=WZ3yjh8coDg


the International Conference on Learning Represen-
tations (ICLR).

Simon Kornblith, Ting Chen, Honglak Lee, and Mo-
hammad Norouzi. 2021. Why do better loss func-
tions lead to less transferable features? In Ad-
vances in Neural Information Processing Systems
(NeurIPS).

Vignesh Kothapalli, Ebrahim Rasromani, and Vasudev
Awatramani. 2022. Neural collapse: A review
on modelling principles and generalization. arXiv
preprint arXiv:2206.04041.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Nelson F Liu, Matt Gardner, Yonatan Belinkov,
Matthew E Peters, and Noah A Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. arXiv preprint arXiv:1903.08855.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Amil Merchant, Elahe Rahimtoroghi, Ellie Pavlick,
and Ian Tenney. 2020. What happens to bert
embeddings during fine-tuning? arXiv preprint
arXiv:2004.14448.

Dustin G Mixon, Hans Parshall, and Jianzong Pi. 2020.
Neural collapse with unconstrained features. arXiv
preprint arXiv:2011.11619.

Marius Mosbach, Maksym Andriushchenko, and Diet-
rich Klakow. 2020a. On the stability of fine-tuning
bert: Misconceptions, explanations, and strong base-
lines. arXiv preprint arXiv:2006.04884.

Marius Mosbach, Anna Khokhlova, Michael A Hed-
derich, and Dietrich Klakow. 2020b. On the inter-
play between fine-tuning and sentence-level probing
for linguistic knowledge in pre-trained transformers.
arXiv preprint arXiv:2010.02616.

Vardan Papyan. 2020. Traces of class/cross-class struc-
ture pervade deep learning spectra. Journal of Ma-
chine Learning Research (JMLR).

Vardan Papyan, XY Han, and David L Donoho. 2020.
Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the
National Academy of Sciences (PNAS).

Ankita Pasad, Ju-Chieh Chou, and Karen Livescu.
2021. Layer-wise analysis of a self-supervised
speech representation model. In IEEE Workshop on
Automatic Speech Recognition and Understanding
(ASRU).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in PyTorch.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers).

Matthew E Peters, Sebastian Ruder, and Noah A Smith.
2019. To tune or not to tune? adapting pretrained
representations to diverse tasks. arXiv preprint
arXiv:1903.05987.

Jason Phang, Haokun Liu, and Samuel R Bowman.
2021. Fine-tuned transformers show clusters of sim-
ilar representations across layers. arXiv preprint
arXiv:2109.08406.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. arXiv preprint arXiv:2004.03061.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research
(JMLR).

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. SVCCA: Singular vec-
tor canonical correlation analysis for deep learning
dynamics and interpretability. In Advances in Neu-
ral Information Processing Systems (NeurIPS).

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2020. Probing the probing paradigm: Does
probing accuracy entail task relevance? arXiv
preprint arXiv:2005.00719.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in bertology: What we know about
how bert works. Transactions of the Association for
Computational Linguistics.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. On the effect of dropping
layers of pre-trained transformer models. arXiv
preprint arXiv:2004.03844.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi
Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao
Tian, and Hua Wu. 2019. Ernie: Enhanced rep-
resentation through knowledge integration. arXiv
preprint arXiv:1904.09223.

https://openreview.net/pdf?id=8twKpG5s8Qh
https://openreview.net/pdf?id=8twKpG5s8Qh
https://arxiv.org/pdf/2206.04041.pdf
https://arxiv.org/pdf/2206.04041.pdf
https://aclanthology.org/2021.acl-long.353.pdf
https://aclanthology.org/2021.acl-long.353.pdf
https://arxiv.org/pdf/1903.08855.pdf
https://arxiv.org/pdf/1903.08855.pdf
https://arxiv.org/pdf/1903.08855.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/2004.14448.pdf
https://arxiv.org/pdf/2004.14448.pdf
https://arxiv.org/pdf/2011.11619.pdf
https://arxiv.org/pdf/2006.04884.pdf
https://arxiv.org/pdf/2006.04884.pdf
https://arxiv.org/pdf/2006.04884.pdf
https://arxiv.org/pdf/2010.02616.pdf
https://arxiv.org/pdf/2010.02616.pdf
https://arxiv.org/pdf/2010.02616.pdf
https://jmlr.org/papers/volume21/20-933/20-933.pdf
https://jmlr.org/papers/volume21/20-933/20-933.pdf
https://www.pnas.org/doi/10.1073/pnas.2015509117
https://www.pnas.org/doi/10.1073/pnas.2015509117
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9688093
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9688093
https://openreview.net/pdf?id=BJJsrmfCZ
https://aclanthology.org/N18-1202.pdf
https://aclanthology.org/N18-1202.pdf
https://arxiv.org/pdf/1903.05987.pdf
https://arxiv.org/pdf/1903.05987.pdf
https://arxiv.org/pdf/2109.08406.pdf
https://arxiv.org/pdf/2109.08406.pdf
https://arxiv.org/pdf/2004.03061.pdf
https://arxiv.org/pdf/2004.03061.pdf
https://aclanthology.org/2021.naacl-main.410
https://aclanthology.org/2021.naacl-main.410
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://jmlr.org/papers/volume21/20-074/20-074.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://arxiv.org/pdf/2005.00719.pdf
https://arxiv.org/pdf/2005.00719.pdf
https://aclanthology.org/2020.tacl-1.54.pdf
https://aclanthology.org/2020.tacl-1.54.pdf
https://arxiv.org/pdf/2004.03844.pdf
https://arxiv.org/pdf/2004.03844.pdf
https://arxiv.org/pdf/1904.09223.pdf
https://arxiv.org/pdf/1904.09223.pdf


Alex Tamkin, Trisha Singh, Davide Giovanardi, and
Noah Goodman. 2020. Investigating transferabil-
ity in pretrained language models. arXiv preprint
arXiv:2004.14975.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950.

Tom Tirer and Joan Bruna. 2022. Extended uncon-
strained features model for exploring deep neural
collapse. arXiv preprint arXiv:2202.08087.

Elena Voita, Rico Sennrich, and Ivan Titov. 2019a. The
bottom-up evolution of representations in the trans-
former: A study with machine translation and lan-
guage modeling objectives. In Proceedings of the
Conference of the North American Chapter of the As-
sociation for Computational Linguistics (NAACL).

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019b. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Elena Voita and Ivan Titov. 2020. Information-
theoretic probing with minimum description length.
arXiv preprint arXiv:2003.12298.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the International Conference on Learn-
ing Representations (ICLR).

Weiran Wang, Raman Arora, Karen Livescu, and Jeff
Bilmes. 2015. On deep multi-view representation
learning. In Proceedings of the International Con-
ference on Machine Learning (ICML).

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics.

Adina Williams, Ryan Cotterell, Lawrence Wolf-
Sonkin, Damián Blasi, and Hanna Wallach. 2019.
Quantifying the semantic core of gender systems. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, et al. 2020. HuggingFace’s transformers: State-
of-the-art natural language processing. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

Liang Xie, Yibo Yang, Deng Cai, Dacheng Tao, and Xi-
aofei He. 2022. Neural collapse inspired attraction-
repulsion-balanced loss for imbalanced learning.
arXiv preprint arXiv:2204.08735.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and
Jimmy Lin. 2020. Deebert: Dynamic early exit-
ing for accelerating bert inference. arXiv preprint
arXiv:2004.12993.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. Berxit: Early exiting for bert with better fine-
tuning and extension to regression. In Proceedings
of the 16th conference of the European chapter of
the association for computational linguistics: Main
Volume.

Yibo Yang, Liang Xie, Shixiang Chen, Xiangtai Li,
Zhouchen Lin, and Dacheng Tao. 2022. Do we re-
ally need a learnable classifier at the end of deep neu-
ral network? arXiv preprint arXiv:2203.09081.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Jinxin Zhou, Xiao Li, Tianyu Ding, Chong You, Qing
Qu, and Zhihui Zhu. 2022. On the optimization land-
scape of neural collapse under mse loss: Global opti-
mality with unconstrained features. In Proceedings
of the International Conference on Machine Learn-
ing (ICML).

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian
McAuley, Ke Xu, and Furu Wei. 2020. Bert loses
patience: Fast and robust inference with early exit.
Advances in Neural Information Processing Systems
(NeurIPS).

Zhihui Zhu, Tianyu Ding, Jinxin Zhou, Xiao Li, Chong
You, Jeremias Sulam, and Qing Qu. 2021. A
geometric analysis of neural collapse with uncon-
strained features. In Advances in Neural Informa-
tion Processing Systems (NeurIPS).

https://arxiv.org/pdf/2004.14975.pdf
https://arxiv.org/pdf/2004.14975.pdf
https://arxiv.org/pdf/1905.05950.pdf
https://arxiv.org/pdf/2202.08087.pdf
https://arxiv.org/pdf/2202.08087.pdf
https://arxiv.org/pdf/2202.08087.pdf
https://arxiv.org/pdf/1909.01380.pdf
https://arxiv.org/pdf/1909.01380.pdf
https://arxiv.org/pdf/1909.01380.pdf
https://arxiv.org/pdf/1909.01380.pdf
https://arxiv.org/pdf/1905.09418.pdf
https://arxiv.org/pdf/1905.09418.pdf
https://arxiv.org/pdf/1905.09418.pdf
https://arxiv.org/pdf/2003.12298.pdf
https://arxiv.org/pdf/2003.12298.pdf
https://aclanthology.org/W18-5446
https://aclanthology.org/W18-5446
http://proceedings.mlr.press/v37/wangb15.pdf
http://proceedings.mlr.press/v37/wangb15.pdf
https://arxiv.org/pdf/1911.06136.pdf
https://arxiv.org/pdf/1911.06136.pdf
https://aclanthology.org/D19-1577.pdf
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/1910.03771.pdf
https://arxiv.org/pdf/2204.08735.pdf
https://arxiv.org/pdf/2204.08735.pdf
https://arxiv.org/pdf/2004.12993.pdf
https://arxiv.org/pdf/2004.12993.pdf
https://aclanthology.org/2021.eacl-main.8.pdf
https://aclanthology.org/2021.eacl-main.8.pdf
https://arxiv.org/pdf/2203.09081.pdf
https://arxiv.org/pdf/2203.09081.pdf
https://arxiv.org/pdf/2203.09081.pdf
https://arxiv.org/pdf/2106.10199.pdf
https://arxiv.org/pdf/2106.10199.pdf
https://arxiv.org/pdf/2106.10199.pdf
https://proceedings.mlr.press/v162/zhou22c/zhou22c.pdf
https://proceedings.mlr.press/v162/zhou22c/zhou22c.pdf
https://proceedings.mlr.press/v162/zhou22c/zhou22c.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d4dd111a4fd973394238aca5c05bebe3-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf


A Metric Details
A.1 Compared to the Neural Collapse Metric

Our task-specialty metric ν defined in section 3.1
is a lot like the neural collapse metric proposed
by Papyan et al. (2020) except that they assume
a balanced dataset. First, they define the h̄

(`) to
be global mean vector: i.e., h̄

(`) def
= 1

N

∑N
n=1 h

(`)
n ,

but we define it to be the mean of the within-group
mean vectors. In data-balanced cases, those two
definitions are equivalent. But when data is imbal-
anced, our version is better since it prevents the
h̄
(`) from being dominated by the group that has

the largest number of samples.
If we strictly follow Papyan et al. (2020), then

our within-class variability Σ
(`)
w and between-class

variability Σ
(`)
b will be defined to be

Σ
(`)
w

def
= 1

N

∑
y∈Y

∑
h∈G(`)

y

(h− h̄
(`)
y )(h− h̄

(`)
y )>

Σ
(`)
b

def
= 1
|Y|

∑
y∈Y

(h̄
(`)
y − h̄

(`)
)(h̄

(`)
y − h̄

(`)
)>

Then the within-class variability Σ
(`)
w will also be

dominated by the group that has the largest number
of samples. However, our current definition in
section 3.1 will scale the

∑
h(h− h̄y)(h− h̄y))>

term by |G(`)y | before taking the outer sum
∑

y, thus
being more robust to data imbalance.

To verify our intuition, we conducted a series
of data-imbalanced experiments on SST-2 like we
did in section 4.4. In each experiment, we ran-
domly sampled N = 20000 training examples
with a portion p from the negative class where
p ∈ {0.5, 0.1, 0.05}. Then we constructed the ν
curves and plot them in Figure 8: solid curves use
our math formulas in section 3.1 while dashed lines
use the formulas that strictly follow Papyan et al.
(2020). As we can see, when data is balanced, the
solid and dashed lines are exactly the same. When
data is imbalanced, the solid lines still stay close
while the dashed lines move apart. This figure il-
lustrates that our formulas are more robust to data
imbalance.

B Experiment Details
For the pretrained language model, we use the

implementation and pretrained weights (roberta-
large with 24 layers and 355M parameters) of Hug-
gingface (Wolf et al., 2020).We follow previous
work (Wang et al., 2019) and use different evalua-
tion methods for different tasks:

0 10 20
Output layer

0.5

1.0

1.5

2.0

2.5 p=0.5
p=0.1
p=0.05

Figure 8: The ν(`) metric computed using our formulas
(solid lines) and the formulas of Papyan et al. (2020)
(dashed lines) in data-imbalanced experiments.

• On CoLA, we use Matthews correlation coeffi-
cient.

• On MRPC and QQP, we use F1 score.

• On the others, we use classification accuracy.

B.1 Training Details
We only tune learning rate for each task and

strategy and specific tuning methods. The number
of epochs is 10 for full-fine-tuning on MNLI and
QQP and 20 for all the other experiments. All
the other hyperparameters are the same for all the
experiments. We use the AdamW optimizer with
a linear learning rate scheduler with 6% warm-up
steps. We set the dropout rate to be 0.1. The weight
decay is 0. The batch size is 8. We evaluate on
the validation set per epoch and report the best
result. We run the experiments on Nvidia RTX
A4000 and GeForce RTX 2080 Ti. We use the
standard splits and the datasets can be downloaded
at https://huggingface.co/datasets/glue.
B.2 Implementation Details

Our code is implemented in PyTorch (Paszke
et al., 2017) and heavily relies on HuggingFace. It
will be released after the paper is published.

For all the experiments that requires a new
task-specific classification head, we relied on the
original implementation in RoBERTa of Hugging-
face (Wolf et al., 2020)4.

For adapter-tuning, we implemented the earli-
est adapter architecture designed by Houlsby et al.
(2019) and relied on the public implementation5

4https://github.com/huggingface/transformers/
blob/main/src/transformers/models/roberta/
modeling_roberta.py

5https://github.com/jxhe/
unify-parameter-efficient-tuning

https://huggingface.co/datasets/glue
https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py
https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py
https://github.com/huggingface/transformers/blob/main/src/transformers/models/roberta/modeling_roberta.py
https://github.com/jxhe/unify-parameter-efficient-tuning
https://github.com/jxhe/unify-parameter-efficient-tuning


provided by He et al. (2022). The bottleneck dimen-
sion is 256 and the adapter uses the same initializa-
tion as BERT (Devlin et al., 2018). The trainable
parameters to update are the parameters of the in-
serted adapters, the layer normalization parameters
in the selected layers, and the parameters of the
classification head.

B.3 Probing Experiments

In section 4, we probed both the pretrained and
fine-tuned models. On each GLUE task, we used a
fixed learning rate in Table 3 to train a classification
head for each layer.

Task Learning rate
CoLA 1e-3
MNLI 1e-3
MRPC 1e-3
QNLI 1e-3
QQP 3e-4
SST-2 3e-3

Table 3: Learning rate for probing experiments.

B.4 Fine-Tuning Experiments

For the fine-tuning experiments in section 4.2,
we only tuned the learning rate. Ideally, we should
have swept a large range of learning rates for all the
strategies and found the best learning rate for each
strategy; but that would require too much computa-
tion cost that we couldn’t afford. Our preliminary
experiments showed that small learning rates tend
to work better when the number of trainable pa-
rameters is large and that large learning rates tend
to work better when the number of trainable pa-
rameters is small. Therefore, we set a different
range of learning rates for each different strategy
based on their numbers of trainable parameters.
The ranges that we used are in Table 4. For each
strategy, on each task, we chose the best learning
rate based on the performance on the held-out val-
idation set. The (`bottom, `

∗, `∗) and (`bottom, `
∗, L)

strategies use the same learning rate as the conven-
tional (`bottom, L, L) strategy.

Strategy Learning rate set
full fine-tuning 1e-6, 5e-6, 8e-6, 1e-5, 2e-5
(`bottom, L, L) 8e-6, 1e-5, 2e-5, 3e-5, 5e-5

(1, `∗, `∗) 5e-6, 1e-5, 5e-5, 1e-4
(`∗ + 1, L, L) 1e-6, 3e-6, 1e-5, 3e-5

Table 4: Learning rate for fine-tuning experiments.

B.5 Adapter-Tuning Experiments

For the adapter-tuning experiments in sec-
tion 4.2, we only tuned the learning rate. For the
same reason as we discussed in Appendix B.4, we
set a different range of learning rates for each dif-
ferent strategy based on their numbers of trainable
parameters. The ranges that we used are in Ta-
ble 5. Again, the (`bottom, `

∗, `∗) and (`bottom, `
∗, L)

strategies use the same learning rate as the conven-
tional (`bottom, L, L) strategy.

Strategy Learning rate set
full adapter 1e-5, 3e-5, 1e-4

(`bottom, L, L) 3e-5, 1e-4, 3e-4
(1, `∗, `∗) 1e-5, 3e-5, 1e-4

(`∗ + 1, L, L) 1e-5, 3e-5, 1e-4

Table 5: Learning rate for adapter-tuning experiments.

C More Results

C.1 Detailed numbers of RoBERTa
experiments

As mentioned in section 4.1 and section 4.2, the
mean values and standard errors of finetuning and
adapter-tuning RoBERTa with different strategies
are listed in Table 6 and Table 7. The standard error
of our strategies’ performance is not significantly
higher or lower than the baselines. So our strategies
can’t help solve the stability issue in fine-tuning
PLMs.

As discussed in section 4.1 and section 4.2, we
also fine-tuned and adapter-tuned PLM with the
middle layer baseline on CoLA and SST-2 and
listed the results in Table 8 and Table 9.

As discussed in section 4.1, we compare the
computation cost and storage cost of some strate-
gies on MNLI in Table 10. When only keeping
`∗ = 14 layers in the PLM, it reduces inference
cost and number of parameters by 40%. In gen-
eral, using our method will reduce the computation
though the actual saving depends on the implemen-
tation and the devices; see Table 10 for details of
our experiments. For example, when using the `∗-
up strategies, the most optimized implementation
would cache the output of the bottom layers and
reuse them, which will further reduce the training
and inference cost. But we haven’t implemented it
yet. So there is still plenty of room to improve the
efficiency over Table 10 guided by our experimen-
tal insights.



Strategy ‖ # of tuned layers CoLA MNLI MRPC QNLI QQP SST-2

mean std mean std mean std mean std mean std mean std

(`∗, `∗, `∗)‖1 0.565 0.0198 0.845 0.0024 0.909 0.0054 0.896 0.0031 0.869 0.0007 0.952 0.0021
(`∗, `∗, L)‖1 0.619 0.0173 0.891 0.0011 0.925 0.0072 0.934 0.0031 0.885 0.0013 0.960 0.0031
(L,L, L)‖1 0.598 0.0201 0.820 0.0021 0.858 0.0086 0.866 0.0041 0.859 0.0008 0.938 0.0032
(`∗ − 1, `∗, `∗)‖2 0.594 0.0176 0.861 0.0018 0.920 0.0091 0.917 0.0019 0.885 0.0011 0.954 0.0057
(`∗ − 1, `∗, L)‖2 0.612 0.0123 0.892 0.0021 0.928 0.0040 0.926 0.0009 0.889 0.0018 0.957 0.0031
(L− 1, L, L)‖2 0.616 0.0070 0.841 0.0007 0.881 0.0052 0.902 0.0014 0.875 0.0012 0.945 0.0034
(`∗ − 2, `∗, `∗)‖3 0.615 0.0166 0.870 0.0018 0.927 0.0074 0.927 0.0020 0.887 0.0006 0.953 0.0027
(`∗ − 2, `∗, L)‖3 0.611 0.0138 0.892 0.0019 0.930 0.0035 0.928 0.0014 0.888 0.0017 0.954 0.0017
(L− 2, L, L)‖3 0.625 0.0068 0.847 0.0042 0.895 0.0049 0.908 0.0014 0.878 0.0019 0.944 0.0025
(`∗ + 1, L, L)‖L− `∗ 0.623 0.0080 0.897 0.0015 0.931 0.0024 0.942 0.0014 0.890 0.0018 0.959 0.0022
(1, `∗, `∗)‖`∗ 0.674 0.0096 0.886 0.0018 0.929 0.0033 0.933 0.0009 0.895 0.0018 0.957 0.0017
(1, L, L)‖L 0.699 0.0131 0.906 0.0007 0.934 0.0017 0.948 0.0014 0.896 0.0017 0.965 0.0012

Table 6: Results of finetuning RoBERTa with different stratigies

Strategy ‖ # of tuned layers CoLA MNLI MRPC QNLI QQP SST-2

mean std mean std mean std mean std mean std mean std

(`∗, `∗, `∗)‖1 0.420 0.0086 0.652 0.0016 0.848 0.0016 0.788 0.0013 0.758 0.0022 0.914 0.0015
(`∗, `∗, L)‖1 0.600 0.0105 0.890 0.0012 0.911 0.0059 0.937 0.0020 0.881 0.0008 0.959 0.0012
(L,L, L)‖1 0.415 0.0069 0.570 0.0054 0.839 0.0013 0.700 0.0048 0.787 0.0045 0.913 0.0031
(`∗ − 1, `∗, `∗)‖2 0.578 0.0047 0.850 0.0015 0.909 0.0024 0.902 0.0016 0.874 0.0011 0.956 0.0019
(`∗ − 1, `∗, L)‖2 0.597 0.0119 0.895 0.0013 0.922 0.0054 0.938 0.0006 0.885 0.0014 0.954 0.0026
(L− 1, L, L)‖2 0.583 0.0194 0.816 0.0029 0.860 0.0035 0.857 0.0022 0.859 0.0025 0.938 0.0047
(`∗ − 2, `∗, `∗)‖3 0.576 0.0168 0.866 0.0007 0.918 0.0058 0.920 0.0004 0.881 0.0009 0.956 0.0029
(`∗ − 2, `∗, L)‖3 0.588 0.0108 0.898 0.0006 0.922 0.0068 0.934 0.0038 0.887 0.0018 0.954 0.0025
(L− 2, L, L)‖3 0.620 0.0229 0.839 0.0019 0.867 0.0069 0.886 0.0020 0.867 0.0030 0.945 0.0037
(`∗ + 1, L, L)‖L− `∗ 0.619 0.0198 0.894 0.0017 0.931 0.0081 0.942 0.0011 0.886 0.0032 0.962 0.0020
(1, `∗, `∗)‖`∗ 0.671 0.0093 0.887 0.0019 0.932 0.0080 0.934 0.0011 0.892 0.0023 0.960 0.0015
(1, L, L)‖L 0.653 0.0510 0.908 0.0017 0.930 0.0015 0.948 0.0021 0.897 0.0010 0.964 0.0006

Table 7: Results of adapter-tuning RoBERTa with different strategies

Strategy ‖ # of tuned layers CoLA SST-2

mean std mean std

(`∗, `∗, `∗)‖1 0.565 0.0198 0.952 0.0021
(`∗, `∗, L)‖1 0.619 0.0173 0.960 0.0031
(`mid, `mid, `mid)‖1 0.578 0.0051 0.936 0.0017
(`mid, `mid, L‖1 0.607 0.0087 0.957 0.0043
(`∗ − 1, `∗, `∗)‖2 0.594 0.0176 0.954 0.0057
(`∗ − 1, `∗, L)‖2 0.612 0.0123 0.957 0.0031
(`mid − 1, `mid, `mid)‖2 0.599 0.0075 0.948 0.0024
(`mid − 1, `mid, L)‖2 0.611 0.0193 0.953 0.0014
(`∗ − 2, `∗, `∗)‖3 0.615 0.0166 0.953 0.0027
(`∗ − 2, `∗, L)‖3 0.611 0.0138 0.954 0.0017
(`mid − 2, `mid, `mid)‖3 0.612 0.0122 0.949 0.0010
(`mid − 2, `mid, L)‖3 0.611 0.0170 0.952 0.0021

Table 8: Comparison of fine-tuning with middle layer
baseline on CoLA and SST-2

Strategy ‖ # of adapted layers CoLA SST-2

mean std mean std

(`∗, `∗, `∗)‖1 0.420 0.0086 0.914 0.0015
(`∗, `∗, L)‖1 0.600 0.0105 0.959 0.0012
(`mid, `mid, `mid)‖1 0.383 0.0170 0.884 0.0035
(`mid, `mid, L‖1 0.594 0.0028 0.956 0.0022
(`∗ − 1, `∗, `∗)‖2 0.578 0.0047 0.956 0.0019
(`∗ − 1, `∗, L)‖2 0.597 0.0119 0.954 0.0026
(`mid − 1, `mid, `mid)‖2 0.586 0.0095 0.946 0.0026
(`mid − 1, `mid, L)‖2 0.607 0.0108 0.955 0.0040
(`∗ − 2, `∗, `∗)‖3 0.576 0.0168 0.956 0.0029
(`∗ − 2, `∗, L)‖3 0.588 0.0108 0.954 0.0025
(`mid − 2, `mid, `mid)‖3 0.601 0.0061 0.950 0.0045
(`mid − 2, `mid, L)‖3 0.621 0.0085 0.957 0.0019

Table 9: Comparison of adapter-tuning with middle
layer baseline on CoLA and SST-2

C.2 Experiments on DeBERTa
As discussed in section 4, we also conducted

experiements on DeBERTa-base.
We computed the task-specialty metric ν for all

the 12 layers and plotted with each layer’s prob-
ing performance in Figure 9 as we did in Figure 3.
For all the tasks except SST-2, we can observe
the same pattern as in RoBERTa: the layers with
low ν tend to have high probing performance. On
SST-2, the task-specialty metric isn’t negatively
correlated with the probing performance. This
might be an example mentioned in section 6 that
the layers with high ν can also achieve good per-
formance. Because the best layer `∗ selected by
the metric is already the last layer for SST-2, we
implemented our strategies (`∗, `∗, `∗), (`∗, `∗, L)
on all the tasks except SST-2. We compared them
with baseline (L,L,L) and full fine-tuning to see
whether the metric can help make fine-tuning more
efficiently. The results are plotted in Figure 10
and listed in Table 11. When only fine-tuning 1
layer, our strategy (`∗, `∗, L) always achieves the
best performance and the baseline (L,L,L) is al-
ways the worst. On MRPC, QNLI and QQP, the
performance of (`∗, `∗, L) is even close to the per-
formance of full fine-tuning with fewer than 10%
tuning parameters.



Strategy Training time Inference time Total params Trainable params
full fine-tuning 2h30min 50s 355362819 355362819
(1, `∗, `∗) 1h40min 31s 229400579 177399811
(`∗ + 1, L, L) 1h30min 50s 355362819 127014915

Table 10: Computation cost per epoch for RoBERTa-large fine-tuning experiments on MNLI.

Strategy ‖ # tuned layers CoLA (`∗ = 8) MNLI (`∗ = 10) MRPC (`∗ = 9) QNLI (`∗ = 7) QQP (`∗ = 7)

mean std mean std mean std mean std mean std

(`∗, `∗, `∗)‖1 0.502 0.0137 0.854 0.0008 0.908 0.0083 0.905 0.0023 0.862 0.0004
(`∗, `∗, L)‖1 0.571 0.0111 0.866 0.0027 0.922 0.0065 0.928 0.0011 0.882 0.0014
(L,L, L)‖1 0.484 0.0122 0.849 0.0008 0.900 0.0057 0.899 0.0019 0.862 0.0015
(1, L, L)‖L 0.640 0.0096 0.885 0.0013 0.929 0.0038 0.935 0.0023 0.891 0.0007

Table 11: Results of fine-tuning DeBERTa with different strategies

2 4 6 8 10 12
Output layer

5

10

15

0.2

0.3

0.4

(a) CoLA

2 4 6 8 10 12
Output layer

10

15

20

25

30

0.60

0.65

(b) MNLI

2 4 6 8 10 12
Output layer

2

4

6

0.83

0.84

0.85

0.86

(c) MRPC

2 4 6 8 10 12
Output layer

2

4

6

8

0.725

0.750

0.775

0.800

0.825

(d) QNLI

2 4 6 8 10 12
Output layer

2

3

4

0.78

0.80

0.82

0.84

(e) QQP

2 4 6 8 10 12
Output layer

2.5

3.0

3.5

4.0

0.84

0.86

0.88

0.90

(f) SST-2

Figure 9: The task-specialty metric (blue) and prob-
ing performance (red) of each layer of a pretrained De-
BERTa model. Each figure is a GLUE task.

We also compared with middle layer baseline
on MNLI. The results are listed in Table 12. `mid
works better than `∗ this time.

Strategy ‖ # of tuned layers MNLI

mean std

(`∗, `∗, `∗)‖1 0.854 0.0008
(`∗, `∗, L)‖1 0.866 0.0027
(`mid, `mid, `mid)‖1 0.849 0.0009
(`mid, `mid, L‖1 0.872 0.0022

Table 12: Comparison of fine-tuning DeBERTa-base
with middle layer baseline on MNLI

(a) CoLA (b) MNLI

(c) MRPC (d) QNLI

(e) QQP

Figure 10: Task performance vs. the number of selected
layers for fine-tuning DeBERTa-base. The annotation
of each dot is its strategy identifier (`bottom, `top, `head).

C.3 Task-Specialty vs. Probing Performance
for Pretrained Models

As discussed in section 4.1, we regressed the
probing performance on ν. The regression results
are in Figure 11.
C.4 Task-Specialty vs. Probing Performance

After Full Fine-Tuning
As discussed in section 4.1, we fully fine-tuned

a RoBERTa on each task and obtained the ν and
probing performance of the fine-tuned models. The
results are presented in Figures 12 and 13.
C.5 About Computing Task-Specialty Using

the CLS Token States
As discussed in section 4.4, we computed ν(`)

using the CLS token hidden states and found that



5 10 15

0.2

0.4

y = -2.57e-02 x + 0.538
R2 = 0.811

(a) CoLA

20 40 60

0.50

0.55

0.60

0.65
y = -3.68e-03 x + 0.694
R2 = 0.784

(b) MNLI

3 4 5 6

0.84

0.86

y = -1.06e-02 x + 0.896
R2 = 0.764

(c) MRPC

2 4 6 8 10
0.65

0.70

0.75

0.80
y = -2.05e-02 x + 0.872
R2 = 0.838

(d) QNLI

2 3 4

0.750

0.775

0.800

0.825 y = -3.00e-02 x + 0.871
R2 = 0.968

(e) QQP

1.0 1.5 2.0 2.5
0.80

0.85

0.90
y = -5.98e-02 x + 0.963
R2 = 0.834

(f) SST-2

Figure 11: Regressing the per-layer probing perfor-
mance onto the per-layer task-specialty metric.

the ν curves would become less trustable. The
curves are in Figure 14.

C.6 Robustness to Data Imbalance and Data
Scarcity

As discussed in section 4.4, we conducted a se-
ries of experiments with SST-2 and MNLI to verify
how sensitive our metric is to data imbalance and
data scarcity. For each experiment on SST-2, we
had to decide on two key quantities: the number
of training examples N and the portion p that are
drawn from the negative group. In other words,
we built a dataset {(xn, yn)}Nn=1 by sampling pN
examples from the negative group and (1 − p)N
examples from the positive group. For the data-
imbalanced experiments, we fixed N = 20000
and used p ∈ {0.5, 0.25, 0.1, 0.05}. For the data-
scarce experiments, we fixed p = 0.5 and used
N ∈ {40000, 20000, 5000, 200}.

For MNLI, we need to decide the sam-
ple size of each class because it is a clas-
sification task with three classes. We use
(n0, n1, n2) to denote the sample size of
the three classes. For the data-imbalanced
experiments, (n0, n1, n2) is chosen from
{(10000, 10000, 10000), (6000, 12000, 12000),
(18000, 6000, 6000), (24000, 3000, 3000)}. The
total number is always 30000 to avoid the effect
of data amount. Similarly as in section 4.4, we
plotted ν and ζ and |ρ| in Figure 15. Our metric is

10 20
Output layer

0

5

10

15

0.2

0.4

0.6

(a) CoLA

10 20
Output layer

0

20

40

60

0.6

0.7

0.8

0.9

(b) MNLI

10 20
Output layer

0

2

4

6

0.75

0.80

0.85

0.90

(c) MRPC

10 20
Output layer

0.0

2.5

5.0

7.5

10.0

0.7

0.8

0.9

(d) QNLI

10 20
Output layer

0

1

2

3

4

0.825

0.850

0.875

0.900

0.925

(e) QQP

10 20
Output layer

0.0

0.5

1.0

1.5

2.0

0.80

0.85

0.90

0.95

(f) SST-2

Figure 12: The task-specialty metric (blue) and probing
performance (red) of each layer of a RoBERTa model
finetuned on each task. Each figure is a GLUE task.

robust to data imbalance on MNLI.
For the data-scarce experiments, (n0, n1, n2) is

chosen from {(20000, 20000, 20000), (10000,
10000, 10000), (5000, 5000, 5000), (1250, 1250,
1250), (300, 300, 300)}. The sampled dataset is
always balanced. We plotted ν and ζ and |ρ| in
Figure 16. Our metric has the same trend on MNLI
with more than a few thousand samples. This con-
clusion is consistent with the conclusion on SST-2.

C.7 About Alternatives to Our
Task-Specialty Metric

Canonical correlation analysis. As discussed in
section 4.3, a potential alternative to our proposed
metric is the canonical correlation between the hid-
den states h

(`)
n and the class labels yn. Hidden state

vectors h
(`)
n and one-hot vectors yn can be viewed

as i.i.d. samples from random vectors h(`) and y
respectively, whose relationship can be quantified
by canonical correlation analysis. It maximizes the
correlations between linear projections of paired
samples from these random vectors (or “views"):
v
(`)
1 ,w

(`)
1 = argmaxv,w corr(v>h(`),w>y). The

subsequent directions vj ,wj , maximize the same
correlation subject to each new projection being
uncorrelated with others in the same view for
2 ≤ i ≤ J = min{D, |Y|}, where D is the dimen-
sion of hidden states. The algorithm thus provides



0 5 10 15
0.0

0.2

0.4

0.6
y = -3.55e-02 x + 0.630
R2 = 0.775

(a) CoLA

0 20 40 60
0.4

0.6

0.8
y = -7.54e-03 x + 0.835
R2 = 0.740

(b) MNLI

0 2 4 6

0.75

0.80

0.85

0.90 y = -2.88e-02 x + 0.909
R2 = 0.959

(c) MRPC

0.0 2.5 5.0 7.5 10.0

0.7

0.8

0.9
y = -2.69e-02 x + 0.922
R2 = 0.926

(d) QNLI

0 1 2 3 4

0.825

0.850

0.875

0.900

0.925 y = -2.58e-02 x + 0.920
R2 = 0.985

(e) QQP

0.0 0.5 1.0 1.5 2.0
0.80

0.85

0.90

0.95 y = -8.21e-02 x + 0.947
R2 = 0.813

(f) SST-2

Figure 13: Regressing the per-layer probing perfor-
mance onto the per-layer task-specialty metric for a
RoBERTa model finetuned on each task.

J correlation values. The CCA score is measured
as the average over all but the last correlation. This
is based on the assumption that the last direction
measures noise correlations. This assumption is
confirmed by our empirical observation that the
last correlation values are always close to zero (of
the order 1e-2).

The CCA score are plotted in blue curves and
the probing performance of the pretrained model
are plotted in red curves in Figure 17. They almost
overlap under different y-axes.

In order to ensure computational stability, the
sampled auto-covariance matrices of h(`) and y
are perturbed by small constants, εh and εy, along
the diagonal (De Bie and De Moor, 2003). For
each GLUE task we sample N class-balanced data-
points from the train set. In order to choose the
regularization parameters and to avoid overfitting,
we perform 10-fold cross validation by using eight
of the ten splits to learn the linear projection ma-
trices for different values of εh and εy. We use
one of the two remaining splits as development set
and the other one as test set. The correlation for
the development set is evaluated using the learned
projection matrices and the best performing pair is
then used to evaluate the test set score. We repeat
this procedure thrice for each of the two samples
of N data points. We experiment with different

0 10 20
Output layer

5

10

15

20

(a) CoLA

0 10 20
Output layer

200

300

400

500

(b) MNLI

0 10 20
Output layer

50

100

150

(c) MRPC

0 10 20
Output layer

250

500

750

1000

(d) QNLI

0 10 20
Output layer

10

15

20

25

30

(e) QQP

0 10 20
Output layer

0

500

1000

1500

(f) SST-2

Figure 14: The task-specialty metric computed using
the CLS token hidden states. Each figure is a GLUE
task.

0 10 20
Output layer

0.00

0.25

0.50

0.75

1.00 10000, 10000, 10000
6000, 12000, 12000
18000, 6000, 6000
24000, 3000, 3000

(a) ν curves

0.64 0.95 1.05 1.1
entropy

4

6

8

10

0.86

0.87

0.88

0.89

(b) ζ (blue) and |ρ| (red)
Figure 15: Results of data-imbalanced experiments on
MNLI.

values of N . Some of the previous work, although
using CCA for representation learning, follows the
same scoring procedure to choose the regulariza-
tion parameters and the corresponding projection
matrices (Wang et al., 2015).

CCA has been previously used to measure sim-
ilarity of layer-wise representations within and
across neural network models (Raghu et al., 2017),
and to measure similarity of the layer-wise word-
level representations with off-the-shelf embedding
maps (Pasad et al., 2021). Williams et al. (2019)
use CCA to correlate grammatical gender and lexi-
cal semantics by representing the discrete gender
class as a one-hot vector.

Numerical Rank. As discussed in section 4.3, the
rank-based metric is %(`) def

= 1
|Y|
∑

y∈Y %
(`)
y where

%
(`)
y

def
=
‖H(`)

y ‖2∗
‖H(`)

y ‖2F
. Each %(`)y can be viewed as mea-



0 10 20
Output layer

0.00

0.25

0.50

0.75

1.00 20000, 20000, 20000
10000, 10000, 10000
5000, 5000, 5000
1250, 1250, 1250
300, 300, 300

(a) ν curves

900 3750 15000 60000
N

0

20

40

60

0.4

0.6

0.8

(b) ζ (blue) and |ρ| (red)

Figure 16: Results of data-scarce experiments on
MNLI.

0 10 20
Output layer

0.2

0.3

0.4

0.5

0.6

0.2

0.3

0.4

0.5

(a) CoLA

0 10 20
Output layer

0.2

0.3

0.4

0.5

0.55

0.60

0.65

(b) MNLI

0 10 20
Output layer

0.2

0.3

0.4

0.84

0.86

(c) MRPC

0 10 20
Output layer

0.4

0.5

0.6

0.70

0.75

0.80

(d) QNLI

0 10 20
Output layer

0.50

0.55

0.60

0.65

0.750

0.775

0.800

0.825

(e) QQP

0 10 20
Output layer

0.70

0.75

0.80

0.85

0.90

(f) SST-2

Figure 17: The CCA score (blue) and probing perfor-
mance (red) of each layer of a pretrained RoBERTa
model. Each figure is a GLUE task.

suring the sparsity of the singular values {σi} of
H

(`)
y because %(`)y =

‖σ‖21
‖σ‖22

. It is an approximation

of ‖σ‖0, i.e., the rank of matrix H
(`)
y .

Mutual information. Discrete mutual informa-
tion (MI) gives a measure of mutual dependence
between two discrete random variables. We use
MI dependence between the sentence representa-
tions and the corresponding GLUE task labels as a
measure of layer-wise task specificity. In order to
discretize continuous-valued sentence representa-
tions, we run k-means clustering to obtain discrete
clusters, as in Voita et al. (2019a). This measure
has been previously used to measure the phone
and word content in layer-wise representations of a
pre-trained speech model (Pasad et al., 2021).

In our experiments, we sampled N class-
balanced data-points. We held a tenth of these
samples out and ran the k-means clustering algo-
rithm with C clusters on the sampled data. Then

the categorical ID of each held-out sample is de-
fined to be the ID of the learned cluster that it was
assigned to. However, after extensive tuning, we
still could not obtain any mutual information num-
bers that look reasonably high: actually, all the
numbers were close to zero and they didn’t differ
much. We believe that the difficulty stems from
the fact that learning clusters is unsupervised and
unsupervised learning is known to be difficult. In-
deed, if we just use the class labels yn as the cluster
IDs, we can observe a neat clustering—that is why
our proposed metric ν is effective. However, it
seems extremely difficult to learn that clustering in
an unsupervised fashion.


