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Abstract 

Metasurfaces have been rapidly advancing our command over the many degrees of freedom of 

light within compact, lightweight devices. However, so far, they have mostly been limited to 

manipulating light in free space. Grating couplers provide the opportunity of bridging far-field 

optical radiation and in-plane guided waves, and thus have become fundamental building 

blocks in photonic integrated circuits. However, their operation and degree of light control is 

much more limited than metasurfaces. Metasurfaces integrated on top of guided wave photonic 

systems have been explored to control the scattering of light off-chip with enhanced 

functionalities – namely, point-by-point manipulation of amplitude, phase or polarization. 

However, these efforts have so far been limited to controlling one or two optical degrees of 

freedom at best, and to device configurations much more complex compared to conventional 

grating couplers. Here, we introduce leaky-wave metasurfaces, which are based on symmetry-

broken photonic crystal slabs that support quasi-bound states in the continuum. This platform 

has a compact form factor equivalent to the one of conventional grating couplers, but it 

provides full command over amplitude, phase and polarization (four optical degrees of 

freedom) across large apertures. We present experimental demonstrations of various 
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functionalities for operation at 𝜆 =  1.55 𝜇𝑚  based on leaky-wave metasurfaces, including 

devices for phase and amplitude control at a fixed polarization state, and devices controlling 

all four optical degrees of freedom. Our results merge the fields of guided and free-space optics 

under the umbrella of metasurfaces, exploiting the hybrid nature of quasi-bound states in the 

continuum, for opportunities to advance in disruptive ways imaging, communications, 

augmented reality, quantum optics, LIDAR, and integrated photonic systems.  

Introduction 

A monochromatic optical wavefront in free-space is characterized by four degrees of 

freedom at each point in space, (𝐴, Φ, 𝜓, 𝜒): its amplitude 𝐴, phase Φ, and polarization state, 

with elliptical parameters 𝜓  and 𝜒  representing polarization orientation and ellipticity, 

respectively. Manipulation of these degrees of freedom is among the key goals of 

contemporary photonics research. Metasurfaces [1]-[3] – flat optical devices composed of 

arrays of subwavelength scatterers – have been offering a flexible and powerful platform for 

producing desired wavefronts starting from unpatterned plane waves incident from free 

space, effectively compactifying table-top optical setups into multifunctional thin films [4]. 

Metasurfaces at optical frequencies have been widely used to spatially manipulate phase, but 

have also been shown to manipulate amplitude and phase [5],[6], phase and polarization 

state [7],[8], and recently all four parameters simultaneously [9]-[12] and beyond [13]. 

These concepts can be leveraged to an even larger extent in the radio-frequency (RF) 

spectrum, for which multi-layered fabrication and the large conductivity of metals enable 

exquisite and deeply subwavelength control of electromagnetic radiation [14]-[19]. In 

addition to free-space excitation, RF leaky-wave antennas [20]-[22] have been developed 
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over several decades [23] to produce free-space beams by scattering radiation originating 

from guided modes. Metasurface concepts have recently advanced this field [19],[24]-[27], 

but these approaches are not straightforwardly transferable to optical frequencies. For 

comparison, grating couplers (GCs) in integrated photonics also generate free-space light 

from in-plane guided sources, but are largely limited in controlling the optical degrees of 

freedom (𝐴, Φ, 𝜓, 𝜒) and their spatial profile.  

Recent years have seen a rapidly growing interest in incorporating metasurface 

principles into integrated photonics [28],[29] and, very recently, in generating wavefronts 

from in-plane guided modes [30]-[38]. This capability is of great interest to the broader 

optics community, representing a novel opportunity to control off-chip emission of 

customized free-space wavefronts, while also leveraging on-chip manipulation of light based 

on the commercially maturing field of photonic integrated circuits (PICs). The 

customizability of a metasurface-based replacement for GCs offers exciting opportunities for 

optical communications, augmented reality, quantum optics, and LIDAR. However, so far, the 

presented approaches offer only partial solutions, not capable of fully controlling the 

coupling of guided waves to far-field radiation. At most, two optical degrees of freedom have 

been manipulated at once for a given guided wave, limiting applications to scalar fields (see 

Supplementary Table S.1 for recent progress in this context). 

Additionally, contrary to corrugated structures typically seen in GCs used in 

integrated photonics [Figs. 1(a,b)], the structures proposed so far are composed of a 

waveguiding layer and a metasurface as two separate objects [Figs. 1(c,d)], which hinders 

integrability, scalability, and compactness. In early examples, separated metasurface and GC 

layers were used [39], while in more recent examples the metasurface was placed in the 
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evanescent field of the guided mode to both scatter light and manipulate its phase profile. 

Both metallic [31] and dielectric [34] structures have been explored, introducing either 

optical loss or high-aspect-ratio dielectric structures typical of metasurface approaches. 

Adding such lossy or high-aspect-ratio metasurface layer on top of existing waveguiding 

structures complicates its implementation in comparison to conventional GCs. Additionally, 

so far these efforts have been limited to small surface emission apertures. These factors 

hinder the adoption of this approach in PICs. In contrast, a device configuration featuring the 

compact form factor typical of GCs, and capable of robust, subwavelength control of all four 

degrees of freedom of light (𝐴, Φ, 𝜓, 𝜒) introduces a generalization (and where appropriate, 

replacement) of GCs, advancing existing approaches in both form and function. 
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Figure 1. Out-coupling in integrated photonic devices. (a) Schematic depiction of a typical 
GC based on a fully-etched waveguide grating. (b) Side view showing the functionality of a 
conventional GC, wherein the duty cycle and period may be changed to alter the amplitude 
and outgoing angle. (c) Schematic depiction of a metasurface-on-waveguide (MOW) device, 
here based on a high-index dielectric pillar array on a waveguide layer (blue). (d) Side view 
showing the functionality of a MOW, where the metasurface scatters the evanescent 
component of a guided wave into the far-field, typically limited to controlling two optical 
parameters of the surface emission. (e) Schematic depiction of the leaky-wave metasurface 
(LWM) platform introduced in this work, in which a perturbed (i.e., symmetry-broken) 
subwavelength photonic crystal slab supports a tailored quasi-bound wave controlling off-
chip coupling. (f) Side view showing that the LWM has a compact form equivalent to a GC, 
but more advanced functionality compared to a MOW, offering simultaneous control over all 
four degrees of freedom of light (𝐴, Φ, 𝜓, 𝜒). 
 

 In this work, we introduce a leaky-wave metasurface (LWM) platform, based on 

weakly corrugated, symmetry-broken photonic crystal slabs, which supports a quasi-bound 

wave capable of arbitrarily tailoring the scattered field (𝐴, Φ, 𝜓, 𝜒)  with subwavelength 

resolution [Figs. 1(e,f)]. LWMs inherit the form of GCs, while greatly improving on the 

functionality of metasurface-on-waveguide solutions. We experimentally implement the 

proposed concepts in the near-infrared (near =1.55 m) based on a silicon nitride and 

polymer system, wherein nanostructured polymer zones on an unpatterned silicon nitride 

thin film define both rib waveguides and LWMs. The design principles are rooted in quasi-

bound states in the continuum [40],[41] and diffractive nonlocal metasurfaces [41]-[45], 

enabling a rational design approach with largely independent mapping of four geometric 

parameters to the four optical degrees of freedom. Full-wave simulations are used to create 

a library of meta-units, each one composed of two staggered rows of ellipse dimers. With 

simple corrections based on the propagation of the guided mode, reference to this library 

specifies in a rational way the full geometry of the LWM based on desired spatial profiles of 

amplitude, phase, and polarization of free-space emission. To demonstrate the flexibility of 
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our platform, we realize focused emission of a desired linear polarization (with wavelength-

tuned scanning of the focal spot), a vortex beam generated in concert with a Gaussian 

reference beam, a two-image hologram encoded in the amplitude and phase of a single 

polarization, a four-image hologram encoded in the amplitudes and phases of two 

orthogonal polarizations, and a converging Poincaré beam [46].  

Because our platform is designed based on symmetry breaking principles, it 

exemplifies a universal approach for controlling the leakage of guided waves for a wide range 

of material systems (e.g., metals, dielectrics, 2D materials) and wave phenomena (e.g., RF, 

acoustics, elastics, surface waves). Notably, with simple adjustments our approach is 

compatible with conventional integrated photonic architectures, such as etched waveguides 

and silicon-on-insulator (SOI) wafers. The methods demonstrated herein can therefore be 

readily applied to integrated photonic systems, and open a variety of avenues for future 

research to bridge guided and open systems, ubiquitous across several scientific disciplines.  
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Operating principles and metasurface design 

The key operating principle of our LWM platform is the deliberate perturbation of a guided 

mode supported by a periodic structure with subwavelength pitch (i.e., a bound wave under 

the light line) into a quasi-bound wave (above the light line). As sketched in Fig. 1(f), a 

guided mode incident from a waveguide couples to a bound wave in the subwavelength 

periodic structure, and then leaks to free space due to a period-doubling perturbation [47]. 

For a proof-of-principle, we use the configuration shown in Figs. 2(a,b) based on a rib 

waveguide and a metasurface defined within a thin layer of polymer (𝑛~1.48) atop an 

unpatterned thin film of silicon nitride ( 𝑛~2.0 ) sitting on a silicon dioxide substrate 

( 𝑛~1.44 ) (see Methods for detailed geometrical parameters). The metasurface in its 

unperturbed state [Fig. 2(c)] is a two-dimensional photonic crystal composed of an oblique 

lattice of circular holes with pitches 𝑎𝑥 and 𝑎𝑦; it supports a bound wave traveling in the −𝑦 

direction, whose effective wavelength is approximately 𝜆𝑒𝑓𝑓 ≈ 2𝑎𝑦 . Two independent 

perturbations are applied to the top pair of circular holes [Fig. 2(d), Perturbation 1] and to 

the bottom pair of circular holes [Fig. 2(e), Perturbation 2]. These perturbations double the 

effective lattice pitches to 2𝑎𝑥 and 2𝑎𝑦 and alter the lattice from oblique to rectangular (see 

Supplementary Materials S.2), modifying the first Brillouin zone (FBZ) of the unperturbed 

lattice [Fig. 2(f)] and its band diagram [Fig. 2(g)] into the zone-folded versions shown in 

Figs. 2(h,i). The resulting band structure supports transverse-magnetic (TM) modes near 

𝜆𝑒𝑓𝑓 ≈ 2𝑎𝑦 in the form of a Dirac point at normal incidence, and red and black arrows in Figs. 

2(g,i) track example states before and after the perturbation. These arrows span the Γ point 

of the perturbed band structure, enabling operation anywhere at or near normal to the 

device plane [48]. We note that an undesirable flat band also arises, degenerate with the 
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Dirac point when 𝑎𝑥 = 𝑎𝑦 , which may be blueshifted or redshifted by detuning from this 

condition, if desired (see Supplementary Materials S.3). In this way, the scheme shown in 

Fig. 2 yields a subwavelength lattice that scatters light to free space at or near normal to the 

device plane, a process exclusively controlled by a geometric perturbation: deliberate 

engineering of this symmetry-breaking perturbation determines both if and how the wave 

leaks to free space, pixel by pixel across the LWM aperture. 

 

Figure 2. Perturbative scheme for rationally designed LWMs. (a) Schematic and (b) side 
view of the device geometry. (c-e) Perturbative scheme for simultaneous control of the real 
and imaginary components of the out-of-plane scattered wave. (c) In the unperturbed 
structure, both the real and imaginary components are bound. (d-e) When the top (bottom) 
row of circles is perturbed into ellipses (denoted by black dashed boundaries), the real 
(imaginary) part of the quasi-bound wave is coupled to free space but the imaginary (real) 
part is not. (f,g) FBZ and TM band diagram of the unperturbed structure. (h,i) FBZ and TM 
band diagram of the perturbed structure, supporting a zone-folded Dirac point. Modes 
marked by the arrows in (i) correspond to the those in (g), and red and blue crosses marked 
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in (h) correspond to those in (g). The dotted and dashed lines in (g,i) denote light cones in 
the substrate (glass) and superstrate (air), respectively.  

 

The dual-perturbation scheme sketched in Figs. 2(d,e) enables independent control 

of the real and imaginary parts of the scattered light, which together confer complete 

command over the surface emission: (𝐴, Φ, 𝜓, 𝜒) . Here we choose the fundamental TM 

guided mode [depicted in Fig. 2(b)], which, once coupled into the unperturbed 

subwavelength lattice, is decomposed into its real and imaginary components [Fig. 2(c)]. 

Each of these components of the travelling TM wave (characterized in the 𝑦 direction by 

𝑒−𝑖𝑘𝑦) is a standing wave of either even or odd parity in the 𝑦 direction (i.e., cosine or sine). 

These standing waves abide by selection rules for scattering near the device normal, 

determining which polarization (if any) couples to free space due to the symmetries broken 

by the perturbation [41]. The real component is bound except in the presence of 

Perturbation 1, where the top pair of circles are perturbed into ellipses oriented 90° relative 

to one another [denoted by the dashed boundaries in Fig. 2(d)]. However, Perturbation 1 

does not affect the imaginary component, which is symmetry-protected due to its opposite 

parity. Perturbation 2 has exactly the opposite effect for the same reason: the imaginary 

component is scattered while the real component is not [Fig. 2(e)]. These selection rules are 

intuitively understandable, treating the out-of-plane field components as “charges” and the 

computing the net “moments” introduced by the perturbations (see Supplementary 

Materials S.5 for a discussion). 

The behavior of a leaky-wave meta-unit can be modeled analytically in combination 

with full-wave simulations, as described in Methods. Figure 3(a) shows two geometric 

degrees of freedom, 𝛿1 and 𝛿2, which determine the sign and strength of each perturbation 
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and hence the signed magnitude of the real and imaginary components of the scattered light. 

Figures 3(b,c) show the amplitude and phase of the scattered light, which is 𝑦-polarized in 

this case. At the origin (𝛿1 = 𝛿2 = 0), a singularity is observed in the phase, corresponding 

to a null in scattering amplitude, i.e., a bound wave due to the absence of perturbation. This 

topological feature is a manifestation of the polarization-agnostic geometric phase recently 

demonstrated to control Fano resonances in nonlocal metasurfaces [49]. Here, we leverage 

this principle to enable LWMs with complete phase and amplitude (PA) control of any 

polarization. To produce scattered light with other polarization states, the orientation angles 

𝛼1  and 𝛼2  of the ellipses may be varied [Fig. 3(d)]. Figures 3(e,f) show the elliptical 

parameters, 𝜓  and 𝜒 , of the scattered light as a function of 𝛼1  and 𝛼2 , with example 

polarization states drawn for reference; between the dashed contours, arbitrary elliptical 

polarization states are possible. Collectively, by varying the geometric parameters 

(𝛿1, 𝛿2, 𝛼1, 𝛼2) , we can arbitrarily specify the scattered state (𝐴, Φ, 𝜓, 𝜒) . The mapping 

between these parameter spaces, including fine adjustments based on full-wave simulations, 

are discussed in Methods. As a result, we define a semi-analytical library of meta-units for 

use in populating a LWM that, upon excitation with a guided wave, produces free-space 

radiation with desired spatial profiles of amplitude, phase, and polarization. 
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Figure 3. Full-wave simulations constructing the meta-unit library. (a) For fixed elliptical 

orientations, the perturbations 1  and 2  determine the signed magnitude of the real and 

imaginary parts of the scattered field, respectively. (b) Map of scattered amplitude of y-

polarized light as a function of 1  and 2 , showing a bound state when both perturbations 

vanish. (c) Map of scattered phase of y-polarized light as a function of 1  and 2 , supporting 

a topological feature characteristic of a geometric phase. (d) For fixed  1  and 2 , the 

perturbation angles 1  and 2  determine the polarization state scattered by the unit cell. 

(e,f) Map of 2  and 2  as a function of 1  and 2 , with dashed contours denoting chiral 

states near the poles of the Poincaré sphere. Arrows denoting the approximate polarization 
states are overlaid for reference.  
 

Finally, the amplitude and phase distributions of the guided portion of the quasi-

bound wave must be accounted for when populating a LWM with meta-units targeting a 

specific device function (see Methods for details). For instance, Fig. 4(a) shows a target PA 

profile producing a focused beam, while Fig. 4(b) shows the mode-corrected PA profile, 

taking into account the amplitude and phase evolution associated with the guided mode 
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depicted in Fig. 4(c). Hence, targeting 𝑦-polarized light, Figs. 4(d,e) show the resulting 

profiles of 𝛿1 and 𝛿2. The LWM design was then fabricated using electron-beam lithography 

and characterized in the near-infrared (see Methods). An example photo and a scanning 

electron micrograph of the fabricated devices are shown in Figs. 4(f,g). 

Figure 4. Constructing a LWM via modal correction. (a) Target amplitude and phase profiles 
to produce a converging, linearly polarized beam ( 𝑦 -polarization). (b) Mode-corrected 
amplitude and phase profiles accounting for the guided mode amplitude and phase profiles 

in (c). (d,e) Spatial profiles of the perturbation strengths 1  and 2 , populated based on the 

map in (b) from the meta-unit library. (f) Optical micrograph of a fabricated device. (g) 
Scanning electron micrograph of a fabricated device. 
 

Phase and amplitude control 

We experimentally demonstrate the ability of our LWM platform to generate custom PA 

wavefronts. We choose meta-unit motifs with fixed angles 𝛼1 and 𝛼2 so that the wavefronts 

are linearly polarized. For 𝑦-polarized surface emission, we choose 𝛼1 = 𝛼2 = 0°, while for 

𝑥-polarized surface emission, we choose 𝛼1 = 𝛼2 = 45°  [Fig. 3(e)]. Figure 5 shows four 
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example LWMs, demonstrating focusing, generation of orbital angular momentum (OAM), 

PA holography, and a Kagome lattice generator.  

 
Figure 5. Phase-amplitude LWMs for linearly polarized light. (a) Schematic of a focusing 
LWM. (b,c) Measured 𝑥𝑧 and 𝑦𝑧 cross sections showing focused emission from the LWM at 
𝜆0 = 1550 𝑛𝑚, with a designed focal length of 𝑓 =  2 𝑚𝑚. (d) Measured 𝑥𝑦 cross section at 
the focal plane for 𝜆0 = 1530 𝑛𝑚, with 𝑥 and 𝑦 linecuts compared to simulated responses 
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based on diffraction limited behavior. (e) Measurement of the focal plane at seven selected 
wavelengths, demonstrating steering in the 𝑦 direction, following the leaky wave dispersion. 
(f) Schematic of a LWM producing an OAM beam with 2= , along with a tilted Gaussian 
beam as a reference, via the complex near field in (g) excited in the direction indicated by the 
black arrow (the white plus marks the center of the OAM beam emission and the black cross 
marks the center of the tilted Gaussian beam). (h) Measured interference of the two beams 
at a plane 𝑧 = 2 𝑚𝑚, showing a characteristic forked pattern. (i) Measured emission of the 
OAM device at a plane 𝑧 = 10 𝑚𝑚 away from the LWM, where the OAM and Gaussian beams 
are separated. (j) Schematic of a two-image hologram, wherein a gray-scale amplitude 
distribution at the LWM plane serves as a first image, and a distinct holographic image is 
produced at a second plane based on the phase profile, collectively encoded in the complex 
near field in (k). (l) Measured gray-scale image (CUNY logo) at the LWM plane. (m) Measured 
holographic image (Columbia Engineering Logo) at a plane 𝑧 = 1 𝑚𝑚 away from the LWM. 
(n) Schematic of a Kagome lattice generator based on the complex near field in (o); the 
central region of this field is shown in (p). (q) Measured holographic lattice at a plane 𝑧 =
0.5 𝑚𝑚 away from the LWM. All devices generate 𝑦-polarized light, except for the Kagome 
lattice generator, which produces 𝑥-polarized surface emission. 
 

First, Fig. 5(a) schematically shows a LWM generating a converging beam in the 

surface-normal direction. As seen in Fig. 4(a), a Gaussian envelope is applied to the device 

amplitude profile, and the phase profile of a metalens is encoded to focus light at a target 

focal length 𝑓 = 2 𝑚𝑚 (a numerical aperture of 𝑁𝐴 ≈ 0.1). Longitudinal cross-sections of 

the measured converging beam are shown in Figs. 5(b,c), at 𝜆 = 1530 𝑛𝑚 . A transverse 

cross-section at the designed focal plane is shown in Fig. 5(d), where a focal spot is observed 

with full-widths at half-maximum (FWHM) 𝑤𝑥 = 10.0 ± 0.3 𝜇𝑚 in the 𝑥 direction and 𝑤𝑦 =

9.1 ± 0.1 𝜇𝑚 in the 𝑦 direction. These values are in good agreement with diffraction-limited 

operation, with simulated values 𝑤𝑥 = 9.1 𝜇𝑚 and 𝑤𝑦 = 9.4 𝜇𝑚 [insets of Fig. 5(d)]. Images 

of the focal plane at various operating wavelengths from 1520 𝑛𝑚 to 1580 𝑛𝑚 are shown in 

Fig. 5(e). The position of the focal spot along the 𝑦 direction shifts linearly with respect to 

the wavelength, following the dispersion of the band diagram in Fig. 2(i), with a dispersion 
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𝑑𝜃

𝑑𝜆
= 1.2 × 10−3 𝑟𝑎𝑑/𝑛𝑚. Measurements confirming the linearly polarized radiation of this 

device are shown in Supplementary Materials S.7.  

Next, Fig. 5(f) schematically shows a LWM generating a vortex beam with OAM order 

ℓ = 2, in tandem with a tilted wave with a Gaussian profile that serves as an interferometric 

reference beam [encoded in the complex near field shown in Fig. 5(g)]. An image taken at 

𝑧 = 2 𝑚𝑚 shows the interference of the two beams [Fig. 5(h)], where a characteristic fork 

pattern with two branches is formed (confirming the OAM order), while an image taken at 

𝑧 = 10 𝑚𝑚 shows the separation of the two beams [Fig. 5(i)]. As another example, Fig. 5(j) 

demonstrates a two-image holographic LWM encoded by the two degrees of freedom 

inherent to a PA metasurface [complex near field shown in Fig. 5(k)]. A first image, the CUNY 

logo is applied as the amplitude profile of the hologram, while a second image, the Columbia 

Engineering logo, is encoded in the phase profile of the hologram (using the Gerchberg-

Saxton algorithm [50]) such that the logo is reconstructed at a distance of 𝑧 = 1 𝑚𝑚 (an 

effective numerical aperture of 𝑁𝐴 ≈ 0.2). Images taken at the LWM plane (𝑧 = 0 𝑚𝑚) and 

the holographic image plane (𝑧 = 1 𝑚𝑚) are shown in Fig. 5(l) and Fig. 5(m), respectively.  

Finally, as a demonstration of the polarization control of our platform, Fig. 5(n) 

depicts a LWM producing a Kagome lattice for 𝑥-polarized light via the complex near-field 

distribution shown in Fig. 5(o) [Fig. 5(p) shows the central region of this distribution]. Here, 

the selection rules for the case of 𝛼1 = 𝛼2 = 45° forbids emission to the 𝑦 polarization, but 

allows emission to the 𝑥 polarization. The measured result at a plane 𝑧 = 0.5 𝑚𝑚 away from 

the LWM (an effective 𝑁𝐴 ≈ 0.37) is shown in Fig. 5(q). Additional devices are reported in 

Supplementary Materials S.7 and S.8. In particular, three devices are included to 

demonstrate complete mastery over linear polarization: an 𝑥-polarized Fresnel lens and a 
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device generating radially polarized surface emission in Supplementary Materials S.7, and 

an 𝑥-polarized two-image hologram in Supplementary Materials S.8. The detailed near-

field and geometry profiles of each device in this section and the following section are 

reported in Supplementary Materials S.9. The evolution of optical intensity distributions 

from the LWM plane to the holographic image plane for the two-image hologram is shown 

in Supplementary Materials S.10. 

Vector-beam generation 

We next demonstrate LWMs generating vectorial fields. Here, all four geometric degrees of 

freedom (𝛿1, 𝛿2, 𝛼1, 𝛼2) are utilized to realize PA control for the two orthogonal polarization 

components simultaneously (i.e., PA profile of a vector beam). Figures 6(a,b) schematically 

show a four-image holographic LWM, extending the scheme in Figs. 5(j-m). Images of the 

letters “ 𝜓 ” and “ 𝜒 ” are applied to the amplitude profiles of the 𝑦  and 𝑥  polarization 

components of the scattered field, while the phase profiles at the two orthogonal 

polarizations encode the letters “𝐴” and “Φ”, respectively, for reconstruction at a distance of 

𝑧 = 1 𝑚𝑚 [Figs. 6(a,b)]. Images taken at the holographic image plane (𝑧 = 1 𝑚𝑚) and the 

LWM plane ( 𝑧 = 0 𝑚𝑚 ) for the 𝑦  polarization are shown in Fig. 6(c) and Fig. 6(d), 

respectively; Figs. 6(e,f) depict the same for the 𝑥 polarization.  
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Figure 6. Vector-beam LWMs with complete control over amplitude, phase, and 
polarization. (a,b) Schematic of a LWM producing a four-image hologram, in which two 
distinct two-image holograms are encoded, respectively, for 𝑥  and 𝑦  polarizations. (c,d) 
Measured 𝑦-polarized images at the holographic image (𝑧 = 1 𝑚𝑚) and at the LWM plane 
(𝑧 = 0 𝑚𝑚), respectively. (e,f) Measured 𝑥-polarized images at the holographic image plane 
(𝑧 = 1 𝑚𝑚 ) and at the LWM  plane (𝑧 = 0 𝑚𝑚 ), respectively. (g) Schematic of a LWM 
producing a focusing Poincaré beam. Measured (h) and simulated (i) profiles of six 
characteristic polarizations at a plane 𝑧 =  2 𝑚𝑚. 
 

Finally, Fig. 6(g) schematically shows a LWM generating a focused Poincaré beam 

with minimum waist size at a distance of 𝑧 = 2 𝑚𝑚 (numerical aperture of 𝑁𝐴 ≈ 0.1). Here, 

we implement the Poincaré beam as the superposition of a focused left-circularly-polarized 
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(LCP) Gaussian beam and a focused right-circularly-polarized (RCP) vortex beam with ℓ =

1, so that a transverse cross-section of the beam reveals all polarization states over the 

Poincaré sphere [Fig. 6(g)). The four optical degrees of freedom we control in this specific 

demonstration are the amplitude and phase profiles of the LCP and RCP states. Figure 6(h) 

shows the measured intensity distributions at a distance 𝑧 = 2 𝑚𝑚 and at six characteristic 

polarization states, in good agreement with the simulated results in Fig. 6(i). The evolution 

of optical intensity distributions from the LWM plane to the holographic image plane for the 

four-image hologram is shown in Supplementary Materials S.10. 

Outlook and conclusions 

In this work, we demonstrated complete command over leaky radiation from LWMs through 

a rational design approach based on quasi-bound states in the continuum that originate from 

broken symmetries. Our approach confers a number of novelties and advantages compared 

with other techniques. The novelties center around the period-doubling perturbation, which 

exclusively introduces coupling to free-space—the mode is otherwise bound. This feature is 

compatible with large-aperture fields, and here we demonstrated surface emission from 

integrated devices with a linear dimension > 250𝜆0. Large-aperture (millimeter scale and 

up) fields are highly desirable in a number of applications due to their small divergence 

angles in the far field (see, e.g., Refs. [51],[52]). The meta-unit motif with two shifted rows of 

judiciously oriented elliptical apertures enables simultaneous and independent control of 

amplitude and polarization state of both real and imaginary components of the LWM 

radiation: the magnitude of the period-doubling perturbation in each row controls the 

amplitude of each component, while the orientation angle of the perturbation controls the 
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polarization state. Full control over the polarization state is possible by leveraging symmetry 

considerations: at perturbation orientation angles 0°  or 90° , 𝑥 -polarized scattering is 

forbidden, while at perturbation orientation angles ±45° , 𝑦 -polarized scattering is 

forbidden; continuity between these extremes guarantees complete polarization control 

[41,42]. The design’s underlying origin in symmetry considerations enables a semi-

analytical mapping of the optical degrees of freedom (𝐴, Φ, 𝜓, 𝜒) to and from the geometric 

design parameters (𝛿1, 𝛿2, 𝛼1, 𝛼2) . Traditionally, the difficulty of constructing a meta-unit 

library compounds unfavorably as the number of targeted optical degrees of freedom is 

increased. Here, in contrast, the LWM geometry is populated point-by-point based on a set 

of simple equations, while achieving complete control over the vectorial field. Furthermore, 

the lattice supports a one-dimensional zone-folded Dirac point, enabling operation for 

frequencies corresponding to at and near the device normal (broadside emission), a feature 

precluded by the parabolic band structure of modes employed in conventional GC designs.  

Our symmetry-based design principle implies that applications involving a wide 

array of materials and frequencies may adopt this approach. For instance, RF leaky-wave 

antennas are well-known for beamforming and scanning in the far-field, but are difficult to 

operate at close range. Our approach may be used to create RF leaky-wave antennas that 

operate across a wide range of distances, and with distinct functionalities imparted to 

orthogonal polarizations, useful for polarization-division multiplexing. Similarly, in the 

context of PICs, while we showed here one popular materials platform based on silicon 

nitride, the design principle can be applied to silicon-on-insulator technologies. Notably, 

active materials such as lithium niobate, 2D materials, and liquid crystals may also be 

incorporated, in order to switch on or off the symmetry-breaking perturbation or to control 
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its magnitude. Finally, while our LWMs are composed of 2D arrays of holes in a thin film, 

subwavelength grating waveguides [53] composed of pillars may also be used based on the 

same principles.  

 Several extensions may also be explored. First, two-layer devices based on similar 

period-doubling symmetry-breaking principles have shown exquisite control over the 

leakage of chiral states [43]. Here, our approach has been primarily achiral: due to the 

insignificant breaking of out-of-plane symmetry, the upward and downward radiating states 

are mirror images of each other. In contrast, two-layer devices may add additional control to 

manipulate separately the upward and downward radiation. Similarly, multi-perturbation 

devices based on symmetry-breaking have shown control over several leaky waves at 

distinct frequencies simultaneously [42],[54]. Here, our approach controlled a single mode, 

but future work may extend the platform to control orthogonally propagating modes (similar 

to the recent achievements in Ref. [38]). Next, while here we used a weakly corrugated 

system without deliberate command of the group velocity, band structure engineering (see, 

e.g., [55],[56]) may be used to tune the angular dispersion of the output. Last, while here we 

implemented a single device layer, due to the broadband transparency of these nonlocal 

metasurfaces to free-space light, future works may cascade several LWMs at optically thick 

distances for multi-wavelength operation [54]. Notably, such cascading scheme is not 

generically compatible with the MOW approach [Fig. 1(c)].  

 Finally, we highlight a few improvements that may be explored to further extend the 

impact of this work. First, while we showed compatibility with large-aperture fields, we 

made no attempt to optimize the scattering for large radiation efficiency. Future efforts may 

explore matching the aperture radiation field with the amplitude profile of the quasi-bound 
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wave to optimally utilize the incident guided wave [57],[58]. As discussed in 

Supplementary Materials S.11 and S.12, in cases without transverse amplitude 

modulation of the slab mode (here, in the 𝑥 direction), the radiation efficiency may approach 

unity by properly designing the profile of the perturbation strength in the propagation 

direction (here, in the 𝑦  direction). However, in cases with lateral amplitude modulation 

(e.g., holography), in-plane diffraction may result from local depletion of the slab mode as it 

propagates. In such cases, the evolution of the slab mode’s complex profile must be 

accounted for by adjusting the sign and strength of the perturbation to match the desired 

output field. Given maximal achievable scattering strength within the meta-unit library, a 

minimum device length is required to achieve a target device efficiency. In our case, we 

estimate this length to be several millimeters, putting our devices in the regime where the 

majority of optical power remains within the device. In other words, the complications due 

to depletion of the slab mode are negligible here, at the cost of low device efficiency. 

Second, while in our case the flat band observed in Fig. 2(i) did not negatively impact 

the function of our device, in deeply corrugated structures scattering between the Dirac 

point and this flat band may introduce unwanted cross-talk. This may be avoided by 

adjusting the lattice dimensions 𝑎𝑥 and 𝑎𝑦 (Supplementary Materials S.3). Relatedly, while 

for certain meta-units the Dirac point directly at the Γ point is protected by glide symmetry, 

in the general case of symmetry-broken meta-units and/or random scattering from 

fabrication errors, small band gaps or exceptional points [59] may complicate the behavior. 

For a small range of frequencies (near where the modes cross at the Γ point), the fidelity of 

the desired responses may suffer in applications requiring extremely collimated light. 

However, as discussed in Supplementary Materials S.4, due to the perturbative nature of 
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our approach as well as the low index contrast of our system, these issues are negligible in 

our present devices; they are minor even in higher index-contrast systems based on SOI.  

Last, here we limited our operation to near-normal surface emission (with moderate 

effective numerical apertures in the range of 𝑁𝐴 ≈ 0.1 − 0.37), allowing us to decouple the 

real and imaginary components of the scattered wave via their distinct symmetries. At large 

𝑁𝐴 operation or at extreme deflection angles, this assumption may be invalid (to varying 

degrees in different systems), implying that more complex meta-unit design must be taken 

into account.    

In conclusion, we have introduced a LWM platform that generates custom vectorial 

fields at will, combining the functionality of metasurfaces with the compact form-factor of 

GCs. We demonstrated semi-analytical generation of a library of meta-units with complete 

command over amplitude, phase, and polarization state of light with subwavelength 

resolution. The design principles are rooted in the symmetries of quasi-bound waves 

supported by high-symmetry lattices, and are thus compatible with a wide range of materials 

platforms and frequencies. In the future, we anticipate a number of applications stemming 

from this approach. Notably, our platform may be integrated with PICs for off-chip 

communications such as chip-to-chip communications and free-space mode-division 

multiplexing [e.g., using OAM, Figs. 5(f-i), or Poincaré beams, Figs. 6(g-i)], and it may be 

used to generate custom cold-atom traps for quantum applications [such as the Kagome 

lattice in Figs. 5(n-q)]. Our approach may also enable LIDAR systems with optically large 

apertures for arbitrary beamforming (including broadside emission) and beam steering [Fig. 

5(e)]. Finally, while our implementation employs structural birefringence as a perturbation, 

small changes in material birefringence (such as in liquid crystals) may achieve similar 
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control but in a dynamic manner. In this way, our work paves the way towards novel 

holographic display technologies [Figs. 5(j-m) and Figs. 6(a-f)], quantum photonic devices, 

and next-generation communications and sensing. 

Methods 

Modeling and simulations of the meta-units 

The Jones vector response of a half meta-unit composed of one pair of ellipses, and excited 

by a TM slab waveguide mode, approximately follows 

(
𝐸𝑥

𝐸𝑦
) = 𝛿 (

𝑎𝑥 sin 2𝛼
𝑎𝑦 cos 2𝛼), 

where 𝑎𝑥  (𝑎𝑦 ) is the maximum amplitude in the 𝑥  (𝑦) polarization, which is achieved at 

maximum 𝛿  and 𝛼 = 45°  ( 0° ). The imbalance between 𝑎𝑥  and 𝑎𝑦  originates from the 

asymmetry between x and y directions of the system. Here, only the first-order perturbation 

effect is considered, and in this regime the dependence on 𝛿 is approximately linear. If the 

meta-unit is instead excited by a transverse-electric (TE) slab waveguide mode, the Jones 

vector response will be rotated 90° due to the conversion between E-field and H-field, with 

an additional constant term in 𝐸𝑥 to account for 0th-order scattering. 

    The amplitude 𝐴 and the polarization orientation angle 𝜓 of a half meta-unit can be 

independently controlled by geometric parameters 𝛿 and 𝛼, respectively. For given target 𝐴 

and 𝜓, the corresponding geometric parameters can be explicitly solved: 

𝛼 =
1

2
arccot (

𝑎𝑥

𝑎𝑦
tan 𝜓), 

𝛿 =
𝐴

𝑎𝑥
cos 𝜓 √1 + (

𝑎𝑥

𝑎𝑦
tan 𝜓)

2

. 
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For a full meta-unit composed of two pairs of p2 ellipses displaced by a quarter period along 

the propagation direction, the response is a coherent summation of the two pairs with a 90° 

phase difference: 

(
𝐸𝑥

𝐸𝑦
) = 𝛿1 (

𝑎𝑥 sin 2𝛼1

𝑎𝑦 cos 2𝛼1
) + 𝑖𝛿2 (

𝑎𝑥 sin 2𝛼2

𝑎𝑦 cos 2𝛼2
), 

where the first pair of ellipses, characterized by (𝛿1, 𝛼1), contributes to the real part, and the 

second pair of ellipses, characterized by (𝛿2, 𝛼2), contributes to the imaginary part. For a 

complex target (𝐸𝑥, 𝐸𝑦)
𝑇

, the required geometric parameters can be solved by first 

calculating the amplitudes 𝐴1,2  and polarization orientation angles 𝜓1,2  of the real and 

imaginary parts, respectively: 

𝐴1 = √[Re(𝐸𝑥)]2 + [Re(𝐸𝑦)]
2

, 𝐴2 = √[Im(𝐸𝑥)]2 + [Im(𝐸𝑦)]
2

, 

𝜓1 = arctan
Re(𝐸𝑦)

Re(𝐸𝑥)
, 𝜓2 = arctan

Im(𝐸𝑦)

Im(𝐸𝑥)
, 

then using the above formulas derived for each half meta-unit: 

𝛼1,2 =
1

2
arccot (

𝑎𝑥

𝑎𝑦
tan 𝜓1,2), 

𝛿1,2 =
𝐴1,2

𝑎𝑥
cos 𝜓1,2 √1 + (

𝑎𝑥

𝑎𝑦
tan 𝜓1,2)

2

. 

FDTD simulation results of the polarization ellipticity angle ( 𝜒 ) and the polarization 

orientation angle (𝜓) of a leaky-wave meta-unit are shown in Figs. 3(e,f), where 𝛼1 and 𝛼2 

are swept from 0° to 90° to cover the polarization space, and 𝛿1,2 are set according to 𝛼1,2 to 

generate a flat amplitude response. A full coverage of the polarization ellipticity angle from 

𝜒 = +𝜋/4 (LCP) through 𝜒 = 0 (LP) to 𝜒 = −𝜋/4 (RCP) is achieved as 𝛼1 − 𝛼2 varies from 
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+45° through 0° to −45° [Fig. 2(f)], and a full coverage of the polarization orientation angle 

from 𝜓 = −𝜋/2 to 𝜓 = 𝜋/2 is achieved as 𝛼1 and 𝛼2 vary from 0° to 90° in the |𝛼1 − 𝛼2| <

45° region [Fig. 3(e)]. Further simulation results of the amplitude (𝐴) and the phase (Φ) 

responses are shown in Fig. 3(b) and Fig. 3(c), respectively, where 𝛼1 = 𝛼2 = 0° is set to fix 

the polarization at 𝜒 = 𝜓 = 0  (y-polarized). Full coverage of amplitude and phase is 

achieved along the radial [Fig. 3(b)] and azimuthal [Fig. 3(c)] directions in the parameter 

sweep, respectively.  

Note that this approach assumes that the slab waveguide mode travels along the −𝑦 

direction, regardless of position across the device. Supplementary Materials S.6 and S.12 

discuss and justify this assumption in more detail, showing that even at the boundaries of 

the tapered slab waveguide, where the local propagation direction of the guided wave has 

the largest deviation (~2.4°) from the −𝑦 direction, the change in device performance is 

negligible. In cases where the above assumption fails, a conformal transformation of the 

lattice geometry could be explored to align the local lattice parameters with the local guided 

mode’s propagation direction. 

The meta-unit responses are simulated via the finite-difference time-domain (FDTD) 

method (Lumerical). An array of N=9 identical meta-units are placed along the 𝑦 direction 

with periodic 𝑥 boundaries and perfectly matched layers (PMLs) at the 𝑦 and 𝑧 boundaries. 

A total-field scattered-field (TFSF) source is launched in the −𝑧  direction, and a mode 

expansion monitor is placed on the −𝑦  side to calculate the complex amplitude of the 

generated fundamental TM slab waveguide mode. Two separate simulations with 𝑥- and 𝑦-

polarized TFSF sources are performed to obtain the 𝐸𝑥 and 𝐸𝑦 responses, respectively. 

Device fabrication 
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We experimentally demonstrate LWMs at the telecommunications wavelengths (λ≈1.55 m) 

using a polymer-Si3N4 materials platform. Both the waveguide circuit and the meta-unit 

holes composing the metasurface are patterned in a 300-nm poly(methyl methacrylate) or 

PMMA layer, on the top of a 300-nm Si3N4 thin film, on a SiO2 substrate. The fundamental TM 

guided mode is fed from a single-mode ridge waveguide via a linear taper with a tapering 

rate of Δ𝑤/Δ𝐿 = 1/12. A LWM device with a linear dimension of ~400 m is integrated 

within the taper (Fig. 4f). The amplitude and phase distributions in the tapered slab 

waveguide are nonuniform, which should be compensated for when designing the LWM 

amplitude and phase profiles. Expanded from a single-mode waveguide through a linear 

taper, the slab waveguide mode can be approximated with an analytic expression: 

𝐸(𝑥, 𝑦) = 𝐸0𝐴(𝑥, 𝑦)𝑒𝑖𝜙(𝑥,𝑦), 

with 

𝐴(𝑥, 𝑦) = √
𝑤0

𝑤(𝑦)
cos [

𝜋𝑥

𝑤(𝑦)
] 𝑒

𝛼𝑦
2 , 

𝜙(𝑥, 𝑦) =
2𝜋

𝜆
[−𝑛𝑚𝑠𝑦 + 𝑛𝑤𝑔

𝑥2

2(𝐿 − 𝑦)
], 

where the amplitude distribution 𝐴(𝑥, 𝑦) is formed by the collective effects of: (i) waveguide 

widening, i.e., 𝑤(𝑦) = 𝑤0 + Δ𝑤/Δ𝐿 ∙ (𝐿 − 𝑦), where 𝐿 ≈ 4800 µm is the taper length and 𝑦 is 

the longitudinal coordinate, (ii) transverse waveguide mode profile associated with the local 

waveguide width 𝑤(𝑦), and (iii) attenuation due to out-coupling from the metasurface; the 

phase distribution 𝜙(𝑥, 𝑦)  is composed of: (i) longitudinal phase accumulation in the 

metasurface region with an effective modal index 𝑛𝑚𝑠 ≈ 1.52, and (ii) transversal phase 
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profile in the linear taper with an effective modal index 𝑛𝑤𝑔 ≈ 1.55 , approximated by a 

paraxial cylindrical wave. 

Finally, the devices are fabricated as follows. Si3N4 thin films of 300 nm thickness are 

grown via plasma-enhanced chemical vapor deposition on a fused silica substrate of 180 m 

thickness. A 300-nm PMMA layer is spin coated and baked at 180 °C to serve as an electron-

beam resist. Electron-beam lithography (Elionix ELS-G100) is then carried out at 100 keV 

and 1 nA, with a dose of 750 μC/cm2 and appropriate proximity effect corrections (BEAMER), 

to define the waveguide boundaries and LWM patterns. A 3:1 mixture of isopropyl alcohol 

to deionized water is used to develop the exposed resist. The fabricated chip is then cleaved 

to expose the facet of the narrow single-mode ridge waveguide for fiber coupling. 

Device characterization 

Near-infrared light at 1.55 µm is generated by a diode laser, and coupled into the LWM 

device using a lensed optical fiber with proper polarization adjustment. The surface emission 

on the air side produced by the device is collected by a 10 or 20 near-infrared objective 

(Mitutoyo), passed through a polarization filter (Thorlabs), and directed towards a near-

infrared camera (Princeton Instruments). 
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