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ABSTRACT

The complex and dynamic nature of collaboration makes it chal-
lenging to find indicators of productive learning and quality
collaboration. This exploratory study developed a collaboration
metric to capture temporal patterns of joint attention (JA) based on
log files generated as students interacted with an immersive astron-
omy simulation using augmented reality headsets and tablets. JA is
defined as the ability to coordinate attention, which thus plays an
important role in collaborative problem-solving to build the com-
mon ground for knowledge co-construction. We first developed a
JA metric consisting of six distinct but closely relevant states as a
measure of the collaboration process. We then conducted descrip-
tive statistics to compare frequency and temporal pattern of JA
states across three learning performance groups. Our results
showed that high-learning-gain groups demonstrated visual coordi-
nation behaviors more frequently and utilized this collaboration
strategy in the early stage. We then investigated sequences of these
JA states, focusing on one key behavior: long and consistent shared
view as a proxy for collaboration. This sequential analysis revealed
two different collaboration profiles: attention follow-leader and
turn takers, suggesting the existence of asymmetrical participation.
Our findings indicate the potential of JA metric to predict overall
collaboration quality, identify undesirable collaboration behaviors,
and serve as an early warning to provide just-in-time guidance.
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1. INTRODUCTION

Collaborative problem-solving (CPS) is considered a core compe-
tency of the 21st century [14]. CPS refers to the capacity of an
individual to solve a problem by sharing their knowledge, skills,
and efforts with two or more people [26]. CPS provides opportuni-
ties for learners to develop the cognitive and social skills required
for effective collaboration. Computer-supported collaborative
learning (CSCL) environments are thus designed to facilitate this
joint activity by allowing individuals to monitor collaborative pro-
gress, accommodate different perspectives, and develop a solution

(e.g., [24]).
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As more advanced technologies such as augmented reality (AR)
emerged, there have been challenges to understand how students
use these technologies and further how technological features need
to be designed to support the students’ CPS process [17]. Such
learning platforms provide immersive learning experiences in a
classroom setting; yet it is challenging to understand their collabo-
ration process due to the complexity (e.g., [38]). Exploring novel
ways to understand collaborative learning in immersive learning
environments becomes critical. In this regard, this exploratory
study investigates joint attention (JA) as a proxy for collaborative
behaviors in a multi-device collaborative learning platform.

JA has been studied to understand how students coordinate atten-
tion to build shared understanding in collaborative tasks. Existing
studies have focused mainly on joint visual attention (JVA) using
eye-tracking data and showed correlations between JVA and col-
laboration quality [33, 34]. However, most studies considered
moments of joint visual attention (JVA) as a binary variable, which
may be insufficient to capture the complex process of collaboration.
We therefore developed a JA metric consisting of six distinct but
closely relevant states as a measure of the collaboration process.
More specifically, we investigated JA states as preliminary evi-
dence to understand how students coordinate attention across
different types of devices (AR headsets, tablets) and identify col-
laboration patterns that may contribute to learning gains in CPS.

2. RELEVANT WORK

2.1 CPS in immersive learning environments
CPS refers to the process when students attempt to form a shared
understanding and co-construct knowledge by working on a com-
mon problem or project known as the joint problem space [32].
Advanced educational technologies like AR emerged as a medium
for immersive collaborative simulations [11]. This technology
brings new affordances and challenges for students to participate in
CPS and for researchers to understand CPS behaviors.

Studies have suggested that immersive learning environments en-
hance face-to-face interaction and collaboration [39], support
collaborative inquiry learning [37], and facilitate collaborative
knowledge construction [21]. Pervasive AR headsets and mobile-
AR systems enhance social interactions in the sense that students
can collaborate through both digital devices and face-to-face inter-
actions [4]. Immersive technologies also create a sense of
immersion [9] that contributes to an authentic learning experience
[39]. From this perspective, immersive learning environment fos-
ters collaborative learning and problem-solving as it affords a dual
interaction space: (1) the social interaction space through both face-
to-face communication and interactions enabled by the device, and
(2) the cognitive problem space by proving a simulated or 3D ob-
ject that students can respond to and build knowledge on.
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However, an immersive learning environment also brings chal-
lenges when it comes to understanding students’ learning and
collaboration processes. Given the immersive nature of this envi-
ronment, it often requires expensive monitoring devices such as eye
trackers, motion trackers, and video cameras to understand how
students utilize these technologies [10]. How students navigate
multiple representations in such an environment remains unex-
plored, and there is limited evidence suggesting how the navigation
and exploration patterns generate learning opportunities [1]. An-
other challenge lies in the lack of peer awareness in immersive
learning environments [7, 17], in which students are not aware of
their peers’ actions when they explore and solve tasks. An analysis
of how they coordinate their attention to build close connections
between social and cognitive problem space is fundamental to the
understanding of the CPS in immersive learning.

2.2 Understanding CPS Using Log Data

Log data offers a particular advantage to examine the complex na-
ture of human interactions in CSCL environment. While traditional
quantitative methods rely on outcome variables and static variables
from subjective measures, log data enables the analysis of collabo-
ration as a dynamic process. It can capture sequences of actions and
events, and thus provide an opportunity to examine collaborative
learning from a process perspective. A common and significant
characteristic of sequential analysis is its emphasis on the interrela-
tions between actions over time instead of the presence or absence
of'the actions in isolation [20]. The application of sequential mining
approaches has proven successful to identify interaction patterns
differentiating low and high-achieving groups [22, 40], discover
problem-solving modes in pair programming [31], identify naviga-
tion behavior patterns in the CPS process [19], and understand how
regulation processes unfold over time in group work [12].

The benefits of sequential analysis are further reflected by Han et
al. [15]. The authors point out the necessity to examine time-related
factors when implementing collaboration analytics, as characteris-
tics of collaboration such as coordination between group members
may differ over time. Temporal aspects like sequence provide a
unique perspective to understand CPS as a complex and dynamic
process. However, most research efforts focused on exploring CPS
supported by single platform (e.g., online learning platforms, ITS,
multi-touch tablets, interactive whiteboard). There is much less re-
search on how to discover and analyze patterns of interactions when
students collaborate across multiple devices [10].

2.3 Joint Attention and Collaboration

One of the potential proxies for collaboration is JA, which is de-
fined as “the ability to coordinate attention toward a social partner
and an object of mutual interest” [3, 25]. Solving problems together
requires students to share ideas and build a mutual understanding
of problem-solving rules, in which students help each other think
through the problem [7, 15, 28]. If JA is not achieved between part-
ners, it is less likely for them to regulate their attention and build
the necessary common ground for further discussion, and actively
contribute to problem-solving. In this regard, JA is closely related
to productive collaboration [27]. A prototypical example of JA in-
volves visual synchronization, which refers to JVA—the mutual
coordination of eye gaze [6]. JVA was first introduced by Scaife
and Bruner [6] to study the focus of attention in infants and has
been studied to understand collaboration dynamics. Previous re-
search mainly used mobile eye-trackers to measure JVA and found
correlation between JVA and dyad productivity [18], collaboration
quality [33], and other outcome measures like learning gains and
task performance [34]. Although these findings demonstrated the

potential of JVA to serve as a proxy for quality collaboration, high-
level JVA moments may hide unbalanced participation known as
the free-rider effect, suggesting the partner dominance in terms of
gaze initiation [34]. Schneider and Pea [33] categorized this dyad
as leader and follower, inspired by four collaboration profiles that
students assume [35]: turn takers, driver-navigator, driver-passen-
ger, and independent. This asymmetrical collaborative pattern was
found negatively correlated with learning gains, as students who
less frequently initiate and respond to joint objects benefit less from
JVA moments. This finding points out limitations of JVA as it may
hide undesirable collaboration mode and thus insufficient to meas-
ure collaboration quality.

Another limitation of existing literature is the perception of JVA as
a binary and momentary event that students are either in or not in
this state [18, 33, 34]. Relying on this binary classification, JVA
may not accurately or sufficiently represent the process of collabo-
ration considering its complex and dynamic nature. Siposova and
Carpenter [36] argued that the jointness of attention comes in de-
grees rather than as arbitrary, discrete, and uniform events. They
developed a systematic framework containing four levels of social
attention (monitoring, common, mutual, and shared). According to
their framework, attention levels are nested hierarchically and exist
on a scale of jointness. It is important to distinguish between these
levels as they may support different interactions and communica-
tions. To achieve a more comprehensive understanding of
collaboration, it is necessary to investigate JA as a process consist-
ing of interrelated states rather than a binary phenomenon.

2.4 Research Aim

To fill in these gaps, we conducted an exploratory study to investi-
gate JA in a CPS process based on fine-grained log data in a multi-
device immersive environment. We hope to go beyond the previous
binary classification of JVA and provide insights into how students
coordinate attention in the CPS process. Therefore, we designed a
JA metric that consists of six different states, inspired by the spec-
trum of jointness framework [36]. We then explored the sequences
of these states to characterize the process of attention coordination
in CPS. Using a sequential analysis approach, we investigated the
relationship between groups’ JA states and their learning gains. Our
goal is to understand how CPS unfolds over time using a sequential
analysis method. By extracting key collaboration patterns that po-
tentially lead to quality collaboration and better learning
performances, we hope to characterize dynamics of JA in the con-
text of CPS. The research questions guiding our analysis are: (1)
What are temporal patterns of joint attention that are indicators of
collaborative problem-solving? and (2) How do these joint atten-
tion patterns vary across groups with different learning gains?

3. METHODS

3.1 CEASAR

Connections of Earth and Sky with Augmented Reality (CEASAR)
employed a digital planetarium simulation software designed to in-
vestigate collaborative learning in immersive augmented reality.
CEASAR allows the exploration of the night sky through three
scenes: Horizon (default), Earth, and Star. It simulates a first-per-
son view of the night sky from a specific location and time. The
Earth scene allows users to observe the entire Earth from space.
Users can drop a pin on any location of the Earth’s sphere to change
their location or obtain its coordinate. The Star scene provides ac-
cess to the complete celestial sphere and cataloged western
constellations. Users can shift between these three views, manipu-
late the location and simulation time, or change their direction of
view to explore the sky. Since this platform was designed to support



collaboration, annotations (e.g., mark a constellation) made in one
device will be simultaneously visible to all users in the same group.

3.2 Participants and Tasks

This study involved 77 undergraduate students enrolled in an intro-
ductory astronomy course from a mid-western university in the
United States. Students participated in three weekly one-hour ses-
sions. The first two sessions helped students familiarize themselves
with the simulation platform using gesture-controlled AR headsets
(Microsoft HoloLens 2) and touch-based tablets. In the third ses-
sion, 25 self-assigned groups of three to four solved a CPS task
called “Lost at Sea”. Each group was provided with one AR device
and two tablets. Students were expected to leverage these digital
devices determine the location of a space capsule that has crashed
somewhere on Earth. To complete the task, groups need to identify
the hemisphere of their location, find the correct cardinal directions
by identifying key stars or constellations as reference points, and
estimate their latitude and longitude. Aside from the group task,
students were required to complete individual pre- and post-paper-
based assessments to measure their conceptual knowledge relevant
to the task’s topic. Each assessment took about five minutes.

3.3 Data Source

This study explores the students’ collaboration patterns using data
collected from video recordings of group work, screen recordings
from the devices (Figure 1), and interactions with the simulation in
the form of logs obtained from both AR and tablets. The interaction
logs were recorded as rows of events, where event = {Username,
Groupname, Device, Activity, Event, UTC time, Heading vectors,
Simulation time, Crashsite, Location, Scene, Selected object, Se-
lected star}. A new event was generated each time students moved
their devices to change the direction of view, selected a star or con-
stellation, chose a different scene, or manipulated the simulation
time within the platform. In this study, we only focused on log fea-
tures relevant to the identification of JA. The pre-/post-assessments
contain one open-ended question to measure the students’ under-
standing of latitude and longitude calculation, which was scored by
researchers from 0 to 2 based on the completeness and accuracy of
students’ responses.
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Figure 1. Screen overlap in Horizon scene across three devices—
MS HoloLens2 (top right) and tablets (bottom right and left).

3.4 Data Processing
The following describes a multiple-step process of extracting JA
states from raw log data.

Stepl: Individual Inactivity Extraction This step filtered active ep-
isodes and prepared for further analysis at a second granularity. We

defined 20 seconds as the threshold to distinguish active and inac-
tive episodes. This time frame was chosen based on classroom
recordings and previous study [22] showing that elapsed time be-
yond this threshold should be differentiated, beyond which the set
of actions were perceived less relevant and supposed to belong to a
different action episode. If students did not trigger any event within
this 20-second time gap, subsequent seconds (i.e., from the 21st
second) were labeled as inactivity until the next event. It is worth
noting that during inactivity students may participate in off-task be-
haviors like idling or engage in task-relevant activities without
using the devices, like paper sheet filling.

Step 2: Device Pair We then labeled the scene for each second,
yielding a time series containing four types of scene values (Hori-
zon, Earth, Star, and inactivity). Next, we combined the individual
scene values to code the JA state of each device pair as inactivity,
no overlapping, or scene overlapping. Inactivity means that neither
device triggered any event within the 20-seconds time gap. No
overlapping contains two possible situations: (1) two students ex-
plore the simulation in two different scenes (2) one student explores
the simulation while the other is inactive. Both situations suggest a
lack of JA as students engage in different activities or scenes. Scene
overlapping represents that both students are in the same scene and
observe the simulation from the same perspective. This initial cod-
ing created a state sequence for each dyad within a group, resulting
in a total of three device pairs for each group (i.e., tabletl-tablet2,
tablet1-HL2, and tablet2-HL2). We observed a tendency for groups
to only use two devices most of the time. Considering all the dyad
sequences may lead to misleading results as one device may not be
used consistently and may look like a student was not engaging in
the task and JA. Thus, we picked one dyad sequence that represents
the whole group based on the level of participation (i.e., a dyad with
the least number of inactivity and no overlapping states).

Step 3: Pair Scene Overlapping Coding This step extracted higher-
level JA behavior (i.e., scene overlapping) in the horizon scene us-
ing the shared view (SV) metric (see details in [10]). SV metric
tracks whether two devices’ screens overlapped, indicating students
were looking at the same area of sky or celestial objects. This con-
tinuous value ranges from 0 to 1, representing the screen overlap
ratio, where 1 indicates a perfect shared screen, and 0 means no
overlap. By watching screen capture recordings (see Figure 1), we
found that a SV value larger than 0.35 allows students to look at the
same area and was thus used as the threshold to filter shared view
state in Horizon scene. We also incorporated more contextual in-
formation to this state by characterizing it as ‘short’ and ‘long’
based on state duration. We chose 15 seconds as the delimiter based
on our observations in terms of whether students were having a
quick or in-depth longer discussion with their partners.

Step 4. Consistent State Extraction We then extracted consistent JA
episodes longer than 5 seconds. Previous research pointed out that
students need around 2 seconds to focus their attention on the object
mentioned by their peers [30]. Considering our simulation platform
requires students to manually move their screens and find the ref-
erence points or shift the scene, we set the threshold as 5 seconds.
A state lasting 5 seconds or less was not sufficient to be counted as
a consistent state as it may be generated by accident.

Finally, six mutually exclusive states (shown in Table 1) were iden-
tified. These states were ordered according to levels of participation
and attention coordination; that is, three hierarchical levels. Each
level may require varying amounts of effort to achieve attention
coordination and visual synchronization. At the top level, we uti-
lized a previously developed SV metric [10] to capture consistent
screen overlapping behavior in Horizon. In the subsequent level,



we focused on scene overlapping behavior in the Earth or Star
scenes. The lowest level included no overlapping and inactivity
state, which could be perceived as lack of JA. JA states in Horizon
was differentiated from the other two scenes and perceived as the
higher level for the following reason. The current calculation
method of SV metric only applies to Horizon scene, which captures
the moments when students looked at the same region of the simu-
lated sky. This is typically achieved with the help of a reference star
or constellation (see the marked constellation in Figure 1). Students
need to move their screens or AR headsets to find the reference
object first before achieving the visual synchronization in Horizon.
For the other two scenes (Star and Earth), however, students only
need to click the button to select the same scene. Therefore, the
extra efforts required in Horizon may indicate more verbal commu-
nication to coordinate the screens to achieve synchronization.
Considering the fact that JA states differ in the level of attention
and coordination, overlapping in Horizon scene is more likely to
represent a high-level, intentional coordination behavior to build a
shared problem space.

Table 1. JA states description

JA State Scenes Description

Inactivity N/A Both students do not

(INACT) trigger any event
within the 20 seconds

No scene overlapping All Students explore in

(NO) different scenes OR
one is inactive

Scene overlapping in Earth and | Both students stay in

Earth or Star Star Earth or Star scene

(SO _Earth/Star)

Scene No shared view | Horizon Both students stay in
over- in Horizon the Horizon scene but
lapping | (SO_HZ NO) no screen overlap
in Short-shared Horizon a quick screen overlap
Hori- view (<15 seconds)
zon (SO_HZ SRT)
Long-shared Horizon a long and consistent
view screen overlap behav-
(SO_HZ LNG) ior (>15 seconds)

3.5 Group Exclusion and Classification

We used pre- and post-assessment scores as an outcome measure
of learning performance. Students wrote a short response explain-
ing the multiple steps to complete the location calculation given the
visible stars and constellations, which was graded as 0, 1, or 2 based
on a rubric developed during a pilot study. We computed individual
normalized gains (i.e., post — pre / post-max — pre) to obtain each
group’s average normalized learning gains. Among 25 groups, the
mean of normalized learning gains was 0.283 (SD = 0.290), and the
median was 0.313. Six groups earned no or negative learning gains.
For the rest, we conducted a median split and ended up with three
performance groups: no-learning-gain (n = 6), low-learning-gain (n
=9), and high-learning-gain (n = 10). One group in no-learning-
gain began with a full score in the pre-assessment and was removed
given the ceiling effect. Four groups were removed as the students
frequently shared only one device, making the logs unable to cap-
ture their collaborative behaviors. As such, a total of 20 groups
were included for the further analyses: no-learning-gain (n = 4),
low-learning-gain (n = 9), and high-learning gain (n = 7).

3.6 Analysis

Our analysis consists of two parts. First, we conducted descriptive
analysis to compare aggregated values of JA states across the three
learning performance groups. Examining the distribution of screen
overlapping states across groups with different learning gains
yields a preliminary understanding of the association between
screen overlapping behaviors (i.e., JA states) and learning perfor-
mance. Then we applied sequential analysis to search for patterns
that characterize JA from a process perspective. Specifically, we
looked at the transition probabilities between the six JA states to
uncover more interesting patterns of collaboration dynamics. Two
transition metrics were utilized to explore the state sequences: the
Markov-chain model (MCM) and the L* metric.

MCM is a transition metric that calculates the conditional probabil-
ity of one state following another based on the assumption that the
occurrence probability of one state depends on the previous state.
We used the TraMineR and seqHMM packages in R to build Mar-
kov models for our sequence data [13, 16]. Two important
parameters in MCM are (1) the transition probabilities between the
states and (2) the initial probabilities for each state. Transitions with
higher probability within the sequence can be interpreted as com-
mon collaboration patterns to characterize the groups' JA dynamics.
However, one limitation of MCM is the failure to take base rates
into account (i.e., the initial probability of each state in the se-
quence). This may impact how we interpret transition probabilities
and understand the relationship between states in the sequence.

We therefore applied L* metric as a complementary method. L*
was chosen as the best metric for sequences without consecutive
repetitive states according to the discussion in [5]. L* compares the
actual occurrence probability with a calculated base rate, which is
the transition probability assuming the states in the sequence are
randomly ordered [23]. The use of base rates in the calculations of
the L* metric makes it well suited for between-group comparison,
while MCM is better suited for within-group comparison (i.e., com-
parison between two transitions of the same group). L* illustrates
the degree to which transition between two states is more likely
than in a randomly ordered sequence of states, given the base rates
of each. The range of L* is (—oo, 1] where the negative value repre-
sents the specific transition is less likely to occur compared to the
chance level, and 0 means this transition occurs as often as expected
in a randomly ordered sequence.

4. RESULTS
4.1 Descriptive Analysis

Table 2 presents the distribution of each state across three learning
levels. It suggests no-learning gain group stayed either inactivity or
no overlapping states most of the time. Comparably, high-learning-
gain groups had more scene overlapping states. This difference sug-
gests that high-learning-gain groups are more likely to demonstrate
JA behaviors such as screen coordination to maintain mutual atten-
tion and construct a shared problem space for in-depth discussion.
We also examined the temporal aspect of data. One interesting find-
ing was the early adoption of collaboration strategies of high-
learning-gain group. We compared the long-shared view state dur-
ing the first 30 states, which roughly corresponds to the first twenty
minutes. While five out of seven groups in the high-learning-gain
groups demonstrate long-shared view in the early stage, only one
in the no-learning-gain groups and three in the low-learning-gain
group demonstrate long-shared view. These results suggest that
high-learning-gain groups not only demonstrate more high-level JA
behavior such as screen coordination but also tend to demonstrate
this behavior in the early stage of collaborative problem-solving.



Table 2. JA state descriptions in each learning gain group

State No Gain Low Gain High Gain
(n=4) (n=9) (n=7)
INACT 219.00 14.78 14.57
5(29.8%) (25.2%) (23.9%)
NO 30.50 28.00 27.71
(47.7%) (47.2%) (45.2%)
SO_HZ NO 9.25 9.67 12.14
(14.5%) (16.8%) (19.7%)
SO_Earth/Star | 2.75 (4.2%) | 3.11 (4.7%) | 2.14 (3.3%)
SO HZ SRT | 1.00(1.6%) | 2.11(3.5%) | 2.00(3.1%)
SO HZ LNG | 1.50(2.3%) 1.44 (2.6%) | 3.00 (4.9%)

Note. *Average number of states; "Average proportion of each state
within each group sequence.

4.2 Sequential Analysis

We further looked at transition probabilities between states to iden-
tify collaboration patterns able to differentiate learning groups (see
Figure 2). We particularly focused on the transitions relevant to the
long-shared view state (SO_HZ LNG), which is a key collabora-
tive behavior. An interesting difference was found in the transition
probabilities between the long-shared view and the other two states:
no overlapping (NO) and scene overlapping in Horizon
(SO_HZ NO). These two transition sequences represent two dif-
ferent JA patterns, indicating to what extent groups engage in
collaborative participation (e.g., symmetrical to asymmetrical par-
ticipation).

SO _HZ _LNG-2NO indicates that only one student remained ac-
tive and interacted with the platform after the end of a higher-level
JA state (i.e., long-shared view). Meanwhile, another student no
longer triggered any event. By looking at the session video record-
ings, we found this transition typically occurred when one student
initiated the screen coordination and dominated the problem-solv-
ing processes, while another student was less engaged.
SO _HZ LNG-2SO_HZ_NO suggests a more positive collabora-
tive behavior where pairs remained in the same scene and actively
interacted with the simulation platform after leaving the screen
overlapping state. Although these pairs no longer looked at the
same area of simulated sky, they both continued individual explo-
ration in a shared problem space (i.e., the same scene). We observed
that this transition typically occurred when students ended discus-
sion around the reference stars and went back to individual
exploration in the same scene.

No Gain Low Gain High Gain
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Figure 2. Markov-chain model of JA states

As shown in Figure 2, MCM presented transition probabilities
within the same learning gain group. Results revealed that low-
learning-gain groups showed a much higher probability for transi-
tion SO _HZ LNG-2>NO (0.83) among all other potential
transitions. Although this transition probability became smaller for
low-learning-gain groups (0.5), it still remained larger compared to
SO _HZ LNG-2SO_HZ _NO (0.33). Comparably, high-learning-
gain groups showed an opposite trend. They had a higher

probability for SO_HZ LNG2>S0O_HZ NO (0.52) compared to
SO _HZ LNG-2NO (0.43). This means the long-shared view state
is more likely to be followed by no shared view in Horizon for high-
learning-gain groups. Recall that SO _HZ LNG2SO_HZ _NO
suggests both students continued individual exploration after the
long-shared view state, creating opportunities for information ex-
change and screen coordination later in the session.

Additionally, we applied the L* metric [23] to account for differ-
ences in base rates, thus allowing for between-group comparisons.
When interpreting L* values, a larger absolute value indicates a
stronger dependence between two consecutive states, while the
value’s sign (positive or negative) indicates the direction of de-
pendence. As shown in Table 3, for SO_HZ LNG 2SO _HZ_NO,
the high-learning-gain groups showed the highest L*, while the no-
learning-gain groups showed the lowest L*. This positive value
means given the previous state is SO_HZ LNG, students in this
group are more likely than chance to enter the SO_HZ NO state.
Interestingly, SO_HZ LNG N0 showed the opposite trend, and
the only negative value was detected in high-learning-gain groups.
This means that, given SO_HZ LNG as the previous state, the cur-
rent state is less likely than chance to be NO.

In summary, L* metric can detect transitions occurring more or less
frequently than random chance, providing insights about when stu-
dents intentionally engage those transitions. The overall results
suggest that when high-learning-gain groups exit the long-shared
view state, they are more likely than chance to follow this state by
entering the scene overlapping in Horizon. Similarly, when this
group exit the long-shared view state, they are less likely than
chance to follow this state with no shared attention at all. In con-
trast, this transition is around chance level (0.06) for low-gain
groups or more likely than chance (0.85) for no-gain groups.

Table 3. L* Transition probabilities between long-shared view
and the other states

Transition Group L*

SO HZ LNG - NO No Gain 0.85
Low Gain 0.06
High Gain -0.15
SO HZ LNG - SO_HZ NO No Gain -0.11
Low Gain 0.23

High Gain 0.35

S. DISCUSSION

Our exploratory analysis identified six JA states to investigate the
dynamics of JA, which provide insights into how groups coordinate
their attention and solve the simulation task during a CPS process.
The results revealed that groups with higher learning gains demon-
strated a higher frequency of long and consistent shared view in the
early stage. These preliminary findings support the previous studies
that showed joint visual attention is associated with quality collab-
oration and contributes to learning gains (e.g., [18, 33]).

The examination of the sequence of states allowed us to identify
different collaboration profiles. We observed an undesirable behav-
ioral pattern that after a group exited a long-shared view state only
one student remained active and interacted with the simulation,
while another student no longer triggered any event. We perceived
such different tendencies as a visual attention leader (the former)
and a visual attention follower (the latter) [34, 35]. These two pro-
files (i.e., leader and follower), captured by the JA state sequence,
illustrate the imbalanced responsibility to initiate discussion and
level of engagement within the simulation. On the contrary, another
sequence transited to individual exploration, which was more likely



to occur in the high-learning-gain groups, suggested more balanced
engagement and equal responsibility of exploring the simulation
environment. This transition aligns with the profile of turn takers
[35], which is a more effective collaboration behavior as both par-
ticipants actively engage in and maintain a joint focus on the task
to solve the problem. Overall, high-learning-gain groups were most
likely to demonstrate balanced, mutual collaboration while no-
learning-gain groups demonstrate imbalanced participation. This
detection of asymmetrical participation suggests interesting lines of
follow-up inquiry on transitions of other JA states to gain a better
understanding of various collaboration profiles in CPS.

The novelty and contributions of this paper lie in the following two
aspects. First, we presented an exploratory study of utilizing logs
to capture JA to uncover how students collaboratively solve a group
task in an immersive learning environment. Understanding how
students interact with immersive learning environments can be
challenging due to its open-endedness, leading to unstructured in-
teractions. This unconstrained nature of interactions makes it
difficult to understand how students navigate the environment and
collaborate, leading to limited evidence suggesting what collabora-
tion patterns are associated with learning opportunities [1]. Our
study contributed by developing JA metric to investigate how stu-
dents coordinate their attention across devices. This method allows
us to look for dynamic and fine-grained patterns of JA that charac-
terize successful CPS and productive collaboration.

Second, we investigated JA from a process perspective, which was
typically studied as aggregative values of a binary event (i.e.,
whether students have or not have JA) [18, 33, 34]. Our approach
revealed that temporal characteristic also matters as high-learning-
gain groups demonstrate visual coordination in the early stage of
task session. This finding suggests that early visual coordination
behavior patterns have the potential to inform the following collab-
oration quality. Lack of such behaviors in the beginning stage can
serve as a signal for early interventions to prevent persistent unde-
sirable or unproductive collaboration. Studies are needed for
further explorations of the relationship between early collaboration
patterns and following collaboration quality. Sequential analysis al-
lows us to detect asymmetrical participation. This finding supports
previous studies [34] that although high-level JVA is correlated
with quality collaboration, it may also hide a free-rider effect and
thus requires a finer-grained examination on this feature.

6. DESIGN IMPLICATIONS

One implication is to design learning environments in a way that
facilitates the process of obtaining JA, considering the potential of
JA to enhance productive collaboration. For example, we can sup-
port peer awareness by adding visual pointers like an arrow to
pinpoint the direction their peers are looking at, or a coordination
shortcut allowing students to synchronize the screens or scenes in
the simulation quickly. Such design can facilitate coordination and
visual synchronization and consequently yield quality collabora-
tion. This is especially the case when students do not have sufficient
domain knowledge to communicate the correct direction to move
their screens for a shared problem space for further discussion.
Given the nature of the learning environment with immersive tech-
nologies, gaze visualizations are more likely to be utilized in
linguistically complex environments where it is difficult to describe
reference objects or directions to look at [8]. Moreover, visual at-
tention awareness provides evidence that other group members are
engaged and indeed getting the information communicated [29].
Such awareness contributes to an improved feeling of presence [2]
and encourages learners to maintain JA.

7. LIMITATIONS AND FUTURE RE-
SEARCH

This work has several limitations that we plan to address in future
studies. First, we have a small sample size containing 20 groups.
Although our analysis shows interesting patterns across groups, the
comparison test does not have enough statistical power to identify
significant difference. Second, the L* metric has a typical bias that
inflates transition probability as our state sequence does not contain
self-transition loops, which impacts the estimation of the base rate.
To the best of our knowledge, transition metric for original se-
quences without self-transition loops is still an open issue. Current
methods require the original sequences to contain self-transition
loops to calculate base rates before loop removal. We also com-
puted different transition metrics and found that MCM and L* are
the most meaningful metrics for our dataset. Our work is explora-
tory in nature and still in its early stage. Future research will include
more participants and combine multiple data sources like video re-
cordings and qualitative codes to better understand how
collaboration unfolds.

8. CONCLUSION

This exploratory study focused on JA, a cornerstone of productive
collaboration, to better understand how students regulate and coor-
dinate their attention during CPS in an immersive learning
environment. We identified different JA states and key collabora-
tion patterns associated with learning. Specifically, we were
interested in long and consistent screen overlapping across devices
(i.e., long-shared view state). To advance the understanding of
CPS, we applied the following approaches: (1) descriptive analysis
(2) sequential analysis on JA state transition utilizing the Markov
chain model and L* metric. This preliminary exploration provides
evidence that long-shared view state, representing the highest level
of JA state, is closely related to students’ positive collaborative
learning experiences. More specifically, high-learning-gain groups
demonstrate a higher frequency of long and consistent shared view
in the early stage. A closer examination of the JA state sequence
revealed two different collaboration profiles: attention follow-
leader and turn takers. Overall, our findings unravel the complex
process of attention dynamics and yield a better understanding of
attention coordination during CPS in an immersive learning envi-
ronment. This understanding consequently informs the design of
computer-supported collaborative learning tools and environments
to enhance learning.

9. ACKNOWLEDGMENTS

First, the authors would like to formally recognize other members
of our research team, Robb Lindgren, Nathan Kimball, Emma Mer-
cier, James Planey, Taechyun Kim, and Robin Jephthah
Rajarathinam. Through their design of the simulation and research
insights, their effort has enriched this work significantly. The au-
thors are also grateful to Luc Paquette for many helpful discussions
and suggestions on research idea development and analysis meth-
ods. Finally, this project was sponsored by the National Science
Foundation Grant no:1822796.

10. REFERENCES

[1] Akgaywr, M. and Akgayir, G. 2017. Advantages and chal-
lenges associated with augmented reality for education: A
systematic review of the literature. Educational Research Re-
view. 20, (Feb. 2017), 1-11.
DOI:https://doi.org/10.1016/j.edurev.2016.11.002.




[2] AKkkil, D., Thankachan, B. and Isokoski, P. 2018. I see what
you see: gaze awareness in mobile video collaboration. Pro-
ceedings of the 2018 ACM Symposium on Eye Tracking
Research & Applications (Warsaw Poland, Jun. 2018), 1-9.

[3] Bakeman, R. and Adamson, L.B. 1984. Coordinating Atten-
tion to People and Objects in Mother-Infant and Peer-Infant
Interaction. Child Development. 55, 4 (Aug. 1984), 1278.
DOTI:https://doi.org/10.2307/1129997.

[4] Birchfield, D., Megowan-romanowicz, C., Birchfield, D. and
Megowan-romanowicz, C. 2009. Earth Science Learning in
SMALLab: a Design Experiment for Mixed-Reality. Journal
of Computer Supported Collaborative Learning. 4, 4 (2009),
403-421.

[5] Bosch, N. and Paquette, L. 2021. What’s Next? Sequence
Length and Impossible Loops in State Transition Measure-
ment. 13, 1 (2021), 23.

[6] Bruner,J. 1985. The Role of Interaction Formats in Lan-
guage Acquisition. Language and Social Situations. J.P.
Forgas, ed. Springer. 31-46.

[7] Chang, C.-J., Chang, M.-H., Chiu, B.-C., Liu, C.-C., Fan
Chiang, S.-H., Wen, C.-T., Hwang, F.-K., Wu, Y.-T., Chao,
P.-Y., Lai, C.-H., Wu, S.-W., Chang, C.-K. and Chen, W.
2017. An analysis of student collaborative problem solving
activities mediated by collaborative simulations. Computers
& Education. 114, (Nov. 2017), 222-235.
DOTI:https://doi.org/10.1016/j.compedu.2017.07.008.

[8] D’Angelo, S. and Schneider, B. 2021. Shared Gaze Visuali-
zations in Collaborative Interactions: Past, Present and
Future. Interacting with Computers. 33,2 (Mar. 2021), 115—
133. DOI:https://doi.org/10.1093/iwcomp/iwab0135.

[9] Dede, C. 2009. Immersive Interfaces for Engagement and
Learning. Science. 323, 5910 (Jan. 2009), 66—69.
DOTI:https://doi.org/10.1126/science.1167311.

[10] Diederich, M., Kang, J., Kim, T. and Lindgren, R. 2021. De-
veloping an In-Application Shared View Metric to Capture
Collaborative Learning in a Multi-Platform Astronomy Sim-
ulation. LAK21: 11th International Learning Analytics and
Knowledge Conference (Irvine CA USA, Apr. 2021), 173—
183.

[11] Dunleavy, M., Dede, C. and Mitchell, R. 2009. Affordances
and Limitations of Immersive Participatory Augmented Real-
ity Simulations for Teaching and Learning. Journal of
Science Education and Technology. 18, 1 (Feb. 2009), 7-22.
DOT:https://doi.org/10.1007/s10956-008-9119-1.

[12] Emara, M., Hutchins, N., Grover, S., Snyder, C. and Biswas,
G. 2021. Examining Student Regulation of Collaborative,
Computational, Problem-Solving Processes in Open-Ended
Learning Environments. Journal of Learning Analytics. 8, 1
(Apr. 2021), 49-74.
DOIL:https://doi.org/10.18608/j1a.2021.7230.

[13] Gabadinho, A., Studer, M., Miiller, N., Biirgin, R., Fonta, P.-
A. and Ritschard, G. 2022. TraMineR: Trajectory Miner: a
Toolbox for Exploring and Rendering Sequences.

[14] Griffin, P. and Care, E. Educational Assessment in an Infor-
mation Age. 282.

[15] Han, A., Krieger, F. and Greiff, S. 2021. Collaboration Ana-
lytics Need More Comprehensive Models and Methods: An
Opinion Paper. Journal of Learning Analytics. 8, 1 (Apr.
2021), 13-29. DOI:https://doi.org/10.18608/j1a.2021.7288.

[16] Helske, J. and Helske, S. 2021. segHMM: Mixture Hidden
Markov Models for Social Sequence Data and Other Multi-
variate, Multichannel Categorical Time Series.

[17] Eduardo, H., Radu, L., Joy, T. and Schneider, B. 2021.
Augmented Reality in Collaborative Problem Solving: A
Qualitative Study of Challenges and Solutions. /nternational
Conference on Computer Supported Collaborative
Learning (2021).

[18] Jermann, P., Mullins, D., Niissli, M.-A., Dillenbourg, P. and
Nuessli, M.-A. 2011. Collaborative Gaze Footprints: Corre-
lates of Interaction Quality. (2011), 8.

[19] Kang, J., An, D., Yan, L. and Liu, M. Collaborative Problem-
Solving Process in A Science Serious Game: Exploring
Group Action Similarity Trajectory. (2019), 6.

[20] Lamsa, J., Himaéldinen, R., Koskinen, P., Viiri, J. and Man-
nonen, J. 2020. The potential of temporal analysis:
Combining log data and lag sequential analysis to investigate
temporal differences between scaffolded and non-scaffolded
group inquiry-based learning processes. Computers & Edu-
cation. 143, (Jan. 2020), 103674.
DOTI:https://doi.org/10.1016/j.compedu.2019.103674.

[21] Lin, T.-J., Duh, H.B.-L., Li, N., Wang, H.-Y. and Tsai, C.-C.
2013. An investigation of learners’ collaborative knowledge
construction performances and behavior patterns in an aug-
mented reality simulation system. Computers & Education.
68, (Oct. 2013), 314-321.
DOTI:https://doi.org/10.1016/j.compedu.2013.05.011.

[22] Martinez-Maldonado, R., Yacef, K., Kay, J., Kharrufa, A.
and Al-Qaraghuli, A. Analysing frequent sequential patterns
of collaborative learning activity around an interactive tab-
letop. International Conference on Educational Data Mining
(EDM 2011) (2011), 111-120.

[23] Matayoshi, J. and Karumbaiah, S. 2020. Adjusting the L Sta-
tistic when Self-Transitions are Excluded in Affect
Dynamics. 12, 4 (2020), 23.

[24] Mercier, E.M. and Higgins, S.E. 2013. Collaborative learning
with multi-touch technology: Developing adaptive expertise.
Learning and Instruction. 25, (Jun. 2013), 13-23.
DOTI:https://doi.org/10.1016/j.learninstruc.2012.10.004.

[25] Moore, C. and Dunham, P.J. 1995. Joint attention: its origins
and role in development. Lawrence Erlbaum Associates.

[26] OECD 2017. Development Co-operation Report 2017: Data
for Development. Organisation for Economic Co-operation
and Development.

[27] O’Madagain, C. and Tomasello, M. 2021. Joint attention to
mental content and the social origin of reasoning. Synthese.
198, 5 (May 2021), 4057-4078.
DOI:https://doi.org/10.1007/s11229-019-02327-1.

[28] Phelps, E., & Damon, W. (1989). Problem solving with
equals: Peer collaboration as a context for learning mathe-
matics and spatial concepts. Journal of Educational
Psychology, 81(4), 639—-646.

[29] Qvarfordt, P., Beymer, D. and Zhai, S. 2005. RealTourist — A
Study of Augmenting Human-Human and Human-Computer
Dialogue with Eye-Gaze Overlay. Human-Computer Interac-
tion - INTERACT 2005. M.F. Costabile and F. Paterno, eds.
Springer Berlin Heidelberg. 767-780.




[30] Richardson, D.C. and Dale, R. 2005. Looking To Under-
stand: The Coupling Between Speakers’ and Listeners’ Eye
Movements and Its Relationship to Discourse Comprehen-
sion. Cognitive Science. 29, 6 (Nov. 2005), 1045-1060.
DOT:https://doi.org/10.1207/s15516709c0g0000_29.

[31] Rodriguez, F.J. and Boyer, K.E. 2015. Discovering Individ-
ual and Collaborative Problem-Solving Modes with Hidden
Markov Models. Artificial Intelligence in Education. C.
Conati, N. Heffernan, A. Mitrovic, and M.F. Verdejo, eds.
Springer International Publishing. 408—418.

[32] Roschelle, J. and Teasley, S.D. 1995. The Construction of
Shared Knowledge in Collaborative Problem Solving. Com-
puter Supported Collaborative Learning. C. O’Malley, ed.
Springer Berlin Heidelberg. 69-97.

[33] Schneider, B. and Pea, R. 2013. Real-time mutual gaze per-
ception enhances collaborative learning and collaboration
quality. International Journal of Computer-Supported Col-
laborative Learning. 8, 4 (Dec. 2013), 375-397.
DOI:https://doi.org/10.1007/s11412-013-9181-4.

[34] Schneider, B., Sharma, K., Cuendet, S., Zufferey, G., Dillen-
bourg, P. and Pea, R. 2018. Leveraging mobile eye-trackers
to capture joint visual attention in co-located collaborative
learning groups. International Journal of Computer-Sup-
ported Collaborative Learning. 13, 3 (Sep. 2018), 241-261.
DOTI:https://doi.org/10.1007/s11412-018-9281-2.

[35] Shaer, O., Strait, M., Valdes, C., Feng, T., Lintz, M. and
Wang, H. 2011. Enhancing genomic learning through

tabletop interaction. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Vancouver BC
Canada, May 2011), 2817-2826.

[36] Siposova, B. and Carpenter, M. 2019. A new look at joint at-
tention and common knowledge. Cognition. 189, (Aug.
2019), 260-274. DOL:https://doi.org/10.1016/j.cogni-
tion.2019.03.019.

[37] Wang, H.-Y., Duh, H., Li, N., Lin, T.-J. and Tsai, C.-C.
2014. An Investigation of University Students’ Collaborative
Inquiry Learning Behaviors in an Augmented Reality Simu-
lation and a Traditional Simulation. Journal of Science
Education and Technology. 23, 5 (2014), 682-691.
DOT:https://doi.org/10.1007/s10956-014-9494-8.

[38] Wayntal, D., Serna, A., Pernelle, P. and marty, jean-charles
2015. Multi-Devices Territoriality to Manage Collaborative
Activities in a Learning Game. 9th European Conference on
Games-Based Learning (ECGBL 2015) (Steinkjer, Norway,
Oct. 2015), 570-578.

[39] Wu, H.-K., Lee, S.W.-Y., Chang, H.-Y. and Liang, J.-C.
2013. Current status, opportunities and challenges of aug-
mented reality in education. Computers & Education. 62,
(Mar. 2013), 41-49.
DOTI:https://doi.org/10.1016/j.compedu.2012.10.024.

[40] Zheng, J., Xing, W. and Zhu, G. 2019. Examining sequential
patterns of self- and socially shared regulation of STEM
learning in a CSCL environment. Computers & Education.




