
4392 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Convertible Codes: Enabling Efficient Conversion

of Coded Data in Distributed Storage

Francisco Maturana , Student Member, IEEE, and K. V. Rashmi , Member, IEEE

Abstract— Erasure codes are essential for providing efficient
resilience against node failures in distributed storage. Typically,
an [n, k] erasure code encodes k symbols into n symbols
which are then stored in different nodes. Recent work by
Kadekodi et al. shows that the failure rates of storage nodes
vary significantly over time, and that changing the rate of the
code (via a change in n and k) in response to such variations
provides substantial storage space savings. However, the resource
overhead of re-encoding the already encoded data is prohibitively
high. We present a new theoretical framework formalizing code

conversion—the process of converting data encoded with an
[nI , kI] code into data encoded with an [nF , kF] code while
maintaining desired decodability properties. We then introduce
convertible codes, a new class of codes that allow for code
conversions in a resource-efficient manner. This paper begins
the study on convertible codes by focusing on linear MDS codes
and the access cost of conversion. We derive a lower bound on
the access cost of conversion and present an explicit optimal
construction matching this bound for an important subclass of
conversions. Additionally, we propose constructions with low
field-size requirement for a broad subset of parameters. Our
results show that it is possible to achieve code conversions
with significantly less resources than the default approach of
re-encoding for a wide range of parameters.

Index Terms— Convertible codes, storage codes, coding theory,
distributed storage systems, re-encoding.

I. INTRODUCTION

E
RASURE codes have become an essential tool for pro-

tecting against node failures in distributed storage sys-

tems [2]–[8]. Under erasure coding, a set of k data symbols

to be stored is encoded using an [n, k] code to generate n
coded symbols, called a codeword (or stripe). Each of the

n symbols in a codeword is stored on a different storage

node, and the system as a whole typically contains several

independent codewords distributed across different subsets of

storage nodes in the cluster.

Manuscript received July 31, 2021; revised January 6, 2022; accepted
January 21, 2022. Date of publication March 2, 2022; date of current
version June 15, 2022. This work was supported in part by NSF CAREER
Award under Grant 19434090, in part by NSF CNS under Grant 1956271,
in part by the Google Faculty Research Award, and in part by the Facebook
Distributed Systems Research Award. An earlier version of this paper was
presented in part at the 11th Innovations in Theoretical Computer Science
Conference (ITCS) [1] [DOI: 10.4230/LIPIcs.ITCS.2020.66]. (Corresponding

author: Francisco Maturana.)
The authors are with the Computer Science Department, Carnegie Mel-

lon University, Pittsburgh, PA 15213 USA (e-mail: fmaturan@cs.cmu.edu;
rvinayak@cs.cmu.edu).

Communicated by A. Thangaraj, Associate Editor for Coding and Decoding.
Color versions of one or more figures in this article are available at

https://doi.org/10.1109/TIT.2022.3155972.
Digital Object Identifier 10.1109/TIT.2022.3155972

Fig. 1. (From [10]) The left y-axis shows the percentage of disk IO utilized
by conversion (called “transition” in [10]) against time simulated from a trace
of a production Google cluster. The right y-axis shows the size of the cluster
in number of disks against time. Code conversions can result in big spikes in
disk IO consumption that can overwhelm the cluster for several days.

A key factor that determines the choice of parameters n and

k is the failure rate of the storage devices. It has been shown

that failure rates of storage devices in large-scale storage

systems can vary significantly over time and that changing

the code rate, by changing n and k, in response to these

variations yields substantial savings in storage space and hence

the operating costs [9]. For example, in [9], the authors show

that 11% to 44% reduction in storage space can be achieved

by tailoring n and k to changes in observed device failure

rates. Such a reduction in storage space requirement translates

to significant savings in the cost of resources and energy con-

sumed in large-scale storage systems. It is natural to think of

potentially achieving such a change in code rate by changing

only n while keeping k fixed. However, due to several practical

system constraints, changing code rate in storage systems

often necessitates change in both the parameters n and k [9].

We refer the reader to [9] for a more detailed discussion on the

practical benefits and constraints of adapting the erasure-code

parameters to the variations in failure rates in storage systems.

Changing n and k for codewords in a storage system,

from [nI , kI], to [nF , kF], would involve converting already

encoded data from one code to another. Clearly, it is always

possible to re-encode the data in a codeword according to

a new code by accessing (and decoding if necessary) all

the original message symbols. However, such an approach,

which we call the default approach, requires accessing a large

number of symbols (for example, for MDS codes, the initial

value of k number of symbols need to be accessed from

each codeword), reading out all the data, transferring over the

network, and re-encoding. Such conversions can generate a

large amount of load on cluster resources, which adversely

affects the foreground operations of the cluster. Figure 1

shows the IO load that would be caused by code conversions

on a Google cluster with multiple hundreds of thousands of

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4393

disks [10]. As seen from the figure, IO load from conversions

can easily overwhelm the cluster for long periods of time.

Furthermore, in some cases conversions might need to be

performed in an expedited manner, for example, to avoid the

risk of data loss when facing an unexpected rise in failure rate.

High IO load is problematic for such conversions because

it slows down conversion as well as other important clus-

ter processes, such as serving client requests. While recent

work [10] has initiated a study on systems techniques to

mitigate the spikes in the IO load caused by conversions, the

total amount of work necessary for conversion still remains

considerably high and these systems techniques introduce

restrictions on other operations of the cluster such as data

placement.

Given that the root cause of the problem is the high

resource overhead involved in performing conversions on the

underlying code, in this paper, we investigate the problem from

a fundamental theoretical perspective.

There are also several other reasons to perform code con-

versions in storage systems. One may convert data that is

frequently read into a code with a small k (in order to improve

the performance of reconstructions) and convert data that is

infrequently read into a code with large k (to achieve lower

storage overhead). In addition, code conversions may need

to be performed to keep the total size of the encoded data

under a given threshold, or to maximize the reliability given

the available storage space.

To the best of our knowledge, the existing literature

[11]–[14] which formally studies the problem of changing the

length and dimension of already encoded data does so from

the perspective of the so-called scaling problem. The scaling

problem [11] refers to the problem of evenly redistributing

each codeword in a distributed storage system when additional

nodes are added to the system and the level of failure tolerance

(specifically, (n− k)) is kept constant. Some works [12], [14]

generalize the scaling problem to broader cases where (n−k)
need not remain constant. However, even in cases where the

scaling problem could be used to perform code conversion,

it has several drawbacks that make it inefficient for conver-

sion. For example, using the approach of scaling to achieve

conversion requires accessing every symbol in each codeword

and performing a significant amount of data movement to keep

the amount stored in each node the same. While these costs are

necessary to fulfill the goals of the scaling problem, they are

unnecessary to achieve code conversion, making this approach

inefficient. A more detailed discussion of the scaling problem

and other related work is provided in Section II-A.

In this paper, we propose a theoretical framework to model

the code conversion problem. Our approach is based on

the insight that the problem of changing code parameters

in a storage system can be viewed as converting multiple

codewords of an [nI , kI] code (denoted by CI) into (potentially

multiple) codewords of an [nF , kF] code (denoted by CF),1

with desired constraints on decodability, such as both codes

satisfying the maximum distance separability (MDS) property.

1The superscripts I and F stand for initial and final respectively, represent-
ing the initial and final state of the conversion.

Fig. 2. Example of code conversion: two codewords of a [5, 3] MDS code are
converted into one codeword of a [8, 6] MDS code. Unshaded boxes represent
data symbols, and shaded boxes represent parity symbols. Some of the initial
symbols are kept unchanged in the final codewords, as shown by the dashed
arrows. Some initial symbols are read and downloaded (solid arrows). The
downloaded data is then used to compute and write the remaining symbols
in the final codewords.

To address the problem of code conversion, we then introduce

a new class of codes, which we call convertible codes, that

allow for resource-efficient conversions. The general formu-

lation of code conversions provides a powerful framework to

theoretically study convertible codes.

We now present an example to elucidate the concept of code

conversion in the convertible codes framework.

Example 1: Consider conversion from an [nI = 5, kI = 3]
code CI to an [nF = 8, kF = 6] code CF . We will focus on

the number of symbols read, i.e. read access cost, and on the

number symbols written, i.e. write access cost, for conversion.

The default approach to conversion is to read kI = 3 symbols

from each of the two initial codewords belonging to CI ,

decoding the original data, and using it to write two symbols

of the final codeword belonging to CF , while keeping the

three read symbols from each initial codeword unchanged as

symbols of the final codeword. Thus, the default approach has

a read access cost of 6 and write access cost of 2.

In the convertible codes framework, this conversion is

achieved by converting two codewords of the initial code into a

single codeword of the final code, as depicted in Figure 2. This

approach uses specially designed systematic codes CI and CF .

Let Fq be the finite field of size q = 37. Let a, b, c ∈ Fq be

the data symbols of the first initial codeword, d, e, f ∈ Fq

be the data symbols of the second initial codeword. Let

p1, p2 : F3
q → Fq be the parity functions for the initial code

CI , and q1, q2 : F6
q → Fq be the parity functions for the final

code CF . The parity functions are chosen as below:

p1(a, b, c) = a + b + c, p2(a, b, c) = a + 2b + 4c.

This is an example of the general construction presented in

Section V. The conversion procedure keeps the data symbols

from each initial codeword unchanged in the final codeword,

and then constructs the first (resp. second) parity of the final

codeword as a linear combination of the first (resp. second)

parity of each initial codeword. The final parity functions are

chosen to satisfy the equation below:

q1(a, b, c, d, e, f) = p1(a, b, c) + p1(d, e, f),

q2(a, b, c, d, e, f) = p2(a, b, c) + 8p2(d, e, f).

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4394 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

It is straightforward to check that the initial and final codes

defined by these parity functions have the MDS property. This

conversion procedure requires reading two symbols from each

initial codeword and writing two symbols, resulting in a total

read access cost of 4 and a write access cost of 2, a reduction

of 33.3% in the read access cost as compared to the default

approach. This is also the minimum possible read cost, as will

be shown in Section IV. ◮

In this paper, we begin the exploration of convertible codes

by focusing on convertible codes which are linear and MDS.

The properties of linear MDS codes have been well studied,

and they are widely used in practice due to their relative

simplicity and their storage overhead. As such they constitute

a good starting point for studying convertible codes. Further-

more, we focus on the access cost of conversion. Access cost

corresponds to the total number of symbols that are either

read or written during conversion, which is a fundamental

quantity that directly affects important metrics such as network

bandwidth, IO and CPU resource usage.

Within the class of linear MDS codes, we focus on an

important subclass of conversions, which we refer to as the

merge regime. The merge regime corresponds to conversions

where multiple codewords are merged into a single codeword.

In other words, kF = ςkI for some integer ς ≥ 2, with

arbitrary values of nI and nF . Using the convertible codes

framework, we prove a tight lower bound on the access cost

of conversions for linear MDS codes in the merge regime

(Section IV). This lower bound identifies a broad region where

significant savings in access cost are possible, and shows that

in its complement region, linear MDS codes cannot achieve

lower access cost than the default approach.

We cast the problem of constructing optimal convertible

codes into a problem of constructing matrices which satisfy

some special structural properties. Using this insight, we first

propose a simple construction (Section V) which works for

all parameters in the merge regime, but requires a large field

size (exponential in the lengths of the codes). To address this

issue, we introduce a sequence of constructions of convertible

codes that have significantly lower field size requirements

(Section VI). Our main results are summarized in Table I.

Throughout our analysis of convertible codes, we assume

the values of the parameters (nI , kI) and (nF , kF) are known

and fixed. However, in practice the value of (nF , kF) might

not be known at the time of code construction, since it depends

on the future failure rates of storage devices. To address this

problem, we also show that the constructions presented in

this paper can support access-optimal conversion for multiple

possible values of (nF , kF) simultaneously.

II. RELATED WORK, BACKGROUND AND NOTATION

In this section, we place convertible codes within the larger

context of traditional codes and more recent works on codes

for distributed storage. Then, we review some basic concepts

and notation that will be used throughout the paper.

A. Related Work

MDS erasure codes, such as Reed-Solomon codes [15],

are widely used in storage systems because they achieve

TABLE I

MAIN RESULTS FOR THE ACCESS COST OF CONVERSIONS IN THE MERGE

REGIME, I.E. A (nI , kI ; nF , kF = ςkI) CONVERTIBLE CODE

the optimal tradeoff between failure tolerance and storage

overhead [16], [17]. However, the use of erasure codes in

storage systems raises a host of other aspects to optimize for.

Several works in the literature have studied these aspects and

proposed codes that optimize them.

One aspect of storage codes that received considerable

attention early on is the computational overhead involved

in encoding and decoding of data. Array codes [18]–[21]

are designed to use XOR operations exclusively, which are

typically faster to execute, and aim to decrease the complexity

of encoding and decoding.

Another aspect of storage codes that has received consid-

erable attention in the recent past is related to the resource

overhead associated with repair of failed nodes. Several

approaches have been proposed to alleviate this problem.

Dimakis et al. [22] proposed a new class of codes called

regenerating codes that minimize the amount of network

bandwidth consumed during repair operations. Under the

regenerating codes model [22], each symbol (i.e., node) is

represented as an α-dimensional vector over a finite field.

During repair of a failed node, download of elements of the

finite field (i.e., “sub-symbols”) is allowed as opposed to the

whole vector (i.e., one “entire” symbol). This line of research

has led to several constructions [23]–[42], generalizations

[43]–[45], and more efficient repair algorithms for Reed-

Solomon codes [46]–[53]. Several of these constructions [26],

[35], [54]–[56] minimize the amount of IO consumed during

repairs in addition to minimizing the network bandwidth

consumption. It has been shown that meeting the lower

bound on the network bandwidth required by repair when

MDS property and high rate are desired necessitates large

sub-packetization [54], [56]–[58], which negatively affects

certain key performance metrics in storage systems [6], [7].

To overcome this issue, several works [59], [60] have proposed

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4395

code constructions that relax the requirement of meeting lower

bounds on IO and bandwidth for repair operations in order to

reduce the degree of sub-packetization.

The challenge of code repair has also been addressed

by another class of codes, called locally repairable codes

(LRCs) [61]–[77]. These codes focus on the locality of code-

word symbols during repair, that is, the number of nodes that

need to be accessed when repairing a single failure. LRCs

improve repair performance, since missing information can

be recovered by accessing a small subset of symbols. LRCs

and convertible codes optimized for access cost both aim to

minimize the number of symbols that need to be accessed,

albeit for different operations in storage systems.

Recent literature on storage codes has also considered the

problem of redistributing data when additional devices are

added to a distributed storage system, which is known as

the scaling problem [11], [12], [14], [78]–[86]. The setting

considered consists of an n node distributed storage system

where the data is encoded using an [n, k] MDS code, where

the n symbols of each codeword are spread across evenly

on all the n nodes in the system. Then, s new empty nodes

are added to the system, and the data (which was encoded

under an [n, k] MDS code) needs to be updated to an [n′ =
n + s, k′ = k + s] MDS code. The central goal of this

problem is to evenly redistribute each codeword across all

n′ nodes while reducing the total amount of data transferred

across nodes and ensuring the MDS property holds. In some

cases, it is additionally required that the ratio of data to parity

in each node is the same (e.g. [83]). Some works consider

more general scaling scenarios: for example [14] considers the

case where k < k′ and n < n′, and [12] considers arbitrary

n′ > k′. The scaling problem is fundamentally different from

the conversion problem that we study in this paper because

of the need to evenly redistribute data across nodes under

scaling. Hence, some of the key constraints and limitations

of the scaling problem do not apply to code conversion.

For example, scaling necessitates modifying every node in

the system (incurring a high access cost) and necessitates

transfer of data not for the purpose of conversion (i.e. changing

n and k) but for the purpose of rebalancing the amount

of data stored by each codeword in a given node. On the

other hand, under the code conversion problem, we do not

impose any requirements on data balancing. This is because,

typically, large-scale distributed storage systems balance data

across nodes at a higher level rather than at the level of each

codeword [2], [5].

Several works have studied scenarios where encoded data is

transformed to conform to a different code. In [87], [88], the

authors propose a two-stage encoding process, where in the

first stage data is encoded using a [n, k] MDS code, and in

the second stage (n′ − n) additional parities are generated to

form a codeword from a [n′, k] MDS code. This process can

be seen as a special case of convertible codes, i.e. an (n, k; n′,
k) convertible code. In [89], the authors propose a distributed

storage system which alternates between two specific erasure

codes in response to variations in workload. In [90], the

authors propose a scheme for changing the parameters of an

erasure code in the context of coded matrix multiplication.

In [91], which appeared after the publication of the con-

ference version of this paper [1], the authors propose a code

construction for improving the efficiency of conversion. This

construction performs conversion by acting on initial code-

words that are encoded differently, i.e. a different (kI × nI)
generator matrix is used for each initial codeword. The focus

of Wu et al. [91] is on a practical code construction for a spe-

cific parameter regime and they do not investigate theoretical

modeling and fundamental limits. All the lower bounds derived

in our work continue to hold even if each codeword is encoded

differently. The approach of using multiple different initial

codes has the advantage of simplifying the code construction:

a final MDS code CF is chosen first, and then the encoding of

each initial codeword is chosen to fit CF . However, such an

approach has several disadvantages. First, conversion can only

happen among specific groups of initial codewords, making

the conversion process more rigid as codewords cannot be

freely chosen. Second, this approach increases the overhead

of codeword management, as the system needs to keep track

of the code of each codeword. Third, it only considers one

specific known value for the final parameters (nF , kF). On the

other hand, the framework of convertible codes that we pro-

pose allows one to choose any set of initial codewords for

conversion (since they all use the same code), is independent of

data placement, and the proposed code constructions support

access-optimal conversion for any (nF , kF) in a set of possible

final parameter values.

B. Background

In this subsection we introduce some basic definitions and

notation related to linear codes. Let Fq be a finite field of

size q. An [n, k] linear code C over Fq is a k-dimensional

subspace C ⊆ Fn
q . Here, n is called the length of the code,

and k is called the dimension of the code. A generator matrix

of an [n, k] linear code C over Fq is a k × n matrix G over

Fq such that the rows of G form a basis of the subspace C.

A k × n generator matrix G is said to be systematic if it has

the form G = [I | P], where I is the k×k identity matrix and

P is a k × (n − k) matrix. Even though the generator matrix

of a code C is not unique, we will sometimes associate a code

C to a specific generator matrix G, which will be clear from

context. The encoding of a message m ∈ Fk
q under an [n, k]

code C with generator matrix G is denoted C(m) = mTG.

Let [n] denote the set {1, 2, . . . , n} for n ≥ 1, and the empty

set for n ≤ 0. A linear code C is maximum distance separable

(MDS) if the minimum distance of the code is the maximum

possible:

min-dist(C) = min
c �=c′ ∈C

|{i ∈ [n] : ci �= c′i}| = n−k + 1,

where ci ∈ Fq denotes the i-th coordinate of c. Equivalently,

a linear code C is MDS if and only if every k × k submatrix

of its generator matrix G is non-singular [92].

A matrix M is said to be superregular if every square

submatrix of M is nonsingular.2 The following property is

a key property that will be used in this paper.

2This definition of superregularity is stronger than the definition introduced
in [93] in the context of convolutional codes.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4396 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Proposition 2 ([92]): Let C be an [n, k] code with generator

matrix G = [I|P]. Then C is MDS if and only if P is

superregular.

Let v ∈ Fn
q be a vector. We interpret vectors as column

vectors by convention. We denote the transpose of a vector (or

matrix) as vT . Given a set of coordinates I ⊆ [n], we denote

the projection of v to the coordinates in I as v|I ∈ F
|I|
q . For

a set of vectors V we define projI(V) = {v|I | v ∈ V}.

We use the following notation for submatrices: let M be

a n × m matrix, the submatrix of M defined by row indices

{i1, . . . , ia} ⊆ [n] and column indices {j1, . . . , jb} ⊆ [m] is

denoted by M [i1, . . . , ia; j1, . . . , jb]. For conciseness, we use

∗ to denote all row or column indices, e.g., M [∗; j1, . . . , jb]
denotes the submatrix composed by columns {j1, . . . , jb},

and M [i1, . . . , ia; ∗] denotes the submatrix composed by rows

{i1, . . . , ia}.

III. A FRAMEWORK FOR STUDYING CODE CONVERSIONS

In this section, we formally define the new framework for

studying code conversions and introduce convertible codes.

While we use the notation of linear codes introduced in

Section II-B, the framework introduced in this section can

be applied to arbitrary (not necessarily linear) codes. Suppose

one wants to convert data that is already encoded using an

[nI , kI] initial code CI into data encoded using an [nF , kF]
final code CF where both codes are over the same field Fq.

In the initial and final configurations, the system must store the

same information, but encoded differently. In order to capture

the changes in the dimension of the code during conversion,

we consider M = lcm(kI , kF) number of “message” symbols

(i.e., the data to be stored) over a finite field Fq, denoted by

m ∈ FM
q . This corresponds to λI = M/kI codewords in the

initial configuration and λF = M/kF codewords in the final

configuration. Let rI = (nI − kI) and rF = (nF − kF).
Figure 3 shows the conversion process for general initial and

final codes. We note that this need for considering multiple

codewords in order to capture the smallest instance of the

problem deviates from existing literature on the code repair

(e.g., [22], [23], [47], [59]) and code locality (e.g., [61], [66],

[76]), where a single codeword is sufficient to capture the

problem.

Since there are multiple codewords, we first specify an ini-

tial partition PI and a final partition PF of the set [M], which

map the message symbols of m to their corresponding initial

and final codewords. The initial partition PI = {P I
1 , . . . , P I

λI}
is composed of λI disjoint subsets of size |P I

i | = kI (i ∈ [λI]),
and the final partition PF = {PF

1 , . . . , PF
λF } is composed of

λF disjoint subsets of size |PF
j | = kF (j ∈ [λF]). In the initial

(respectively, final) configuration, the data indexed by each

subset P I
i ∈ PI (respectively, PF

j ∈ PF) is encoded using the

code CI (respectively, CF). The codewords {CI(m|P I
i
) | P I

i ∈

PI} are referred to as initial codewords, and the codewords

{CF (m|P F
j

) | PF
j ∈ PF } are referred to as final codewords.

The descriptions of the initial and final partitions and codes,

along with the conversion procedure, define a convertible code.

We now proceed to define conversions and convertible codes

formally.

Fig. 3. Conversion from [nI , kI] initial code to [nF , kF] final code. Each
box denotes a symbol, and they are grouped into codewords. Dotted boxes
denote retired symbols, and cross-hatched boxes denote new symbols. The c

node denotes the location where new symbols are computed from the symbols
read during conversion. Solid arrows denote a transfer of symbols (read or
write) and dashed arrows denote unchanged symbols.

Definition 3 (Code Conversion): A conversion from an ini-

tial code CI to a final code CF with initial partition PI and

final partition PF is a procedure, denoted by TCI→CF , that

for any m, takes the set of initial codewords {CI(m|P I
i
) |

P I
i ∈ PI} as input, and outputs the corresponding set of final

codewords {CF (m|P F
j

) | PF
j ∈ PF }. ◮

Definition 4 (Convertible Code): An (nI , kI ; nF , kF) con-

vertible code over Fq is defined by: (1) a pair of codes

(CI , CF) where CI is an [nI , kI] code over Fq and CF is

an [nF , kF] code over Fq; (2) a pair of partitions PI ,PF of

[M = lcm(kI , kF)] such that each subset in PI is of size kI

and each subset in PF is of size kF ; and (3) a conversion

procedure TCI→CF that on input {CI(m|P I
i
) | P I

i ∈ PI}

outputs {CF (m|P F
j

) | PF
j ∈ PF }, for any m ∈ FM

q . ◮

Typically, additional constraints would be imposed on CI

and CF , for example, decodability constraints such as requiring

both codes to be MDS.

The cost of conversion is determined by the cost of the

conversion procedure TCI→CF , as a function of the parameters

(nI , kI ; nF , kF). Towards minimizing the overhead of the

conversion, our general objective is to design codes (CI , CF),
partitions (PI ,PF) and conversion procedure TCI→CF that

satisfy Definition 4 and minimize the conversion cost for given

parameters (nI , kI ; nF , kF), subject to desired decodability

constraints on CI and CF .

Depending on the relative importance of various resources

in the cluster, one might be interested in optimizing the

conversion with respect to various types of costs such as

symbol access, computation (CPU), communication (network

bandwidth), read/writes (disk IO), etc., or a combination of

these costs. The general formulation of code conversions above

provides a powerful framework to theoretically reason about

convertible codes. In this paper, we focus on a specific cost

model.

As a measure of cost, we consider the access cost of code

conversion, which measures the number of symbols that are

affected by the conversion.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4397

TABLE II

NOTATION USED IN THE PAPER

Definition 5 (Access Cost): The read access cost of a con-

version procedure is defined as the total number of symbols

read during the procedure. Similarly, the write access cost

of a conversion procedure is the total number of symbols

written during the procedure. The access cost of a conversion

procedure is the sum of its read and write access costs. The

access cost of a convertible code is the access cost of its

conversion procedure.

Each symbol read from the initial codewords requires one

symbol access and each symbol written to the final codewords

requires one symbol access. Therefore, minimizing access cost

amounts to minimizing the sum of the number of symbols read

from the initial codewords and the number of symbols written

to the final codewords.3 Keeping this number small makes

code conversion less disruptive and allows the unaffected sym-

bols to remain available for normal operation. Furthermore,

reducing the number of accesses also reduces the amount of

computation and communication required in contrast to the

default approach.

In order to understand the necessary access cost of conver-

sion, we classify symbols into three categories: (1) unchanged

symbols, which refers to symbols in the initial codewords that

remain as is in the final codewords; (2) retired symbols, which

refers to the remaining symbols of the initial codewords that

are discarded; and (3) new symbols, which refers the symbols

in the final stripes which are not unchanged (and therefore

must be written during conversion). For example, in Figure 3,

unchanged symbols are unshaded, retired symbols in the initial

codewords are dotted, and new symbols in the final codewords

are cross-hatched.

Having unchanged symbols has many practical benefits,

because when conversion is implemented, such symbols can

stay in the same location and only their corresponding meta-

data needs to be updated. We introduce the following definition

to capture codes that maximize the number of such symbols.

Definition 6 (Stable Convertible Code): An (nI , kI ; nF ,
kF) MDS convertible code is said to be stable if it uses the

maximum number of unchanged symbols over all (nI , kI ;
nF , kF) MDS convertible codes. ◮

We will see in Section IV, that stable convertible codes play

an important role in minimizing access cost.

The convertible codes framework defined in this work is

flexible and allows for the initial and final codes to have

any parameters and be of any kind. However, as a step

3Readers who are familiar with the literature on regenerating codes might
observe that convertible codes optimizing for the access cost are “scalar”
codes as opposed to being “vector” codes.

towards a fundamental theoretical understanding of the access

cost of conversions, in this paper we focus in a particular

subclass of conversions that we term merge regime. The merge

regime correspond to code conversions where multiple initial

codewords are combined into a single codeword. In other

words, the merge regime consists of convertible codes where

kF = ςkI , for some integer ς ≥ 2, and nI , nF are arbitrary.

In addition to this, in this paper we focus exclusively on codes

that are both linear and MDS.

In particular, our goal is to find linear MDS codes which can

achieve conversion with the minimum possible access cost.

Definition 7 (Access-Optimal): A linear MDS (nI , kI ; nF ,
kF) convertible code is said to be access-optimal if and only

if it attains the minimum access cost over all linear MDS (nI ,
kI ; nF , kF) convertible codes. ◮

We will study the precise cost of access-optimal convertible

codes in the merge regime in Section IV.

In practice, the final parameters (nF , kF) might not be

known at the time of code construction because they might

depend on future failure rates. To address this, we also con-

sider designing codes which have the ability to be converted

to multiple final codes of different length and dimension with

optimal access cost. This way, instead of having to decide

(nF , kF) in advance, the user can specify a subset S ⊆ (N×N)
of possible values for the pair (nF , kF) and construct an initial

code with the ability to be converted to an [nF , kF] final

code for any (nF , kF) ∈ S. At the time of conversion, the

user simply chooses the desired pair from S and converts.

We introduce the following definition to help describe such

codes.

Definition 8 (Access-Optimally Convertible): A linear [nI ,
kI] MDS code CI is said to be (nF , kF)-access-optimally

convertible if and only if it is the initial code of an access-

optimal (nI , kI ; nF , kF) convertible code. ◮

A. Notation for Linear Convertible Codes in the Merge

Regime

In this paper, we focus exclusively on convertible codes

in the merge regime where CI and CF are linear. To this

end, we introduce some notation for describing and analyzing

this class of codes. Table II summarizes the most important

notation used for easy reference.

First, we make some observations that help simplify the

notation for the merge regime. In the merge regime kF = ςkI

and, as a consequence, the length of the message m will be

M = lcm(kI , kF) = kF . Furthermore, the number of initial

codewords will be λI = ς and the number of final codewords

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4398 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

will be λF = 1. Therefore, we need not specify which final

codeword we refer to, as there is only one.

Let ♦ ∈ {I, F}. The generator matrix of C♦ is a (k♦ ×
n♦) matrix G♦ = [g♦

1 · · ·g♦

n♦], where g♦
j ∈ Fk♦

q (j ∈ [n♦])

denotes the j-th encoding vector of C♦. Consequently, the j-th

symbol of the i-th codeword corresponds to (m|P ♦
i

)T g♦
j .

In order to analyse linear convertible codes, we also view

each code symbol in relation to the whole message m. Accord-

ingly, we view the j-th symbol of the i-th initial codeword as

mT g̃I
i,j , where the encoding vector g̃I

i,j ∈ FM
q is defined to

be equal to gI
j for coordinates in P I

i , i.e. g̃I
i,j |P I

i
= gI

j , and

equal to 0 everywhere outside of P I
i . Note that mT g̃I

i,j =
(m|P I

i
)TgI

j for all i ∈ [ς] and j ∈ [nI]. In general, we will

refer to a code symbol and its corresponding encoding vector

interchangeably.

Let SI
i = {g̃I

i,j | j ∈ [nI]} denote the encoding vectors

of initial codeword i ∈ [ς], let SI =
⋃

i∈[ς] S
I
i , and let

SF = {gF
j | j ∈ [nF]}. Define Ui = (SI

i ∩ SF) denoting the

unchanged symbols of initial codeword i, and let U = (SI ∩
SF) denote all unchanged vectors. We define the read access

set of a convertible code as a set of tuples D ∈ [λI] × [nI],
where (i, j) ∈ D corresponds to the j-th symbol of initial

codeword i. Furthermore, we use Di = {j | (i, j) ∈ D},

∀i ∈ [λI] to denote the symbols read from initial codeword

i. Note that the read access cost is given by |D|. Let Ai =
{g̃I

i,j | j ∈ Di} denote the encoding vectors of the symbols

from initial codeword i ∈ [λI] that are part of the read access

set D, and define A = {g̃I
i,j | (i, j) ∈ D} as the set of all

encoding vectors of the symbols in the read access set. Finally,

let N = (SF \SI) denote the new vectors. Notice that it must

hold that N ⊆ span(A), since the new vectors are obtained

as linear combinations of the encoding vectors of the symbols

in the read access set.

B. The Case of kI = kF

Before analyzing the conversion in the merge regime,

we briefly study the exceptional conversion case where kI =
kF . Conversion with parameters kI = kF is not considered as

part of the merge regime because it does not have the same

behavior. However, we analyze this case here for complete-

ness. Observe that in the case where nI ≥ nF , conversion for

any MDS code can be carried out with zero access cost by

simply retiring any (nI −nF) symbols. In the complementary

case where nI < nF , it is necessary to access at least kI

symbols and write at least (nF − nI) symbols (i.e. it is not

possible to beat the default approach). This is apparent from

the fact that in an [n, k] MDS code, any subset of k−1 symbols

gives no information about any one of the remaining symbols.

Therefore, in the remainder of this paper, we consider ς ≥ 2.

IV. LOWER BOUNDS ON THE ACCESS COST OF

CONVERTIBLE CODES IN THE MERGE REGIME

In this paper, we focus on studying the merge regime.

Recall, from Section III, that the merge regime corresponds

to conversion where multiple codewords are combined into a

single codeword (i.e. kF = ςkI for an integer ς ≥ 2). This

implies that M = kF , λI = ς , and λF = 1.

Fig. 4. Comparison of the read access cost of the optimal conversion of
a (nI , kI ; nF , kF = ςkI) convertible code and the default approach for a

variable value of rF (x-axis) when rI < kI (left side) and rI ≥ kI (right
side). When rF < min{kI , rI}, optimal conversion achieves lower cost than

the default approach, and when rF > min{kI , rI}, the default approach
is (trivially) optimal. The optimal write access cost in the merge regime is

always rF .

TABLE III

ACCESS COST SAVINGS FOR DIFFERENT EXAMPLE PARAMETERS

In this section, we present lower bounds on the access cost

of linear MDS convertible codes in the merge regime. Our

main result is summarized by the following theorem, which

will be proved at the end of this section.

Theorem 9: For all linear MDS (nI , kI ; nF , kF = ςkI)
convertible codes, the read access cost of conversion is at

least ς min{kI , rF } and the write access cost is at least rF .

Furthermore, if rI < rF , the read access cost of conversion

is at least ςkI .

As we will show in Section V, this lower bound is achiev-

able and it therefore corresponds to the optimal access cost in

the merge regime. Figure 4 shows a plot comparing the optimal

access cost against the access cost of the default approach for

different parameter values, and Table III shows these costs for

some concrete conversion examples.

We break down the proof of this result into four steps:

1) We show that in the merge regime, all possible pairs

of partitions PI and PF partitions are equivalent up

to relabeling, and hence do not need to be specified

(Lemma 10).

2) An upper bound on the maximum number of unchanged

symbols is proved. As described in Definition 6, con-

vertible codes that meet this bound are called stable

(Lemma 11).

3) Lower bounds on the access cost of linear MDS convert-

ible codes are proved under the added restriction that the

codes are stable (Lemmas 12 and 13 and Theorem 14).

4) The stability restriction is removed, by showing that

non-stable linear MDS convertible codes necessarily

incur higher access cost, and hence it suffices to consider

only stable MDS convertible codes (Lemma 16 and

Theorem 9).

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4399

In general, partitions need to be specified since they indicate

how message symbols from the initial codewords are mapped

into the final codewords. However in the merge regime,

the choice of the partitions are equivalent, and hence are

inconsequential as shown below.

Lemma 10: For every (nI , kI ; nF , kF = ςkI) convertible

code, all possible pairs of initial and final partitions (PI ,PF)
are equivalent up to relabeling of nodes.

Proof: We have that kI | kF . Thus λF = (M/kF) =
1 and PF = {[M]} always holds. Because of this, all data

will be mapped to the same final codeword, regardless of the

initial partition. Therefore, for any two partitions PI and PI ′,

there exists some permutation σ of [ςkI] such that PI ′ =
{σ(P) | P ∈ PI}, i.e., different partitions differ only on the

way nodes are labeled.

Since one of the terms in access cost is the number of new

symbols, a natural way to reduce access cost is to maximize

the number of unchanged symbols. However, there is a limit

on the number of symbols that can remain unchanged which

is characterized below.

Lemma 11: In an MDS (nI , kI ; nF , kF = ςkI) convertible

code, there can be at most kI unchanged symbols from each

initial codeword.

Proof: By the MDS property of CI every subset of kI +1
symbols is linearly dependent. Hence, there can be at most kI

unchanged symbols from each initial codeword for CF to be

MDS. In other words, |Ui| ≤ kI for all i ∈ [ς].
This implies that there are at most ςkI unchanged symbols

and at least rF new symbols in total. Thus, the number of

symbols that need to be written in a stable code is at least rF .

Now, we focus on bounding the total number of symbols

read, that is, the size of the read access sets. The general

strategy we use to obtain bounds on the size of read access

sets is to consider a specially chosen set of kF encoding

vectors from the final codeword, which by the MDS property

of the final code is linearly independent. We then use the fact

that final codewords are the result of conversion to identify

the encoding vectors in each initial codeword that span the

selected final encoding vectors. The MDS property of the

initial code and the fact that different initial codewords contain

different information will allow us to derive a lower bound on

the number of read symbols in each initial codeword.

Intuitively, having more new symbols means that more

symbols have to be read in order to construct them, resulting in

higher access cost. With this intuition in mind, we first focus

on stable convertible codes, which minimize the number of

new symbols (Definition 6). We first prove lower bounds on

the access cost of stable linear MDS convertible codes, and

then show that the minimum access cost of conversion in MDS

codes without this stability property can only be higher. The

first lower bound on the size of each Di (i ∈ [ς]) is given by

the interaction between new symbols and the MDS property.

Lemma 12: For every linear stable MDS (nI , kI ; nF ,
kF = ςkI) convertible code, the read access set Di from each

initial codeword i ∈ [ς] satisfies |Di| ≥ min{kI , rF }.

Proof: For convenience, readers can recall the notation

from Table II. By the MDS property, every subset V ⊆ SF

of size at most kF = ςkI is linearly independent. For any

initial codeword i ∈ [ς], take the set of all unchanged encoding

vectors from other codewords ∪ℓ �=iUℓ, and additionally pick

any subset of new encoding vectors W ⊆ N of size |W| =
min{kI , rF }. The following holds for set V = (∪ℓ �=iUℓ∪W):

V ⊆ SF and |V| = (ς − 1)kI + min{kI , rF } ≤ kF .

Therefore, all the encoding vectors in V are linearly

independent.

Notice that the encoding vectors in (V \ W) contain no

information about initial codeword i and complete information

about every other initial codeword ℓ �= i. Therefore, the

information about initial codeword i in each encoding vector

in W has to be linearly independent since, otherwise, V could

not be linearly independent. Formally, it must be the case that

Wi = projP I
i
(W) has rank equal to min{kI , rF } (recall that

P I
i is the set of symbols corresponding to initial codeword i).

However, by definition, the subset Wi must be contained in

the span of Ai. Therefore, the rank of Ai is at least that of

Wi, which implies that |Di| ≥ min{kI , rF }.

We next show that when the number of new symbols rF is

greater than rI in a MDS stable convertible code in the merge

regime, then the default approach is optimal in terms of access

cost.

Lemma 13: For every linear stable MDS (nI , kI ; nF ,
kF = ςkI) convertible code, if rI < rF then the read access

set Di from each initial codeword i ∈ [ς] satisfies |Di| ≥ kI .

Proof: When rF ≥ kI , this lemma is equivalent to

Lemma 12, so assume rI < rF < kI . From the proof of

Lemma 12, for every initial codeword i ∈ [ς] it holds that

|Di| ≥ rF . Since rF > rI , this implies that Di must contain

at least one index of an unchanged encoding vector.

Choose a subset of at most kF = ςkI encoding vectors

from SF , which must be linearly independent by the MDS

property. In this subset, include all the unchanged encoding

vectors from the other initial codewords, ∪l �=iUl. Then, choose

all the unchanged encoding vectors from initial codeword i
that are accessed during conversion, W1 = (Ai ∩Ui). For the

remaining vectors (if any), choose an arbitrary subset of new

encoding vectors, W2 ⊆ N, such that:

|W2| = min{kI − |W1|, r
F }. (1)

It is easy to check that the subset V = (∪l �=iUl∪W1∪W2) is of

size at most kF = ςkI , and therefore it is linearly independent.

This choice of V follows from the idea that the information

contributed by W1 to the new encoding vectors is already

present in the unchanged encoding vectors, which will be at

odds with the linear independence of V .

Since the elements of W1 and W2 are the only encoding

vectors in V that contain information from initial codeword i,
it must be the case that W̃ = (projP I

i
(W1) ∪ projP I

i
(W2))

has rank (|W1|+ |W2|). Moreover, W̃ is contained in the span

of Ai by definition, so it holds that:

|Di| ≥ |W1| + |W2|. (2)

From Equation 1, there are two cases:

Case 1: (kI − |W1|) ≤ rF . Then |W2| = (kI − |W1|) and

by Equation 2 it holds that |Di| ≥ (|W1| + |W2|) = kI .

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4400 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Case 2: (kI − |W1|) > rF . Then |W2| = rF and by

Equation 2 it holds that:

|Di| ≥ |W1| + rF . (3)

Notice that there are only rI retired (i.e. not unchanged)

encoding vectors in codeword i. Since every accessed encod-

ing vector is either in W1 or is a retired encoding vector,

it holds that:
|Di| ≤ |W1| + rI . (4)

By combining Equation 3 and Equation 4, we arrive at the

contradiction rF ≤ rI , which occurs because there are not

enough retired symbols in the initial codeword i to ensure that

the final code has the MDS property. Therefore, case 1 must

always hold, and |Di| ≥ kI .

Combining the above results leads to the following theorem

on the lower bound of read access set size of linear stable MDS

convertible codes.

Theorem 14: For all stable linear MDS (nI , kI ; nF ,
kF = ςkI) convertible codes with read access set D, it holds

that |D| ≥ ς min{kI , rF }. Furthermore, if rI < rF , then

|D| ≥ kF .

Proof: Follows directly from Lemma 12 and Lemma 13.

We next show that this lower bound generally applies even

for non-stable convertible codes by proving that increasing the

number of new symbols from the minimum possible does not

decrease the lower bound on the size of the read access set D.

Lemma 15: The lower bounds on the size of the read access

set from Lemma 14 hold for all linear MDS (nI , kI ; nF ,
kF = ςkI) convertible codes.

Proof: We show that, even for non-stable convertible

codes, that is, when there are more than rF new symbols,

the bounds on the read access set D from Theorem 14 still

hold.

Case 1: rI ≥ rF . Let i ∈ [ς] be an arbitrary initial

codeword. We lower bound the size of Di by invoking the

MDS property on a subset V ⊆ SF of size |V| = ςkI that

minimizes the size of the intersection |V ∩ Ui|. There are

exactly rF encoding vectors in (SF \ V), so the minimum

size of the intersection |V ∩Ui| is max{|Ui|− rF , 0}. Clearly,

the subset projP I
i
(V) has rank kI due to the MDS property.

Therefore, it holds that |Di| + max{|Ui| − rF , 0} ≥ kI .

By reordering, the following is obtained:

|Di| ≥ kI − max{|Ui| − rF , 0} ≥ min{rF , kI},

which means that the bound on Di established in Lemma 12

continues to hold for non-stable codes.

Case 2: rI < rF . Let i ∈ [ς] be an arbitrary initial

codeword, let W1 = (Ai ∩ Ui) be the unchanged encoding

vectors that are accessed during conversion, and let W2 =
(Ui \ W1) be the unchanged encoding vectors that are not

accessed during conversion. Consider the subset V ⊆ SF of

|V| = kF encoding vectors from the final codeword such that

V ⊇ W1 and the size of the intersection W3 = (V ∩ W2) is

minimized. Since V may exclude at most rF encoding vectors

from the final codeword, it holds that:

|W3| = max{0, |W2| − rF }. (5)

By the MDS property, V is a linearly independent set of

encoding vectors of size kF , and thus, must contain all the

information to recover the contents of every initial codeword,

and in particular, initial codeword i. Since all the information

in V about codeword i is in either W3 or the accessed encoding

vectors, it must hold that:

|Di| + |W3| ≥ kI . (6)

From Equation 5, there are two cases:

Subcase 2.1: (|W2| − rF) ≤ 0. Then |W3| = 0, and by

Equation 6 it holds that |Di| ≥ kI , which matches the bound

of Lemma 13.

Subcase 2.2: (|W2| − rF) > 0. Then |W3| = (|W2| − rF),
and by Equation 6 it holds that:

|Di| + |W2| − rF ≥ kI . (7)

The initial codeword i has (kI +rI) symbols. By the principle

of inclusion-exclusion we have that:

|Di| + |Ui| − |W1| ≤ kI + rI . (8)

By using Equation 7, Equation 8 and the fact that |W2| =
(|Ui| − |W1|), we conclude that rI ≥ rF , which is a

contradiction and means that subcase 2.1 always holds in this

case.

The above result, along with the fact that the lower bound

in Theorem 14 is achievable (as will be shown in Section V),

implies that all access-optimal linear MDS convertible codes

in the merge regime are stable.

Lemma 16: All access-optimal linear MDS (nI , kI ; nF ,
kF = ςkI) convertible codes are stable.

Proof: Lemma 15 shows that the lower bound on the

read access set D for stable linear MDS convertible codes

continues to hold in the non-stable case. Furthermore, this

bound is achievable by stable linear MDS convertible codes in

the merge regime (as will be shown in Section V). The number

of new blocks written during conversion under stable MDS

convertible codes is rF . On the other hand, the number of new

symbols under a non-stable convertible code is strictly greater

than rF . Thus, the overall access cost of a non-stable MDS

(nI , kI ; nF , kF = ςkI) convertible code is strictly greater than

the access cost of an access-optimal (nI , kI ; nF , kF = ςkI)
convertible code.

Thus, for MDS convertible codes in the merge regime,

it suffices to focus only on stable codes. Combining all the

results above, leads to the main theorem presented at the

beginning of this section.

Proof of Theorem 9: Follows from Theorem 14 and

Lemmas 15 and 16, and the fact that at least rF new symbols

must be written.

Next, in Section V we show that the lower bound of

Theorem 9 is achievable for all parameters. Thus, Theorem 9

implies that it is possible to perform conversion of MDS

convertible codes in the merge regime with significantly less

access cost than the default approach if and only if rF ≤ rI

and rF < kI .

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4401

V. ACHIEVABILITY: EXPLICIT ACCESS-OPTIMAL

CONVERTIBLE CODES IN THE MERGE REGIME

In this section, we present an explicit construction of access-

optimal MDS convertible codes for all parameters in the

merge regime. In other words, we present a construction that

matches the access cost lower bound presented in Section IV.

In Section V-A, we present the construction of the generator

matrices for the initial and final code. Then, in Section V-B,

we describe sufficient conditions for optimality and show that

this construction satisfies these conditions and thus yields

access-optimal convertible codes. Our constructions in this and

the following section work over any finite field of sufficient

size (which we explicitly specify), but for the sake of illustra-

tion we use prime fields in our examples.

A. Explicit Construction of Generator Matrices

Recall that, in the merge regime, kF = ςkI , for an integer

ς ≥ 2, while nI > kI and nF > kF are arbitrary. Also,

recall that rI = (nI − kI) and rF = (nF − kF). Notice

that when rI < rF or kI ≤ rF , constructing an access-

optimal convertible code is trivial, since the default approach

to conversion is optimal. Thus, assume rF ≤ min{rI , kI}.

Let Fq be a finite field of size q = pD, where p is any prime

(in particular, we can have p = 2, i.e. a binary field) and the

degree D is determined by a function of the convertible code

parameters (discussed later in this subsection). The degree D
required by this construction is O((max{nI , nF })3), that is,

the field size requirement is exponential in the length of the

code. Let θ be a primitive element of Fq. Let GI = [I|PI] and

GF = [I|PF] be systematic generator matrices of CI and CF

over Fq , where PI is a kI × rI matrix and PF is a kF × rF

matrix.

Define entry (i, j) of PI ∈ FkI×rI

q as θ(i−1)(j−1), where

(i, j) ranges over [kI] × [rI]. Entry (i, j) of PF ∈ FkF ×rF

q

is defined identically as θ(i−1)(j−1), where (i, j) ranges over

[kF] × [rF]. That is, PI and PF are as follows:

PI =




1 1 1 · · · 1

1 θ θ2 · · · θ(rI−1)

1 θ2 θ4 · · · θ2(rI−1)

...
...

...
. . .

...

1 θ(kI−1) θ2(kI−1) · · · θ(kI−1)(rI−1)




,

PF =




1 1 1 · · · 1

1 θ θ2 · · · θ(rF −1)

1 θ2 θ4 · · · θ2(rF −1)

...
...

...
. . .

...

1 θ(kF −1) θ2(kF −1) · · · θ(kF −1)(rF −1)




.

Notice that this construction is stable, because it is access-

optimal (recall Lemma 16). The unchanged symbols of the

initial code are exactly the systematic symbols.

B. Proof of Optimality

Recall from Proposition 2, that if the constructed code is

to be MDS, then both PI and PF need to be superregular

(every square submatrix of them is invertible). In addition,

to be access-optimal during conversion in the non-trivial case,

the new symbols (corresponding to the columns of PF) have

to be such that they can be generated by accessing rF symbols

from the initial codewords (corresponding to columns of GI).

During conversion, the encoding vectors of symbols from

the initial codewords are represented as ςkI-dimensional vec-

tors, where each initial codeword occupies a disjoint subset

of kI coordinates. To capture this property, we introduce the

following definition.

Definition 17 (t-Column Block-Constructible): We will say

that an n × m1 matrix M1 is t-column constructible from

an n × m2 matrix M2 if and only if there exists a subset

S ⊆ cols(M2) of size t, such that the m1 columns of M1 are

in the span of S. We say that a λn×m1 matrix M1 is t-column

block-constructible from an n×m2 matrix M2 if and only if

for every i ∈ [ς], the submatrix M1[(i− 1)n + 1, . . . , in; ∗] is

t-column constructible from M2. ◮

Theorem 18: A systematic (nI , kI ; nF , kF = ςkI) convert-

ible code with kI × rI initial parity generator matrix PI and

kF × rF final parity generator matrix PF is MDS and access-

optimal, if the following two conditions hold: (1) if rI ≥ rF

then PF is rF -column block-constructible from PI , and (2)

PI ,PF are superregular.

Proof: Follows from Proposition 2 and the fact that PF

must be generated by accessing just rF symbols from each

initial codeword (Lemma 12).

Thus, we can reduce the problem of proving the optimality

of a systematic MDS convertible code in the merge regime

to that of showing that matrices PI and PF satisfy the two

properties mentioned in Theorem 18.

We first show that the construction specified in Section V-A

satisfies condition (1) of Theorem 18.

Lemma 19: Let PI ,PF be as defined in Section V-A. Then

PF is rF -column block-constructible from PI .

Proof: Consider the first rF columns of PI , which we

denote as PI
rF = PI [∗; 1, . . . , rF]. Notice that PF can be

written as the following block matrix:

PF =




PI
rF

PI
rF diag(1, θkI

, θ2kI

, . . . , θ(rF −1)kI

)

PI
rF diag(1, θ2kI

, θ2·2kI

, . . . , θ(rF −1)2kI

)
...

PI
rF diag(1, θ(ς−1)kI

, . . . , θ(rF −1)(ς−1)kI

)




,

where diag(a1, a2, . . . , an) is the n× n diagonal matrix with

(a1, . . . , an) as the diagonal elements. From this representa-

tion, it is clear that PF can be constructed from the first rF

columns of PI .

It only remains to show that the construction in Section V-A

satisfies condition (2) of Theorem 18, that is, that PI and PF

are superregular.

Lemma 20: Let PI ,PF be as defined in Section V-A. Then

PI and PF are superregular, for sufficiently large field size.

Proof: Let R be a t×t submatrix of PI or PF , determined

by the row indices i1 < i2 < · · · < it and the column indices

j1 < j2 < · · · < jt, and denote entry (i, j) of R as R[i, j].

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4402 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

The determinant of R is defined by the Leibniz formula:

det(R) =
∑

σ∈Perm(t)

sgn(σ)

t∏

l=1

R[l, σ(l)] (9)

=
∑

σ∈Perm(t)

sgn(σ)θEσ

where Eσ =

t∑

l=1

(il − 1)(jσ(l) − 1),

Perm(t) is the set of all permutations on t elements, and

sgn(σ) ∈ {−1, 1} is the sign of permutation σ. Clearly,

det(R) defines a univariate polynomial fR ∈ Fp[θ]. We will

now show that deg(fR) =
∑t

l=1(il − 1)(jl − 1) by showing

that there is a unique permutation σ∗ ∈ Perm(t) for which

Eσ∗ achieves this value, and that this is the maximum over all

permutations in Perm(t). This means that fR has a leading

term of degree Eσ∗ .

To prove this statement, we show that any permutation σ ∈
Perm(t)\{σ∗} can be modified into a permutation σ′ such

that Eσ′ > Eσ . Specifically, we show that σ∗ = σid, the

identity permutation. Consider σ ∈ Perm(t)\{σid}: let a be

the smallest index such that σ(a) �= a, let b = σ−1(a), and

let c = σ(a). Let σ′ be such that σ′(a) = a, σ′(b) = c, and

σ′(d) = σ(d) for d ∈ [t]\{a, b}. In other words, σ′ is the

result of “swapping” the images of a and b in σ. Notice that

a < b and a < c. Then, we have that:

Eσ′ − Eσ = (ia − 1)(ja − 1) + (ib − 1)(jc − 1)

− (ia − 1)(jc − 1) − (ib − 1)(ja − 1)

= (ib − ia)(jc − ja) > 0

The last inequality comes from the fact that a < b implies

ia < ib and a < c implies ja < jc. Therefore, deg(fR) =
maxσ∈Perm(t) Eσ = Eσid

.

Let E∗(ς, kI , rI , rF) be the maximum degree of fR over

all submatrices R of PI or PF . Then, E∗(ς, kI , rI , rF)
corresponds to the diagonal with the largest elements in PI or

PF . In PF this is the diagonal of the square submatrix formed

by the bottom rF rows. In PI it can be either the diagonal

of the square submatrix formed by the bottom rI rows, or by

the right kI columns. Thus, we have that:

E∗(ς, kI , rI , rF) = max{E1, E2, E3}

where E1 =

rF −1∑

i=0

i(ςkI − rF + i)

= rF (rF − 1)(3ςkI − rF − 1)/6,

E2 =

rI−1∑

i=0

i(kI − rI + i)

= rI(rI − 1)(3kI − rI − 1)/6,

E3 =
kI−1∑

i=0

i(rI − kI + i)

= kI(kI − 1)(3rI − kI − 1)/6.

Recall that we defined the field size as q = pD for any prime p.

We set D = (E∗(ς, kI , rI , rF) + 1). Then, if det(R) = 0 for

some submatrix R, θ is a root of fR, which is a contradiction

since θ is a primitive element and the minimal polynomial of

θ over Fp has degree D > deg(fR) [92].

Combining the above results leads to the following key

result on the achievability of the lower bounds on access cost

derived in Section IV.

Theorem 21: The explicit construction provided in

Section V-A yields access-optimal linear MDS convertible

codes for all parameter values in the merge regime.

Proof: Follows from Theorem 18, Lemma 19, and

Lemma 20.

The construction presented in this section is practical only

for small values of the parameters since the required field

size grows exponentially with the lengths of the initial and

final codes. In Section VI we present practical low-field-size

constructions.

VI. LOW FIELD-SIZE CONVERTIBLE CODES BASED ON

SUPERREGULAR HANKEL ARRAYS

In this section we present alternative constructions for (nI ,
kI ; nF , kF = ςkI) convertible code that require a significantly

lower (polynomial) field size than the construction presented

in Section V. We start by explaining the key ideas behind

these constructions and present two examples that represent

two extremes of a tradeoff between field size and coverage of

parameter values. In Section VI-A, we describe the general

construction, which includes codes at the two extremes of

the tradeoff and a sequence of constructions in between.

In Section VI-B, we show that the proposed code construction

can support access-optimal conversion even when parameters

of the final code are a priori unknown.

The key idea behind our constructions is to take the matrices

PI and PF as cleverly-chosen submatrices from a specially

constructed triangular array of the following form:

Tm :

b1 b2 b3 · · · bm−1 bm

b2 b3 · · · · · · bm

b3

...
...

...

...
...

...

bm−1 bm

bm

(10)

with the property that every submatrix of Tm is superregular

(the submatrix must lie completely within the triangular array).

Here, (1) (b1, . . . , bm) are (not necessarily distinct) elements

from Fq, and (2) m is at most the field size q. The array

Tm has Hankel form, that is, Tm[i, j] = Tm[i − 1, j + 1], for

all i ∈ [2, m], j ∈ [m − 1]. We denote Tm a superregular

Hankel array. Such an array can be constructed by employing

the algorithm proposed in [94] (where the algorithm was

employed to generate generalized Cauchy matrices to construct

generalized Reed-Solomon codes). This algorithm is described

in Appendix for reference, although it is not necessary for

understanding the constructions in this section.

We construct the initial and final codes by taking submatri-

ces PI and PF from superregular Hankel arrays in a special

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4403

Fig. 5. Examples of constructions based on Hankel arrays: (a) Hankel-I construction parity generator matrices for systematic (9, 5; 12, 10) convertible code.
Notice how matrix P

F corresponds to the vertical concatenation of the first two columns and the last two columns of matrix P
I . (b) Hankel-II construction

parity generator matrices for systematic (7, 4; 10, 8) convertible code. Notice how matrix P
F corresponds to the vertical concatenation of the first and second

column of P
I , and the second and third column of P

I .

manner. This guarantees that PI and PF are superregular.

In addition, we exploit the Hankel form of the array by care-

fully choosing the submatrices that form PI and PF to ensure

that PF is rF -column block-constructible from PI . Given the

way we construct these matrices and the properties of Tm, all

the initial and final codes presented in this section turn out to

be inside a well-studied class of codes known as (punctured)

generalized doubly-extended Reed-Solomon codes [94].

The above idea yields a sequence of constructions with a

tradeoff between the field size and the maximum value of rF

supported. We first present two examples that correspond to

the extreme ends of this tradeoff, which we call Hankel-I and

Hankel-II. Construction Hankel-I, shown in Example 22, can

be applied whenever rF ≤ ⌊rI/ς⌋, and requires a field size

of q ≥ (max{nI , nF }− 1). Construction Hankel-II, shown in

Example 23, can be applied whenever rF ≤ (rI − ς + 1), and

requires a field size of q ≥ kIrI .

Throughout this section we will assume that ς ≤ rI ≤ kI .

The ideas presented here are still applicable when rI > kI ,

but the constructions and analysis change in minor ways.

Example 22 (Hankel-I): Consider the parameters (9, 5; 12,
10) and the field F11 (any finite field of size at least 11 suffices,

but we choose a prime field for ease of explanation). Notice

that these parameters satisfy:

rF = 2 ≤

⌊
rI

ς

⌋
= 2, and

q = 11 ≥ max{nI , nF } − 1 = 11.

First, construct a superregular Hankel array of size nF −1 =
11, T11, employing the algorithm in [94]. Then, divide the

rI = 4 initial parities into ς = 2 groups: encoding vectors

of parities in the same group will correspond to contiguous

columns of T11. The submatrix PI ∈ F5×4
11 is formed from the

top kI = 5 rows and columns 1, 2, kI +1 = 6 and kI +2 = 7
of T11, as shown in Figure 5a. The submatrix PF ∈ F10×2

11

is formed from the top kI = 10 rows and columns 1, 2 of

T11, as shown in Figure 5a. Checking that these matrices

are superregular follows from the superregularity of T11.

It is straightforward to check that both these matrices are

superregular, which follows from the superregularity of T11.

Furthermore, notice that the chosen parity matrices have the

following structure:

PI =

[
⊤
p1

⊥

⊤
p2

⊥

⊤
p3

⊥

⊤
p4

⊥

]
, PF =




⊤
p1

⊥

⊤
p2

⊥
⊤
p3

⊥

⊤
p4

⊥


 .

From this structure, it is clear that PF is 2-column block-

constructible from PI . Therefore, PI and PF satisfy the

sufficient conditions of Theorem 18, and define an access-

optimal convertible code. ◮

Example 23 (Hankel-II): Consider parameters (7, 4; 10, 8)
and field F13 (any finite field of size at least 12 suffices, but

we choose a prime field for ease of explanation). Notice that

these parameters satisfy:

rF = 2 ≤ rI − ς + 1 = 2 and q = 13 ≥ kIrI = 12

First, construct a superregular Hankel array of size kIrI = 12,

T12, by choosing q = 13 as the field size, and employing the

algorithm in [94]. The submatrix PI ∈ F4×3
13 is formed by the

top kI = 4 rows and columns {1, (kI +1) = 5, (2kI +1) = 9}
of T12, as shown in Figure 5b. The submatrix PF ∈ F8×2

13 is

formed by the top kF = 8 rows and columns {1, (kI +1) = 5}
of T12, as shown in Figure 5b. It is easy to check that PI and

PF are superregular, which follows from the superregularity

of T12. Furthermore, notice that the chosen parity matrices

have the following structure:

PI =

[
⊤
p1

⊥

⊤
p2

⊥

⊤
p3

⊥

]
, PF =




⊤
p1

⊥

⊤
p2

⊥
⊤
p2

⊥

⊤
p3

⊥


 .

It is easy to see that PF is 2-column block-constructible

from PI . Therefore, PI and PF satisfy the sufficient

conditions of Theorem 18, and define an access-optimal

convertible code. ◮

A. General Hankel-Array-Based Construction of convertible

codes

In this subsection, we present a sequence of Hankel-array-

based constructions of access-optimal MDS convertible codes.

This sequence of constructions presents a tradeoff between

field size and the range of rF supported. To index the sequence

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4404 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Fig. 6. Generator matrix for initial and final parities in Hankels construction. The vertical bars separate groups of columns. In matrix P
I , the index i ranges

from 1 to s. In matrix P
F , the index i ranges from 1 to (s − ς + 1).

we use s ∈ {ς, ς + 1, . . . , rI} which corresponds to the

number of groups into which the initial parity encoding vectors

are divided. Given parameters {kI , rI , ς} and a field Fq,

construction Hankels (s ∈ {ς, ς + 1, . . . , rI}) supports:

rF ≤ (s − ς + 1)

⌊
rI

s

⌋
+ max{(rI mod s) − ς + 1, 0},

requiring q ≥ max{skI +

⌊
rI

s

⌋
− 1, nI − 1}.

Therefore, Hankel-I, from Example 22 corresponds to

Hankelς and Hankel-II from Example 23 corresponds to

HankelrI .

1) Construction of Hankels: Assume, for the sake of sim-

plicity, that kI ≥ rI , s | rI and let t = (rI/s). Now

we describe how to construct PI and PF over a field Fq

whenever:

rF ≤ (s − ς + 1)t and q ≥ skI + t − 1.

Without loss of generality, we consider rF = (s − ς + 1)t
(lesser values of rF can be obtained by puncturing the final

code, i.e., eliminating some of the final parities). Let Tm be as

in Equation 10, with m = (skI + t− 1). Divide the rI initial

parity encoding vectors into s disjoint sets (S1, S2, . . . , Ss) of

size t each. We associate each set Si (i ∈ [s]) with a set

of column indices col(Si) = {(i − 1)kI + 1, (i − 1)kI +
2, . . . , (i − 1)kI + t} of Tm. Matrix PI is the submatrix

formed by the top kI rows and the columns indexed by the set

(col(S1) ∪ · · · ∪ col(Ss)) of Tm. Matrix PF is the submatrix

formed by the top ςkI rows and the columns indexed by

the set (col(S1) ∪ · · · ∪ col(Ss−ς+1)) of Tm. The resulting

matrices PI and PF are shown in Figure 6. In the case where

s ∤ rI , we form an additional set Ss+1 with the remaining (rI

mod s) initial parity encoding vectors, and proceed as above.

Theorem 24: Given parameters kI , rI , ς , and a field Fq

Hankels (s ∈ {ς, . . . , rI}) constructs an access-optimal (nI ,
kI ; nF , kF = ςkI) convertible code if:

rF ≤ (s − ς + 1)

⌊
rI

s

⌋
+ max{(rI mod s) − ς + 1, 0}

and q ≥ max{skI +

⌊
rI

s

⌋
− 1, nI − 1}.

Proof: Consider the construction Hankels described in

this section, for some s ∈ {ς, . . . , rI}. The Hankel form of

Tm and the manner in which PI and PF are constructed

guarantees that the l-th column of PF corresponds to the

vertical concatenation of columns {l, l + t, . . . , l + (ς − 1)t}
of PI . Thus, PF is rF -column block-constructible from

PI . Furthermore, since PI and PF are submatrices of Tm,

they are superregular. Thus PI and PF satisfy both of the

properties laid out in Theorem 18 and hence the convertible

code constructed by Hankels is access-optimal.

2) Conversion Procedure: During conversion, the kI data

symbols from each of the ς initial codewords remain

unchanged, and become the kF = ςkI data symbols from

the final codeword. The rF new (parity) blocks from the

final codeword are constructed by accessing symbols from the

initial codewords as detailed below. To construct the l-th new

symbol (corresponding to the l-th column of PF , l ∈ [rF]),
read parity symbol (l + (i − 1)t) from each initial codeword

i ∈ [ς], and then sum the ς symbols read. The encoding

vector of the new symbol will be equal to the sum of the

encoding vectors of the symbols read. This is done for every

new encoding vector l ∈ [rF].

B. Handling a Priori Unknown Parameters

In practice, the final parameters (nF , kF) might be unknown

at the time of code construction, as they might depend on

the empirically observed failure rates. Thus, it is of interest

to construct initial codes that are (nF , kF)-access-optimally

convertible for all (nF , kF) in a given set. The general con-

struction and the Hankel-array based constructions presented

above indeed provide such a property.

Proposition 25: Every initial code from an (nI , kI ; nF ,
kF = ςkI) convertible code constructed using the construc-

tions in this section and Section V is also (nF ′
, kF ′

)-access-

optimally convertible for any kF ′
= ς ′kI and nF ′

= (rF ′
+

kF ′
) with 0 ≤ rF ′

≤ rF and 2 ≤ ς ′ ≤ ς .

Proof: The conversion procedure can be easily modified to

take fewer initial codewords (i.e. by treating some of the initial

codewords as all-zero codewords) or construct fewer parity

symbols. Since the access cost associated with each initial

codeword is min{kI , rI}, and the access cost associated with

every parity symbol is ς+1, the resulting conversion procedure

has optimal access cost.

Thus, to support access-optimal conversion for all parame-

ters (nF = ςkI + rF , kF = ςkI) in a given finite set of

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4405

values for ς and rF , it suffices to construct an access-optimal

convertible code using the largest parameter ς and rF in the

set. Then, by Proposition 25, the initial code will support

access-optimal conversion for all parameter values in the given

set.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce the code conversion problem, and

the framework of convertible codes which lays the theoretical

foundation for the rigorous study of the code conversion prob-

lem. The proposed framework enables the investigation of the

fundamental limits on the resource consumption of the code

conversion operation, as shown by our derivation of the tight

lower bounds on the access cost of conversions. Furthermore,

we present explicit constructions of access-optimal convertible

codes for a wide range of parameter regimes. These results

show that it is indeed possible to achieve code conversion

using significantly fewer accesses than the default approach

for a wide range of parameter regimes.

Convertible codes have a significant potential for real-world

impact by enabling resource-efficient redundancy tuning which

has been shown to provide considerable cost benefits in

large-scale cluster storage systems [9]. By laying the theo-

retical foundations for studying the code conversion problem,

this work has opened up a wide new space for design of

codes for storage systems with a host of open problems, such

as studying different measures of conversion costs, studying

conversion in non-MDS codes, and considering the efficiency

of conversion in conjunction with other properties such as

repair efficiency. Exploring these dimensions would include

deriving fundamental limits on the chosen conversion cost,

proving achievability results via code constructions meeting

the lower bounds, and constructing practical, low-field-size

convertible codes optimizing the conversion costs.

APPENDIX

ALGORITHM FOR CONSTRUCTING SUPERREGULAR

HANKEL TRIANGULAR ARRAYS

In this appendix we describe the algorithm from [94] for

constructing a superregular Hankel triangular array over any

finite field. This is provided as reference for completeness and

is not necessary for understanding the constructions described

in this paper. We note that the algorithm outlined in [94] takes

the field size q as input, and generates Tq as the output. It is

easy to see that Tq thus generated can be truncated to generate

the triangular array Tm for any m ≤ q.

Let Fq be a given base field, and let m ≤ q be the size of

the output triangular array Tm. The triangular array Tm has

Hankel form, as shown in Equation 10. Therefore, it suffices

to specify the entries b1, b2, . . . , bm in the first column of Tm.

On input m ≤ q, the algorithm proceeds as follows:

1) Consider the extension field Fq2 and choose an element

β ∈ Fq2 such that βi �∈ Fq for i ∈ [q] and βq+1 ∈ Fq.

Let p(x) = x2 + µ x + η be the minimal polynomial of

β over Fq2 .

2) Let σ−1, σ0, . . . , σm ∈ Fq be such that σ−1 =
−η−1, σ0 = 0, and σi = −µ σi−1 − η σi−2, for i ∈ [m].

3) Set bi = σ−1
i , for all i ∈ [m].

The resulting triangular array is superregular, that is, every

square submatrix taken from Tm is superregular. Please refer

to [94] for a proof of this fact.

REFERENCES

[1] F. Maturana and K. V. Rashmi, “Convertible codes: New class of codes
for efficient conversion of coded data in distributed storage,” in Proc.

11th Innov. Theor. Comput. Sci. Conf. (ITCS), vol. 151, T. Vidick, Ed.
Seattle, WA, USA: Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
Jan. 2020, p. 66.

[2] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” ACM

SIGOPS Operating Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.
[3] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling. HDFS

RAID—Facebook (Presentation). Accessed: Jan. 6, 2022. [Online].
Available: http://www.slideshare.net/ydn/hdfs-raid-facebook

[4] C. Huang et al., “Erasure coding in Windows Azure storage,” in Proc.

USENIX Annu. Tech. Conf. (ATC), 2012, pp. 15–26.
[5] Apache Software Foundation. Apache Hadoop Documentation: HDFS

Erasure Coding. Accessed: Jul. 23, 2019. [Online]. Available: https://
hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html

[6] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster,” in Proc. 5th USENIX Workshop Hot Topics Storage

File Syst. (HotStorage), Jun. 2013.
[7] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and

K. Ramchandran, “A ‘hitchhiker’s’ guide to fast and efficient data
reconstruction in erasure-coded data centers,” in Proc. ACM Conf.
SIGCOMM, 2014, pp. 331–342.

[8] M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and
D. Borthakur, “Xoring elephants: Novel erasure codes for big data,”
Proc. VLDB Endowment, vol. 6, no. 5, pp. 325–336, 2013.

[9] S. Kadekodi, K. V. Rashmi, and G. R. Ganger, “Cluster storage systems
gotta have HeART: Improving storage efficiency by exploiting disk-
reliability heterogeneity,” in Proc. 17th USENIX Conf. File Storage
Technol. (USENIX FAST), 2019, pp. 345–358.

[10] S. Kadekodi, F. Maturana, S. J. Subramanya, J. Yang,
K. V. Rashmi, and G. R. Ganger, “PACEMAKER: Avoiding HeART
attacks in storage clusters with disk-adaptive redundancy,” in Proc. 14th

USENIX Symp. Operating Syst. Design Implement. (OSDI), Nov. 2020,
pp. 369–385. [Online]. Available: https://www.usenix.org/conference/
osdi20/presentation/kadekodi

[11] J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An efficient
scaling scheme for RS-coded storage clusters,” IEEE Trans. Parallel

Distrib. Syst., vol. 26, no. 6, pp. 1704–1717, Jun. 2015.
[12] B. K. Rai, V. Dhoorjati, L. Saini, and A. K. Jha, “On adaptive distributed

storage systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015,
pp. 1482–1486.

[13] M. Sonowal and B. K. Rai, “On adaptive distributed storage systems
based on functional MSR code,” in Proc. Int. Conf. Wireless Commun.,

Signal Process. Netw. (WiSPNET), Mar. 2017, pp. 338–343.
[14] Y. Hu, X. Zhang, P. P. C. Lee, and P. Zhou, “Generalized optimal storage

scaling via network coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Vail, CO, USA, Jun. 2018, pp. 956–960.

[15] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[16] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proc. ACM SIGMOD Int. Conf.

Manage. Data, 1988, pp. 109–116.
[17] J. Plank, “T1: Erasure codes for storage applications,” in Proc. 4th

USENIX Conf. File Storage Technol., Jan. 2005, pp. 1–74.
[18] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient

scheme for tolerating double disk failures in RAID architectures,” IEEE

Trans. Comput., vol. 44, no. 2, pp. 192–202, Feb. 1995.
[19] L. Xu and J. Bruck, “X-code: MDS array codes with optimal encoding,”

IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272–276, Jan. 1999.
[20] C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting

triple storage node failures,” IEEE Trans. Comput., vol. 57, no. 7,
pp. 889–901, Jul. 2008.

[21] J. L. Hafner, “WEAVER codes: Highly fault tolerant erasure codes
for storage systems,” in Proc. 4th Conf. USENIX Conf. File Storage

Technol., Berkeley, CA, USA, vol. 4, 2005, p. 16.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4406 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

[22] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[23] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5227–5239, Aug. 2011.

[24] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Interference alignment in regenerating codes for distributed storage:
Necessity and code constructions,” IEEE Trans. Inf. Theory, vol. 58,
no. 4, pp. 2134–2158, Apr. 2012.

[25] C. Suh and K. Ramchandran, “Exact-repair MDS code construction
using interference alignment,” IEEE Trans. Inf. Theory, vol. 57, no. 3,
pp. 1425–1442, Mar. 2011.

[26] Z. Wang, I. Tamo, and J. Bruck, “On codes for optimal rebuilding
access,” in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput.

(Allerton), Sep. 2011, pp. 1374–1381.

[27] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial
length MDS codes with optimal repair in distributed storage,” in Proc.

Conf. Rec. 45th Asilomar Conf. Signals, Syst. Comput. (ASILOMAR),
Nov. 2011, pp. 1850–1854.

[28] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and nonachievability of
interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.

Theory, vol. 58, no. 3, pp. 1837–1852, Mar. 2012.

[29] Z. Wang, I. Tamo, and J. Bruck, “Long MDS codes for optimal
repair bandwidth,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2012,
pp. 1182–1186.

[30] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes
with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1597–1616, Mar. 2013.

[31] V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and
C. Suh, “Asymptotic interference alignment for optimal repair of MDS
codes in distributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5,
pp. 2974–2987, May 2013.

[32] D. Papailiopoulos, A. G. Dimakis, and V. Cadambe, “Repair optimal
erasure codes through Hadamard designs,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3021–3037, May 2013.

[33] B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “A high-rate MSR code
with polynomial sub-packetization level,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Jun. 2015, pp. 2051–2055.

[34] M. Ye and A. Barg, “Explicit constructions of optimal-access MDS
codes with nearly optimal sub-packetization,” IEEE Trans. Inf. Theory,
vol. 63, no. 10, pp. 6307–6317, Oct. 2017.

[35] M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 2001–2014, Apr. 2017.

[36] A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Progress on high-
rate MSR codes: Enabling arbitrary number of helper nodes,” in Proc.

Inf. Theory Appl. Workshop (ITA), Jan. 2016, pp. 1–6.

[37] B. Sasidharan, M. Vajha, and P. V. Kumar, “An explicit, coupled-layer
construction of a high-rate MSR code with low sub-packetization level,
small field size and d < (n − 1),” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 2048–2052.

[38] S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating
codes for all parameters,” IEEE Trans. Inf. Theory, vol. 63, no. 10,
pp. 6318–6328, Oct. 2017.

[39] A. Chowdhury and A. Vardy, “New constructions of MDS codes with
asymptotically optimal repair,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), Jun. 2018, pp. 1944–1948.

[40] K. Mahdaviani, A. Khisti, and S. Mohajer, “Bandwidth adaptive & error
resilient MBR exact repair regenerating codes,” IEEE Trans. Inf. Theory,
vol. 65, no. 5, pp. 2736–2759, May 2019.

[41] K. Mahdaviani, S. Mohajer, and A. Khisti, “Product matrix MSR codes
with bandwidth adaptive exact repair,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 3121–3135, Apr. 2018.

[42] A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS
code constructions with small sub-packetization and near-optimal repair
bandwidth,” IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6506–6525,
Oct. 2018.

[43] N. B. Sha, K. V. Rashmi, and P. V. Kumar, “A flexible class of
regenerating codes for distributed storage,” in Proc. IEEE Int. Symp.

Inf. Theory, Jun. 2010, pp. 1943–1947.

[44] K. W. Shum, “Cooperative regenerating codes for distributed storage
systems,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–5.

[45] V. Abdrashitov, N. Prakash, and M. Medard, “The storage vs repair
bandwidth trade-off for multiple failures in clustered storage networks,”
in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2017, pp. 46–50.

[46] K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire,
“A repair framework for scalar MDS codes,” IEEE J. Sel. Areas

Commun., vol. 32, no. 5, pp. 998–1007, May 2014.

[47] V. Guruswami and M. Wootters, “Repairing Reed–Solomon codes,” in
Proc. 48th Annu. ACM Symp. Theory Comput., Jun. 2016, pp. 216–226.

[48] M. Ye and A. Barg, “Explicit constructions of MDS array codes and
RS codes with optimal repair bandwidth,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Jul. 2016, pp. 1202–1206.

[49] H. Dau and O. Milenkovic, “Optimal repair schemes for some families of
full-length Reed–Solomon codes,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 346–350.

[50] I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed–Solomon codes:
Achieving the cut-set bound,” in Proc. IEEE 58th Annu. Symp. Found.

Comput. Sci. (FOCS), Oct. 2017, pp. 216–227.

[51] J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures
for scalar MDS codes,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 2661–2672, May 2019.

[52] H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed–
Solomon codes with multiple erasures,” IEEE Trans. Inf. Theory, vol. 64,
no. 10, pp. 6567–6582, Oct. 2018.

[53] I. Tamo, M. Ye, and A. Barg, “The repair problem for Reed–Solomon
codes: Optimal repair of single and multiple erasures with almost opti-
mal node size,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 2673–2695,
May 2019.

[54] S. Balaji and P. V. Kumar, “A tight lower bound on the sub-packetization
level of optimal-access MSR and MDS codes,” in Proc. IEEE Int. Symp.

Inf. Theory (ISIT), Jun. 2018, pp. 2381–2385.

[55] K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran,
“Having your cake and eating it too: Jointly optimal erasure codes for
I/O, storage, and network-bandwidth,” in Proc. 13th USENIX Conf. File

Storage Technol. (FAST), 2015, pp. 81–94.

[56] I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes
for storage,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2028–2037,
Apr. 2014.

[57] S. Goparaju, I. Tamo, and R. Calderbank, “An improved sub-
packetization bound for minimum storage regenerating codes,” IEEE

Trans. Inf. Theory, vol. 60, no. 5, pp. 2770–2779, May 2014.

[58] O. Alrabiah and V. Guruswami, “An exponential lower bound on the
sub-packetization of MSR codes,” in Proc. 51st Annu. ACM SIGACT
Symp. Theory Comput., New York, NY, USA, Jun. 2019, pp. 979–985.

[59] K. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5802–5820, Sep. 2017.

[60] V. Guruswami and A. S. Rawat, “MDS code constructions with small
sub-packetization and near-optimal repair bandwidth,” in Proc. 28th

Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2017.

[61] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Nov. 2011.

[62] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Opti-
mal locally repairable and secure codes for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Nov. 2013.

[63] J. Katz and L. Trevisan, “On the efficiency of local decoding procedures
for error-correcting codes,” in Proc. 32nd Annu. ACM Symp. Theory
Comput., F. F. Yao and E. M. Luks, Eds. Portland, OR, USA: ACM
Press, May 2000, pp. 80–86.

[64] M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4510–4519, Jul. 2013.

[65] P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” IEEE Trans. Inf. Theory, vol. 60, no. 9,
pp. 5245–5256, Sep. 2014.

[66] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843–5855, Oct. 2014.

[67] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, May 2014.

[68] G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with
local regeneration and erasure correction,” IEEE Trans. Inf. Theory,
vol. 60, no. 8, pp. 4637–4660, Aug. 2014.

[69] V. R. Cadambe and A. Mazumdar, “Bounds on the size of locally recov-
erable codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 5787–5794,
Nov. 2015.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4407

[70] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” IEEE Trans. Inf.

Theory, vol. 62, no. 12, pp. 6661–6671, Dec. 2016.
[71] I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of

locally recoverable codes,” IEEE Trans. Inf. Theory, vol. 62, no. 6,
pp. 3070–3083, Jun. 2016.

[72] A. Barg, K. Haymaker, E. W. Howe, G. L. Matthews, and A. Várilly-
Alvarado, “Locally recoverable codes from algebraic curves and sur-
faces,” in Algebraic Geometry for Coding Theory and Cryptography.
Cham, Switzerland: Springer, 2017, pp. 95–127.

[73] S. L. Frank-Fischer, V. Guruswami, and M. Wootters, “Locality via
partially lifted codes,” in Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques (APPROX/RANDOM).
Wadern, Germany: Schloss Dagstuhl-Leibniz-Zentrum füer Informatik,
2017.

[74] A. Agarwal, A. Barg, S. Hu, A. Mazumdar, and I. Tamo, “Combinatorial
alphabet-dependent bounds for locally recoverable codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 5, pp. 3481–3492, May 2018.

[75] A. Mazumdar, “Capacity of locally recoverable codes,” in Proc. IEEE

Inf. Theory Workshop (ITW), Nov. 2018, pp. 1–5.
[76] V. Guruswami, C. Xing, and C. Yuan, “How long can optimal locally

repairable codes be?” in Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques (APPROX/RANDOM).
Wadern, Germany: Schloss Dagstuhl-Leibniz-Zentrum füer Informatik,
2018.

[77] S. Gopi, V. Guruswami, and S. Yekhanin, “Maximally recoverable
LRCs: A field size lower bound and constructions for few heavy
parities,” in Proc. 13th Annu. ACM-SIAM Symp. Discrete Algorithms.
Philadelphia, PA, USA: SIAM, 2019, pp. 2154–2170.

[78] G. Zhang, W. Zheng, and J. Shu, “ALV: A new data redistribution
approach to RAID-5 scaling,” IEEE Trans. Comput., vol. 59, no. 3,
pp. 345–357, Mar. 2010.

[79] W. Zheng and G. Zhang, “FastScale: Accelerate RAID scaling by
minimizing data migration,” in Proc. 9th USENIX Conf. File Storage

Technol., G. R. Ganger and J. Wilkes, Eds. San Jose, CA, USA:
USENIX Association, Feb. 2011, pp. 149–161. [Online]. Available:
http://www.usenix.org/events/fast11/tech/techAbstracts.html

[80] C. Wu and X. He, “GSR: A global stripe-based redistribution approach
to accelerate RAID-5 scaling,” in Proc. 41st Int. Conf. Parallel Process.,
Pittsburgh, PA, USA, Sep. 2012, pp. 460–469.

[81] G. Zhang, W. Zheng, and K. Li, “Rethinking RAID-5 data layout for
better scalability,” IEEE Trans. Comput., vol. 63, no. 11, pp. 2816–2828,
Nov. 2014.

[82] S. Wu, Y. Xu, Y. Li, and Z. Yang, “I/O-efficient scaling schemes for
distributed storage systems with CRS codes,” IEEE Trans. Parallel

Distrib. Syst., vol. 27, no. 9, pp. 2639–2652, Sep. 2016.
[83] X. Zhang, Y. Hu, P. P. C. Lee, and P. Zhou, “Toward optimal storage

scaling via network coding: From theory to practice,” in Proc. IEEE

Conf. Comput. Commun. (INFOCOM), Honolulu, HI, USA, Apr. 2018,
pp. 1808–1816.

[84] X. Y. Zhang and Y. C. Hu, “Efficient storage scaling for MBR and MSR
codes,” IEEE Access, vol. 8, pp. 78992–79002, 2020.

[85] B. K. Rai, “On adaptive (functional MSR code based) distributed
storage systems,” in Proc. Int. Symp. Netw. Coding (NetCod), Jun. 2015,
pp. 46–50.

[86] S. Wu, Z. Shen, and P. P. C. Lee, “On the optimal repair-scaling
trade-off in locally repairable codes,” in Proc. IEEE Conf. Comput.

Commun. (INFOCOM), Jul. 2020, pp. 2155–2164.
[87] K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Enabling node repair in

any erasure code for distributed storage,” in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2011, pp. 1235–1239.

[88] S. Mousavi, T. Zhou, and C. Tian, “Delayed parity generation in MDS
storage codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO,
USA, Jun. 2018, pp. 1889–1893.

[89] M. Xia, M. Saxena, M. Blaum, and D. Pease, “A tale of
two erasure codes in HDFS,” in Proc. 13th USENIX Conf.

File Storage Technol. (FAST), J. Schindler and E. Zadok, Eds.
Santa Clara, CA, USA: USENIX Association, Feb. 2015, pp. 213–226.
[Online]. Available: https://www.usenix.org/conference/fast15/technical-
sessions/presentation/xia

[90] X. Su, X. Zhong, X. Fan, and J. Li, “Local re-encoding for coded
matrix multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Los Angeles, CA, USA, Jun. 2020, pp. 221–226.

[91] S. Wu, Z. Shen, and P. P. C. Lee, “Enabling I/O-efficient redundancy
transitioning in erasure-coded KV stores via elastic Reed–Solomon
codes,” in Proc. Int. Symp. Reliable Distrib. Syst. (SRDS), Shanghai,
China, Sep. 2020, pp. 246–255.

[92] F. MacWilliams and N. Sloane, The Theory Error-Correcting Codes,
2nd ed. Amsterdam, The Netherlands: North Holland, 1978.

[93] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-
MDS convolutional codes,” IEEE Trans. Inf. Theory, vol. 52, no. 2,
pp. 584–598, Feb. 2006.

[94] R. M. Roth and G. Seroussi, “On generator matrices of MDS codes
(Corresp.),” IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 826–830,
Nov. 1985.

Francisco Maturana (Student Member, IEEE) received the B.S. and M.S.
degrees in computer science from the Pontificia Universidad Católica de Chile,
Santiago, Chile, in 2017. He is currently pursuing the Ph.D. degree with
the Computer Science Department, Carnegie Mellon University, USA. His
research interests lie at the intersection of theoretical computer science and
computer systems.

K. V. Rashmi (Member, IEEE) received the Ph.D. degree from the
UC Berkeley in 2016. She was a Post-Doctoral Scholar at UC Berkeley
from 2016 to 2017. She is an Assistant Professor with the Computer Science
Department, Carnegie Mellon University. Her research interests broadly lie in
information/coding theory and computer/networked systems. During her Ph.D.
studies, she was a recipient of the Facebook Fellowship from 2012 to 2013,
the Microsoft Research Ph.D. Fellowship from 2013 to 2015, and the Google
Anita Borg Memorial Scholarship from 2015 to 2016. She was also a recipient
of the VMWare Systems Research Award 2021, the NSF CAREER Award
2020–2025, the Tata Institute of Fundamental Research Memorial Lecture
Award 2020, the Facebook Distributed Systems Research Award 2019, the
Google Faculty Research Award 2018, and the Facebook Communications
and Networking Research Award 2017. Her Ph.D. thesis was awarded the
UC Berkeley Eli Jury Dissertation Award 2016, and her work has received
the USENIX NSDI 2021 Community (Best Paper) Award, and the IEEE
Data Storage Best Paper and the Best Student Paper Awards for the years
2011/2012.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

