4392

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Convertible Codes: Enabling Efficient Conversion
of Coded Data in Distributed Storage

Francisco Maturana

Abstract—Erasure codes are essential for providing efficient
resilience against node failures in distributed storage. Typically,
an [n,k] erasure code encodes k symbols into n symbols
which are then stored in different nodes. Recent work by
Kadekodi et al. shows that the failure rates of storage nodes
vary significantly over time, and that changing the rate of the
code (via a change in n and k) in response to such variations
provides substantial storage space savings. However, the resource
overhead of re-encoding the already encoded data is prohibitively
high. We present a new theoretical framework formalizing code
conversion—the process of converting data encoded with an
[n', k'] code into data encoded with an [n”, k¥] code while
maintaining desired decodability properties. We then introduce
convertible codes, a new class of codes that allow for code
conversions in a resource-efficient manner. This paper begins
the study on convertible codes by focusing on linear MDS codes
and the access cost of conversion. We derive a lower bound on
the access cost of conversion and present an explicit optimal
construction matching this bound for an important subclass of
conversions. Additionally, we propose constructions with low
field-size requirement for a broad subset of parameters. Our
results show that it is possible to achieve code conversions
with significantly less resources than the default approach of
re-encoding for a wide range of parameters.

Index Terms— Convertible codes, storage codes, coding theory,
distributed storage systems, re-encoding.

I. INTRODUCTION

RASURE codes have become an essential tool for pro-

tecting against node failures in distributed storage sys-
tems [2]-[8]. Under erasure coding, a set of k£ data symbols
to be stored is encoded using an [n, k| code to generate n
coded symbols, called a codeword (or stripe). Each of the
n symbols in a codeword is stored on a different storage
node, and the system as a whole typically contains several
independent codewords distributed across different subsets of
storage nodes in the cluster.

Manuscript received July 31, 2021; revised January 6, 2022; accepted
January 21, 2022. Date of publication March 2, 2022; date of current
version June 15, 2022. This work was supported in part by NSF CAREER
Award under Grant 19434090, in part by NSF CNS under Grant 1956271,
in part by the Google Faculty Research Award, and in part by the Facebook
Distributed Systems Research Award. An earlier version of this paper was
presented in part at the 11th Innovations in Theoretical Computer Science
Conference (ITCS) [1] [DOI: 10.4230/LIPIcs.ITCS.2020.66]. (Corresponding
author: Francisco Maturana.)

The authors are with the Computer Science Department, Carnegie Mel-
lon University, Pittsburgh, PA 15213 USA (e-mail: fmaturan@cs.cmu.edu;
rvinayak @cs.cmu.edu).

Communicated by A. Thangaraj, Associate Editor for Coding and Decoding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2022.3155972.

Digital Object Identifier 10.1109/TIT.2022.3155972

, Student Member, IEEE, and K. V. Rashmi

, Member, IEEE

< 100

X o
< B [Tfansition IO Num disks (right axis) 350K £
> =
o 75 c
° 250K 2
2 50 %
o 150K:2
Z 25 £
2 i | 50K 5
= 0 2

f T T
2017-06 2018-01 2018-06 2019-01 2019-06 2019-12

Fig. 1. (From [10]) The left y-axis shows the percentage of disk IO utilized
by conversion (called “transition” in [10]) against time simulated from a trace
of a production Google cluster. The right y-axis shows the size of the cluster
in number of disks against time. Code conversions can result in big spikes in
disk IO consumption that can overwhelm the cluster for several days.

A key factor that determines the choice of parameters n and
k is the failure rate of the storage devices. It has been shown
that failure rates of storage devices in large-scale storage
systems can vary significantly over time and that changing
the code rate, by changing n and k, in response to these
variations yields substantial savings in storage space and hence
the operating costs [9]. For example, in [9], the authors show
that 11% to 44% reduction in storage space can be achieved
by tailoring n and k to changes in observed device failure
rates. Such a reduction in storage space requirement translates
to significant savings in the cost of resources and energy con-
sumed in large-scale storage systems. It is natural to think of
potentially achieving such a change in code rate by changing
only n while keeping k fixed. However, due to several practical
system constraints, changing code rate in storage systems
often necessitates change in both the parameters n and & [9].
‘We refer the reader to [9] for a more detailed discussion on the
practical benefits and constraints of adapting the erasure-code
parameters to the variations in failure rates in storage systems.

Changing n and k for codewords in a storage system,
from [n!, k1], to [n%, k%], would involve converting already
encoded data from one code to another. Clearly, it is always
possible to re-encode the data in a codeword according to
a new code by accessing (and decoding if necessary) all
the original message symbols. However, such an approach,
which we call the default approach, requires accessing a large
number of symbols (for example, for MDS codes, the initial
value of k& number of symbols need to be accessed from
each codeword), reading out all the data, transferring over the
network, and re-encoding. Such conversions can generate a
large amount of load on cluster resources, which adversely
affects the foreground operations of the cluster. Figure 1
shows the 1O load that would be caused by code conversions
on a Google cluster with multiple hundreds of thousands of

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE

disks [10]. As seen from the figure, IO load from conversions
can easily overwhelm the cluster for long periods of time.
Furthermore, in some cases conversions might need to be
performed in an expedited manner, for example, to avoid the
risk of data loss when facing an unexpected rise in failure rate.

High IO load is problematic for such conversions because
it slows down conversion as well as other important clus-
ter processes, such as serving client requests. While recent
work [10] has initiated a study on systems techniques to
mitigate the spikes in the 10 load caused by conversions, the
total amount of work necessary for conversion still remains
considerably high and these systems techniques introduce
restrictions on other operations of the cluster such as data
placement.

Given that the root cause of the problem is the high
resource overhead involved in performing conversions on the
underlying code, in this paper, we investigate the problem from
a fundamental theoretical perspective.

There are also several other reasons to perform code con-
versions in storage systems. One may convert data that is
frequently read into a code with a small k£ (in order to improve
the performance of reconstructions) and convert data that is
infrequently read into a code with large &k (to achieve lower
storage overhead). In addition, code conversions may need
to be performed to keep the total size of the encoded data
under a given threshold, or to maximize the reliability given
the available storage space.

To the best of our knowledge, the existing literature
[11]-[14] which formally studies the problem of changing the
length and dimension of already encoded data does so from
the perspective of the so-called scaling problem. The scaling
problem [11] refers to the problem of evenly redistributing
each codeword in a distributed storage system when additional
nodes are added to the system and the level of failure tolerance
(specifically, (n — k)) is kept constant. Some works [12], [14]
generalize the scaling problem to broader cases where (n — k)
need not remain constant. However, even in cases where the
scaling problem could be used to perform code conversion,
it has several drawbacks that make it inefficient for conver-
sion. For example, using the approach of scaling to achieve
conversion requires accessing every symbol in each codeword
and performing a significant amount of data movement to keep
the amount stored in each node the same. While these costs are
necessary to fulfill the goals of the scaling problem, they are
unnecessary to achieve code conversion, making this approach
inefficient. A more detailed discussion of the scaling problem
and other related work is provided in Section II-A.

In this paper, we propose a theoretical framework to model
the code conversion problem. Our approach is based on
the insight that the problem of changing code parameters
in a storage system can be viewed as converting multiple
codewords of an [n!, k'] code (denoted by C?) into (potentially
multiple) codewords of an [nf' k'] code (denoted by CF),!
with desired constraints on decodability, such as both codes
satisfying the maximum distance separability (MDS) property.

IThe superscripts I and F' stand for initial and final respectively, represent-
ing the initial and final state of the conversion.

4393

Initial codeword 2

(71 2
]

Initial codeword 1

N
~

vV vov Y
[1 =]] [1

Final codeword

Fig. 2. Example of code conversion: two codewords of a [5, 3] MDS code are
converted into one codeword of a [8, 6] MDS code. Unshaded boxes represent
data symbols, and shaded boxes represent parity symbols. Some of the initial
symbols are kept unchanged in the final codewords, as shown by the dashed
arrows. Some initial symbols are read and downloaded (solid arrows). The
downloaded data is then used to compute and write the remaining symbols
in the final codewords.

To address the problem of code conversion, we then introduce
a new class of codes, which we call convertible codes, that
allow for resource-efficient conversions. The general formu-
lation of code conversions provides a powerful framework to
theoretically study convertible codes.

We now present an example to elucidate the concept of code
conversion in the convertible codes framework.

Example 1: Consider conversion from an [n! = 5, k! = 3]
code CT to an [nf" = 8, k¥ = 6] code CF'. We will focus on
the number of symbols read, i.e. read access cost, and on the
number symbols written, i.e. write access cost, for conversion.
The default approach to conversion is to read k’ = 3 symbols
from each of the two initial codewords belonging to C7,
decoding the original data, and using it to write two symbols
of the final codeword belonging to C, while keeping the
three read symbols from each initial codeword unchanged as
symbols of the final codeword. Thus, the default approach has
a read access cost of 6 and write access cost of 2.

In the convertible codes framework, this conversion is
achieved by converting two codewords of the initial code into a
single codeword of the final code, as depicted in Figure 2. This
approach uses specially designed systematic codes C! and C¥".
Let I, be the finite field of size ¢ = 37. Let a,b,c € F, be
the data symbols of the first initial codeword, d,e, f € F,
be the data symbols of the second initial codeword. Let
P1,P2]Fg — [F, be the parity functions for the initial code
C!, and q,qo : FS — [F, be the parity functions for the final
code CF'. The parity functions are chosen as below:

pi(a,b,c) =a+b+e, pa(a,bc)=a+2b+4c.

This is an example of the general construction presented in
Section V. The conversion procedure keeps the data symbols
from each initial codeword unchanged in the final codeword,
and then constructs the first (resp. second) parity of the final
codeword as a linear combination of the first (resp. second)
parity of each initial codeword. The final parity functions are
chosen to satisfy the equation below:

ql(a/ab7 C, d,@,f) :pl(a,b,C) +p1(d,€,f),
QQ(a7b7 ¢, daevf) = p2(a7b7c) + 8p2(d,€, f)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4394

It is straightforward to check that the initial and final codes
defined by these parity functions have the MDS property. This
conversion procedure requires reading two symbols from each
initial codeword and writing two symbols, resulting in a total
read access cost of 4 and a write access cost of 2, a reduction
of 33.3% in the read access cost as compared to the default
approach. This is also the minimum possible read cost, as will
be shown in Section IV. >

In this paper, we begin the exploration of convertible codes
by focusing on convertible codes which are linear and MDS.
The properties of linear MDS codes have been well studied,
and they are widely used in practice due to their relative
simplicity and their storage overhead. As such they constitute
a good starting point for studying convertible codes. Further-
more, we focus on the access cost of conversion. Access cost
corresponds to the total number of symbols that are either
read or written during conversion, which is a fundamental
quantity that directly affects important metrics such as network
bandwidth, 10 and CPU resource usage.

Within the class of linear MDS codes, we focus on an
important subclass of conversions, which we refer to as the
merge regime. The merge regime corresponds to conversions
where multiple codewords are merged into a single codeword.
In other words, kf' = k! for some integer ¢ > 2, with
arbitrary values of n! and nf’. Using the convertible codes
framework, we prove a tight lower bound on the access cost
of conversions for linear MDS codes in the merge regime
(Section IV). This lower bound identifies a broad region where
significant savings in access cost are possible, and shows that
in its complement region, linear MDS codes cannot achieve
lower access cost than the default approach.

We cast the problem of constructing optimal convertible
codes into a problem of constructing matrices which satisfy
some special structural properties. Using this insight, we first
propose a simple construction (Section V) which works for
all parameters in the merge regime, but requires a large field
size (exponential in the lengths of the codes). To address this
issue, we introduce a sequence of constructions of convertible
codes that have significantly lower field size requirements
(Section VI). Our main results are summarized in Table 1.

Throughout our analysis of convertible codes, we assume
the values of the parameters (n!, k7) and (n*", k¥') are known
and fixed. However, in practice the value of (n%', kf') might
not be known at the time of code construction, since it depends
on the future failure rates of storage devices. To address this
problem, we also show that the constructions presented in
this paper can support access-optimal conversion for multiple
possible values of (nf', k') simultaneously.

II. RELATED WORK, BACKGROUND AND NOTATION

In this section, we place convertible codes within the larger
context of traditional codes and more recent works on codes
for distributed storage. Then, we review some basic concepts
and notation that will be used throughout the paper.

A. Related Work

MDS erasure codes, such as Reed-Solomon codes [15],
are widely used in storage systems because they achieve

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

TABLE I

MAIN RESULTS FOR THE ACCESS COST OF CONVERSIONS IN THE MERGE
REGIME, L.E. A (n!, kT;n® k¥ = ¢k!) CONVERTIBLE CODE

Approach Access cost
Default ki +rF
Optimal (r! < rf) k! +rF

Optimal (r! > +F) ¢min{k!, 7'} ++F

Construction Supported parameters Field size requirement

Default approach All parameters max{n —1,nf — 1}

General 20((nf)3)
(Section V) All parameters max { i1 }
Hankel-I
(Section VI) rf < rt/el max{n® —1,n! 1}
Hankel-IT

rF<rl —g+1 max{kIrl nf — 1}

I I,
max{sk +L? /s] 1,}
nt—1

(Section VI)
rF <

(s—s+1)lr!/s] +

max{(r! mod s) —

<+1,0}

Hankels for
¢<s<ol
(Section VI)

the optimal tradeoff between failure tolerance and storage
overhead [16], [17]. However, the use of erasure codes in
storage systems raises a host of other aspects to optimize for.
Several works in the literature have studied these aspects and
proposed codes that optimize them.

One aspect of storage codes that received considerable
attention early on is the computational overhead involved
in encoding and decoding of data. Array codes [18]-[21]
are designed to use XOR operations exclusively, which are
typically faster to execute, and aim to decrease the complexity
of encoding and decoding.

Another aspect of storage codes that has received consid-
erable attention in the recent past is related to the resource
overhead associated with repair of failed nodes. Several
approaches have been proposed to alleviate this problem.
Dimakis et al. [22] proposed a new class of codes called
regenerating codes that minimize the amount of network
bandwidth consumed during repair operations. Under the
regenerating codes model [22], each symbol (i.e., node) is
represented as an a-dimensional vector over a finite field.
During repair of a failed node, download of elements of the
finite field (i.e., “sub-symbols”) is allowed as opposed to the
whole vector (i.e., one “entire” symbol). This line of research
has led to several constructions [23]-[42], generalizations
[43]-[45], and more efficient repair algorithms for Reed-
Solomon codes [46]-[53]. Several of these constructions [26],
[35], [54]-[56] minimize the amount of IO consumed during
repairs in addition to minimizing the network bandwidth
consumption. It has been shown that meeting the lower
bound on the network bandwidth required by repair when
MDS property and high rate are desired necessitates large
sub-packetization [54], [56]-[58], which negatively affects
certain key performance metrics in storage systems [6], [7].
To overcome this issue, several works [59], [60] have proposed

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE

code constructions that relax the requirement of meeting lower
bounds on IO and bandwidth for repair operations in order to
reduce the degree of sub-packetization.

The challenge of code repair has also been addressed
by another class of codes, called locally repairable codes
(LRCs) [61]-[77]. These codes focus on the locality of code-
word symbols during repair, that is, the number of nodes that
need to be accessed when repairing a single failure. LRCs
improve repair performance, since missing information can
be recovered by accessing a small subset of symbols. LRCs
and convertible codes optimized for access cost both aim to
minimize the number of symbols that need to be accessed,
albeit for different operations in storage systems.

Recent literature on storage codes has also considered the
problem of redistributing data when additional devices are
added to a distributed storage system, which is known as
the scaling problem [11], [12], [14], [78]-[86]. The setting
considered consists of an n node distributed storage system
where the data is encoded using an [n, k] MDS code, where
the n symbols of each codeword are spread across evenly
on all the n nodes in the system. Then, s new empty nodes
are added to the system, and the data (which was encoded
under an [n, k] MDS code) needs to be updated to an [n' =
n + s,k’ = k + s] MDS code. The central goal of this
problem is to evenly redistribute each codeword across all
n' nodes while reducing the total amount of data transferred
across nodes and ensuring the MDS property holds. In some
cases, it is additionally required that the ratio of data to parity
in each node is the same (e.g. [83]). Some works consider
more general scaling scenarios: for example [14] considers the
case where k < k' and n < n’, and [12] considers arbitrary
n' > k’. The scaling problem is fundamentally different from
the conversion problem that we study in this paper because
of the need to evenly redistribute data across nodes under
scaling. Hence, some of the key constraints and limitations
of the scaling problem do not apply to code conversion.
For example, scaling necessitates modifying every node in
the system (incurring a high access cost) and necessitates
transfer of data not for the purpose of conversion (i.e. changing
n and k) but for the purpose of rebalancing the amount
of data stored by each codeword in a given node. On the
other hand, under the code conversion problem, we do not
impose any requirements on data balancing. This is because,
typically, large-scale distributed storage systems balance data
across nodes at a higher level rather than at the level of each
codeword [2], [5].

Several works have studied scenarios where encoded data is
transformed to conform to a different code. In [87], [88], the
authors propose a two-stage encoding process, where in the
first stage data is encoded using a [n, k] MDS code, and in
the second stage (n’ — n) additional parities are generated to
form a codeword from a [n’, k] MDS code. This process can
be seen as a special case of convertible codes, i.e. an (n, k;n’,
k) convertible code. In [89], the authors propose a distributed
storage system which alternates between two specific erasure
codes in response to variations in workload. In [90], the
authors propose a scheme for changing the parameters of an
erasure code in the context of coded matrix multiplication.

4395

In [91], which appeared after the publication of the con-
ference version of this paper [1], the authors propose a code
construction for improving the efficiency of conversion. This
construction performs conversion by acting on initial code-
words that are encoded differently, i.e. a different (k! x nf)
generator matrix is used for each initial codeword. The focus
of Wu et al. [91] is on a practical code construction for a spe-
cific parameter regime and they do not investigate theoretical
modeling and fundamental limits. All the lower bounds derived
in our work continue to hold even if each codeword is encoded
differently. The approach of using multiple different initial
codes has the advantage of simplifying the code construction:
a final MDS code C¥ is chosen first, and then the encoding of
each initial codeword is chosen to fit C¥'. However, such an
approach has several disadvantages. First, conversion can only
happen among specific groups of initial codewords, making
the conversion process more rigid as codewords cannot be
freely chosen. Second, this approach increases the overhead
of codeword management, as the system needs to keep track
of the code of each codeword. Third, it only considers one
specific known value for the final parameters (n’", k¥'). On the
other hand, the framework of convertible codes that we pro-
pose allows one to choose any set of initial codewords for
conversion (since they all use the same code), is independent of
data placement, and the proposed code constructions support
access-optimal conversion for any (nf", k') in a set of possible
final parameter values.

B. Background

In this subsection we introduce some basic definitions and
notation related to linear codes. Let F, be a finite field of
size ¢. An [n, k| linear code C over F, is a k-dimensional
subspace C C IF;L. Here, n is called the length of the code,
and k is called the dimension of the code. A generator matrix
of an [n, k| linear code C over F, is a k x n matrix G over
IF, such that the rows of G form a basis of the subspace C.
A k x n generator matrix G is said to be systematic if it has
the form G = [I | P], where I is the k x k identity matrix and
P is a k x (n — k) matrix. Even though the generator matrix
of a code C is not unique, we will sometimes associate a code
C to a specific generator matrix G, which will be clear from
context. The encoding of a message m € F¥ under an [n, k]
code C with generator matrix G is denoted C(m) = m” G.

Let [n] denote the set {1,2,...,n} forn > 1, and the empty
set for n < 0. A linear code C is maximum distance separable
(MDS) if the minimum distance of the code is the maximum
possible:

min-dist(C) = ;ninc Hie€n|:ci #c}|=n—k+1,
c#c €

where ¢; € F,; denotes the i-th coordinate of c. Equivalently,
a linear code C is MDS if and only if every k x k submatrix
of its generator matrix G is non-singular [92].

A matrix M is said to be superregular if every square
submatrix of M is nonsingular.? The following property is
a key property that will be used in this paper.

2This definition of superregularity is stronger than the definition introduced
in [93] in the context of convolutional codes.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4396

Proposition 2 ([92]): LetC be an [n, k] code with generator
matrix G = [I|P]. Then C is MDS if and only if P is
superregular.

Let v € Fy be a vector. We interpret vectors as column
vectors by convention. We denote the transpose of a vector (or
matrix) as v2. Given a set of coordinates Z C [n], we denote
the projection of v to the coordinates in Z as v|z € IFLI‘. For
a set of vectors V we define proj; (V) = {v|z | v € V}.

We use the following notation for submatrices: let M be
a n X m matrix, the submatrix of M defined by row indices
{#1,...,is} C [n] and column indices {j1,...,5} C [m] is

denoted by MTJiy,...,%a;41,---,Jb]- For conciseness, we use
* to denote all row or column indices, e.g., M[x; j1,. .., jb)
denotes the submatrix composed by columns {j1,...,Js},

and M i1, ..., 0q;
{Zl,...,

] denotes the submatrix composed by rows

III. A FRAMEWORK FOR STUDYING CODE CONVERSIONS

In this section, we formally define the new framework for
studying code conversions and introduce convertible codes.
While we use the notation of linear codes introduced in
Section II-B, the framework introduced in this section can
be applied to arbitrary (not necessarily linear) codes. Suppose
one wants to convert data that is already encoded using an
[n!, k'] initial code C! into data encoded using an [nf, k%]
final code CI' where both codes are over the same field F,.
In the initial and final configurations, the system must store the
same information, but encoded differently. In order to capture
the changes in the dimension of the code during conversion,
we consider M = lem(k’, k*") number of “message” symbols
(i.e., the data to be stored) over a finite field IF;, denoted by
m € IFéVI. This corresponds to A = M/k! codewords in the
initial configuration and A\f' = M/k" codewords in the final
configuration. Let 7/ = (n! — k) and r¥' = (nf' — kF).

Figure 3 shows the conversion process for general initial and
final codes. We note that this need for considering multiple
codewords in order to capture the smallest instance of the
problem deviates from existing literature on the code repair
(e.g., [22], [23], [47], [59]) and code locality (e.g., [61], [66],
[76]), where a single codeword is sufficient to capture the
problem.

Since there are multiple codewords, we first specify an ini-
tial partition P and a final partition PF of the set [M], which
map the message symbols of m to their corresponding initial
and final codewords. The initial partition P/ = {P{, ..., P];}
is composed of \! disjoint subsets of size |P}| = k' (i € [\]),
and the final partition P¥" = {P[',... Pfi} is composed of
AF disjoint subsets of size | P/'| = k¥ (j € [A¥]). In the initial
(respectively, final) configuration, the data indexed by each
subset P! € P! (respectively, PF € PF) is encoded using the
code C! (respectlvely,CF) The codewords {C'(m|pr) | P €
P! } are referred to as initial codewords, and the codewords
{cF (m|pr) | Pl e PF'} are referred to as final codewords.
The descrlptlons of the initial and final partitions and codes,
along with the conversion procedure, define a convertible code.
We now proceed to define conversions and convertible codes
formally.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

(M = M/k') initial codewords

|_7LI_| l_'ﬂ
el i I—AI—||—1I—|

O-0EE” - Iﬂ---l:l@--@

O- EI@ B

- kF rF— |l i | el i | [l T | |
" — " — —n—
(AT = M/ET) final codewords

Fig. 3. Conversion from [n’, k] initial code to [nf", k¥] final code. Each
box denotes a symbol, and they are grouped into codewords. Dotted boxes
denote retired symbols, and cross-hatched boxes denote new symbols. The ¢
node denotes the location where new symbols are computed from the symbols
read during conversion. Solid arrows denote a transfer of symbols (read or
write) and dashed arrows denote unchanged symbols.

Definition 3 (Code Conversion): A conversion from an ini-
tial code C’ to a final code C¥' with initial partition P’ and
final partition P¥ is a procedure, denoted by Tpr_,cr, that
for any m, takes the set of initial codewords {C’(m| p1) |
P! € P!} as input, and outputs the corresponding set of final
codewords {CF(m|PF) | P e PP} >

Definition 4 (Convertlble Code): An (n! k';nf k) con-
vertible code over [F, is defined by: (1) a pair of codes
(cf,cF) where C! is an [n!,k!] code over F, and C¥ is
an [n" k¥] code over F,; (2) a pair of partitions P!, P of
[M = lem(k!, kT")] such that each subset in P! is of size k'
and each subset in P¥ is of size k%'; and (3) a conversion
procedure Tpr_,cr that on input {C’ (m|pr) | Pl e P}
outputs {CF(m|Pp) | P} e PF'}, for any m € IFM >

Typically, addltlonal constraints would be 1mposed on C!
and CT", for example, decodability constraints such as requiring
both codes to be MDS.

The cost of conversion is determined by the cost of the
conversion procedure T1_,cr, as a function of the parameters
(nt, kT;nf kF). Towards minimizing the overhead of the
conversion, our general objective is to design codes (Cf,CT),
partitions (P, P¥) and conversion procedure Tpi_,cr that
satisfy Definition 4 and minimize the conversion cost for given
parameters (n!,k’;n’" k%), subject to desired decodability
constraints on C! and CF".

Depending on the relative importance of various resources
in the cluster, one might be interested in optimizing the
conversion with respect to various types of costs such as
symbol access, computation (CPU), communication (network
bandwidth), read/writes (disk 10), etc., or a combination of
these costs. The general formulation of code conversions above
provides a powerful framework to theoretically reason about
convertible codes. In this paper, we focus on a specific cost
model.

As a measure of cost, we consider the access cost of code
conversion, which measures the number of symbols that are
affected by the conversion.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE 4397
TABLE II
NOTATION USED IN THE PAPER
ol Related to initial code OF Related to final code S Number of initial codewords (merge regime)
n® Code length, number of symbols Py Code dimension, number of message symbols ~ A® Number of codewords
C% Code PO Partition of [k°] G Generator matrix of C©
P® Parity matrix of C© m Message Sil Encoding vectors (initial codeword %)
SF Encoding vectors (final codeword) U; Unchanged vectors (= SZ.I NSt D; Read access set (initial codeword %)

A; Accessed vectors (initial codeword i) N

New encoding vectors (= ST\ ST)

Definition 5 (Access Cost): The read access cost of a con-
version procedure is defined as the total number of symbols
read during the procedure. Similarly, the write access cost
of a conversion procedure is the total number of symbols
written during the procedure. The access cost of a conversion
procedure is the sum of its read and write access costs. The
access cost of a convertible code is the access cost of its
conversion procedure.

Each symbol read from the initial codewords requires one
symbol access and each symbol written to the final codewords
requires one symbol access. Therefore, minimizing access cost
amounts to minimizing the sum of the number of symbols read
from the initial codewords and the number of symbols written
to the final codewords.> Keeping this number small makes
code conversion less disruptive and allows the unaffected sym-
bols to remain available for normal operation. Furthermore,
reducing the number of accesses also reduces the amount of
computation and communication required in contrast to the
default approach.

In order to understand the necessary access cost of conver-
sion, we classify symbols into three categories: (1) unchanged
symbols, which refers to symbols in the initial codewords that
remain as is in the final codewords; (2) retired symbols, which
refers to the remaining symbols of the initial codewords that
are discarded; and (3) new symbols, which refers the symbols
in the final stripes which are not unchanged (and therefore
must be written during conversion). For example, in Figure 3,
unchanged symbols are unshaded, retired symbols in the initial
codewords are dotted, and new symbols in the final codewords
are cross-hatched.

Having unchanged symbols has many practical benefits,
because when conversion is implemented, such symbols can
stay in the same location and only their corresponding meta-
data needs to be updated. We introduce the following definition
to capture codes that maximize the number of such symbols.

Definition 6 (Stable Convertible Code): An (n, kI;nt
k) MDS convertible code is said to be stable if it uses the
maximum number of unchanged symbols over all (n',k7;
n® k) MDS convertible codes. >

We will see in Section IV, that stable convertible codes play
an important role in minimizing access cost.

The convertible codes framework defined in this work is
flexible and allows for the initial and final codes to have
any parameters and be of any kind. However, as a step

3Readers who are familiar with the literature on regenerating codes might
observe that convertible codes optimizing for the access cost are “scalar”
codes as opposed to being “vector” codes.

towards a fundamental theoretical understanding of the access
cost of conversions, in this paper we focus in a particular
subclass of conversions that we term merge regime. The merge
regime correspond to code conversions where multiple initial
codewords are combined into a single codeword. In other
words, the merge regime consists of convertible codes where
kY = ¢k!, for some integer ¢ > 2, and nl , nt are arbitrary.
In addition to this, in this paper we focus exclusively on codes
that are both linear and MDS.

In particular, our goal is to find linear MDS codes which can
achieve conversion with the minimum possible access cost.

Definition 7 (Access-Optimal): A linear MDS (n!, kT;nt,
k) convertible code is said to be access-optimal if and only
if it attains the minimum access cost over all linear MDS (n/,
E';n EF) convertible codes. >

We will study the precise cost of access-optimal convertible
codes in the merge regime in Section IV.

In practice, the final parameters (n!", k') might not be
known at the time of code construction because they might
depend on future failure rates. To address this, we also con-
sider designing codes which have the ability to be converted
to multiple final codes of different length and dimension with
optimal access cost. This way, instead of having to decide
(nf", k') in advance, the user can specify a subset S C (NxN)
of possible values for the pair (n!", k') and construct an initial
code with the ability to be converted to an [nf', k%] final
code for any (nf kf) € S. At the time of conversion, the
user simply chooses the desired pair from S and converts.
We introduce the following definition to help describe such
codes.

Definition 8 (Access-Optimally Convertible): A linear [n’,
k'] MDS code C! is said to be (nf, kf')-access-optimally
convertible if and only if it is the initial code of an access-
optimal (n!, k;n" k) convertible code. >

A. Notation for Linear Convertible Codes in the Merge
Regime

In this paper, we focus exclusively on convertible codes
in the merge regime where C’ and C¥ are linear. To this
end, we introduce some notation for describing and analyzing
this class of codes. Table II summarizes the most important
notation used for easy reference.

First, we make some observations that help simplify the
notation for the merge regime. In the merge regime k%" = ¢k’
and, as a consequence, the length of the message m will be
M = lem(k!, k¥") = k. Furthermore, the number of initial
codewords will be A’ = ¢ and the number of final codewords

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4398

will be A" = 1. Therefore, we need not specify which final
codeword we refer to, as there is only one.

Let ¢ € {I,F}. The generator matrix of C® is a (k¢ x
n®) matrix G® = [gf - - g7,], where g¥ € F’;O (j € [n9))
denotes the j-th encoding vector of C°. Consequently, the j-th
symbol of the i-th codeword corresponds to (| Pﬁ)Tg?'

In order to analyse linear convertible codes, we also view
each code symbol in relation to the whole message m. Accord-
ingly, we view the j-th symbol of the i-th initial codeword as
m7”g/ ., where the encoding vector g/ ; € F}! is defined to
be equal to g]I» for coordinates in P/, i.e. gi{j|P7; = g]I», and
equal to 0 everywhere outside of P/. Note that m”g/!, =
(m|pr)Tgl for all i € [¢] and j € [n']. In general, we will
refer to a code symbol and its corresponding encoding vector
interchangeably.

Let S = {g/ FRIVES [n]} denote the encoding vectors
of initial codeword i € [c], let 8" = J;c; S/, and let
S* ={gl" | j € [n"]}. Define U; = (S] N S*') denoting the
unchanged symbols of initial codeword i, and let U = (ST N
ST") denote all unchanged vectors. We define the read access
set of a convertible code as a set of tuples D € [M] x [nf]
where (i,7j) € D corresponds to the j-th symbol of initial
codeword ¢. Furthermore, we use D; = {j | (i,5) € D},
Vi € [M] to denote the symbols read from initial codeword
i. Note that the read access cost is given by |D|. Let A; =
{g! ; | 7 € D;} denote the encoding vectors of the symbols
from initial codeword i € [A\!] that are part of the read access
set D, and define A = {g/, | (i,j) € D} as the set of all
encoding vectors of the symbols in the read access set. Finally,
let N = (8¥\ 8') denote the new vectors. Notice that it must
hold that N C span(.A), since the new vectors are obtained
as linear combinations of the encoding vectors of the symbols
in the read access set.

bl

B. The Case of k! = k¥

Before analyzing the conversion in the merge regime,
we briefly study the exceptional conversion case where k! =
k. Conversion with parameters k! = k%" is not considered as
part of the merge regime because it does not have the same
behavior. However, we analyze this case here for complete-
ness. Observe that in the case where n! > n¥", conversion for
any MDS code can be carried out with zero access cost by
simply retiring any (n! —nf") symbols. In the complementary
case where n! < nf, it is necessary to access at least kL
symbols and write at least (n”" — nf) symbols (i.e. it is not
possible to beat the default approach). This is apparent from
the fact that in an [n, k] MDS code, any subset of k—1 symbols
gives no information about any one of the remaining symbols.
Therefore, in the remainder of this paper, we consider ¢ > 2.

IV. LOWER BOUNDS ON THE ACCESS COST OF
CONVERTIBLE CODES IN THE MERGE REGIME

In this paper, we focus on studying the merge regime.
Recall, from Section III, that the merge regime corresponds
to conversion where multiple codewords are combined into a
single codeword (i.e. k¥ = ¢k’ for an integer ¢ > 2). This
implies that M = BN =¢, and M\ = 1.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

7 7

o o

o o

ﬁ % — Optimal
g 3

= = __ Default
9 3 approach
))

22 2
Fig. 4. Comparison of the read access cost of the optimal conversion of

a (nf,kl;n k¥ = ckT) convertible code and the default approach for a
variable value of 7 (x-axis) when r! < kI (left side) and r! > k! (right
side). When ¥ < min{k”, !}, optimal conversion achieves lower cost than
the default approach, and when ¥ > min{k’,r'}, the default approach
is (trivially) optimal. The optimal write access cost in the merge regime is
always 1.

TABLE III
ACCESS COST SAVINGS FOR DIFFERENT EXAMPLE PARAMETERS

[nI k[] - [nF k‘F} Optimal Default Cost

’ ’ access cost approach reduction
(14, 10] = [22, 20] 6 2 72.7%
[9,6] = [14,12] 6 14 57.1%
[5,3] = [15,9] 9 15 40.0%
[9,5] = [14,10] 12 14 14.3%
[6,4] = [11,8] 11 11 0.0%

In this section, we present lower bounds on the access cost
of linear MDS convertible codes in the merge regime. Our
main result is summarized by the following theorem, which
will be proved at the end of this section.

Theorem 9: For all linear MDS (nf, kl;nf" kf" = ¢kl)
convertible codes, the read access cost of conversion is at
least ¢ min{k’, 7"} and the write access cost is at least r%".
Furthermore, if ! < ¥, the read access cost of conversion
is at least ¢k’.

As we will show in Section V, this lower bound is achiev-
able and it therefore corresponds to the optimal access cost in
the merge regime. Figure 4 shows a plot comparing the optimal
access cost against the access cost of the default approach for
different parameter values, and Table III shows these costs for
some concrete conversion examples.

We break down the proof of this result into four steps:

1) We show that in the merge regime, all possible pairs
of partitions P! and P partitions are equivalent up
to relabeling, and hence do not need to be specified
(Lemma 10).

2) An upper bound on the maximum number of unchanged
symbols is proved. As described in Definition 6, con-
vertible codes that meet this bound are called stable
(Lemma 11).

3) Lower bounds on the access cost of linear MDS convert-
ible codes are proved under the added restriction that the
codes are stable (Lemmas 12 and 13 and Theorem 14).

4) The stability restriction is removed, by showing that
non-stable linear MDS convertible codes necessarily
incur higher access cost, and hence it suffices to consider
only stable MDS convertible codes (Lemma 16 and
Theorem 9).

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE

In general, partitions need to be specified since they indicate
how message symbols from the initial codewords are mapped
into the final codewords. However in the merge regime,
the choice of the partitions are equivalent, and hence are
inconsequential as shown below.

Lemma 10: For every (n!,k';n k¥ = k') convertible
code, all possible pairs of initial and final partitions (P!, PT")
are equivalent up to relabeling of nodes.

Proof: We have that k' | k. Thus \f' = (M/kF) =
1 and P = {[M]} always holds. Because of this, all data
will be mapped to the same final codeword, regardless of the
initial partition. Therefore, for any two partitions P! and P! ,
there exists some permutation o of [¢k!] such that P!’ =
{o(P) | P € P}, i.e., different partitions differ only on the
way nodes are labeled.]

Since one of the terms in access cost is the number of new
symbols, a natural way to reduce access cost is to maximize
the number of unchanged symbols. However, there is a limit
on the number of symbols that can remain unchanged which
is characterized below.

Lemma 11: ITn an MDS (nf, kT;nf' k¥ = ¢k!) convertible
code, there can be at most &’ unchanged symbols from each
initial codeword. u

Proof: By the MDS property of C’ every subset of k41
symbols is linearly dependent. Hence, there can be at most &’
unchanged symbols from each initial codeword for C¥' to be
MDS. In other words, [U;| < k! for all i € []. []

This implies that there are at most ¢k’ unchanged symbols
and at least ¥ new symbols in total. Thus, the number of
symbols that need to be written in a stable code is at least 7.

Now, we focus on bounding the total number of symbols
read, that is, the size of the read access sets. The general
strategy we use to obtain bounds on the size of read access
sets is to consider a specially chosen set of k% encoding
vectors from the final codeword, which by the MDS property
of the final code is linearly independent. We then use the fact
that final codewords are the result of conversion to identify
the encoding vectors in each initial codeword that span the
selected final encoding vectors. The MDS property of the
initial code and the fact that different initial codewords contain
different information will allow us to derive a lower bound on
the number of read symbols in each initial codeword.

Intuitively, having more new symbols means that more
symbols have to be read in order to construct them, resulting in
higher access cost. With this intuition in mind, we first focus
on stable convertible codes, which minimize the number of
new symbols (Definition 6). We first prove lower bounds on
the access cost of stable linear MDS convertible codes, and
then show that the minimum access cost of conversion in MDS
codes without this stability property can only be higher. The
first lower bound on the size of each D; (i € [¢]) is given by
the interaction between new symbols and the MDS property.

Lemma 12: For every linear stable MDS (n!,k%;n®
k= k!) convertible code, the read access set D; from each
initial codeword i € [c] satisfies |D;| > min{k!,r'}.

Proof: For convenience, readers can recall the notation
from Table II. By the MDS property, every subset V C S¥
of size at most k" = ¢k’ is linearly independent. For any

4399

initial codeword 7 € [g], take the set of all unchanged encoding
vectors from other codewords Uy;Up, and additionally pick
any subset of new encoding vectors W C N of size |W| =
min{k’, 7¥"}. The following holds for set V = (Ugz;Uy UW):

VY C S and |V = (¢ — Dk + min{k!, 7} < k.

Therefore, all the encoding vectors in) are linearly
independent.

Notice that the encoding vectors in (V \ W) contain no
information about initial codeword ¢ and complete information
about every other initial codeword ¢ # i. Therefore, the
information about initial codeword ¢ in each encoding vector
in W has to be linearly independent since, otherwise, } could
not be linearly independent. Formally, it must be the case that
W; = projp: (W) has rank equal to min{k?, rf'} (recall that
Pil is the set of symbols corresponding to initial codeword 7).
However, by definition, the subset VW; must be contained in
the span of A;. Therefore, the rank of A; is at least that of
Wi, which implies that |D;| > min{k rf'}. [|

We next show that when the number of new symbols " is
greater than 7/ in a MDS stable convertible code in the merge
regime, then the default approach is optimal in terms of access
cost.

Lemma 13: For every linear stable MDS (n!,k%;n®
kP = ¢kt) convertible code, if rI < rF then the read access
set D; from each initial codeword i € [g] satisfies |D;| > k.

Proof: When 7 > k! this lemma is equivalent to
Lemma 12, so assume ! < rf < k!. From the proof of
Lemma 12, for every initial codeword 7 € [¢] it holds that
|D;| > 7. Since 7" > !, this implies that D; must contain
at least one index of an unchanged encoding vector.

Choose a subset of at most k" = ¢k’ encoding vectors
from S¥, which must be linearly independent by the MDS
property. In this subset, include all the unchanged encoding
vectors from the other initial codewords, U;;4;. Then, choose
all the unchanged encoding vectors from initial codeword ¢
that are accessed during conversion, Wy = (A; NU;). For the
remaining vectors (if any), choose an arbitrary subset of new
encoding vectors, W, C N, such that:

Wa| = min{k! — W,|,rF}. (D

It is easy to check that the subset V = (Ui, Ui UW1UW3) is of
size at most k¥ = ¢k’, and therefore it is linearly independent.
This choice of V follows from the idea that the information
contributed by W; to the new encoding vectors is already
present in the unchanged encoding vectors, which will be at
odds with the linear independence of V.

Since the elements of W; and W, are the only encoding
vectors in V that contain information from initial codeword i,
it must be the case that W = (projpr (W1) U projpr (W2))
has rank (|Wh|+|W2|). Moreover, W is contained in the span
of A; by definition, so it holds that:

|Di| > (Wi + [Ws|. (2)

From Equation 1, there are two cases:
Case 1: (k' — W) < r¥. Then [Wy| = (k' — W) and
by Equation 2 it holds that |D;| > (|W| + [Ws|) = kL.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4400

Case 2: (k! — [Wy|) > rf. Then |Ws| = rF and by
Equation 2 it holds that:
Dl = W] + 7" 3)

Notice that there are only r! retired (i.e. not unchanged)
encoding vectors in codeword 7. Since every accessed encod-
ing vector is either in W or is a retired encoding vector,
it holds that:

IDs| < W] + 1. @)

By combining Equation 3 and Equation 4, we arrive at the
contradiction ¥ < rI, which occurs because there are not
enough retired symbols in the initial codeword ¢ to ensure that
the final code has the MDS property. Therefore, case 1 must
always hold, and |D;| > k’.]

Combining the above results leads to the following theorem
on the lower bound of read access set size of linear stable MDS
convertible codes.

Theorem 14: For all stable linear MDS (nf, k!;nt",
k= ck!) convertible codes with read access set D, it holds
that |D| > ¢min{k!,7¥'}. Furthermore, if 7/ < %, then
|D| > kF.

Proof: Follows directly from Lemma 12 and Lemma 13.

|

We next show that this lower bound generally applies even
for non-stable convertible codes by proving that increasing the
number of new symbols from the minimum possible does not
decrease the lower bound on the size of the read access set D.

Lemma 15: The lower bounds on the size of the read access
set from Lemma 14 hold for all linear MDS (n!, k%;n®"
EF = ¢k!) convertible codes.

Proof: We show that, even for non-stable convertible
codes, that is, when there are more than r¥ new symbols,
the bounds on the read access set D from Theorem 14 still
hold.

Case 1: v/ > rF. Let i € [¢] be an arbitrary initial
codeword. We lower bound the size of D; by invoking the
MDS property on a subset V C S¥ of size |V| = ck! that
minimizes the size of the intersection |V N U;|. There are
exactly 7" encoding vectors in (S \ V), so the minimum
size of the intersection |V N, | is max{|U;| —rT',0}. Clearly,
the subset projps (V) has rank k! due to the MDS property.
Therefore, it holds that |D;| + max{[t4| — r¥,0} > k.
By reordering, the following is obtained:

|Di| > k! — max{|t4;]| — ¥, 0} > min{rf k'},

which means that the bound on D; established in Lemma 12
continues to hold for non-stable codes.

Case 2: v/ < rF. Let i € [¢] be an arbitrary initial
codeword, let Wy = (A; NU;) be the unchanged encoding
vectors that are accessed during conversion, and let Wy =
(U; \ Wi) be the unchanged encoding vectors that are not
accessed during conversion. Consider the subset)V C SF of
|V| = k" encoding vectors from the final codeword such that
YV 2O W and the size of the intersection W5 = (V N W) is
minimized. Since V may exclude at most r%" encoding vectors
from the final codeword, it holds that:

[Ws| = max{0, | Ws| — 7} 5)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

By the MDS property, V is a linearly independent set of
encoding vectors of size k¥, and thus, must contain all the
information to recover the contents of every initial codeword,
and in particular, initial codeword ¢. Since all the information
in)V about codeword ¢ is in either W3 or the accessed encoding
vectors, it must hold that:

ID;| + |Ws| > k. (6)

From Equation 5, there are two cases:

Subcase 2.1: (|W,| — rf') < 0. Then |Wjs| = 0, and by
Equation 6 it holds that |D;| > k!, which matches the bound
of Lemma 13.

Subcase 2.2: (|Ws| —rf") > 0. Then |Ws| = (|Ws| —rf),
and by Equation 6 it holds that:

|Di| + [Wa| —rF > k. 7

The initial codeword i has (k! +r!) symbols. By the principle
of inclusion-exclusion we have that:

|Di| + [Us| — Wi| < KT+l ®)

By using Equation 7, Equation 8 and the fact that |[Ws| =
(Us| — 1]), we conclude that 7/ > r% which is a
contradiction and means that subcase 2.1 always holds in this
case.]

The above result, along with the fact that the lower bound
in Theorem 14 is achievable (as will be shown in Section V),
implies that all access-optimal linear MDS convertible codes
in the merge regime are stable.

Lemma 16: All access-optimal linear MDS (nf, k%;nt
EF = ¢k!) convertible codes are stable.

Proof: Lemma 15 shows that the lower bound on the
read access set D for stable linear MDS convertible codes
continues to hold in the non-stable case. Furthermore, this
bound is achievable by stable linear MDS convertible codes in
the merge regime (as will be shown in Section V). The number
of new blocks written during conversion under stable MDS
convertible codes is 7f". On the other hand, the number of new
symbols under a non-stable convertible code is strictly greater
than rf. Thus, the overall access cost of a non-stable MDS
(n®, kT;n?, k¥ = ¢k!) convertible code is strictly greater than
the access cost of an access-optimal (n',k’;nf" kf = ¢k!)
convertible code. []

Thus, for MDS convertible codes in the merge regime,
it suffices to focus only on stable codes. Combining all the
results above, leads to the main theorem presented at the
beginning of this section.

Proof of Theorem 9: Follows from Theorem 14 and
Lemmas 15 and 16, and the fact that at least 7 new symbols
must be written. [|

Next, in Section V we show that the lower bound of
Theorem 9 is achievable for all parameters. Thus, Theorem 9
implies that it is possible to perform conversion of MDS
convertible codes in the merge regime with significantly less
access cost than the default approach if and only if r" < r!
and rf < K.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE

V. ACHIEVABILITY: EXPLICIT ACCESS-OPTIMAL
CONVERTIBLE CODES IN THE MERGE REGIME

In this section, we present an explicit construction of access-
optimal MDS convertible codes for all parameters in the
merge regime. In other words, we present a construction that
matches the access cost lower bound presented in Section IV.
In Section V-A, we present the construction of the generator
matrices for the initial and final code. Then, in Section V-B,
we describe sufficient conditions for optimality and show that
this construction satisfies these conditions and thus yields
access-optimal convertible codes. Our constructions in this and
the following section work over any finite field of sufficient
size (which we explicitly specify), but for the sake of illustra-
tion we use prime fields in our examples.

A. Explicit Construction of Generator Matrices

Recall that, in the merge regime, k¥ = ¢k!, for an integer
¢ > 2, while nf > k! and n > k¥ are arbitrary. Also,
recall that v/ = (nf — kT) and rf = (nf" — k). Notice
that when 1 < ¥ or kI < T, constructing an access-
optimal convertible code is trivial, since the default approach
to conversion is optimal. Thus, assume 7 < min{r!, k7}.

Let F, be a finite field of size ¢ = p”, where p is any prime
(in particular, we can have p = 2, i.e. a binary field) and the
degree D is determined by a function of the convertible code
parameters (discussed later in this subsection). The degree D
required by this construction is O((max{n!,nf'})?3), that is,
the field size requirement is exponential in the length of the
code. Let 6 be a primitive element of F,. Let G! = [I|P] and
GT = [I|P¥] be systematic generator matrices of C! and C*
over IF,, where Pl is a k' x v matrix and P¥ is a k¥ x r¥
matrix.

Define entry (i,j) of P! € F’;IX’"I as #C=DU-1D | where
(i,4) ranges over [k!] x [r]. Entry (i,j) of P¥ € F’;F”F
is defined identically as §¢~1U~1 where (i,) ranges over
[kF] x [rF]. That is, P! and P¥ are as follows:

1 1 1 1
10 62 plr' =1
pl_ |1 92 ezt g2(r'-1)
1 e(k’.q) 92(1@}71) 9(1@171.)(7"171)
1 1 1 1
10 02 g’ =1
pr_ |1 92 94 §20rF—1)

i 9(1@‘”.71) 92(1@%71) Q(qu.)(rFq)

Notice that this construction is stable, because it is access-
optimal (recall Lemma 16). The unchanged symbols of the
initial code are exactly the systematic symbols.

B. Proof of Optimality

Recall from Proposition 2, that if the constructed code is
to be MDS, then both P! and P need to be superregular

4401

(every square submatrix of them is invertible). In addition,
to be access-optimal during conversion in the non-trivial case,
the new symbols (corresponding to the columns of P¥’) have
to be such that they can be generated by accessing 7" symbols
from the initial codewords (corresponding to columns of G').

During conversion, the encoding vectors of symbols from
the initial codewords are represented as ¢k’-dimensional vec-
tors, where each initial codeword occupies a disjoint subset
of k! coordinates. To capture this property, we introduce the
following definition.

Definition 17 (t-Column Block-Constructible): We will say
that an n X m; matrix M; is t-column constructible from
an n X mg matrix M, if and only if there exists a subset
S C cols(Ms) of size t, such that the m; columns of M; are
in the span of S. We say that a An xmj matrix M is t-column
block-constructible from an n X mg matrix Mo if and only if
for every i € [s], the submatrix M;[(i — L)n+1,...,in;*] is
t-column constructible from M. | 2

Theorem 18: A systematic (n!, k';n®" k¥ = ¢k’) convert-
ible code with k7 x 7! initial parity generator matrix P! and
k¥ x r final parity generator matrix P is MDS and access-
optimal, if the following two conditions hold: (1) if ! > ¥
then P¥ is rF-column block-constructible from P!, and (2)
P!, PF are superregular.

Proof: Follows from Proposition 2 and the fact that P¥
must be generated by accessing just 7 symbols from each
initial codeword (Lemma 12). |

Thus, we can reduce the problem of proving the optimality
of a systematic MDS convertible code in the merge regime
to that of showing that matrices P/ and P¥" satisfy the two
properties mentioned in Theorem 18.

We first show that the construction specified in Section V-A
satisfies condition (1) of Theorem 18.

Lemma 19: Let P1, P¥ be as defined in Section V-A. Then
P is rF'-column block-constructible from P’.

Proof: Consider the first r columns of P!, which we
denote as Pip = P![x;1,...,rF]. Notice that P can be
written as the following block matrix:

Pl
P/, diag(1,0% 6%, 0" ~Ok)
PF — PiF diag(1, 92k’ 7 ez.zkl7 L e(T,F_l)QkI)

P!, diag(1, gls—DR T =D(s—DE

where diag(a1, as,...,a,) is the n X n diagonal matrix with
(ai1,...,ay) as the diagonal elements. From this representa-
tion, it is clear that P¥ can be constructed from the first ¥
columns of P'. [
It only remains to show that the construction in Section V-A
satisfies condition (2) of Theorem 18, that is, that PT and P’
are superregular.
Lemma 20: Let P, P¥ be as defined in Section V-A. Then
P’ and P* are superregular, for sufficiently large field size.
Proof: Let R be a t xt submatrix of P! or P¥', determined
by the row indices i1 < io < --- < i; and the column indices
j1 < j2 < -+ < ji, and denote entry (i,j) of R as RJi, j].

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4402

The determinant of R is defined by the Leibniz formula:

det(R)= > sgn(o) [[RI[, o))
o€Perm(t) =1
= Z sgn(o)f”
o€Perm(t)
t
where E, = Z(il — D (joqy — 1),
=1

Perm(t) is the set of all permutations on ¢ elements, and
sgn(o) € {-1,1} is the sign of permutation o. Clearly,
det(R) defines a univariate polynomial fgr € F,[0]. We will
now show that deg(fr) = >;_, (i1 — 1)(ji — 1) by showing
that there is a unique permutation ¢* € Perm(¢) for which
FE_+ achieves this value, and that this is the maximum over all
permutations in Perm(¢). This means that fr has a leading
term of degree E,«.

To prove this statement, we show that any permutation o €
Perm(¢)\{o*} can be modified into a permutation o’ such
that E,» > E,. Specifically, we show that c* = o4, the
identity permutation. Consider o € Perm(t)\{oiq}: let a be
the smallest index such that o(a) # a, let b = 0~ !(a), and
let ¢ = o(a). Let ¢’ be such that ¢'(a) = a, o/(b) = ¢, and
o'(d) = o(d) for d € [t]\{a,b}. In other words, ¢’ is the
result of “swapping” the images of a and b in o. Notice that
a < b and a < c. Then, we have that:

Eor — B = (ia —1)(Ja — 1) + (s — 1)(je — 1)
- (ia - 1)(jc - 1) - (ib - 1)(ja - 1)
= (ib - Z.a)(jc _ja) >0

The last inequality comes from the fact that a < b implies
iq < ip and a < ¢ implies j, < j.. Therefore, deg(fr) =
mMaXsecPerm(t) E, = Eoid~

Let E*(s, k%, r! rI") be the maximum degree of fr over
all submatrices R of P! or P¥. Then, E*(¢, k%, r! rF)
corresponds to the diagonal with the largest elements in P! or
P, In P¥ this is the diagonal of the square submatrix formed
by the bottom ¥ rows. In P! it can be either the diagonal

of the square submatrix formed by the bottom ! rows, or by
the right k! columns. Thus, we have that:
E*(§, kI, 7"1, ’I"F) = l’I?laX{E‘l7 EQ, Eg}
rf-1
where F, = Z i(gkI —rF 4 i)
=0
= (rF —1)(3sk! —rF — 1)/,
rl-1
By =Y (k' —r"+1i)
=0
=" = 1)(3k" —+" —1)/6,
k'—1
Es = i(r! — kT 4-4)
=0
E' (k' —1)3r! — k' —1)/6

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Recall that we defined the field size as ¢ = p” for any prime p.
We set D = (E*(s, k%, 7T, rF) +1). Then, if det(R) = 0 for
some submatrix R, 6 is a root of fr, which is a contradiction
since 6 is a primitive element and the minimal polynomial of
6 over), has degree D > deg(fr) [92]. [|

Combining the above results leads to the following key
result on the achievability of the lower bounds on access cost
derived in Section IV.

Theorem 21: The explicit construction provided in
Section V-A yields access-optimal linear MDS convertible
codes for all parameter values in the merge regime.

Proof: Follows from Theorem 18, Lemma 19, and
Lemma 20. []

The construction presented in this section is practical only
for small values of the parameters since the required field
size grows exponentially with the lengths of the initial and
final codes. In Section VI we present practical low-field-size
constructions.

VI. Low FIELD-S1ZE CONVERTIBLE CODES BASED ON
SUPERREGULAR HANKEL ARRAYS

In this section we present alternative constructions for (n!,
kL;nf kT = ¢kT) convertible code that require a significantly
lower (polynomial) field size than the construction presented
in Section V. We start by explaining the key ideas behind
these constructions and present two examples that represent
two extremes of a tradeoff between field size and coverage of
parameter values. In Section VI-A, we describe the general
construction, which includes codes at the two extremes of
the tradeoff and a sequence of constructions in between.
In Section VI-B, we show that the proposed code construction
can support access-optimal conversion even when parameters
of the final code are a priori unknown.

The key idea behind our constructions is to take the matrices
P’ and P¥ as cleverly-chosen submatrices from a specially
constructed triangular array of the following form:

b 1 b2 b3 bm, —1 bm,
b2 b3 e e bm
T, . 0 (10)
bm,—l bm
b,

with the property that every submatrix of 7;, is superregular
(the submatrix must lie completely within the triangular array).
Here, (1) (b1,...,by) are (not necessarily distinct) elements
from F,, and (2) m is at most the field size ¢. The array
T, has Hankel form, that is, T)y,[¢, j] = T[i — 1,5 + 1], for
all i € [2,m],j € [m — 1]. We denote T, a superregular
Hankel array. Such an array can be constructed by employing
the algorithm proposed in [94] (where the algorithm was
employed to generate generalized Cauchy matrices to construct
generalized Reed-Solomon codes). This algorithm is described
in Appendix for reference, although it is not necessary for
understanding the constructions in this section.

We construct the initial and final codes by taking submatri-
ces P/ and P¥ from superregular Hankel arrays in a special

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE

() PleFy*

10) PF e F%({XZ

(a) Hankel-I construction.

4403

(12|12 1 9of1)|5 1 QIE‘;G 9 2

;12% 19 1‘}5.11 9 10/6/9 2

1)lo 1 s|f1aflo 10 6|09]|2 ,

lo)l1 s 11-1‘91310 6 9|2 O P eFs?
T1s 1{5 11 9|10l6 9 2 _

5(11 9 10/6|9 2) PFer?

[11|9 10 6|92

L 9)10 6 9|2

(b) Hankel-II construction.

Fig. 5. Examples of constructions based on Hankel arrays: (a) Hankel-I construction parity generator matrices for systematic (9, 5; 12, 10) convertible code.
Notice how matrix P¥ corresponds to the vertical concatenation of the first two columns and the last two columns of matrix P!. (b) Hankel-II construction
parity generator matrices for systematic (7, 4; 10, 8) convertible code. Notice how matrix P¥" corresponds to the vertical concatenation of the first and second

column of PZ, and the second and third column of PZ.

manner. This guarantees that P? and P¥ are superregular.
In addition, we exploit the Hankel form of the array by care-
fully choosing the submatrices that form P and P to ensure
that P is r'-column block-constructible from P?. Given the
way we construct these matrices and the properties of T, all
the initial and final codes presented in this section turn out to
be inside a well-studied class of codes known as (punctured)
generalized doubly-extended Reed-Solomon codes [94].

The above idea yields a sequence of constructions with a
tradeoff between the field size and the maximum value of 7%
supported. We first present two examples that correspond to
the extreme ends of this tradeoff, which we call Hankel-I and
Hankel-11. Construction Hankel-I, shown in Example 22, can
be applied whenever v < |r!/c|, and requires a field size
of ¢ > (max{n!,nf} —1). Construction Hankel-II, shown in
Example 23, can be applied whenever " < (r! —¢+1), and
requires a field size of ¢ > k'r’.

Throughout this section we will assume that ¢ < rI <kl
The ideas presented here are still applicable when 7/ > k!,
but the constructions and analysis change in minor ways.

Example 22 (Hankel-1): Consider the parameters (9, 5; 12,
10) and the field F1; (any finite field of size at least 11 suffices,
but we choose a prime field for ease of explanation). Notice
that these parameters satisfy:

rl
rf=2< L—J =2, and
S

qg=11>max{n! nf} -1 =11

First, construct a superregular Hankel array of size n’ —1 =
11, T4, employing the algorithm in [94]. Then, divide the
r! = 4 initial parities into ¢ = 2 groups: encoding vectors
of parities in the same group will correspond to contiguous
columns of Ty;. The submatrix P! € F3** is formed from the
top k' = 5 rows and columns 1,2,k +1=6and k' +2=7
of Ty, as shown in Figure 5a. The submatrix P € F9*2
is formed from the top kY = 10 rows and columns 1,2 of
Ty1, as shown in Figure 5a. Checking that these matrices
are superregular follows from the superregularity of T7;.
It is straightforward to check that both these matrices are
superregular, which follows from the superregularity of 71;.
Furthermore, notice that the chosen parity matrices have the

following structure:

P1 D
T T T T 1 B2
P’ = {Pl P2 Ps3 P4} ., Pf=1]+ &
Lo 4t Ps P4

i

From this structure, it is clear that P¥ is 2-column block-
constructible from P’. Therefore, P and P satisfy the
sufficient conditions of Theorem 18, and define an access-
optimal convertible code. >

Example 23 (Hankel-II): Consider parameters (7,4;10,8)
and field [F13 (any finite field of size at least 12 suffices, but
we choose a prime field for ease of explanation). Notice that
these parameters satisfy:

rF=2<rl —¢4+1=2 and ¢=13>klr! =12

First, construct a superregular Hankel array of size k! = 12,
Ti2, by choosing ¢ = 13 as the field size, and employing the
algorithm in [94]. The submatrix P! € F{;? is formed by the
top k! = 4 rows and columns {1, (k! +1) =5, (2k! +1) = 9}
of T12, as shown in Figure 5b. The submatrix P¥ € F5X? is
formed by the top k¥ = 8 rows and columns {1, (k! +1) = 5}
of T14, as shown in Figure 5b. It is easy to check that P! and
P are superregular, which follows from the superregularity
of Ti5. Furthermore, notice that the chosen parity matrices
have the following structure:

P p:
T T T 1 P2
P/=|p1 pz p3|, PF=|L 1L
I -
P2 Ps3

T

It is easy to see that P¥ is 2-column block-constructible
from PI. Therefore, P! and PF satisfy the sufficient
conditions of Theorem 18, and define an access-optimal
convertible code. >

A. General Hankel-Array-Based Construction of convertible
codes

In this subsection, we present a sequence of Hankel-array-
based constructions of access-optimal MDS convertible codes.
This sequence of constructions presents a tradeoff between
field size and the range of " supported. To index the sequence

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4404

by - bt b1kl 11

pl_ by oo by bli—1)k 42
by bt 411 bigt

by - by bii—1)ki 41

pF _ ba bit1 b(ifl)k1+2

bqkl b<k1+t—1 b(i-l—g—l)kl

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

bli—1)k+1 bls—1)ki41 bs—1)ki+t
bi—1)kI4t4+1 bis—1)ki+2 b(s—1)k!+t4+1
bik:Ithfl bsk:f bsk1+t71
bii— 1)kt 4t b(s—o)kT+1 b(s—o)kT 4t
b(ifl)k1+t+1 b(sfc)kIJrQ b(sfg)k1+t+1
b(i-i—(—l)kl-i—t—l bskI bsk:I-i-t—l

Fig. 6. Generator matrix for initial and final parities in Hankels construction. The vertical bars separate groups of columns. In matrix P7, the index 4 ranges

from 1 to s. In matrix P, the index 4 ranges from 1 to (s — ¢ + 1).

we use s € {¢,¢ + 1,...,7'} which corresponds to the
number of groups into which the initial parity encoding vectors
are divided. Given parameters {k’,r! ¢} and a field F,,
construction Hankels (s € {s,c +1,...,r!}) supports:

’I“I

rF<(s—¢+1) \‘?J + max{(r! mod s) — ¢ + 1,0},

1
requiring ¢ > max{sk’ + V—J —1,nf —1}.
s

Therefore, Hankel-I, from Example 22 corresponds to
Hankel. and Hankel-II from Example 23 corresponds to
Hankel, :.

1) Construction of Hankels: Assume, for the sake of sim-
plicity, that k& > 7/, s | v/ and let t = (r'/s). Now
we describe how to construct P? and P¥ over a field F,
whenever:

TFS(S—g—i—l)t and ¢ > skl +t—1.

Without loss of generality, we consider 7" = (s — ¢ + 1)t
(lesser values of rf" can be obtained by puncturing the final
code, i.e., eliminating some of the final parities). Let 7,,, be as
in Equation 10, with m = (sk! +¢ — 1). Divide the r/ initial
parity encoding vectors into s disjoint sets (S1, So, ..., Ss) of
size t each. We associate each set S; (i € [s]) with a set
of column indices col(S;) = {(i — Vk! + 1,(i — 1)k +
2,...,(i — 1)k! + t} of T,. Matrix P! is the submatrix
formed by the top k! rows and the columns indexed by the set
(col(S1) U -+~ Ucol(Ss)) of Ty,. Matrix PF is the submatrix
formed by the top ¢k’ rows and the columns indexed by
the set (col(S1) U --- U col(Ss—ct1)) of T,,. The resulting
matrices P! and P are shown in Figure 6. In the case where
s{ 7!, we form an additional set S;; with the remaining (r!
mod s) initial parity encoding vectors, and proceed as above.

Theorem 24: Given parameters k,r! ¢, and a field F,
Hankel, (s € {s,...,7!}) constructs an access-optimal (n’,
kl;nt kF = ¢kT) convertible code if:

’I“I

TFS(S—g—I—l){ J—l—max{(rlmods)—g—l—l,O}

s
ol

and ¢ > max{sk’ + {—J —1,n' -1}
s

Proof: Consider the construction Hankels described in
this section, for some s € {c,...,7'}. The Hankel form of

T,, and the manner in which P! and P¥ are constructed
guarantees that the I-th column of P¥ corresponds to the
vertical concatenation of columns {l,1+¢,...,1 + (¢ — 1)t}
of PI. Thus, P¥ is rf-column block-constructible from
P’. Furthermore, since P! and P¥ are submatrices of T},,
they are superregular. Thus P’ and P¥ satisfy both of the
properties laid out in Theorem 18 and hence the convertible
code constructed by Hankel, is access-optimal. []

2) Conversion Procedure: During conversion, the k! data
symbols from each of the ¢ initial codewords remain
unchanged, and become the k¥ = ¢k’ data symbols from
the final codeword. The r new (parity) blocks from the
final codeword are constructed by accessing symbols from the
initial codewords as detailed below. To construct the [-th new
symbol (corresponding to the [-th column of P¥, | € [rI]),
read parity symbol (I + (¢ — 1)t) from each initial codeword
i € [¢], and then sum the ¢ symbols read. The encoding
vector of the new symbol will be equal to the sum of the
encoding vectors of the symbols read. This is done for every
new encoding vector [€ [rF].

B. Handling a Priori Unknown Parameters

In practice, the final parameters (nf’, k') might be unknown
at the time of code construction, as they might depend on
the empirically observed failure rates. Thus, it is of interest
to construct initial codes that are (nf", k¥')-access-optimally
convertible for all (n", k") in a given set. The general con-
struction and the Hankel-array based constructions presented
above indeed provide such a property.

Proposition 25: Every initial code from an (n!, kl;nt,
kf = ck!) convertible code constructed using the construc-
tions in this section and Section V is also (nf’, k™")-access-
optimally convertible for any k¥ = ¢’k! and n*' = (v +
EE'y with 0 < 7P <rF and 2 < ¢ <.

Proof: The conversion procedure can be easily modified to
take fewer initial codewords (i.e. by treating some of the initial
codewords as all-zero codewords) or construct fewer parity
symbols. Since the access cost associated with each initial
codeword is min{k’, 7!}, and the access cost associated with
every parity symbol is ¢+ 1, the resulting conversion procedure
has optimal access cost. []

Thus, to support access-optimal conversion for all parame-
ters (nf' = ¢k + ¥ k¥ = ¢k') in a given finite set of

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE

values for ¢ and 7', it suffices to construct an access-optimal
convertible code using the largest parameter ¢ and ¥ in the
set. Then, by Proposition 25, the initial code will support
access-optimal conversion for all parameter values in the given
set.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce the code conversion problem, and
the framework of convertible codes which lays the theoretical
foundation for the rigorous study of the code conversion prob-
lem. The proposed framework enables the investigation of the
fundamental limits on the resource consumption of the code
conversion operation, as shown by our derivation of the tight
lower bounds on the access cost of conversions. Furthermore,
we present explicit constructions of access-optimal convertible
codes for a wide range of parameter regimes. These results
show that it is indeed possible to achieve code conversion
using significantly fewer accesses than the default approach
for a wide range of parameter regimes.

Convertible codes have a significant potential for real-world
impact by enabling resource-efficient redundancy tuning which
has been shown to provide considerable cost benefits in
large-scale cluster storage systems [9]. By laying the theo-
retical foundations for studying the code conversion problem,
this work has opened up a wide new space for design of
codes for storage systems with a host of open problems, such
as studying different measures of conversion costs, studying
conversion in non-MDS codes, and considering the efficiency
of conversion in conjunction with other properties such as
repair efficiency. Exploring these dimensions would include
deriving fundamental limits on the chosen conversion cost,
proving achievability results via code constructions meeting
the lower bounds, and constructing practical, low-field-size
convertible codes optimizing the conversion costs.

APPENDIX
ALGORITHM FOR CONSTRUCTING SUPERREGULAR
HANKEL TRIANGULAR ARRAYS

In this appendix we describe the algorithm from [94] for
constructing a superregular Hankel triangular array over any
finite field. This is provided as reference for completeness and
is not necessary for understanding the constructions described
in this paper. We note that the algorithm outlined in [94] takes
the field size ¢ as input, and generates 7, as the output. It is
easy to see that T}, thus generated can be truncated to generate
the triangular array T),, for any m < gq.

Let IF, be a given base field, and let m < g be the size of
the output triangular array 7,,. The triangular array T,, has
Hankel form, as shown in Equation 10. Therefore, it suffices
to specify the entries by, bo, . .., by, in the first column of T,.
On input m < q, the algorithm proceeds as follows:

1) Consider the extension field F> and choose an element
B € Fy2 such that 3° € F, for i € [¢] and 37t € F,,.
Let p(x) = 22 + p o + 1 be the minimal polynomial of

B over F .
2) Let 0_1,00,...,0m, € T, be such that c_; =
—n~Y00=0,and 0; = —po;_1 —n0i_a, fori € [m).

4405

3) Set b; = 0;1, for all ¢ € [m].
The resulting triangular array is superregular, that is, every
square submatrix taken from 7, is superregular. Please refer
to [94] for a proof of this fact.

REFERENCES

[1] F. Maturana and K. V. Rashmi, “Convertible codes: New class of codes
for efficient conversion of coded data in distributed storage,” in Proc.
11th Innov. Theor. Comput. Sci. Conf. (ITCS), vol. 151, T. Vidick, Ed.
Seattle, WA, USA: Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
Jan. 2020, p. 66.

[2] S. Ghemawat, H. Gobioff, and S. Leung, “The Google file system,” ACM
SIGOPS Operating Syst. Rev., vol. 37, no. 5, pp. 2943, 2003.

[3] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling. HDFS
RAID—Facebook (Presentation). Accessed: Jan. 6, 2022. [Online].
Available: http://www.slideshare.net/ydn/hdfs-raid-facebook

[4] C. Huang et al., “Erasure coding in Windows Azure storage,” in Proc.
USENIX Annu. Tech. Conf. (ATC), 2012, pp. 15-26.

[5] Apache Software Foundation. Apache Hadoop Documentation: HDFS
Erasure Coding. Accessed: Jul. 23, 2019. [Online]. Available: https:/
hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/
HDFSErasureCoding.html

[6] K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A solution to the network challenges of data recovery
in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster,” in Proc. 5th USENIX Workshop Hot Topics Storage
File Syst. (HotStorage), Jun. 2013.

[71 K. V. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, “A ‘hitchhiker’s’ guide to fast and efficient data
reconstruction in erasure-coded data centers,” in Proc. ACM Conf.
SIGCOMM, 2014, pp. 331-342.

[8] M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen, and
D. Borthakur, “Xoring elephants: Novel erasure codes for big data,”
Proc. VLDB Endowment, vol. 6, no. 5, pp. 325-336, 2013.

[9] S. Kadekodi, K. V. Rashmi, and G. R. Ganger, “Cluster storage systems
gotta have HeART: Improving storage efficiency by exploiting disk-
reliability heterogeneity,” in Proc. 17th USENIX Conf. File Storage
Technol. (USENIX FAST), 2019, pp. 345-358.

[10] S. Kadekodi, F. Maturana, S. J. Subramanya, J. Yang,
K. V. Rashmi, and G. R. Ganger, “PACEMAKER: Avoiding HeART
attacks in storage clusters with disk-adaptive redundancy,” in Proc. 14th
USENIX Symp. Operating Syst. Design Implement. (OSDI), Nov. 2020,
pp- 369-385. [Online]. Available: https://www.usenix.org/conference/
osdi20/presentation/kadekodi

J. Huang, X. Liang, X. Qin, P. Xie, and C. Xie, “Scale-RS: An efficient
scaling scheme for RS-coded storage clusters,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 6, pp. 1704-1717, Jun. 2015.

B. K. Rai, V. Dhoorjati, L. Saini, and A. K. Jha, “On adaptive distributed
storage systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015,
pp. 1482-1486.

M. Sonowal and B. K. Rai, “On adaptive distributed storage systems
based on functional MSR code,” in Proc. Int. Conf. Wireless Commun.,
Signal Process. Netw. (WiSPNET), Mar. 2017, pp. 338-343.

Y. Hu, X. Zhang, P. P. C. Lee, and P. Zhou, “Generalized optimal storage
scaling via network coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Vail, CO, USA, Jun. 2018, pp. 956-960.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300-304, Jun. 1960.

D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant
arrays of inexpensive disks (RAID),” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 1988, pp. 109-116.

J. Plank, “T1: Erasure codes for storage applications,” in Proc. 4th

USENIX Conf. File Storage Technol., Jan. 2005, pp. 1-74.

M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,” IEEE
Trans. Comput., vol. 44, no. 2, pp. 192-202, Feb. 1995.

L. Xu and J. Bruck, “X-code: MDS array codes with optimal encoding,”
IEEE Trans. Inf. Theory, vol. 45, no. 1, pp. 272-276, Jan. 1999.

C. Huang and L. Xu, “STAR: An efficient coding scheme for correcting
triple storage node failures,” IEEE Trans. Comput., vol. 57, no. 7,
pp. 889-901, Jul. 2008.

J. L. Hafner, “WEAVER codes: Highly fault tolerant erasure codes
for storage systems,” in Proc. 4th Conf. USENIX Conf. File Storage
Technol., Berkeley, CA, USA, vol. 4, 2005, p. 16.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

4406

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

(35]

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 45394551, Sep. 2010.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Optimal exact-regenerating
codes for distributed storage at the MSR and MBR points via a
product-matrix construction,” IEEE Trans. Inf. Theory, vol. 57, no. 8,
pp. 5227-5239, Aug. 2011.

N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran,
“Interference alignment in regenerating codes for distributed storage:
Necessity and code constructions,” IEEE Trans. Inf. Theory, vol. 58,
no. 4, pp. 2134-2158, Apr. 2012.

C. Suh and K. Ramchandran, “Exact-repair MDS code construction
using interference alignment,” IEEE Trans. Inf. Theory, vol. 57, no. 3,
pp. 1425-1442, Mar. 2011.

Z. Wang, 1. Tamo, and J. Bruck, “On codes for optimal rebuilding
access,” in Proc. 49th Annu. Allerton Conf. Commun., Control, Comput.
(Allerton), Sep. 2011, pp. 1374-1381.

V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra, “Polynomial
length MDS codes with optimal repair in distributed storage,” in Proc.
Conf. Rec. 45th Asilomar Conf. Signals, Syst. Comput. (ASILOMAR),
Nov. 2011, pp. 1850-1854.

N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran, “Dis-
tributed storage codes with repair-by-transfer and nonachievability of
interior points on the storage-bandwidth tradeoff,” IEEE Trans. Inf.
Theory, vol. 58, no. 3, pp. 1837-1852, Mar. 2012.

Z. Wang, I. Tamo, and J. Bruck, “Long MDS codes for optimal
repair bandwidth,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2012,
pp. 1182-1186.

I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes
with optimal rebuilding,” IEEE Trans. Inf. Theory, vol. 59, no. 3,
pp. 1597-1616, Mar. 2013.

V. R. Cadambe, S. A. Jafar, H. Maleki, K. Ramchandran, and
C. Suh, “Asymptotic interference alignment for optimal repair of MDS
codes in distributed storage,” IEEE Trans. Inf. Theory, vol. 59, no. 5,
pp. 2974-2987, May 2013.

D. Papailiopoulos, A. G. Dimakis, and V. Cadambe, “Repair optimal
erasure codes through Hadamard designs,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3021-3037, May 2013.

B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “A high-rate MSR code
with polynomial sub-packetization level,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2015, pp. 2051-2055.

M. Ye and A. Barg, “Explicit constructions of optimal-access MDS
codes with nearly optimal sub-packetization,” IEEE Trans. Inf. Theory,
vol. 63, no. 10, pp. 6307-6317, Oct. 2017.

M. Ye and A. Barg, “Explicit constructions of high-rate MDS array
codes with optimal repair bandwidth,” IEEE Trans. Inf. Theory, vol. 63,
no. 4, pp. 2001-2014, Apr. 2017.

A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath, “Progress on high-
rate MSR codes: Enabling arbitrary number of helper nodes,” in Proc.
Inf. Theory Appl. Workshop (ITA), Jan. 2016, pp. 1-6.

B. Sasidharan, M. Vajha, and P. V. Kumar, “An explicit, coupled-layer
construction of a high-rate MSR code with low sub-packetization level,
small field size and d < (n — 1),” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 2048-2052.

S. Goparaju, A. Fazeli, and A. Vardy, “Minimum storage regenerating
codes for all parameters,” IEEE Trans. Inf. Theory, vol. 63, no. 10,
pp. 6318-6328, Oct. 2017.

A. Chowdhury and A. Vardy, “New constructions of MDS codes with
asymptotically optimal repair,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2018, pp. 1944-1948.

K. Mahdaviani, A. Khisti, and S. Mohajer, “Bandwidth adaptive & error
resilient MBR exact repair regenerating codes,” IEEE Trans. Inf. Theory,
vol. 65, no. 5, pp. 2736-2759, May 2019.

K. Mahdaviani, S. Mohajer, and A. Khisti, “Product matrix MSR codes
with bandwidth adaptive exact repair,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 3121-3135, Apr. 2018.

A. S. Rawat, I. Tamo, V. Guruswami, and K. Efremenko, “MDS
code constructions with small sub-packetization and near-optimal repair
bandwidth,” IEEE Trans. Inf. Theory, vol. 64, no. 10, pp. 6506-6525,
Oct. 2018.

N. B. Sha, K. V. Rashmi, and P. V. Kumar, “A flexible class of
regenerating codes for distributed storage,” in Proc. IEEE Int. Symp.
Inf. Theory, Jun. 2010, pp. 1943-1947.

K. W. Shum, “Cooperative regenerating codes for distributed storage
systems,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1-5.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

[45]

[46]

[47]

[48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

(571

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

V. Abdrashitov, N. Prakash, and M. Medard, “The storage vs repair
bandwidth trade-off for multiple failures in clustered storage networks,”
in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2017, pp. 46-50.

K. Shanmugam, D. S. Papailiopoulos, A. G. Dimakis, and G. Caire,
“A repair framework for scalar MDS codes,” IEEE J. Sel. Areas
Commun., vol. 32, no. 5, pp. 998-1007, May 2014.

V. Guruswami and M. Wootters, “Repairing Reed—Solomon codes,” in
Proc. 48th Annu. ACM Symp. Theory Comput., Jun. 2016, pp. 216-226.
M. Ye and A. Barg, “Explicit constructions of MDS array codes and
RS codes with optimal repair bandwidth,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2016, pp. 1202-1206.

H. Dau and O. Milenkovic, “Optimal repair schemes for some families of
full-length Reed—Solomon codes,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2017, pp. 346-350.

I. Tamo, M. Ye, and A. Barg, “Optimal repair of Reed—Solomon codes:
Achieving the cut-set bound,” in Proc. IEEE 58th Annu. Symp. Found.
Comput. Sci. (FOCS), Oct. 2017, pp. 216-227.

J. Mardia, B. Bartan, and M. Wootters, “Repairing multiple failures
for scalar MDS codes,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 2661-2672, May 2019.

H. Dau, I. Duursma, H. M. Kiah, and O. Milenkovic, “Repairing Reed—
Solomon codes with multiple erasures,” IEEE Trans. Inf. Theory, vol. 64,
no. 10, pp. 6567-6582, Oct. 2018.

I. Tamo, M. Ye, and A. Barg, “The repair problem for Reed—Solomon
codes: Optimal repair of single and multiple erasures with almost opti-
mal node size,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 2673-2695,
May 2019.

S. Balaji and P. V. Kumar, “A tight lower bound on the sub-packetization
level of optimal-access MSR and MDS codes,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 2381-2385.

K. V. Rashmi, P. Nakkiran, J. Wang, N. B. Shah, and K. Ramchandran,
“Having your cake and eating it too: Jointly optimal erasure codes for
1/0, storage, and network-bandwidth,” in Proc. 13th USENIX Conf. File
Storage Technol. (FAST), 2015, pp. 81-94.

I. Tamo, Z. Wang, and J. Bruck, “Access versus bandwidth in codes
for storage,” IEEE Trans. Inf. Theory, vol. 60, no. 4, pp. 2028-2037,
Apr. 2014.

S. Goparaju, I. Tamo, and R. Calderbank, “An improved sub-
packetization bound for minimum storage regenerating codes,” IEEE
Trans. Inf. Theory, vol. 60, no. 5, pp. 2770-2779, May 2014.

O. Alrabiah and V. Guruswami, “An exponential lower bound on the
sub-packetization of MSR codes,” in Proc. 51st Annu. ACM SIGACT
Symp. Theory Comput., New York, NY, USA, Jun. 2019, pp. 979-985.
K. Rashmi, N. B. Shah, and K. Ramchandran, “A piggybacking design
framework for read-and download-efficient distributed storage codes,”
IEEE Trans. Inf. Theory, vol. 63, no. 9, pp. 5802-5820, Sep. 2017.

V. Guruswami and A. S. Rawat, “MDS code constructions with small
sub-packetization and near-optimal repair bandwidth,” in Proc. 28th
Annu. ACM-SIAM Symp. Discrete Algorithms, Jan. 2017.

P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925-6934, Nov. 2011.

A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Opti-
mal locally repairable and secure codes for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212-236, Nov. 2013.

J. Katz and L. Trevisan, “On the efficiency of local decoding procedures
for error-correcting codes,” in Proc. 32nd Annu. ACM Symp. Theory
Comput., F. F. Yao and E. M. Luks, Eds. Portland, OR, USA: ACM
Press, May 2000, pp. 80-86.

M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4510-4519, Jul. 2013.

P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” IEEE Trans. Inf. Theory, vol. 60, no. 9,
pp. 5245-5256, Sep. 2014.

D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 5843-5855, Oct. 2014.

I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661-4676, May 2014.

G. M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, “Codes with
local regeneration and erasure correction,” IEEE Trans. Inf. Theory,
vol. 60, no. 8, pp. 4637-4660, Aug. 2014.

V. R. Cadambe and A. Mazumdar, “Bounds on the size of locally recov-
erable codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 5787-5794,
Nov. 2015.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

MATURANA AND RASHMI: CONVERTIBLE CODES: ENABLING EFFICIENT CONVERSION OF CODED DATA IN DISTRIBUTED STORAGE

[70] 1. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” IEEE Trans. Inf.
Theory, vol. 62, no. 12, pp. 6661-6671, Dec. 2016.

I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of
locally recoverable codes,” IEEE Trans. Inf. Theory, vol. 62, no. 6,
pp. 3070-3083, Jun. 2016.

[72] A. Barg, K. Haymaker, E. W. Howe, G. L. Matthews, and A. Vdrilly-
Alvarado, “Locally recoverable codes from algebraic curves and sur-
faces,” in Algebraic Geometry for Coding Theory and Cryptography.
Cham, Switzerland: Springer, 2017, pp. 95-127.

S. L. Frank-Fischer, V. Guruswami, and M. Wootters, “Locality via
partially lifted codes,” in Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM).
Wadern, Germany: Schloss Dagstuhl-Leibniz-Zentrum fiier Informatik,
2017.

A. Agarwal, A. Barg, S. Hu, A. Mazumdar, and 1. Tamo, “Combinatorial
alphabet-dependent bounds for locally recoverable codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 5, pp. 3481-3492, May 2018.

[75] A. Mazumdar, “Capacity of locally recoverable codes,” in Proc. IEEE
Inf. Theory Workshop (ITW), Nov. 2018, pp. 1-5.

V. Guruswami, C. Xing, and C. Yuan, “How long can optimal locally
repairable codes be?” in Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM).
Wadern, Germany: Schloss Dagstuhl-Leibniz-Zentrum fiier Informatik,
2018.

S. Gopi, V. Guruswami, and S. Yekhanin, “Maximally recoverable
LRCs: A field size lower bound and constructions for few heavy
parities,” in Proc. 13th Annu. ACM-SIAM Symp. Discrete Algorithms.
Philadelphia, PA, USA: SIAM, 2019, pp. 2154-2170.

G. Zhang, W. Zheng, and J. Shu, “ALV: A new data redistribution
approach to RAID-5 scaling,” IEEE Trans. Comput., vol. 59, no. 3,
pp. 345-357, Mar. 2010.

[791 W. Zheng and G. Zhang, “FastScale: Accelerate RAID scaling by
minimizing data migration,” in Proc. 9th USENIX Conf. File Storage
Technol., G. R. Ganger and J. Wilkes, Eds. San Jose, CA, USA:
USENIX Association, Feb. 2011, pp. 149-161. [Online]. Available:
http://www.usenix.org/events/fast1 1/tech/techAbstracts.html

C. Wu and X. He, “GSR: A global stripe-based redistribution approach
to accelerate RAID-5 scaling,” in Proc. 41st Int. Conf. Parallel Process.,
Pittsburgh, PA, USA, Sep. 2012, pp. 460-469.

G. Zhang, W. Zheng, and K. Li, “Rethinking RAID-5 data layout for
better scalability,” IEEE Trans. Comput., vol. 63, no. 11, pp. 2816-2828,
Nov. 2014.

S. Wu, Y. Xu, Y. Li, and Z. Yang, “I/O-efficient scaling schemes for
distributed storage systems with CRS codes,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 9, pp. 26392652, Sep. 2016.

[83] X. Zhang, Y. Hu, P. P. C. Lee, and P. Zhou, “Toward optimal storage
scaling via network coding: From theory to practice,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), Honolulu, HI, USA, Apr. 2018,
pp- 1808-1816.

X. Y. Zhang and Y. C. Hu, “Efficient storage scaling for MBR and MSR
codes,” IEEE Access, vol. 8, pp. 78992-79002, 2020.

B. K. Rai, “On adaptive (functional MSR code based) distributed
storage systems,” in Proc. Int. Symp. Netw. Coding (NetCod), Jun. 2015,
pp. 46-50.

S. Wu, Z. Shen, and P. P. C. Lee, “On the optimal repair-scaling
trade-off in locally repairable codes,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Jul. 2020, pp. 2155-2164.

K. V. Rashmi, N. B. Shah, and P. V. Kumar, “Enabling node repair in
any erasure code for distributed storage,” in Proc. IEEE Int. Symp. Inf.
Theory, Jul. 2011, pp. 1235-1239.

[71]

[73]

[74]1

[76]

(771

[78]

[80]

[81]

[82]

[84]

[85]

[86]

(871

4407

[88] S. Mousavi, T. Zhou, and C. Tian, “Delayed parity generation in MDS
storage codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Vail, CO,
USA, Jun. 2018, pp. 1889-1893.

[89] M. Xia, M. Saxena, M. Blaum, and D. Pease, “A tale of
two erasure codes in HDFS,” in Proc. 13th USENIX Conf.
File Storage Technol. (FAST), J. Schindler and E. Zadok, Eds.
Santa Clara, CA, USA: USENIX Association, Feb. 2015, pp. 213-226.
[Online]. Available: https://www.usenix.org/conference/fast15/technical-
sessions/presentation/xia

[90] X. Su, X. Zhong, X. Fan, and J. Li, “Local re-encoding for coded

matrix multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),

Los Angeles, CA, USA, Jun. 2020, pp. 221-226.

S. Wu, Z. Shen, and P. P. C. Lee, “Enabling I/O-efficient redundancy

transitioning in erasure-coded KV stores via elastic Reed-Solomon

codes,” in Proc. Int. Symp. Reliable Distrib. Syst. (SRDS), Shanghai,

China, Sep. 2020, pp. 246-255.

[92] E. MacWilliams and N. Sloane, The Theory Error-Correcting Codes,

2nd ed. Amsterdam, The Netherlands: North Holland, 1978.

H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-

MDS convolutional codes,” IEEE Trans. Inf. Theory, vol. 52, no. 2,

pp- 584-598, Feb. 2006.

R. M. Roth and G. Seroussi, “On generator matrices of MDS codes

(Corresp.),” IEEE Trans. Inf. Theory, vol. 31, no. 6, pp. 826-830,

Nov. 1985.

[91]

[93]

[94]

Francisco Maturana (Student Member, IEEE) received the B.S. and M.S.
degrees in computer science from the Pontificia Universidad Catdlica de Chile,
Santiago, Chile, in 2017. He is currently pursuing the Ph.D. degree with
the Computer Science Department, Carnegie Mellon University, USA. His
research interests lie at the intersection of theoretical computer science and
computer systems.

K. V. Rashmi (Member, IEEE) received the Ph.D. degree from the
UC Berkeley in 2016. She was a Post-Doctoral Scholar at UC Berkeley
from 2016 to 2017. She is an Assistant Professor with the Computer Science
Department, Carnegie Mellon University. Her research interests broadly lie in
information/coding theory and computer/networked systems. During her Ph.D.
studies, she was a recipient of the Facebook Fellowship from 2012 to 2013,
the Microsoft Research Ph.D. Fellowship from 2013 to 2015, and the Google
Anita Borg Memorial Scholarship from 2015 to 2016. She was also a recipient
of the VMWare Systems Research Award 2021, the NSF CAREER Award
2020-2025, the Tata Institute of Fundamental Research Memorial Lecture
Award 2020, the Facebook Distributed Systems Research Award 2019, the
Google Faculty Research Award 2018, and the Facebook Communications
and Networking Research Award 2017. Her Ph.D. thesis was awarded the
UC Berkeley Eli Jury Dissertation Award 2016, and her work has received
the USENIX NSDI 2021 Community (Best Paper) Award, and the IEEE
Data Storage Best Paper and the Best Student Paper Awards for the years
2011/2012.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 17,2023 at 14:20:33 UTC from IEEE Xplore. Restrictions apply.

