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Abstract

We consider the problem of producing fair probabilistic classifiers for multi-class
classification tasks. We formulate this problem in terms of “projecting” a pre-
trained (and potentially unfair) classifier onto the set of models that satisfy target
group-fairness requirements. The new, projected model is given by post-processing
the outputs of the pre-trained classifier by a multiplicative factor. We provide a
parallelizable, iterative algorithm for computing the projected classifier and derive
both sample complexity and convergence guarantees. Comprehensive numerical
comparisons with state-of-the-art benchmarks demonstrate that our approach main-
tains competitive performance in terms of accuracy-fairness trade-off curves, while
achieving favorable runtime on large datasets. We also evaluate our method at scale
on an open dataset with multiple classes, multiple intersectional groups, and over
1M samples.

1 Introduction

Machine learning (ML) algorithms are increasingly used to automate decisions that have significant
social consequences. This trend has led to a surge of research on designing and evaluating fairness
interventions that prevent discrimination in ML models. When dealing with group fairness, fairness
interventions aim to ensure that a ML model does not discriminate against different groups determined
by, for example, race, sex, and/or nationality. Extensive comparisons between discrimination control
methods can be found in [BDHT 18, FSV*119, WRC21]. As these studies demonstrate, there is still
no “best” fairness intervention for ML, and the majority of existing approaches are tailored to either
binary classification tasks, binary population groups, or both.> Moreover, discrimination control
methods are often tested on overused datasets of modest sizes collected in either the US or Europe
(e.g., UCI Adult [Lic13] and COMPAS [ALMKI16]).

Most fairness interventions in ML focus on binary outcomes. In this case, the classification output is
either positive or negative, and group-fairness metrics are tailored to binary decisions [HPS16]. While
binary classification covers a range of ML tasks of societal importance (e.g., whether to approve a
loan, whether to admit a student), there are many cases where the predicted variable is not binary. For
example, in education, grading algorithms assign one out of several grades to students. In healthcare,
predicted outcomes are frequently not binary (e.g., severity of disease).

We introduce a theoretically-grounded discrimination control method called FairProjection. This
method ensures group fairness in multi-class classification for several, potentially overlapping popula-
tion groups. We consider group fairness metrics that are natural multi-class extensions of their binary
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2See Related Work and Table 1 for notable exceptions.
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classification counterparts, such as statistical parity [FFM ™ 15], equalized odds [HPS16], and error
rate imbalance [PRW ™17, Cho17]. When restricted to two predicted classes, FairProjection per-
forms competitively against state-of-the-art fairness interventions tailored to binary classification
tasks. FairProjection is model-agnostic (i.e., applicable to any model class) and scalable to
datasets that are orders of magnitude larger than standard benchmarks found in the fair ML literature.

Our approach is based on an information-theoretic formulation called information projection. We
show that this formulation is particularly well-suited for ensuring fairness in probabilistic classifiers
with multi-class outputs. Given a probability distribution P and a convex set of distributions P, the
goal of information projection is to find the “closest” distribution to P in P. The study of information
projection can be traced back to [Csi75], which used KL-divergence to measure “distance” between
distributions. Since then, information projection has been extended to other divergence measures,
such as f-divergences [Csi95] and Rényi divergences [KS16, KS15]. Recently, [AAW "20] studied
how to project a probabilistic classifier, viewed as a conditional distribution, onto the set of classifiers
that satisfy target group-fairness requirements. Remarkably, the projected classifier is obtained by
multiplying (i.e., post-processing) the predictions of the original classifier by a factor that depends on
the group-fairness constraints.

Prior work on information projection relies on a critical—and limiting—information-theoretic as-
sumption: the underlying probability distributions are known exactly. This is infeasible in practical
ML applications, where only a set of training examples sampled from the underlying data distribution
is available. FairProjection fills this gap by using an efficient algorithm for computing the pro-
jected classifier with finite samples. We establish theoretical guarantees for this algorithm in terms of
convergence and sample complexity.

Notably, our proposed fairness intervention is parallelizable (e.g., on a GPU). Hence,
FairProjection scales to datasets with the number of samples comparable to the population
of many US states (> 10° samples). We provide a TensorFlow [AAB' 15] implementation of
FairProjection and apply it to post-process the outputs of probabilistic classifiers to ensure group
fairness.

We benchmark our post-processing approach against several state-of-the-art fairness interventions
selected based on the availability of reproducible code, and qualitatively compare it against many
others. Our numerical results are among the most comprehensive comparisons of fairness interven-
tions to date. We present performance results on the HSLS (High School Longitudinal Study, used
in [JWC22]), Adult [Lic13], and COMPAS [ALMK16] datasets.

We also evaluate FairProjection on a dataset derived from open and anonymized data from Brazil’s
national high school exam—the Exame Nacional do Ensino Médio (ENEM)—with over 1 million
samples. We made use of this dataset due to the need for large-scale benchmarks for evaluating
fairness interventions in multi-class classification tasks. We also answer recent calls [BZZ 121,
DHMS21] for moving away from overused datasets such as Adult [Lic13] and COMPAS [ALMKI16].
We hope that the ENEM dataset encourages researchers in the field of fair ML to test their methods
within broader contexts.

In summary, our main contributions are: (i) We introduce a post-processing fairness intervention
for multi-class classification problems that can account for multiple protected groups and is scal-
able to large datasets; (ii) We derive finite-sample guarantees and convergence-rate results for our
post-processing method. Importantly, FairProjection makes information projection practical
without requiring exact knowledge of probability distributions; (iif) We demonstrate the favourable
performance of our approach through comprehensive benchmarks against state-of-the-art fairness
interventions; (iv) We put forth a new large-scale dataset (ENEM) for benchmarking discrimination
control methods in multi-class classification tasks; this dataset may encourage researchers in fair ML
to evaluate their methods beyond Adult and COMPAS.

Related work. We summarize key differentiating factors from prior work in Table 1 and provide a
more in-depth discussion in Appendix A.2.5. The fairness interventions that are the most similar to
ours are the FairScoreTransformer [WRC20, WRC21, FST] and the pre-processing method in [JN20].

3Since (to the best of our knowledge) the ENEM dataset has not been used in fair ML, we provide in Appendix
A.3 a datasheet for the ENEM dataset. The data can be found at [INE20], and code for pre-processing the data
and the implementation of FairProjection can be found at https://github.com/HsiangHsu/Fair-Projection.


https://github.com/HsiangHsu/Fair-Projection

Method Feature
Multiclass  Multigroup Scores Curve Parallel Rate Metric

Reductions [ABD " 18] X v v v X v/ SP,(M)EO
Reject-option [KKZ12] X v X v X X SP,(M)EO
EqOdds [HPS16] X v X X X v EO

LevEqOpp [CDH™ 19] X X X X X X FNR

CalEqOdds [PRW17] X X v X X v MEO
FACT [KCT20] X X X v X X SP,(M)EO
Identifying* [JN20] Ve v v v X X SP,(M)EO
FST [WRC20, WRC21] X v v v X v/ SP,(M)EO
Overlapping [YCK20] v v v v X X SP,(M)EO
Adversarial [ZLM18] v v N/AS v v X SP,(M)EO
FairProjection (ours) v v v v v v SP, M)EO

Table 1: Comparison between benchmark methods. Multiclass/multigroup: implementation takes datasets
with multiclass/multigroup labels; Scores: processes raw outputs of probabilistic classifiers; Curve: outputs
fairness-accuracy tradeoff curves (instead of a single point); Parallel: parallel implementation (e.g., on GPU)
is available; Rate: convergence rate or sample complexity guarantee is proved; Metric: applicable fairness
metric, with SP<>Statistical Parity, EO<+>Equalized Odds, MEO<+Mean EO. Since FairProjection is a
post-processing method, we focus our comparison on post-processing fairness intervention methods, except for
Reductions [ABD 18], which is a representative in-processing method, and Adversarial [ZLM18], which we
use to benchmark multi-class prediction. For comparing in-processing methods, see [LPB*21, Table 1].

The FST and [JN20] can be viewed as instantiations of FairProjection when restricted to the
binary classification setting and to cross-entropy (for FST) or KL-divergence (for [JN20]) as the
f-divergence of choice. Thus, our approach is a generalization of both methods to multiple f-
divergences. Importantly, unlike our method, [JN20] requires retraining a classifier multiple times.

A reductions approach for fair classification was introduced in [ABD"18]. When restricted to
binary classification, the benchmarks in Section 5 indicate that the reductions approach consistently
achieves the most competitive fairness-accuracy trade-off compared to ours. FairProjection has
two key differences from [ABD " 18]: it is not restricted to binary classification tasks and does not
require refitting a classifier several times over the training dataset. These are also key differentiating
points from [CHKV 19], which presented a meta-algorithm for fair classification that accounts for
multiple constraints and groups. The reductions approach was later significantly generalized in the
GroupFair method by [YCK20] to account for overlapping groups and multiple predicted classes.
Unlike [YCK20], we do not require retraining classifiers.

Several other recent fairness intervention methods consider optimizing accuracy under group-fairness
constraints. In [CJGT19], a “proxy-Lagrangian” formulation was proposed for incorporating non-
differentiable rate constraints, including group fairness constraints. We avoid non-differentiability
issues by considering the probabilities (scores) at the output of the classifier instead of thresholded
decisions. In [ZVRG17], a fairness-constrained optimization was introduced that is applicable to
margin-based classifiers (our approach can be used on any probabilistic classifier). In [CDPF*17]
and [MW 18], the fairness-accuracy trade-offs in binary classification tasks are characterized when the
underlying distributions are known. A non-parity-based fairness notion was proposed in [KGZ19],
called “multiaccuracy,” which aims to ensure high accuracy for all subgroups even when the group
information is not given in the data. We limit our analysis to parity notions of group fairness. To
circumvent the non-differentiability of group-fairness constraints, approximate fairness constraints
based on functionals found in information theory have been explored in [LPB ™21, Rényi mutual
information], [BNBR 19, Rényi maximal correlation], and [PQC ™ 19, maximum mean discrepancy].
We avoid such non-differentiability issues by casting group fairness constraints in the score domain.

4[IN20] mention that their method can be applied to multi-class classification, but their reported benchmarks
are only for binary classification tasks.

3[ZLM18] is an in-processing method unlike other benchmarks in the table. It does not take a pre-trained
classifier as an input.



Fairness Criterion Statistical parity Equalized odds Overall accuracy equality
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Table 2: Standard multi-class group fairness criteria; one fixes o > 0 and iterates over all (a, ¢, ¢’) € [A] x [C]2.

Notation. Boldface Latin letters will always refer to vectors or matrices. The entries of a vector
z are denoted by z;, and those of a matrix G by G; ;. The all-1 and all-0 vectors are denoted by 1
and 0. We set [N] = {1,--- , N} and Ry £ [0, 00). The probability simplex over [N] is denoted by
Ay £ {peRY; 1Tp =1}, and A}, is its (relative) interior. If P is a Borel probability measure
over RV, Z ~ P is a random variable, and f : RN — RX is Borel, then the expectation of f(Z)
is denoted by E[f(Z)] = Ep[f] = Ep[f(Z)] = Ez~p[f(Z)]. We use the standard asymptotic
notations O, ©, and (2.

2 Problem formulation and preliminaries

Classification tasks. The essential objects in classification are the input sample space X, the
predicted classes ), and the classifiers. We fix two random variables X and Y, taking values in
sets X and Y £ [C]. Here, (X,Y) is a pair comprised of an input sample and corresponding class
label randomly drawn from X x ) with distribution Py y. A probabilistic classifier is a function
h: X — Ac, where h.(z) represents the probability of sample = € X’ falling in class ¢ € ). Thus,

h gives rise to a Y-valued random variable Y via the distribution Py (c) £ he(z).

Group-fairness constraints. Let S be a group attribute (e.g., race and/or sex), taking val-
ues in S 2 [A]. We consider multi-class generalization of three commonly used group fair-
ness criteria in Table 2. As observed by existing works [see, e.g., ABDT18, MW18, CHKV19,
WRC20, AAWT20], each of these fairness constraints® can be written in the vector-inequality
form Ep, [Gh] < 0 for a closed-form matrix-valued function G : X — RX*C. For in-
stance, for statistical parity, the G matrix evaluated at a fixed individual z € X has K =
2AC rows indexed by (d,a,c) € {0,1} x [A] x [C], where the (J,a,c’)-th row is equal to

(1) Ps(@) ™ Loeie) Poix—e y=e(@h*(@) = (a+ (1)) ) e, with ey, ,ec denoting

the standard basis for R®. The expressions for the G matrix corresponding to the other fairness
metrics are given in Appendix A.1.8, with a detailed derivation of statistical parity in Appendix A.1.9.
Note that G depends on Pg|xy. If the group attribute S is part of the input feature X, then Pg|x y
is simply replaced with an indicator function. Otherwise, we approximate this conditional distribution
by training a probabilistic classifier.

Goal. Our goal is to design an efficient post-processing method that takes a pre-trained classifier
R that may violate some target group-fairness criteria and finds a fair classifier that has the most
similar outputs (i.e., closest utility performance) to that of h"*°.

Fairness through information-projection. We formulate the fairness intervention problem as
follows. For a fixed search space H C AY £ {h : X — A}, aloss functionerr : A x A — R,
and a base classifier h"*® € A%, one seeks to solve:

.« . . base . < )
minimize err (h, h ) subject to Ep,, [Gh] < 0 (1)

The function err quantifies the “closeness” between the scores given by h and h"**°. The constraint
on h can encode any arbitrary statistical information about the joint distribution induced on the

pair (X, ). Specifically, any constraint Ep, . [9(X, V)] <€ 0, where g : X x [C] — RX, may be
recast in the form (1). Thus, solving the optimization (1) amounts to finding the minimal necessary
perturbation to the base classifier hP2° to make it satisfy a given on-average constraint. Since we

We remark that our framework can be applied to other fairness constraints, e.g., the ones in [WRC20].



consider raw output scores, we measure “closeness” via f-divergences:

. . N ase he(X
e (1, 1) = DI | P) £ Er | 3 0 007 (s )| - F0 @

where f is a convex function over (0, 00). By varying different choices of f, we can obtain e.g.,
cross-entropy (CE, f(t) = —logt) and KL-divergence (f(t) = tlogt). For a chosen f-divergence,
the optimization problem (1) becomes a generalization of information projection [Csi75].

Preliminaries on information-projection. In a recent work [AAW *20], an optimal solution for the
information projection formulation (1) was theoretically characterized. We briefly describe this result
next. Let’ H £ {h € C(X,A¢) ; inf.. he(z) > 0} and we introduce the following definition and
assumption.

Definition 1. For p € A, let D™ (-, p) denote the convex conjugate of Dy( - || p):
D™ (v,p) £ sup v"q— Dy(q| p). @
qeEAC

Assumption 1. Assume that: (i) f € C?(R), f(1) =0, f/(07) = —oo, and f”(t) > 0 for all ¢ > 0;
(ii) each G, . is bounded, differentiable, and has bounded gradient; (iii) hP2¢ € 4, and each hbase
has bounded partial derivatives; and (iv) there is an h € H such that Ep, [Gh] < 0.

Now, the solution for (1) can be obtained by a simple “tilting” of the base classifier’s output, as stated
in the next theorem.

Theorem 1 ([AAW20]). If f, R®®° and G satisfy Assumption 1, and X = RY, then there is a

uni%ue solution h°P* for the optimization problem (1) for the f-divergence objective (2). Furthermore,
h°P" is given by the tilt

P (x) = he™*(x) - ¢ (ve(; X) +9(@3 A7), (z,¢) € X x [C] O]

where: (i) the function ¢ denotes the inverse of f'; (ii) the function v : X x RX — R is defined
by v(x;X) £ —G(z)T\; (iii) the function v : X x RX — R is characterized by the equation
Ecppase () [@ (ve(z; A) + v(73X))] = 1; and (iv) A" € RX s any solution to the convex problem

D& Arg@ E [D;O“j (U(X;)\)7 hbaSC(X))] . (5)

If the underlying data distribution is known, Theorem 1 yields an expression for the projected classifier
as a post-processing of the base classifier. However, in practice, we do not know the underlying
distribution and have to approximate it from a finite number of i.i.d. samples. In Section 3, we first
describe how we approximate the solution given in Theorem 1 with finite samples. We then propose
a parallelizable algorithm to solve the approximation in Section 4.

3 A finite-sample approximation of information projection

In practice, Px is unknown and only data points X £ {X;};c(ny) C X, drawn from Py, are available.
Thus, we propose the following fairness optimization problem. We search for a (multi-class) classifier
h : X — A that solves the following:

TMimi base | D 2 2
mipimize Dy (RlR" | Px) 1 (Ex_py [la(X)I3] + []3)
a:X—RC beRK (6)
subjectto Ep [G - (h+m2a)] < b,

with 13X being the empirical measure (e.g., obtained from a dataset), and 7,75 > 0 prescribed
constants. The terms a and b are added to circumvent infeasibility issues and aid convergence of our

"Here, C(X, Ac) denotes the complete metric space of continuous functions from X to A¢, equipped with

the sup-norm, i.e., ||h|| £ sup,x ||R(z)||1. In addition, we restrict attention to classifiers bounded away from
the simplex boundary to simplify the proof of strong duality in Theorem 2 (see Remark 1 on our assumptions).



numerical procedure. We show in the following theorem that there is a unique solution for (6), and
that it is given by a tilt (i.e., multiplicative factor) of h”**°. The tilting parameter is the solution of a
finite-dimensional strongly convex optimization problem.

Theorem 2. Suppose Assumption 1 holds, and set ¢ = 13 /(271). There exists a unique solution

RPN 10 (6), and it is given by the formula

PN (2) = B (@) - ¢ (ve(23 A8 ) + (@3 A, ) s (2,0) € X x [C], ©)

with v, ¢,y as in Theorem 1, and )‘Z,N € RX is the unique solution to the strongly convex problem

P iy By, [P (o060 m(00) 4 5 0 ®
+

where gN £ (G(Xl)/\/ﬁﬂ e 7G(XN)/\/N> IK) S RKX(NC+K).
Proof. See Appendix A.1.1. O

Theorem 2 shows that: strong duality holds between the primal (6) and (the negative of) the dual (8);
there is a unique classifier hoPHN minimizing our fairness formulation (6); there is a unique solution
/\27 y to the dual (5); and there is an explicit functional form of RhOPYN in terms of /\2‘7 N in (7).
Moreover, Theorem 2 yields a practical two-step procedure for solving the functional optimization
in equation (6): (i) compute the dual variables A by solving the strongly convex optimization in (8);
(ii) tilt the base classifier by using the dual variables according to (7). This process is applied on
real-world datasets using FairProjection (see Algorithm 1) in the next section.

The key distinctions between our formulation and Theorem 1 are that we use the empirical measure

Px (e.g., produced using a dataset with i.i.d. samples), we have a strongly convex dual problem in (8)
(in contrast to the convex program in (5)), and we prove strong duality in Theorem 2 (whereas an
analogous strong duality is absent from the results of [AAW *20]).

Remark 1. In practice, Assumption 1 is not a limiting factor for Theorem 2 and FairProjection.
This is because: we are considering here a finite-set domain so continuity is automatic; we can perturb
pbase by negligible noise to push it away from the simplex boundary; and the uniform classifier is
strictly feasible. Nevertheless, Assumption 1 simplifies the derivation of our theoretical results.

4 Fair projection and theoretical guarantees

We introduce a parallelizable algorithm, FairProjection, that solves (6) using N i.i.d. data points.
We prove that its utility converges to D* (see (5)) in the population limit and establish both sample-
complexity and convergence rate guarantees. Applying FairProjection to the group-fairness
intervention problem in (1) yields the optimal parameters in (7) for post-processing (i.e., tilting) the
output of a multi-class classifier in order to satisfy target fairness constraints.

The FairProjection algorithm uses ADMM [BPC™11] to solve the convex program in (8). Recall
that it suffices to optimize (8) for computing (6) as proved in Theorem 2. Algorithm 1 presents the
steps of FairProjection, and its detailed derivation is given in Appendix A.1.2. A salient feature
of FairProjection is its parallelizability. Each step that is done for i varying over [IN] can be
executed for each ¢ separately and in parallel. In particular, this applies to the most computationally
intensive step, the v;-update step. We discuss next how the v;-update step is carried out.

Inner iterations. One approach to carry out the inner iteration in Algorithm 1 that updates v; is to
study the vanishing of the gradient of v ~— D™ (v, p;) + €||vl|3 + a] v (where £ = (p 4 ¢)/2 and

a; € R is some vector). In the KL-divergence case, DCKT_nj is given by a log-sum-exp function, so

its gradient is given by a softmax function, and equating the gradient to zero becomes a fixed-point
equation. We give an iterative routine to solve this fixed point equation in Appendix A.1.3.1, whose
proof of convergence is discussed in the same section. Beyond the KL-divergence case, setting the
gradient to zero does not seem to be an analytically tractable problem. Nevertheless, we may reduce
the vector minimization in Line 6 of Algorithm 1 to a tractable 1-dimensional root-finding problem,
as the following result aids in showing.



Lemma 1. Forp € A}, a € R, and &€ > 0, if f satisfies Assumption 1, we have that

. conj . qc (ac + CIC)z
min D (v, p) + &||v||2 + aTv = —sup —0 + min pof | — | + ——— +0q.. 9
verC (v, p) +£&|v[|3 9e§ cez[;] o pef e 4¢ Ge- (9

Proof. See Appendix A.1.3.2. O

We note that the v;-update steps for both KL and CE (provided in detail in Appendix A.1.3.3) give,
as a byproduct, the implicitly defined function (x; A) (see the statements of Theorems 1-2).

Convergence guarantees. Our proposed algorithm, FairProjection, enjoys the following con-
vergence guarantees. The output after the ¢-th iteration )\ét)N converges exponentially fast to XE, N
(see (8)).

Theorem 3. Suppose Assumption 1 holds, and that the matrix (G(X;))ien € REXNC has full
row-rank. Let )‘(Cf)N and h'®) be the t-th iteration outputs of FairProjection for the KL-divergence

case. Then, we have the exponential decay of errors ||)‘(¢t)N Ayl = e and KV () =
RSN () - (1+ e‘Q(t)) uniformly inx € X ast — oo.

Proof. See Appendix A.1.5. O

Remark 2. The full-rank assumption on the matrix (G(X;))ien € RE*NC can be ensured by
adding negligible noise to it. Further, although Theorem 3 is shown for the KL-divergence, the
proof directly extends to general f-divergences satisfying Assumption 1 (see Appendix A.1.6 for
further discussions). Finally, we show in Theorem 3 in Appendix A.1.7 that carrying ¢ = Q(log N)

iterations of FairProjection, with regularizer { = ©(N ~1/2), yields a parameter )\?)N that works
well for the population problem for information projection (5); this makes FairProjection have a
computational runtime of O(N log N).

Benefit of parallelization. The parallelizability of FairProjection provides significant speedup.
In Appendix A.2.2, we provide an ablation study comparing the speedup due to parallelization. For
the ENEM dataset (discussed next section), parallelization yields a 15-fold reduction in runtime.
In addition to the parallel advantage of FairProjection, its inherent mathematical approach is
more advantageous than gradient-based solutions. When numerically solving the dual problem (8)
(or any close variant) via gradient methods, the gradient of D™ (the convex conjugate of an f-
divergence) must be computed. However, this gradient is tractable in only a very limited number of
relevant instances of f-divergences. FairProjection tackles this intractability through having its
subroutines be informed by Lemma 1 and the discussion preceding it.

Algorithm 1 : FairProjection for solving (8).

1: Input: divergence f, predictions {p, £ h"**°(X;)}ic(n], constraints {G; £ G(X;)}ic[n), regularizer ¢,
ADMM penalty p, and initializers A and (w:);e[n]-

Output: hP"N () £ h2™e(z) - $(v(2;A) + ve(@; X))
Q<+ %I+ N ZiE[N] GG
fort =1,2,---,t do
a; «— w; + pGT A i € [N]

v; argmcin D;Onj(v,pi) + 2[5 + afv i € [N]
veR

AN AR S

7: q%%ZGi-(wi—i—vi)

i€[N]
8: A<« argmin T QL+ q7¢
LerK
9: wiewi+p~(v¢+GiT/\) 1 € [N]

10: end for




5 Numerical benchmarks

We present empirical results and show that FairProjection has competitive performance both in
terms of runtime and fairness-accuracy trade-off curves compared to benchmarks—most notably the
reductions approach in [ABD™ 18], which requires retraining. Extensive additional benchmarks and
experiment details are reported in Appendix A.2.

Setup. We consider three base classifiers (Base): gradient boosting (GBM), logistic regression
(LR), and random forest (RF), implemented by Scikit-learn [PVG™ 11]. For FairProjection (the
constrained optimization in (6)), we use cross-entropy (FairProjection-CE) and KL-divergence
(FairProjection-KL) as the loss function®. We consider two fairness constraints: mean equalized
odds (MEO) and statistical parity (SP) (cf. Table 2). Particularly, to measure multi-class performance,
we extend the definition of MEO as

MEO = max maxs(|TPRv:(51) — TPR;(s2)| + [FPR;(s1) — FPR;(s2)|)/2 (10)
1€) s1,82€

where TPR;(s) = P(Y = i]Y = i,S = s), and FPR;(s) = P(Y = i|]Y # i,5 = s). The
definition of multi-class statistical parity is provided in Appendix A.2.4.2. All values reported in this
section are from the test set with 70/30 train-test split. When benchmarking against methods tailored
to binary classification, we restrict our results to both binary Y and S since, unlike FairProjection,
competing methods cannot necessarily handle multi-class predictions and multiple groups.

Datasets. We evaluate FairProjection and all benchmarks on four datasets. We use two datasets
in the education domain: the high-school longitudinal study (HSLS) dataset [IPH " 11, JWC22] and a
novel dataset ENEM [INE20] (details in Appendix A.2.1). The ENEM dataset contains Brazilian
college entrance exam scores along with student demographic information and socio-economic
questionnaire answers (e.g., if they own a computer). After pre-processing, the dataset contains ~1.4
million samples with 139 features. Race was used as the group attribute .S, and Humanities exam
score is used as the label Y. The score can be quantized into an arbitrary number of classes. For
binary experiments, we quantize Y into two classes, and for multi-class, we quantize it to 5 classes.
The race feature S has 5 categories, but we binarize it into White and Asian (S = 1) and others
(S = 0). We call the entire ENEM dataset ENEM-1.4M. We also created smaller versions of the
dataset with 50k samples: ENEM-50k-2C (binary classes) and ENEM-50k-5C (5 classes).’ For
completeness, we report results on UCI Adult [Lic13] and COMPAS [ALMK16].

Benchmarks. For binary classification experiments, we compare our method with five existing
fair learning algorithms: Reduction [ABDT 18], reject-option classifier [KKZ12, Rejection],
equalized-odds [HPS 16, Eq0dds)], calibrated equalized-odds [PRW " 17, CalEq0Odds], and leveraging
equal opportunity [CDH 19, LevEqOpp].'° The choice of benchmarks is based on the availability
of reproducible codes. For the first four baselines, we use IBM AIF360 library [BDH T 18]. For
Reduction and Rejection, we vary the tolerance to achieve different operation points on the
fairness-accuracy trade-off curves. As Eq0dds, CalEq0dds and LevEqQOpp only allow hard equality
constraint on equalized odds, they each produce a single point on the plot (see Fig. 1). We include
the group attribute as a feature in the training set following the same benchmark procedure described
in [ABD™ 18, WRC21] for a consistent comparison. For multi-class classification experiments, we
did not find methods that can be easily compared against FairProjection and use the multi-class
extensions of mean equalized odds and statistical parity. For the sake of completeness, we modified
the codes of adversarial debiasing [ZLM18, Adversarial], and compare our method against it.
Note that Reduction [ABD ™ 18] and Adversarial [ZLM]18] are in-processing methods, and the
rest of the benchmark algorithms are post-processing methods like FairProjection. Additional
comparisons to [KCT20] are given in Appendix A.2.4.1.

There are four methods in Table 1 we did not include the experiments: FACT [KCT20], Identifying
[JN20], FST [WRC21], and Overlapping [YCK20], as explained in Appendix A.2.1.3.

8We focus on FairProjection-CE and random forest here; results for FairProjection-XL and other
models are in Appendix A.2.

°A datasheet (see [GMVT21]) for ENEM is given in Appendix A.3.

"%https://github.com/lucaoneto/NIPS2019_Fairness.
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Figure 1: Fairness-accuracy trade-off comparisons between FairProjection and five baselines on ENEM-
50k-2C, HSLS, Adult and COMPAS datasets. For all methods, we used random forest as a base classifier. Note
that Eq0dds, CalEqQOdds, and LevEqQOpp only produce a single accuracy-fairness trade-off point, whereas the
rest of the methods are capable of producing the accuracy-fairness trade-off curves by varying the fairness
budget « for the group fairness criteria listed in Table 2 — a smaller o corresponds to a lefter point on the
accuracy-fairness trade-off curve.

Binary classification results. We compare FairProjection with benchmarks tailored to binary
classification in terms of the MEO-accuracy trade-off on the ENEM-50k-2C, HSLS, Adult, and
COMPAS datasets in Fig. 1. Each point is obtained by averaging 10 runs with different train-test
splits. FairProjection-CE curves were obtained by varying « values (cf. Table 2). When a = 1.0,
the outputs of FairProjection-CE are equivalent to the base classifier RF.

We observe that FairProjection-CE and Reduction have the overall best and most consistent
performances. On ENEM-50k-2C and HSLS datasets, although Eq0dds achieves the best fairness,
that fairness comes at the cost of 4% accuracy drop (additively). The other four methods, on the
other hand, produce comparatively good fairness with an accuracy loss of < 1%. In particular,
FairProjection-CE has the smallest accuracy drop whilst improving MEO from 0.17 to 0.04
on HSLS. CalEqQOdds requires strict calibration requirements and yields inconsistent performance
when these requirements are not met. On ENEM-50k-2C and HSLS, LevEqOpp achieves com-
parable MEO with a slight accuracy drop, and on COMPAS, LevEqOpp performs equally well as
FairProjection-CE and Reduction. Note that with high fairness constraints (i.e., small tolerance),
the accuracy of Rejection deteriorates.

Multi-Class results. We illustrate how FairProjection performs on multi-class prediction using
HSLS and ENEM-50k-5C. For HSLS, we divided student math performance into quartiles and
generated four classes. In Figure 2, we plot fairness-accuracy trade-off of FairProjection-CE
with logistic regression and adversarial debiasing [ZLM 18, Adversarial]. As their base classifiers
are different (Adversarial is a GAN-based method), we plot accuracy difference compared to the
base classifier instead of plotting the absolute value of accuracy''. FairProjection reduces MEO
significantly with very small loss in accuracy. While Adversarial is also able to reduce MEO with
negligible accuracy drop, it does not reduce the MEO as much as FairProjection. We show more
extensive results with multi-group and multi-class (|| = 5, = |S| = 5) in Appendix A.2.4.2.

Runtime comparisons. To demonstrate the scalability of FairProjection, in Table 3, we record
the runtime of FairProjection-CE and-KL with the five benchmarks on ENEM-1.4M-2C, which is
the biggest dataset we have. These experiments were run on a machine with AMD Ryzen 2990WX 64-
thread 32-Core CPU and NVIDIA TITAN Xp 12-GB GPU. For consistency, we used the same fairness
metric (MEO, o = 0.01), base classifier (GBM), and train/test split, and each number is the average
of 2 repeated experiments. Eq0dds, LevEqOpp, and CalEq0dds are faster than FairProjection
since they are optimized to produce one trade-off point (cf. Fig. 1). Compared to baselines that
produce full fairness-accuracy trade-off curves (i.e., Reduction and Rejection), FairProjection
has the fastest runtime. Also, the non-parallel implementation of FairProjection-KL takes 25.3
mins—parallelization attains 15x speedup (detailed results in Appendix A.2.2). We further compare

'"Base accuracy for FairProjection = 0.336, Adversarial = 0.307. Random guessing accuracy = 0.2.
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Figure 2: Fairness-accuracy trade-off for multi-class prediction on HSLS and ENEM-50k-5C. FairProjection is
FairProjection-CE with LR base classifier.

Reduction  Rejection EqOdds LevEqOpp CalEqOdds  FairProjection (ours)
[ABD™18] [KKZ12] [HPS16] [CDH'19] [PRWT17] CE KL

Runtime 223.6 16.9 59 7.9 53 11.3 11.6

Method

Table 3: Execution time of FairProjection on the ENEM-1.4M-2C compared with five baseline methods
(time shown in minutes). Methods in bold are capable of producing a fairness-accuracy trade-oft curve. Methods
that are italicized have a uniformly superior performance. The time reported here for FairProjection includes
the time to fit the base classifiers. If base classifiers are given, the runtime of e.g. FairProjection-KL is 1.63
mins. The runtimes are consistent with small standard deviations across repeated experiments.

the runtime results for the binary HSLS, which is the second biggest dataset, with the baselines
that produce full fairness-accuracy trade-off curves. The runtimes for Reduction, Rejection and
FairProjection-CE are 81.1 sec, 9.73 sec and 4.50 sec respectively—again, FairProjection
has the fastest runtime. For a theoretical comparison between the runtime of FairProjection and
Reduction, see Appendix A.2.3.

6 Final remarks and limitations

We introduce a theoretically-grounded and versatile fairness intervention method, FairProjection,
and showcase its favorable performance in extensive experiments. We encourage the reader to
peruse our theoretical result in Appendix A.1 and extensive additional numerical benchmarks in
Appendix A.2. FairProjection is able to correct bias for multigroup/multiclass datasets, and it
enjoys a fast runtime thanks to its parallelizability. We also evaluate our method on the ENEM dataset
(see Appendix A.3 for a detailed description of the dataset). Our benchmarks are a step forward in
moving away from the overused COMPAS and UCI Adult datasets.

We only consider group-fairness, and it would be interesting to try to incorporate other fairness notions
(e.g., individual fairness [DHP™12]) into our formulation. We assume that hP%° js a pre-trained
accurate (and potentially unfair) classifier; one future research direction is understanding how the
accuracy of h"2 influences the performance of the projected classifier. Finally, the performance
of FairProjection is inherently constrained by data availability. Performance may degrade with
intersectional increases of the number of groups, the number of labels, and the number of fairness
constraints.
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1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Sections 3—4 for theoretical results, and Section 5
for experimental results.

(b) Did you describe the limitations of your work? [Yes] See ‘Final remarks and limita-
tions’ in Section 6, and also the end of the ‘Group-fairness constraints’ paragraph in
Section 2.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See ‘Final
remarks and limitations’ in Section 6, e.g., lack of samples could negatively impact
performance.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-
tion 1 and Remark 1.
(b) Did you include complete proofs of all theoretical results? [Yes] See SM.
3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See SM.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See SM and main text.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All results employ cross validation.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See numerical results section.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes] Yes, details (including licenses) are in
the SM.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Yes, see SM.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Yes, only publicly and freely available code was used.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Yes. In particular, discussion regarding the
ENEM dataset is available in the SM.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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