
SecTutor: An Intelligent Tutoring System For
Secure Programming

Ida Ngambeki1[0000�0001�7191�2179], Matt Bishop2[0000�0002�7301�7060], Jun
Dai3[0000�0002�6890�6429], Phillip Nico4[0000�0002�7405�2546], Shiven

Mian2[0000�0002�7730�5254], Ong Thao3[], Tran Ngoc Bao
Huynh3[0000�0002�6023�7689], Zed Chance3[0000�0002�9251�8354], Isslam

Alhasan1[0000�0003�0546�224X], and Motunrola Afolabi1[0000�0003�4906�8025]

1 Purdue University, West Lafayette, IN, USA
{ingambek, ialhasan, mafolabi}@purdue.edu

2 University of California, Davis, CA, USA
{mabishop, smian}@ucdavis.edu

3 California State University, Sacramento, CA, USA
{jun.dai, ongthao, tranngocbaohuynh, zchance}@csus.edu

4 California Polytechnic State University, San Luis Obispo, CA, USA
pnico@calpoly.edu

Abstract. SecTutor is a tutoring system that uses adaptive testing to
select instructional modules that allow users to pursue secure program-
ming knowledge at their own pace. This project aims to combat one of
the most significant cybersecurity challenges we have today: individu-
als’ failure to practice defensive, secure, and robust programming. To
alleviate this, we introduce SecTutor, an adaptive online tutoring sys-
tem, to help developers understand the foundational concepts behind
secure programming. SecTutor allows learners to pursue knowledge at
their own pace and according to their own interests, based on assess-
ments that identify and structure educational modules based on their
current level of understanding.

Keywords: secure programming · tutoring · intelligent system

1 Introduction

Secure programming is one of the most fundamental elements of a software
development life-cycle and it’s crucial to develop robust secure coding practices
and procedures. According to a recent survey of professional developers, seventy
percent of companies emphasized the importance of learning secure programming
practices right from the early stages of writing code [6]. This high percentage
indicates that secure programming is becoming synonymous with high quality
code within the software development life cycle. According to a study conducted
by IBM System Science Institute, software defects detected in later phases cost
anywhere from six to fifteen times more than if the same defects were found in
earlier phases [4].



2 I. Ngambeki et al.

SecTutor is a self-directed learning tool driven primarily by the learner. This
learning tool focuses on the educational aspect of teaching students proper prac-
tices of improving the security and robustness of programs from the early stages.
The fundamental goal of SecTutor is to instill good coding practices into learning
and facilitate teaching secure programming in academic institutions. Learners
can practice and develop robust programming skills and concepts to determine
their current level of knowledge and understanding of secure coding and pro-
gramming techniques.

This paper will first examine the background of self learning, as well as
the benefits of teaching secure programming practices to students in computer
science. Next, the focus and need of a tool to address these practices, SecTutor,
will be described, as well as a comparison of SecTutor to a previously existing
security tool. The layout of SecTutor is given in diagram form, as well as an
example question that a student may see is shown. Implementation details like
how the tool is intelligent and the question approval system are described at a
high level. Finally, the paper will conclude with how SecTutor’s data can help
find common security misconceptions in education.

1.1 Background

SecTutor is based upon self-directed learning theory, known as the attainment
of knowledge partially or entirely driven by the learner. Self-directed learning
comprises four paradigms; self-modification, self-motivation, self-monitoring, and
self-management [5]. Self-modification allows students to change their outlook
on learning and take responsibility for changing their learning behaviours based
on feedback. Self-motivation gives a sense of responsibility for learning and im-
proving. Self-monitoring evaluates behaviours in learning and identifies current
progress. Self-management controls learning behaviours and allows students to
follow up on goals and complete assignments. The goal is to enable a self-directed
learning approach to encourage students to overcome reluctance and present
guidance in three di↵erent strategies; multiple entry points, gamification, and
adaptive testing. Self-directed learning allows students to take control of their
learning behaviors and provides flexibility in enhancing their skills through new
methods of learning to meet their specific learning needs. SecTutor uses the
principles of self-directed learning to allow students to learn secure program-
ming practices using e↵ective learning tools.

According to the National Research Council (2000), students who focus on
the memorization of topics, rather than taking the time to understand and
make sense of the topic, often have limited opportunities to learning [2]. Sec-
Tutor guides the learning process by developing practice questions and provide
feedback to identify the learner’s performance and contribute to the student
knowledge model, which will inform the intelligent tutoring system the selection
of content and misconceptions that the learner needs to spend more time on.
The educational aspect of SecTutor aims to improve elements of proper secure
programming practices and prepare learners to apply new skills and concepts.
The educational assessment deals with measuring the learner’s abilities in robust



SecTutor: An Intelligent Tutoring System For Secure Programming 3

programming, assist students in learning and o↵er suggestions on areas of im-
provement. Currently, there is a gap in secure programming education that seeks
to pinpoint knowledge areas to better prepare students the skills of secure cod-
ing. A recent study found that many students majoring in computer science, lack
necessary fundamental knowledge in their abilities to read and write secure code
and graduate without being introduced to any secure programming practices
[9]. Furthermore, research has shown that basic yet important secure program-
ming topics are not covered in the required programming courses [1]. One of the
strengths of this tool is the ability to target the misconceptions students have
regarding secure programming concepts. To build good coding practices, stu-
dents need to have a solid understanding of how to identify and develop secure
software. These primary concepts should be a required practice in all computer
science courses.

Researchers of the SecTutor tool previously collaborated on a project to
develop a secure concept inventory to measure a student’s understanding of con-
cepts in a specific knowledge domain was also developed by the same researchers
to assess how well students were learning secure programming [10]. The goal
of this project is to use the developed assessments to diagnose misconceptions
and structure personalized instruction based on the learner’s current level of
understanding in secure programming. This will be accomplished through con-
structing an adaptive test, constructing the intelligent tutorial system, integrat-
ing the learning analytic space and testing the system. The identified areas of
misconceptions and foundational knowledge can be seen in Table 1.

The three main categories in Table 1 are the overall flow of writing a pro-
gram, looking at the way programs evolve, the principles to guide the software
development, and the artifacts handled during development through execution.
The topics covered in Table 1 are targeting at both undergraduate and graduate
students. For any class in which there is programming, where security miscon-
ceptions may arise, SecTutor would be a great tutoring tool.

1.2 The focus of the tool

SecTutor focuses on the educational aspect of teaching robust coding practices
from the beginning of writing programs rather than making programs robust af-
ter they are written. The key is to inculcate good coding practices into the teach-
ing and practices of programming in institutions where it is taught. Researchers
have developed a concept map that allows users to view the primary concepts of
secure programming practices. The concept map is an excellent starting point to
target specific concepts that will help guide a user’s progress through di↵erent
learning modules. SecTutor will also provide practice questions clustered around
knowledge areas calibrated by di↵erent di�culty levels. Based on a user’s selec-
tion of questions and performance, SecTutor will guide the user to appropriate
content. Lastly, SecTutor uses a psychometric designed test that will assess a
user’s understanding of secure programming concepts while providing individu-
alized feedback on performance across specific domains and identifying the areas
the user is struggling with. The focus will be achieved in 4 stages.



4 I. Ngambeki et al.

Principles Assurance
Complexity/Simplicity
Requirements/Design
Implementation
Programming Languages
Representation

Development Threat Modeling
C Strings
Crypto Algorithms
Random Number Generation Algorithms
Interdependency
Error Handling
Compiling
Linking
Testing/Debugging/Prototyping/Evaluation
Tools
IDE (Integrated Development Environments)

Execution Library/API/Third Party Functions
Input
Memory
Runtime

Table 1. The identified areas of misconceptions and foundational knowledge in secure
programming are broken down into three main categories: Principles, Development,
and Execution.

1. The first stage - Establishing the content domain. During this phase, the
primary research questions are: What are the concepts of secure program-
ming and their relationship? What are the critical/foundational concepts in
secure programming?

2. The second stage - Developing the item pool. In this phase, the primary
research questions are: How do students understand concepts in secure pro-
gramming?What are common misconceptions in secure programming?What
concepts in secure programming do students find di�cult?

3. Third stage – Pilot testing and refining items: The primary aim of this stage
is to identify which questions from the item pool best target conceptual
understanding.

4. The fourth stage – Field testing: Are the scale items valid and reliable across
the target populations? The research question at this stage would be seeking
to know how e↵ective and reliable the Sec Tutor is by testing with a large
number of participants.

1.3 Why create the tool?

There have been several concept inventories in the past, such as:

1. The force concept inventory developed by David Hestenes [7] and his grad-
uate student between the late 1980s and early 1990s at the Arizona State



SecTutor: An Intelligent Tutoring System For Secure Programming 5

University. In the early version of the concept inventory, students were made
to write out answers and were not multiple choice questions. Instead, multi-
ple choice wrong answers were built based on common wrong answers, which
Hestenes tagged as distractors.

2. Computer science concept inventory for introductory programming devel-
oped in 2016 [3].

3. The CATS hackathon - cybersecurity inventories in 2019 [11].

This tool was created to successfully implement the development of secure
programming self-e�cacy amongst students in a secure programming clinic. One
of the ways to successfully make self-e�cacy is from constant practise and ex-
posure, as indicated by results showing a correlation between self-e�cacy and
increased secure programming knowledge.

The objectives of this tool are as listed below [8].

1. Defining the content domain in secure programming and creating a concept
map to describe that domain.

2. Identifying the concepts in the content domain that are foundational/critical.
3. Identifying challenging topics and common misconceptions held by students

in secure programming.
4. Developing a pool of items(questions) that specifically target complex con-

cepts and misconceptions in secure programming.
5. Testing and refining the collection of items to establish a draft secure pro-

gramming concept inventory.
6. Test the scale for validity and reliability.

1.4 What does this project propose?

This project is a development of a dual-purpose testing and tutoring system
which will aid students in learning about secure programming at their own pace
while in an extra-curricular environment. This will be done with continuous
access to secure programming knowledge through an online system called Sec-
Tutor. SecTutor uses an assessment-driven approach for individuals to learn
about secure programming through a personalized learning system with rigor-
ous assessments to determine a learner’s level of knowledge and skill, used to
personalize instructions for the learner. It will create a learning guide for stu-
dents and give them access to an adaptive learning platform with a concept map
that has been defined. The platform will also assist teachers with better analysis
and adaptation of teaching techniques by identifying, managing and correcting
erroneous beliefs once they manifest.

The primary focus of the results from concept inventories is to improve ped-
agogy while also achieving the below.

1. Helping instructors compare teaching over time.
2. Assisting institutions to rank instructors.
3. Helping other stakeholders make comparisons across institutions.



6 I. Ngambeki et al.

1.5 The purpose of the tool

The design of SecTutor enables it to identify students’ misconceptions through a
unique test tailored to each user and designed so that the questions, administra-
tion, scoring procedures and interpretations are consistent and in adherence to
laid down standards and guidelines. They do not replace examinations or grading
of students’ learning; instead, they diagnose areas of programming misconcep-
tions and help students overcome the challenges. Like textbooks, the students
are motivated to use SecTutor because it will increase their knowledge about
secure programming and make their performance (such as grades) and job skills
better. We will promote the tool, and host workshop(s) to scale up the amount
of questions.

Concept inventories are designed to measure the following. The generated
scores indicate how well a student understands a concept, where low scores may
be indicative of a misconception.

1. Core concepts of a topic.
2. The extent to which students have achieved expert-level thinking in a do-

main.
3. A concept map of secure programming which will define the content domain

in secure programming and identify the major and minor concepts, while
portraying the relationships among these concepts.

4. Concepts ranked based on their criticality and di�culty.
5. Misconceptions in secure programming better understood.
6. Collection of multiple choice questions designed to identify misconceptions.

1.6 Related tools

A related tool that aims to close the gap on insecure programming is the As-
sured Software Integrated Development Environment (ASIDE) [13]. ASIDE is
a interactive static code analysis plugin built for Java in Eclipse. ASIDE at-
tempts to provide secure programming support to developers during the actual
development phase. So, ASIDE will statically analyze code during development
and look for common security mistakes, and provide solutions to fix those mis-
takes. This di↵ers from SecTutor in that it is only used during development, and
ASIDE is geared only toward Java insecurities. SecTutor, on the other hand, is a
quiz based learning site that is programming language independent, and can be
used in conjunction with regular computer science curriculum (similar to using
a normal tutor, mainly outside of class time to increase areas where students are
slipping) to help find and address insecure programming practices before sending
students o↵ into industry.

2 Layout

The layout of SecTutor, including how the tool is intelligent, how the users
interact with SecTutor, and how SecTutor’s model is implemented follows in
this section.



SecTutor: An Intelligent Tutoring System For Secure Programming 7

User Interface

Teacher
Account

Student
Account

Add Questions

Question
Pool

Approve
Questions

On approval Potential 
Questions

Quiz ResultsTake Quiz

Get
Recommendation

Student
Results

IRT

View/Export
Student
Results

Fig. 1. The layout of the SecTutor system, from the point of view of the user interface.
As seen here, teacher accounts may add or approve question to the “potential questions”
database. A question is added to the pool after enough approvals, to be used in the
student’s quizzes. When a students gets a recommendation, item response theory (IRT)
is used to determine which area should be studied.



8 I. Ngambeki et al.

SecTutor is implemented as a web app, built using the Python web framework
Django. The account model is split into two distinct roles: teachers and students.
The general account layout of SecTutor can be seen in Figure 1. In short, the
teacher accounts create questions and view results, and the student accounts take
quizzes. An example of a typical question seen in SecTutor follows in Figure 2.

2.1 How is the tool intelligent?

SecTutor uses item response theory [12] to recommend what subject the student
should study. By using past quiz scores, an ability level ✓ is determined for a
given interest. This ability level is used in a three-parameter model defined as:

P (✓, a, b, c) = c+ (1� c)
exp (✓ � b)

1 + exp (a(✓ � b))
(1)

where a is item discrimination, which is how well the question can discriminate
between students of low ability and students of high ability. b is item di�culty,
where students with lower ability will have a harder time answering questions
with high di�culty. Finally c is item guessing, which accounts for the student
merely guessing the answer. The range of a, b, c is between 0 and 1.

Using this value, SecTutor is able to predict a probable score for a student
in a given interest. The interest that has the lowest predicted score is the next
area of study that SecTutor will recommend for the student.

Initial item di�culty and discrimination has been determined by testing a
large and diverse population of students. Question di�culty and discrimination
will change over time as the system is used. Newly added questions will deter-
mine their di�culty and discrimination when the question has been answered
by enough students. Question di�culty and discrimination will change over time
with more data.

2.2 The Student’s Point of View

When a student account is newly created, the student picks their interests and
takes a placement quiz. Interests are the main categories that each question
belongs to, see Table 1, and the student will only see questions from their inter-
ests. The placement quiz is populated by 2 random questions from each of the
student’s interests. A student can always add or remove more interests.

Taking Quizzes When a student takes a quiz, they first start o↵ by choosing an
interest. The quiz is populated with 10 random questions, starting with questions
that the student hasn’t taken yet. There is no time limit, but the student may
not go back to a previous question. Once the student is finished, a score is shown
along with quiz results.

In the example question seen in Figure 2, the last answer is correct. This
highlights the fact that if a bu↵er overflow occurs, both the contents of memory
and the control flow may be altered unexpectedly. So, students must understand



SecTutor: An Intelligent Tutoring System For Secure Programming 9

Fig. 2. The student’s view while taking a quiz.

the attack surface of the program or system to ensure security. This question
falls under the “Threat Modeling” misconception, seen in Table 1.

SecTutor is designed in a way where each wrong answer can have custom
feedback to further explain to the student why said answer is wrong.

Quiz Subject Recommendation Each question has both a di�culty and a
discrimination value. These values are used in the quiz recommendation func-
tionality of SecTutor. The student’s ability level (called ✓ in the item response
theory model, see equation 1) is calculated based on a running average of previ-
ous question scores in a given interest. So, SecTutor is able to determine what
interests the student needs to study next by recommending the interest with
the lowest predicted score. If a student decides to add a new interest, and they
haven’t taken any questions that fall in that interest, then SecTutor will imme-
diately recommend that they take that quiz.

More Resources SecTutor can link to external resources for each of the stu-
dent’s interests. This external resource takes the form of a concept map created



10 I. Ngambeki et al.

during a past funded project called the secure programming concept inventory
(SPCI) [10]. This provides more reading material for students to study outside
of taking quizzes.

2.3 The Teacher’s Point of View

The questions that the student accounts see in their quizzes are added by teacher
accounts. A teacher account can add new questions, approve potential questions,
and view question score performance.

Viewing Student Performance Teacher accounts have the ability to see ques-
tion performance on a per question basis. A low average score can be indicative
of a di�cult question, or of a common misconception. This helps teachers change
parts of their curriculum to address low score areas. This data can be viewed or
exported.

Question Approval System Newly created teacher accounts can always add
potential questions to the pool. However, until an account has permissions, this
newly created account cannot view any other questions. Once the account is
granted permissions, they have the ability to view “potential questions”, that
being questions that have not yet been approved. If the potential question is
approved by 2 separate teacher accounts, then the question will be used in the
generation of quizzes for students. A question will not appear in a quiz for a
student unless it has these 2 approvals.

To help legitimatize a teacher approval, each teacher account has a pro-
file page with stats about their contributions: amount of questions added and
amount of questions approved. A teacher may add a short bio to their profile
page as well, where teachers are encouraged to add their skills.

The bulk of our questions are added by experts among the field of secure pro-
gramming. Another round of question brainstorming and approvals is scheduled
to happen soon, and we’ll be using the SecTutor system to gather and approve
these questions.

3 Conclusion

With security being arguably the most important part of software today, SecTu-
tor hopes to understand where students are failing to learn. SecTutor attempts
to address the lack of curriculum for common security practices by identifying
the weak points.

Since the tool is implemented as a web app via the internet, we hope to
reach an audience of thousands of students and assess their secure programming
knowledge. With a higher volume of students, our tutoring system will result in
a more accurate determination of what misconceptions lie in the field of secure



SecTutor: An Intelligent Tutoring System For Secure Programming 11

programming. This data can be very valuable to instructors in this field, as they
can tune their curriculum to match the most common misconceptions.

With our question approval system, we aren’t limited by the current inventory
of questions, and can slowly expand the database of questions. This also allows
the ability to test out new concepts on a large group of users.

SecTutor can then employ machine learning to understand common behav-
iors that students have. With more data, SecTutor becomes more calibrated to
identify common mistakes employed by students that lead to insecure software.

Acknowledgements. This work was supported by grants DGE-1934279 and DGE-
2011175 from the National Science Foundation to the University of California
Davis, grant DGE-1934269 from the National Science Foundation to Purdue
University, and grant DGE-1934285 to the California State University Sacra-
mento. The opinions, findings, and conclusions, or recommendations expressed
are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation, the California State University, Purdue University, and the
University of California Davis.

References

1. Almansoori, M., Lam, J., Fang, E., Mulligan, K., Soosai, R., Adalbert, G., Chatter-
jee, R.: How secure are our computer systems courses? In: Proceedings of the 2020
ACM Conference on International Computing Education Research. p. 271–281.
ACM, New York, NY, USA (2020). https://doi.org/10.1145/3372782.3406266

2. Bransford, J.D., Brown, A.L., Cocking, R.R. (eds.): How People Learn: Brain,
Mind, Experience, and School. National Academy Press, Washington DC, USA,
expanded edn. (2000)

3. Cace↵o, R., Wolfman, S., Booth, K.S., Azevedo, R.: Developing a computer science
concept inventory for introductory programming. In: Proceedings of the 47th ACM
Technical Symposium on Computing Science Education. p. 364–369. ACM, New
York, NY, USA (2016). https://doi.org/10.1145/2839509.2844559

4. Dawson, M., Burrell, D.N., Rahim, E., Brewster, S.: Integrating soft-
ware assurance into the software development life cycle (sdlc). Journal
of Information Systems Technology and Planning 3(6), 49–53 (Jan 2010),
https://www.researchgate.net/publication/255965523 Integrating Software Assur-
ance into the Software Development Life Cycle SDLC

5. Garrison, D.R.: Self-directed learning: Towards a comprehen-
sive model. Adult Education Quarterly 48(1), 18–33 (Fall 1997).
https://doi.org/10.1177/074171369704800103

6. Help Net Security: 70% of organizations recognize the importance of secure cod-
ing practices (Mar 2021), https://www.helpnetsecurity.com/2021/03/26/secure-
coding-practices/

7. Hestenes, D., Wells, M., Swackhamer, G.: Force concept inventory. The Physics
Teacher 30(3), 141–158 (1992). https://doi.org/10.1119/1.2343497

8. Hyder, J.: Electronics systems concept inventory. http://www.esyst.org/PDF/-
Concept%20Inventory%20Presentation.pdf



12 I. Ngambeki et al.

9. Lam, J., Fang, E., Almansoori, M., Chatterjee, R., Soosai Raj, A.G.: Iden-
tifying gaps in the secure programming knowledge and skills of students.
In: Proceedings of the 53rd ACM Technical Symposium on Computer Sci-
ence Education. vol. 1, pp. 703–709. ACM, New York, NY, USA (2022).
https://doi.org/10.1145/3478431.3499391

10. Ngambeki, I., Nico, P., Dai, J., Bishop, M.: Concept inventories in cy-
bersecurity education: An example from secure programming. In: Proceed-
ings of the IEEE Frontiers in Education Conference (FIE). pp. 1–5 (2018).
https://doi.org/10.1109/FIE.2018.8658474

11. Sherman, A.T., Oliva, L., Golaszewski, E., Phatak, D., Scheponik, T., Herman,
G.L., Choi, D.S., O↵enberger, S.E., Peterson, P., Dykstra, J., Bard, G.V., Chat-
topadhyay, A., Sharevski, F., Verma, R., Vrecenar, R.: The cats hackathon: Cre-
ating and refining test items for cybersecurity concept inventories. IEEE Security
and Privacy 17(6), 77–83 (2019). https://doi.org/10.1109/MSEC.2019.2929812

12. Tay, L., Huang, Q., Vermunt, J.K.: Item response theory with covariates (irt-c):
Assessing item recovery and di↵erential item functioning for the three-parameter
logistic model. Educational and Psychological Measurement 76(1), 22–42 (2016).
https://doi.org/10.1177/0013164415579488

13. Zhu, J., Xie, J., Lipford, H.R., Chu, B.: Supporting secure programming in web
applications through interactive static analysis. Journal of Advanced Research
5(4), 449–462 (2014). https://doi.org/https://doi.org/10.1016/j.jare.2013.11.006,
https://www.sciencedirect.com/science/article/pii/S2090123213001422, cyber Se-
curity


