arXiv:2211.15445v1 [cs.OH] 23 Nov 2022

davos: a Python package “smuggler” for constructing
lightweight reproducible notebooks

Paxton C. Fitzpatrick, Jeremy R. Manning*

Department of Psychological and Brain Sciences
Dartmouth College, Hanover, NH 03755

Abstract

Reproducibility is a core requirement of modern scientific research. For computational
research, reproducibility means that code should produce the same results, even when run
on different systems. A standard approach to ensuring reproducibility entails packaging
a project’s dependencies along with its primary code base. Existing solutions vary in how
deeply these dependencies are specified, ranging from virtual environments, to containers,
to virtual machines. Each of these existing solutions requires installing or setting up a
system for running the desired code, increasing the complexity and time cost of sharing
or engaging with reproducible science. Here, we propose a lighter-weight solution: the
davos package. When used in combination with a notebook-based Python project, davos
provides a mechanism for specifying (and automatically installing) the correct versions
of the project’s dependencies. The davos package further ensures that those packages
and specific versions are used every time the notebook’s code is executed. This enables
researchers to share a complete reproducible copy of their code within a single Jupyter
notebook file.

Key words: Reproducibility, Open science, Python, Jupyter Notebook, Google
Colaboratory, Package management

*Corresponding author
Email address: Jeremy.R.Manning@Dartmouth.edu (Jeremy R. Manning)

Preprint submitted to SoftwareX November 29, 2022

Metadata

Current code version

Nr. | Code metadata description Metadata value
C1 | Current code version v0.1.1
C2 | Permanent link to code/repository | https://github.com/
used for this code version ContextLab/davos/tree/v0.1.1
C3 | Code Ocean compute capsule
C4 | Legal Code License MIT
C5 | Code versioning system used git
C6 | Software code languages, tools, and | Python, JavaScript, PyPI/pip,
services used [Python, Jupyter, ipykernel,
PyZMQ. Additional tools used for
tests: pytest, Selenium, Requests,
Mypy, GitHub Actions
C7 | Compilation requirements, operat- | Dependencies: Python > 3.6, pack-
ing environments, and dependencies | aging, setuptools. Supported OSes:
MacOS, Linux, Unix-like. Supported
[Python environments: Jupyter
Notebooks, JupyterLab, Google Co-
laboratory, Binder, IDE-based note-
book editors.
C8 | Link to developer documenta- | https://github.com/
tion/manual ContextLab/davos#readme
C9 | Support email for questions contextualdynamics@gmail.com

Table 1: Code metadata

1. Motivation and significance

The same computer code may not behave identically under different circumstances.
For example, when code depends on external packages, different versions of those packages
may function differently. Or when CPU or GPU instruction sets differ across machines,
the same high-level code may be compiled into different machine instructions. Because
executing identical code does not guarantee identical outcomes, code sharing alone is often
insufficient for enabling researchers to reproduce each other’s work, or to collaborate on
projects involving data collection or analysis.

Within the Python [1] community, external packages that are published in the most
popular repositories [2, 3] are associated with version numbers and tags that allow users
to guarantee they are installing exactly the same code across different computing en-
vironments [4]. While it is possible to manually install the intended version of every
dependency of a Python script or package, manually tracking down those dependencies
can impose a substantial burden on the user and create room for mistakes and inconsis-
tencies. Further, when dependency versions are left unspecified, replicating the original
computing environment becomes difficult or impossible.

Computational researchers and other programmers have developed a broad set of
approaches and tools to facilitate code sharing and reproducible outcomes (Fig. 1). At
one extreme, simply distributing a set of Python scripts (.py files) may enable others

https://github.com/ContextLab/davos/tree/v0.1.1
https://github.com/ContextLab/davos/tree/v0.1.1
https://github.com/ContextLab/davos#readme
https://github.com/ContextLab/davos#readme

Lightweight Heavyweight
Python Jupyter Notebook Virtual Container Virtual
scripts notebook | +davos environment machine
Py ot pocertl] Operating
v [/ / Y e Python % system P am—
L?W setup COSF 3 Note: each system may encompass
High reproducibility one or more systems to its left

Figure 1: Systems for sharing code within the Python ecosystem. From left to right:
plain-text Python scripts (.py files) provide the most basic “system” for sharing raw code.
Scripts may reference external packages, but those packages must be manually installed on
other users’ systems. Further, any checking needed to verify that the correct versions of those
packages were installed must also be performed manually. Jupyter notebooks (.ipynb files)
comprise embedded text, executable code, and media (including rendered figures, code output,
etc.). When the davos package is imported into a Jupyter notebook, the notebook’s func-
tionality is extended to automatically install any required external packages (at their correct
versions, when specified). Virtual environments allow users to install an isolated copy of
Python and all required dependencies. This typically entails distributing a configuration file
(e.g., a pyproject.toml [5] or environment.yml file) that specifies all project dependencies
(including version numbers of external packages) alongside the primary code base. Users can
then install a third-party tool [e.g., 6, 7] to read the file and build the environment. Containers
provide a means of defining an isolated environment that includes a complete operating system
(independent of the user’s operating system), in addition to (optionally) specifying a virtual
environment or other configurations needed to provide the necessary computing environment.
Containers are typically defined using specification files (e.g., a plain-text Dockerfile) that
instruct the virtualization engine regarding how to build the containerized environment. Vir-
tual machines provide a complete hardware-level simulation of the computing environment.
In addition to simulating specific hardware, virtual machines (typically specified using binary
image files) must also define operating system-level properties of the computing environment.
Systems to the left of the blue vertical line entail sharing individual files, with no additional
installation or configuration needed to run the target code. Systems to the right of the red ver-
tical line support precise control over dependencies and versioning. Notebooks enhanced using
the davos package are easily shareable and require minimal setup costs, while also facilitating
high reproducibility by enabling precise control over project dependencies.

to use or gain insights into the relevant work. Because Python is installed by default
on most modern operating systems, for some projects, this may be sufficient. Another
popular approach entails creating Jupyter notebooks [8] that comprise a mix of text,
executable code, and embedded media. Notebooks may call or import external scripts
or packages—or even intersperse snippets of other programming or markup languages—
in order to provide a more compact and readable experience for users. Both of these
systems (Python scripts and notebooks) provide a convenient means of sharing code,
with the caveat that they do not specify the computing environment in which the code
is executed. Therefore the functionality of code shared using these systems cannot be
guaranteed across different users or setups.

At another extreme, virtual machines [9, 10, 11] provide a hardware-level simulation
of the desired system. Virtual machines are typically isolated, such that installing or run-
ning software on a virtual machine does not impact the user’s primary operating system
or computing environment. Containers [e.g., 12, 13] provide a similar “isolated” expe-
rience. Although containerized environments do not specify hardware-level operations,
they are typically packaged with a complete operating system, in addition to a complete
copy of Python and any relevant package dependencies. Virtual environments [e.g., 6, 7]
also provide a computing environment that is largely separated from the user’s main en-
vironment. They incorporate a copy of Python and the target software’s dependencies,
but virtual environments do not specify or reproduce an operating system for the runtime
environment. Each of these systems (virtual machines, containers, and virtual environ-
ments) guarantees (to differing degrees—at the hardware level, operating system level,
and Python environment level, respectively) that the relevant code will run similarly for
different users. However, each of these systems also relies on additional software that can
be complex or resource-intensive to install and use, creating potential barriers to both
contributing to and taking advantage of open science resources.

We designed davos to occupy a “sweet spot” between these extremes. davos is a
notebook-installable package that adds functionality to the default notebook experience.
Like standard Jupyter notebooks, davos-enhanced notebooks allow researchers to include
text, executable code, and media within a single file. No further setup or installation is
required, beyond what is needed to run standard Jupyter notebooks. And like virtual
environments, davos provides a convenient mechanism for fully specifying (and installing,
as needed) a complete set of Python dependencies, including specific package versions.

2. Software description

The davos package is named after Davos Seaworth, a smuggler referred to as “the
Onion Knight” from the series A Song of Ice and Fire by George R. R. Martin [14]. The
smuggle keyword provided by davos is a play on Python’s import keyword: whereas
importing can load a package into the Python workspace within the existing rules and
frameworks provided by the Python language, “smuggling” provides an alternative that
expands the scope and reach of “importing.” Like the character Davos Seaworth (who
became famous for smuggling onions through a blockade on his homeland), we use “onion”
comments to precisely control how packages are smuggled into the Python workspace.

2.1. Software architecture

The davos package consists of two interdependent subpackages (see Fig. 2). The first,
davos.core, comprises a set of modules that implement the bulk of the package’s core

davos
__init__.py

davos.core

[__init__.py] [core.py] [config.py] [regexps.py] [parsers.py] [exceptions.py]

davos. implementations

[__init__.py] [ipython_common.p)] [ipython_pre%py] [ipython_posﬂ.py] [jupyter.py] [colab.py] [js_functions.py]

Figure 2: Package structure. The davos package comprises two interdependent subpack-
ages. The davos.core subpackage includes modules for parsing smuggle statements and
onion comments, installing and validating packages, and configuring davos’s behavior. The
davos.implementations subpackage includes environment-specific modifications and features
that are needed to support the core functionality across different notebook-based environments.
Individual modules (i.e., .py files) are represented by lime rounded rectangles, and arrows de-
note dependencies (each arrow points to a module that imports objects defined in the module
at the arrow’s source).

functionality, including pipelines for installing and validating packages, custom parsers
for the smuggle statement (see Sec. 2.2.1) and onion comment (see Sec. 2.2.2), and a
runtime interface for configuring davos’s behavior (see Sec. 2.2.3). However, certain
critical aspects of this functionality require (often substantially) different implementa-
tions depending on properties of the notebook environment in which davos is used (e.g.,
whether the frontend is provided by Jupyter or Google Colaboratory, or which version of
[Python [15] is used by the notebook kernel). To deal with this, environment-dependent
parts of core features and behaviors are isolated and abstracted to “helper functions” in
the davos.implementations subpackage. This second subpackage defines multiple, in-
terchangeable versions of each helper function, organized into modules by the conditions
that trigger their use. At runtime, davos detects various features in the notebook envi-
ronment and selectively imports a single version of each helper function into the top-level
davos.implementations namespace, allowing davos.core modules to access the proper
implementations for the current notebook environment in a single, consistent location.
An additional benefit of this design is that it allows maintainers, developers, and users
to extend davos to support new, updated, or custom notebook variants by creating new
davos.implementations modules that define their own versions of each helper function,
modified from existing implementations as needed.

2.2. Software functionalities

2.2.1. The smuggle statement

Functionally, importing davos in an [Python notebook enables an additional Python
keyword: “smuggle” (see Sec. 2.3 for details on how this works). The smuggle keyword-
like object can be used as a drop-in replacement for Python’s built-in import keyword to
load packages, modules, and other objects into the current namespace. However, whereas
import will fail if the requested package is not installed locally, smuggle statements can
handle missing packages on the fly. If a smuggled package does not exist in the local

environment, davos will download and install it automatically, expose its contents to
Python’s import machinery, and load it into the namespace for immediate use.

2.2.2. The onion comment

For greater control over the behavior of smuggle statements, davos defines an ad-
ditional construct called the “onion comment.” An onion comment is a special type of
inline comment that may be placed on a line containing a smuggle statement to cus-
tomize how davos searches for the smuggled package locally and, if necessary, downloads
and installs it. Onion comments follow a simple format based on the “type comment”
syntax introduced in PEP 484 [16], and are designed to make managing packages with
davos intuitive and familiar. To construct an onion comment, users provide the name
of the installer program (e.g., pip) and the same arguments one would use to manually
install the package as desired via the command line:

enable smuggle statements
import davos

if numpy is not installed locally, pip-install it and display verbose output
smuggle numpy as np # pip: numpy —-verbose

pip-install pandas without using or writing to the package cache
smuggle pandas as pd # pip: pandas —--no-cache-dir

install scipy from a relative local path, in editable mode
from scipy.stats smuggle ttest_ind # pip: -e ../../pkgs/scipy

Occasionally, a package’s distribution name (i.e., the name used when installing it) may
differ from its top-level module name (i.e., the name used when importing it). In such
cases, an onion comment may be used to ensure that davos installs the proper package
if it cannot be found locally:

package is named "python-dateutil" on PyPI, but imported as "dateutil"
smuggle dateutil # pip: python-dateutil

package is named "scikit-learn" on PyPI, but imported as "sklearn"
from sklearn.decomposition smuggle PCA # pip: scikit-learn

Because onion comments may be constructed to specify any aspect of the installer’s behav-
ior, they provide a mechanism for precisely controlling how, where, and when smuggled
packages are installed. Critically, if an onion comment includes a version specifier [4],
davos will ensure that the version of the package loaded into the notebook matches
the specific version requested, or satisfies the given version constraints. If the smuggled
package exists locally, davos will extract its version information from its metadata and
compare it to the specifier provided. If the two are incompatible (or no local installation
is found), davos will download, install, and load a suitable version of the package instead:

specifically use matplotlib v3.4.2, pip-installing it if needed
smuggle matplotlib.pyplot as plt # pip: matplotlib==3.4.2

use a version of seaborn no older than v0.9.1, but prior to v0.11
smuggle seaborn as sns # pip: seaborn>=0.9.1,<0.11

Onion comments can also be used to smuggle specific VCS references (e.g., Git [17]
branches, commits, tags, etc.):

use quail as the package existed on GitHub at commit 6c847a4
smuggle quail # pip: git+https://github.com/ContextlLab/quail.git@6c847a4

davos processes onion comments internally before forwarding arguments to the installer
program. In addition to preventing onion comments from being used as a vehicle for shell
injection attacks, this enables davos to adapt its behavior based on how particular flags
will affect the behavior of the installer program. For example, if an onion comment con-
tains either the -I/--ignore-installed, -U/--upgrade, or —-force-reinstall flag,
davos will not bother checking for a local copy of the smuggled package before installing
a new one:

install hypertools v@.7 without first checking for it locally
smuggle hypertools as hyp # pip: hypertools==0.7 --ignore-installed

always install the latest version of requests, including pre-releases
from requests smuggle Session # pip: requests ——upgrade ——pre

Similarly, the -——no-input flag will temporarily enable davos’s non-interactive mode (see
Sec. 2.2.3), and installing a smuggled package into a custom directory (<dir>) using the
--target <dir> flag will cause davos to prepend <dir> to the module search path (i.e.,
sys.path), if necessary, so the package can be imported.

2.2.3. The davos config object

The davos config object provides a high-level interface for controlling various aspects
of davos’s behavior. After importing davos, the davos.config object (a singleton) ex-
poses configurable options as attributes that can be modified, displayed in the notebook,
or checked programmatically at runtime (see Sec. 3 for an illustrative example or Sec. 2.3
for implementation details and additional information). These include:

e .active: This attribute controls whether support for smuggle statements and
onion comments is enabled (True) or disabled (False). When davos is first im-
ported, the .active attribute is set to True.

e .auto_rerun: This attribute controls how davos behaves when attempting to
smuggle a new version of a package that was previously imported and cannot be
reloaded. This can happen if the package includes extension modules that dynami-
cally link C or C++ objects to the Python interpreter, and the code that generates
those objects was changed between the previously imported and to-be-smuggled ver-
sions. If this attribute is set to True, davos will automatically restart the notebook
kernel and rerun all code up to (and including) the current smuggle statement. If
set to False (the default), davos will instead issue a warning, pause execution, and
prompt the user to either restart and rerun the notebook, or continue running with
the previously imported package version until the next time the kernel is restarted
manually. Note that, as of this writing, the .auto_rerun attribute is not supported
in Google Colaboratory notebooks.

e .confirm install: If set to True (default: False), davos will require user confir-
mation before installing a smuggled package that does not yet exist in the user’s
environment.

e .noninteractive: Setting this attribute to True (default: False) enables non-in-
teractive mode, in which all user interactions (prompts and dialogues) are disabled.
Note that in non-interactive mode, the confirm_install option is set to False.
If auto_rerun is set to False while in non-interactive mode, davos will raise an
exception if a smuggled package cannot be reloaded, rather than prompting the
user.

e .pip_executable: This attribute’s value specifies the path to the pip executable
used to install smuggled packages. The default is programmatically determined from
the Python environment and falls back to sys.executable -m pip if no executable
can be found.

e .suppress_stdout: If this attribute is set to True (default: False), davos sup-
presses printed (console) outputs from both itself and the installer program. This
can be useful when smuggling packages that need to install many dependencies
and/or generate extensive output. However, if the installer program throws an
error, both its stdout and stderr streams will be displayed alongside the Python
traceback to allow for debugging.

The top-level davos namespace also defines convenience functions for setting and checking
whether davos is active (davos.activate(); davos.deactivate(); davos.is_active())
as well as the davos.configure() function, which allows setting multiple configuration
options simultaneously.

2.3. Implementation details

Although davos is designed to appear to add a new keyword to Python’s vocabulary,
this illusion is actually created through several “hacks” that make use of the notebook’s
[Python backend for processing and executing users’ code. Specifically, when davos is first
imported, or when it is activated after having been set to an inactive state, two actions
are triggered. First, the smuggle () function is injected into the IPython user namespace.
Second, the davos parser is registered as a custom [Python input transformer.

[Python preprocesses all executed code as plain text before it is sent to the Python
compiler, in order to handle special constructs like %magic and !shell commands. davos
uses this process to transform smuggle statements into syntactically valid Python code.
The davos parser uses a regular expression to match lines of code containing smuggle
statements (and, optionally, onion comments), extract relevant information from their
text, and replace them with equivalent calls to the smuggle () function. For example, if
a user runs a notebook cell containing

smuggle numpy as np # pip: numpy>1.16,<=1.20 -vv

the code that is actually executed by the Python interpreter would be

smuggle(name="numpy", as_="np", installer="pip",
args_str="""numpy>1.16,<=1.20 -vv""",
installer_kwargs={'editable': False,
'spec': 'numpy>1.16,<=1.20",
'verbosity': 2})

is the
package part of
the standard

yes

smuggle function
executed

. prompt user
install load L to restart/re-run
package package i
or continue

restart
or continue?

has
package the package
has been already been
installed imported?

package
smuggled

before in this
session?

previous
smuggle had
same onion
gcomment?,

kernel
restart
required

interactive
mode
enabled?

isthe
correct version\ yes
of the package
installed?

isthe
package
installed
locally?

is auto
re-run
enabled?

restart kernel and
re-run code up
through current cell

reload
package

Ensure package is installed Import package and update runtime

Figure 3: smuggle() function algorithm. At a high level, the smuggle() function may be
conceptualized as following two basic steps. First (left), davos ensures that the correct version
of the desired package has been installed, carrying out the installation automatically if needed.
Second (right), davos imports the package and updates the current runtime environment.

The call to the smuggle() function carries out davos’s central logic by determining
whether the smuggled package must be installed, carrying out the installation if necessary,
and subsequently loading it into the namespace. This process is outlined in Figure 3.
Because the smuggle () function is defined in the notebook namespace, it is also possible
(though never necessary) to call it directly. Deactivating davos will delete the name
“smuggle” from the namespace, unless its value has been overwritten and no longer
refers to the smuggle () function. It will also deregister the davos parser from the set of
input transformers run when each notebook cell is executed. While the overhead added
by the davos parser is minimal, this may be useful, for example, when optimizing or
precisely profiling code.

3. Illustrative Example

Across different versions of a given package, particular modules, functions, and other
objects may be updated, removed, renamed, or otherwise altered. In addition to changing
the behaviors of active computations, these changes can render saved objects created
using one version of a package incompatible with other versions of the same package.
For example, the popular pandas [18] library used to include the Panel data structure
for storing 3-dimensional arrays. Since version 0.20.0, however, the Panel class has been
deprecated, and in version 0.25.0, it was removed entirely. Suppose a user had a dataset
stored in a Panel object (created using an older version of pandas) and had saved it to
their disk (e.g., for later reuse or to share with other users) by serializing the Panel with
Python’s pickle protocol. The pickle protocol is a popular built-in method of persisting
data in Python, allowing users to save, share, and load arbitrary objects. However, in
order to successfully “unpickle” (i.e., load and restore) a “pickled” (i.e., saved) object,
the object’s class must be defined in and importable from the same module as when it

1 %pip install davos

2 import davos

3

4 from os.path smuggle is_file

5 smuggle joblib # pip: joblib<=1.2.0

6

7 davos.config.auto_rerun = True

8 smuggle numpy as np # pip: numpy==1.21.6

9

10 if not is_file("~/datasets/data-new.csv"):

11 smuggle pandas as pd # pip: pandas<0.25.0

12 tmp_data = pd.read_pickle("~/datasets/data-old.pkl")

13 tmp_data.to_frame().to_csv("~/datasets/data-new.csv")

14

15 smuggle pandas as pd # pip: pandas==1.3.5

16

17 davos.configure(auto_rerun=False, suppress_stdout=True, noninteractive=True)
18 smuggle tensorflow as tf # pip: tensorflow==2.9.2

19 from umap smuggle UMAP # pip: umap-learn[plot,parametric_umapl==0.5.3
20 davos.configure(suppress_stdout=False, noninteractive=False)

21

22 smuggle matplotlib.pyplot as plt # pip: matplotlib==3.5.3

23 smuggle seaborn as sns # pip: seaborn==0.12.1

24 smuggle quail # pip: git+https://github.com/myfork/quail@6c847a4
25

26 davos.config.pip_executable = "~/envs/nb-server/bin/pip"

27 smuggle widgetsnbextension as _ # pip: widgetsnbextension==3.5.2
28 davos.config.pip_executable = "~/envs/nb-kernel/bin/pip"

29 smuggle ipywidgets # pip: ipywidgets==7.6.5

30

31 from tqdm.notebook smuggle tqgdm # pip: tqdm==4.62.3

32

33 data = pd.read_csv('~/datasets/data-new.csv", index_col=[0, 1])

34 smuggle sklearn # pip: scikit-learn<0.22.0

35 transformer = joblib.load("~/models/text-transformer.joblib")

36 smuggle sklearn # pip: scikit-learn==1.1.3

Figure 4: Example use case for davos. Snippets from this example are also excerpted in the
main text of Section 3.

10

was saved. Thus, because of the Panel class’s removal, the user’s dataset could not be
read by any version of pandas from 0.25.0 or beyond. These incompatibilities are also
not limited solely to traditional forms of data. For example, saved model states and other
objects may reference modules, functions, attributes, classes, or other objects that may
not be identical (or even present) across all versions of their associated package.

The example provided in Figure 4 demonstrates how the davos package can be used to
circumvent these incompatibilities by carefully controlling which versions of each package
are used in different parts of the notebook. The example shows how a dataset and
model that require now-incompatible components of the pandas and scikit-learn [19]
packages may be loaded in (using older versions of each package) and used alongside
more recent versions of each package that provide new and improved functionality. When
included at the top of a Jupyter notebook, the code in Figure 4 ensures that these objects
will be loaded successfully and analyzed using the same set of package versions, no matter
when or by whom the notebook is run.

After installing and importing davos (lines 1-2), we first smuggle two utilities for
interacting with local files in the code below. The smuggle statement in line 4 loads
the is file() function from the Python standard library’s os.path module. Standard
library modules are included with all Python distributions, so this line is functionally
equivalent to an import statement and does not need or benefit from an onion comment.
Line 5 loads the joblib package [20], installing it first, if necessary. Since joblib’s
I/0O interface has historically remained stable and backwards-compatible across releases,
requiring that users have a particular exact version installed would likely be unnecessarily
restrictive. However, a future release might introduce some breaking change. The onion
comment in line 5 helps ensure the analysis notebook continues to run properly in the
future by limiting allowable versions to those already released when the code was written:

1 %pip install davos

2 import davos

3

4 from os.path smuggle is_file

5 smuggle joblib # pip: joblib<=1.2.0

Line 7 then uses the davos.config object to enable davos’s auto_rerun option before
smuggling the next two packages: NumPy [21] and pandas. Because these packages rely
heavily on custom C data types, loading the particular versions from the onion comments
may require restarting the notebook kernel if different versions had been previously im-
ported during the same interpreter session (see Sec. 2.2.3).

7 davos.config.auto_rerun = True
8 smuggle numpy as np # pip: numpy==1.21.6

Setting the auto_rerun attribute to True is particularly useful for managing the instal-
lation of pandas in the next lines:

10 if not is_file("~/datasets/data-new.csv"):

11 smuggle pandas as pd # pip: pandas<@.25.0
12 tmp_data = pd.read_pickle("~/datasets/data—old.pkl")
13 tmp_data.to_frame().to_csv('~/datasets/data—-new.csv")
14

15 smuggle pandas as pd # pip: pandas==1.3.5

11

If we suppose that the data contained in data-old.pkl is stored in a pickled Panel
object, then we must use a version of pandas prior to 0.25.0 (i.e., the version in which
the Panel class was removed) to be able to load it in. Line 11 ensures that an older
version of pandas will be imported, enabling the data to be read in (and, in line 13,
written to a CSV file, which is compatible with newer pandas versions).

Newer versions of pandas have brought substantial improvements including better
performance, bug fixes, and additional functionality. Although the original dataset had
to be read in using an older version of the package, we can take advantage of these more
recent updates by smuggling pandas a second time on line 15 (whose onion comment
specifies that version 1.3.5 should be installed and loaded). Since a different version of
pandas had already been loaded by the Python interpreter (on line 11), the notebook
kernel must be restarted in order to replace the old version’s custom C extensions with
those from the new version. The auto_rerun flag set on line 7 enables davos to trigger this
process automatically so that the code can continue running without user intervention,
and converting the dataset to a CSV file in lines 10-13 ensures that the older version of
pandas does not need to be reinstalled.

Next, line 17 uses the davos.configure() function to disable the auto_rerun option
and simultaneously enable two other options: suppress_stdout and noninteractive.
With these options enabled, lines 18-19 smuggle TensorFlow [22], a powerful end-to-end
platform for building and working with machine learning models, and UMAP [23], a package
that implements a family of related manifold learning techniques. The onion comment in
line 19 also specifies that UMAP should be installed with the optional requirements needed
for its “plot” and “parametric_umap” features. Together, these two packages depend on
36 other unique packages, most of which have dependencies of their own. And if many of
these are not already installed in the user’s environment, lines 18-19 could take several
minutes to run. Enabling the noninteractive option ensures that the installation will
continue automatically without user input during that time. Enabling suppress_stdout
also suppresses console outputs while installing these packages and their many dependen-
cies to prevent other potentially important outputs from being buried.

17 davos.configure(auto_rerun=False, suppress_stdout=True, noninteractive=True)
18 smuggle tensorflow as tf # pip: tensorflow==2.9.2
19 from umap smuggle UMAP # pip: umap-learn[plot,parametric_umap]==0.5.3

After re-enabling these two options (line 20), we next smuggle specific versions of
three plotting packages: Matplotlib [24], seaborn [25], and Quail [26] (lines 22-24).
Because the first two are requirements of UMAP’s optional “plot” feature, they will have
already been installed by line 19, though possibly as different versions than those specified
in the onion comments on lines 22 and 23. If the installed and specified versions are the
same, these smuggle statements will function like standard import statements to load the
packages into the notebook namespace. If they differ, davos will download the requested
versions in place of the installed versions before doing so.

20 davos.configure(suppress_stdout=False, noninteractive=False)

22 smuggle matplotlib.pyplot as plt # pip: matplotlib==3.5.3
23 smuggle seaborn as sns # pip: seaborn==0.12.1
24 smuggle quail # pip: git+https://github.com/myfork/quail@6c847a4

Line 24 uses an onion comment to specify that Quail should be installed directly from a
specific GitHub commit (6c847a4). This ability to load packages directly from GitHub

12

repositories can enable developers to more easily use forked or modified versions of other
packages in their notebooks, even if those versions have not been officially released.

In lines 2629, we demonstrate another aspect of davos’s functionality that supports
more advanced installation scenarios. The ipywidgets [27] package provides an API
for creating various JavaScript widgets with Python code, and the widgetsnbextension
package provides the machinery needed by the notebook frontend to display them.

26 davos.config.pip_executable = "~/envs/nb-server/bin/pip"

27 smuggle widgetsnbextension as _ # pip: widgetsnbextension==3.5.2
28 davos.config.pip_executable = "~/envs/nb-kernel/bin/pip"

29 smuggle ipywidgets # pip: ipywidgets==7.6.5

30

31 from tgdm.notebook smuggle tqdm # pip: tqdm==4.62.3

A complication is that ipywidgets must be installed in the same environment as the
[Python kernel, whereas widgetsnbextension must be installed in the environment that
houses the Jupyter notebook server. In many basic setups, these two environments are
the same. However, a common “advanced” approach entails running the notebook server
from a base environment, with additional environments each providing their own separate,
interchangeable IPython kernels. To accomodate this multi-environment scenario, on
lines 26 and 28, we use the pip_executable option to control which environments each
package should be installed to. Once these two packages are installed and imported, line
31 smuggles tqdm [28], which display progress bars to provide status updates for running
code. In Jupyter notebooks, the tqdm.notebook module can be imported to enable more
aesthetically pleasing progress bars that are displayed via ipywidgets, if that package is
installed and importable. Therefore, to take advantage of this feature, it was important
to smuggle tqdm after ensuring the ipywidgets package was available.

Next, we load in the reformatted dataset (line 33) and pre-trained model (line 35)
that we wish to use in our analysis. In our hypothetical example, we can suppose that the
model was provided as a scikit-learn Pipeline object that passes data through two
pretrained models in succession. First, a trained CountVectorizer instance converts text
data to an array of word counts. Second, the word counts are passed to a topic model [29]
using a pretrained LatentDirichletAllocation instance.

33 data = pd.read_csv("~/datasets/data-new.csv", index_col=[0, 1])
34 smuggle sklearn # pip: scikit-learn<0.22.0
35 transformer = joblib.load("~/models/text-transformer.joblib")

36 smuggle sklearn # pip: scikit-learn==1.1.3

Let us suppose that the Pipeline object had been saved by its original creator using the
joblib package, as scikit-learn’s documentation recommends. Because joblib uses
the pickle protocol internally, the ability to save and load pre-trained models is not guar-
anteed across different scikit-learn versions. For example, suppose that the Pipeline
object was created using scikit-learn v0.21.3. In that version of scikit-learn, the
LatentDirichletAllocation class was defined in sklearn.decomposition.online_lda.
However, in version 0.22.0, that module was renamed to _online_lda, and in version
0.22.1, it was again renamed to _lda.

In order to correctly load the model that includes the pre-trained LatentDirichlet-
Allocation instance, in line 34, we first smuggle a version of scikit-learn prior to
v0.22.0 (i.e., before the first time the relevant module’s name was changed). Once the

13

model is loaded and reconstructed in memory from a compatible package version (line
35), we upgrade to a newer version of scikit-learn in line 36. Taken together, the
code in Figure 4 shows how davos can enable users to load in data and models that are
incompatible with newer versions of pandas and scikit-learn, but still analyze and
manipulate the data and model output using the latest approaches and implementations.

4. Impact

Like virtual environments, containers, and virtual machines, the davos package (when
used in conjunction with Jupyter notebooks) provides a lightweight mechanism for shar-
ing code and ensuring reproducibility across users and computing environments (Fig. 1).
Further, davos enables users to fully specify (and install, as needed) any project de-
pendencies within the same notebook. This provides a system whereby executable code
(along with text and media) and code for setting up and configuring the project depen-
dencies, may be combined within a single notebook file.

We designed davos for use in research applications. For example, in many settings,
davos may be used as a drop-in replacement for more-difficult-to-set-up virtual envi-
ronments, containers, and/or virtual machines. For researchers, this lowers barriers to
sharing code. By eliminating most of the setup costs of reconstructing the original re-
searchers’ computing environment, davos also lowers barriers to entry for members of
the scientific community and the public who seek to run shared code.

Beyond research applications, davos is also useful in pedagogical settings. For ex-
ample, in programming courses, instructors and students may use the davos package
to ensure their notebooks will run correctly on others’ machines. When combined with
online notebook-based platforms like Google Colaboratory, davos provides a convenient
way to manage dependencies within a notebook, without requiring any software (beyond
a web browser) to be installed on the students’ or instructors’ systems. For the same
reasons, davos also provides an elegant means of sharing ready-to-run notebook-based
demonstrations or tutorials that install their dependencies automatically.

Since its initial release, davos has found use in a variety of applications. In addition
to managing computing environments for multiple ongoing research studies, davos is be-
ing used by both students and instructors in programming and methods courses such as
Storytelling with Data [30] (an open course on data science, visualization, and commu-
nication) and Laboratory in Psychological Science [31] (an open course on experimental
and statistical methods for psychology research) to simplify distributing lessons and sub-
mitting assignments, as well as in online demos such as abstract2paper [32] (an example
application of GPT-Neo [33, 34]) to share ready-to-run code that installs dependencies
automatically.

Our work also has several more subtle “advanced” use cases and potential impacts.
Whereas Python’s built-in import statement is agnostic to packages’ version information,
smuggle statements (when combined with onion comments) are version-sensitive. And
because onion comments are parsed at runtime, required packages and their specified
versions are installed in a just-in-time manner. Thus, it is possible in most cases to
smuggle a specific package version or revision even if a different version has already
been loaded. This enables more complex uses that take advantage of multiple versions
of a package within a single interpreter session (e.g., see Sec. 3 and Fig. 4). This could
be useful in cases where specific features are added or removed from a package across
different versions, or in comparing the performance or functionality of particular features
across different versions of the same package.

14

A second more subtle impact of our work is in providing a proof-of-concept of how the
ability to add new “keyword-like” operators to the Python language could be specifically
useful to researchers. With davos, we accomplish this by leveraging IPython notebooks’
internal code parsing and execution machinery. We note that, while other popular pack-
ages similarly use these mechanisms to providing notebook-specific functionality (e.g.,
[24, 35]), this approach also has the potential to be exploited for more nefarious pur-
poses. For example, a malicious user could design a Python package that, when imported,
substantially changes the notebook’s functionality by adding new unexpected keyword-
like objects (e.g., based around common typos). We also note that this implementation
approach means davos’s functionality is currently restricted to IPython notebook en-
vironments. However, there have been early-stage discussions of providing this sort of
syntactic customizability as a core feature of the Python language, including a draft pro-
posal [36]. In addition to enabling davos to be extended for use outside of notebooks,
this could lead to exciting new tools that, like davos, extend the Python language in
useful and more secure ways.

5. Conclusions

The davos package supports reproducible research by providing a novel, lightweight
system for sharing notebook-based code. But perhaps the most exciting uses of the
davos package are those that we have not yet considered or imagined. We hope that
the research and scientific Python communities will find davos to provide a convenient
means of managing project dependencies to facilitate code sharing and collaboration. We
also hope that some of the more advanced applications of our package might lead to new
insights or discoveries.

Author Contributions

Paxton C. Fitzpatrick: Conceptualization, Methodology, Software, Validation,
Writing - Original Draft, Visualization. Jeremy R. Manning: Conceptualization, Re-
sources, Validation, Writing - Review & Editing, Visualization, Supervision, Funding
acquisition.

Funding

Our work was supported in part by NSF grant number 2145172 to JRM. The content
is solely the responsibility of the authors and does not necessarily represent the official
views of our supporting organizations.

Declaration of Competing Interest

We wish to confirm that there are no known conflicts of interest associated with this
publication and there has been no significant financial support for this work that could
have influenced its outcome.

Acknowledgements

We acknowledge useful feedback and discussion from the students of JRM’s Story-
telling with Data course (Winter, 2022 offering) who used preliminary versions of our
package in several assignments.

15

References

1]

2]

[10]

[11]

[12]

[14]
[15]

[16]

G. van Rossum, Python reference manual, Department of Computer Science [CS] (R
9525) (1995).

Python Software Foundation, The Python Package Index (PyPI), https://pypi.
org (2003).

conda-forge community, The conda-forge Project: Community-based Software Dis-
tribution Built on the conda Package Format and Ecosystem, https://doi.org/
10.5281/zenodo. 4774217 (July 2015). doi:10.5281/zenodo.4774217.

N. Coghlan, D. Stufft, Version Identification and Dependency Specification, PEP
440, Python Software Foundation (March 2013).

B. Cannon, N. Smith, D. Stufft, Specifying Minimum Build System Requirements
for Python Projects, PEP 518, Python Software Foundation (May 2016).

Anaconda, Inc., conda, https://docs.conda.io (2012).

S. Eustace, Poetry: Python packaging and dependency management made easy,
https://github.com/python-poetry/poetry (December 2019).

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Will-
ing, Jupyter Notebooks — a publishing format for reproducible computational work-
flows, in: F. Loizides, B. Scmidt (Eds.), Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas, IOS Press, Netherlands, 2016, pp. 87-90.
doi:10.3233/978-1-61499-649-1-87.

R. P. Goldberg, Survey of virtual machine research, Computer 7 (6) (1974) 34-45.

Y. Altintas, C. Brecher, M. Weck, S. Witt, Virtual Machine Tool, CIRP Annals
54 (2) (2005) 115-138. doi:https://doi.org/10.1016/30007-8506(07)60022-5.

M. Rosenblum, VMware’s Virtual Platform: A virtual machine monitor for com-
modity PCs, in: IEEE Hot Chips Symposium, IEEE, 1999, pp. 185-196.

D. Merkel, Docker: lightweight linux containers for consistent development and de-
ployment, Linux Journal 239 (2) (2014) 2.

G. M. Kurtzer, V. Sochat, M. W. Bauer, Singularity: Scientific containers for mo-
bility of compute, PLoS One 12 (5) (2017) e0177459.

G. R. R. Martin, A Clash of Kings, A Song of Ice and Fire, Voyager Books, 1998.

F. Pérez, B. E. Granger, IPython: a system for interactive scientific computing,
Computing in science and engineering 9 (3) (2007) 21-29. doi:10.1109/MCSE.2007.
53.

G. van Rossum, J. Lehtosalo, L. Langa, Type Hints, PEP 484, Python Software
Foundation (September 2014).

16

https://pypi.org
https://pypi.org
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.5281/zenodo.4774217
https://docs.conda.io
https://github.com/python-poetry/poetry
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/https://doi.org/10.1016/S0007-8506(07)60022-5
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53

[17]

[18]

[19]

[20]

[21]

[23]

[24]

[25]

[20]

[27]

[28]

L. Torvalds, J. Hamano, Git: Fast version control system, https://git.kernel.
org/pub/scm/git/git.git (April 2005).

W. McKinney, Data Structures for Statistical Computing in Python, in: S. van der
Walt, J. Millman (Eds.), Proceedings of the 9th Python in Science Conference, 2010,
pp- 56-61. doi:10.25080/Majora-92bf1922-00a.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in
Python, Journal of Machine Learning Research 12 (2011) 2825-2830.

G. Varoquaux, Joblib: Computing with Python functions, https://github.com/
joblib/joblib (July 2010).

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer,
M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rio, M. Wiebe, P. Peterson,
P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke,
T. E. Oliphant, Array programming with NumPy, Nature 585 (7825) (2020) 357-362.
doi:10.1038/s41586-020-2649-2.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems, software available from tensorflow.org (2015).
URL https://www.tensorflow.org/

L. McInnes, J. Healy, N. Saul, L. Grofiberger, UMAP: Uniform Manifold Ap-
proximation and Projection, Journal of Open Source Software 3 (29) (2018) 861.
doi:https://doi.org/10.21105/joss.00861.

J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science and
Engineering 9 (3) (2007) 90-95. doi:10.1109/MCSE. 2007 .55.

M. L. Waskom, seaborn: statistical data visualization, Journal of Open Source Soft-
ware 6 (60) (2021) 3021. doi:10.21105/joss.03021.

A. C. Heusser, P. C. Fitzpatrick, C. E. Field, K. Ziman, J. R. Manning, Quail: a
Python toolbox for analyzing and plotting free recall data, Journal of Open Source
Software 10.21105/joss.00424 (2017).

J. Frederic, J. Grout, Jupyter Widgets Contributors, ipywidgets: Interactive Widgets
for the Jupyter Notebook, https://github.com/jupyter-widgets/ipywidgets
(August 2015).

C. da Costa-Luis, S. K. Larroque, K. Altendorf, H. Mary, richardsheridan, M. Ko-
robov, N. Raphael, I. Ivanov, M. Bargull, N. Rodrigues, G. Chen, A. Lee, C. Newey,

17

https://git.kernel.org/pub/scm/git/git.git
https://git.kernel.org/pub/scm/git/git.git
https://doi.org/10.25080/Majora-92bf1922-00a
https://github.com/joblib/joblib
https://github.com/joblib/joblib
https://doi.org/10.1038/s41586-020-2649-2
https://www.tensorflow.org/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/https://doi.org/10.21105/joss.00861
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://github.com/jupyter-widgets/ipywidgets

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

CrazyPython, JC, M. Zugnoni, M. D. Pagel, mjstevens777, M. Dektyarev, A. Roth-
berg, A. Plavin, D. Panteleit, F. Dill, FichteFoll, G. Sturm, HeoHeo, H. van
Kemenade, J. McCracken, MapleCCC, M. Nordlund, tqdm: A Fast, Extensible
Progress Bar for Python and CLI, https://github.com/tqdm/tqdm (September
2022). doi:10.5281/zenodo.595120.

D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of Machine
Learning Research 3 (2003) 993-1022.

J. R. Manning, Storytelling with Data, https://github.com/ContextLab/
storytelling-with-data (June 2021). doi:10.5281/zenodo.5182775.

J. Manning, ContextLab/experimental-psychology: v1.0 (Spring, 2022), https:
//github.com/ContextLab/experimental-psychology/tree/v1i.0 (May 2022).
doi:10.5281/zenodo.6596762.

J. R. Manning, abstract2paper, https://github.com/ContextLab/
abstract2paper (June 2021). doi:10.5281/zenodo.7261831.

L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H. He,
A. Thite, N. Nabeshima, S. Presser, C. Leahy, The Pile: An 800GB Dataset of
Diverse Text for Language Modeling, arXiv preprint arXiv:2101.00027 (2020).

S. Black, L. Gao, P. Wang, C. Leahy, S. Biderman, GPT-Neo: Large Scale
Autoregressive Language Modeling with Mesh-Tensorflow, http://github.com/
eleutherai/gpt-neo (2021).

A. C. Heusser, K. Ziman, L. L. W. Owen, J. R. Manning, HyperTools: a Python tool-
box for gaining geometric insights into high-dimensional data, Journal of Machine
Learning Research 18 (152) (2018) 1-6.

M. Shannon, Syntactic Macros, Draft PEP 638, Python Software Foundation
(September 2020).

18

https://github.com/tqdm/tqdm
https://doi.org/10.5281/zenodo.595120
https://github.com/ContextLab/storytelling-with-data
https://github.com/ContextLab/storytelling-with-data
https://doi.org/10.5281/zenodo.5182775
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://github.com/ContextLab/experimental-psychology/tree/v1.0
https://doi.org/10.5281/zenodo.6596762
https://github.com/ContextLab/abstract2paper
https://github.com/ContextLab/abstract2paper
https://doi.org/10.5281/zenodo.7261831
http://github.com/eleutherai/gpt-neo
http://github.com/eleutherai/gpt-neo

	1 Motivation and significance
	2 Software description
	2.1 Software architecture
	2.2 Software functionalities
	2.2.1 The smuggle statement
	2.2.2 The onion comment
	2.2.3 The davos config object

	2.3 Implementation details

	3 Illustrative Example
	4 Impact
	5 Conclusions

