The psychological arrow of time drives temporal asymmetries in

inferring unobserved past and future events

Xinming Xu!, Ziyan Zhu?, and Jeremy R. Manning! *

Dartmouth College, Hanover, NH, USA
2Peking University, Beijing, China

*Address correspondence to jeremy.r.manning@dartmouth.edu

January 7, 2023

Abstract

How much can we infer about the past and future, given our knowledge of the present?
Unlike temporally symmetric inferences about simple sequences, inferences about our own lives
are asymmetric: we are better able to infer the past than the future, since we remember our past
but not our future (ie., the psychological arrow of time). What happens when both the past
and future are unobserved, as when we make inferences about other people’s lives? We had
participants view segments of a character-driven television drama. They wrote out what would
happen just before or after each just-watched segment. Participants were better at inferring
past (versus future) events. This asymmetry was driven by participants’ reliance on characters’
conversational references in the narrative, which tended to favor the past. Our work reveals a
temporal asymmetry in how observations of other people’s behaviors can inform us about the
past and future.
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Introduction

What we experience in the current moment tells us about now— but what does it tell us about the
past or future? And does the current moment tell us, as human observers, more about the past or
about the future? One way of examining these questions is to consider highly simplified scenarios
that are artificially constructed in the laboratory (e.g.,, Maheu et al., 2022). At one extreme, for
deterministic sequences with known rules, knowing the current state provides the observer with
sufficient information to exactly reconstruct the entire past and future history of the stimulus. At
another extreme, for purely random sequences, observing the current state provides no information
about the past or future.

Sequences generated by stochastic processes fall somewhere between these two extremes. For
Markov processes, where each state is solely dependent on the immediately preceding state,
Shannon entropy may be used to quantify the uncertainty of the past and future states, given the
present state. Cover (1994) showed that, for any stationary process (i.e., processes in equilibrium),
Markov or otherwise, the present state provides equal information (i.e., mutual information) about
past and future states (also see Bialek et al., 2001; Ellison et al., 2009). Further, there is some
evidence that humans are similarly adept at inferring the most likely previous and next items in
sequences governed by stochastic Markov processes (Jones and Pashler, 2007).

Deterministic, random, and probabilistic sequences (in equilibrium) are all symmetric: the
present state of these sequences is equally informative about past versus future states. In contrast,
our subjective experience in everyday life is that we know more about our own past than our
future (e.g., Horwich, 1987). We have memories of our past that we carry with us into the
present moment, but we do not have memories of our yet-to-be-experienced future. This temporal
asymmetry imposes an “arrow of time” on our subjective experience, known as the psychological
arrow of time (e.g., Hawking, 1985).

Although the psychological arrow of time implies that we should be better able to infer our
past than our future, how generally does this temporal asymmetry hold? And does the asymmetry

hold only for our own experiences (due to our memories), or is the asymmetry a general property
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Figure 1: Retrodiction, retrospection, and prediction. In one’s own life, one may draw on memory to
retrospect (i.e., review or re-evaluate) the past or predict the future. This process is time-asymmetric, since
our own past is (typically) observed whereas our future is not. When we make inferences about other people’s
lives, however, we often have uncertainty about both their past and future, since we may have observed
neither. We may retrodict the unobserved past and predict the unobserved future of other people’s lives.

of any real-life event sequence? In real-world situations (and narratives) where we are equally
ignorant of the past and future, as for other people’s lives where we lack memories of the relevant
past, are our inferences about the past and future symmetric or asymmetric? For example, imagine
that you are meeting a stranger for the first time. At the moment of your meeting, you lack
both memories of their past and knowledge about what they might do in the future. After your
first encounter with the stranger, would you be able to more accurately or easily form inferences
about what had happened in their past (retrodiction) or what will happen in their future (prediction;
Fig. 1)? Or suppose you started watching a movie partway through. Again, you would enter the
moment of watching without memories of prior parts of the movie. Given your observations in
the present, would your guesses about what had happened before you started watching be more
(or less) accurate than your guesses about what will happen next? In general, when the past and
future are both unobserved, are we better at inferring the past or the future in real-world settings?

Narrative stimuli, such as stories and movies, can provide a useful testbed for exploring several of
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these questions.

Although narratives are unlikely to be confused with one’s own experiences, narratives mirror
some of the structure of real-world experiences. Character behaviors and interactions are often
designed in a way that helps the audience connect with or relate to the characters. Events in
narratives also unfold in ways that are intended to build rapport or engagement with the audience.
This might be accomplished by having events follow a believable structure that is reminiscent of
real-world experiences, or by designing the audience’s experiences in ways that communicate clear
“rules” or “features” that help to immerse the audience in the narrative’s universe. The characters
in a realistic narrative can also be written to behave in ways reminiscent of real-world people.
These same aspects of narratives that authors use to drive engagement with events and characters
can lead narratives to replicate some core aspects of real-world experiences that are typically lost or
overlooked in traditional sequence learning paradigms. Narratives can drive the audience to build
situation models (Radvansky and Copeland, 2006; Zwaan and Radvansky, 1998) of the narrative’s
universe, or to form a theory of mind of and make predictions about the characters (Tamir and
Thornton, 2018; Koster-Hale and Saxe, 2013). Events in narratives may unfold in a consistent or
logical way, but they also exhibit complex and meaningful interactions across events reminiscent of
real-world experiences (but not necessarily the simple sequences traditionally used in the statistical
learning literature).

One key difference between simple artificial sequences and more naturalistic (real or narrative)
sequences is that naturalistic sequences often incorporate other people. Despite the past and
future being equally unknown to the observer prior to the current moment, other people, and
realistic characters in narratives, have their own psychological arrows of time. Specifically, they
have memories of their own pasts. Other people’s asymmetric knowledge about their own pasts
and futures might affect their behaviors (e.g., conversations). In turn, this might provide time-
asymmetric clues that favor the past (e.g., other people might talk more about their own pasts
than their futures; Demiray et al., 2018). If observers leverage these clues from other people’s
asymmetric knowledge, then observers should also be better at inferring the past (versus the future)

of other people’slives. Alternatively, if inferences about other people’slives are more like inferences
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about artificial statistical sequences (e.g., perhaps solely relying on statistical regularities like event
schemas, scripts, or situation models Radvansky and Copeland, 2006; Zwaan and Radvansky,
1998; Bower et al., 1979; Ranganath and Ritchey, 2012), then the accuracy of inferences about the
past and the future of others’ lives should be approximately equal.

We designed a naturalistic paradigm for exposing participants to scenarios where the past and
future were equally unobserved. We asked our participants to watch a series of movie segments
drawn from a character-driven dramatic television show. Across the conditions and trials in the
experiment, participants made free-form text responses to either retrodict what had happened in
the previous segment, predict what would happen in the next segment, or recall what happened
in the just-watched segment. We used manual annotations and sentence-level natural language
processing models to characterize participants’ responses. To foreshadow our results, we found
that participants were overall better at retrodicting the past than predicting the future. This
appeared to be driven by two main factors. First, characters more often referred to past events than
future (e.g., planned) events, and this influenced participants’ responses. Second, associations and
dependencies between temporally adjacent events enabled participants to form estimates about
nearby events (e.g., to a just-watched scene or a past or future event referenced in an observed
conversation). Taken together, our work reveals a temporal asymmetry in how observations of

other humans’ behaviors inform us about the past versus the future.

Results

Participants in our study (n = 36) watched segments from two storylines, drawn from the CBS
television show Why Women Kill. Each storyline comprised 11 segments (mean duration: 2.05 min;
range: 0.97-3.87 min, Table S1). We asked participants to use free-form (typed) text responses to
retrodict what had happened prior to a just-watched segment, predict what would happen next,
or recall what they had just watched (Fig. 2, Task design). We referred to the to-be-retrodicted, to-
be-predicted, or to-be-recalled segment as the target segment for each response. We systematically

varied whether participants watched the segments in forward or reverse chronological order, and
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how many segments they had seen prior to making a response (see Methods).

We asked participants to generate four types of responses after watching each video segment:
uncued responses, character-cued responses, updated responses, and recalls (Fig. 2, Data overview).
To generate uncued responses, we asked participants to either retrodict (uncued retrodiction; u-R)
what happened shortly before or predict (uncued prediction; u-P) what happened shortly after
the just-watched segment. To generate character-cied responses, we asked participants to retrodict
(character-cued retrodiction; ¢-R) or predict (character-cued prediction; c-P) what came before or
after the just-watched segment, but we provided additional information to the participant about
which character(s) would be present in the target (to-be-retrodicted or to-be-predicted) segment.
We hypothesized that character-cued responses should be more accurate than uncued responses,
to the extent that participants incorporate the character information we provided to them into their
retrodictions and predictions. To generate updated responses, we asked participants to watch an
additional segment that came just prior to or just after the target segment, and then to update their
retrodiction (c-RP) or prediction (c-PR) about the target segment. Results on updated responses are
not reported in this paper. Finally, we also asked participants to recall what happened in the just-
watched segment. We labeled these responses according to which other segments participants had
watched prior to the just-watched target. Retrodiction-matched recall (re(R)) responses were made
during the retrodiction sequences (B1 and B2; Fig. 2), whereas prediction-matched recall (re(P))
responses were made during the prediction sequences (Al and A2; Fig. 2). Whereas retrodiction
and prediction responses reflect what participants estimate they would remember after watching
the (inferred) target segment, recall responses provide a benchmark for comparison by measuring
what they actually remember about the target segment.

For each retrodiction and prediction, participants were asked to generate at least one, and not
more than three, responses that constituted “the sorts of things [the participant would] expect
to have remembered if [they] had watched the [target] segment.” They were asked to generate
multiple responses only if those additional responses were (in their judgement) of equal likelihood
to occur. On average, participants generated 1.08 responses per prompt; therefore we chose to

consider only participants’ first (“most probable” or “most important”) responses to each prompt.
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Figure 2: Task overview. Participants watched segments of two storylines from the television series Why
Women Kill. They made free-form text responses to either retrodict what had happened in the previous
segment, predict what would happen in the next segment, or recall what happened in the just-watched
segment. Across four counterbalanced sequences, we systematically varied whether participants watched
the segments in forward or reverse chronological order, whether (or not) responses were cued using the
main characters in the target segment, and which other segments participants had watched prior to making
a response. For each segment, we collected several retrodiction, prediction, and/or recall responses across

different experimental conditions.



We also discarded a small number (n = 20) of character-cued responses that did not contain
references to all cued characters, along with one additional response due to the participant’s
misunderstanding of the task instructions during that trial. We carried out our analyses on the
remaining 2084 retrodiction, prediction, and recall responses.

We used two general approaches to assess the quality of participants’ responses (see Methods,
Fig. 3A). One approach entailed manually annotating events in the video and counting the number
of matched events in participants’ responses. We identified a total of 117 unique events reflected
across the 22 video segments (range: 3-9 per segment; see Methods, Table S1). We assigned
one “point” to each of these video events. We also identified 23 additional events in participants’
responses that were either summaries of several events or that were partial matches to the manually
identified video events. We assigned 0.5 point to each of these additional events. This point
system enabled us to compute the numbers and proportions (hit rates) of correctly retrodicted,
predicted, and recalled events contained in each response. Our second approach entailed using
a natural language processing model (Cer et al., 2018) to embed annotations and responses in
a 512-dimensional feature space. This approach was designed to capture conceptual overlap
between responses that were not necessarily tied to specific events. To quantify this conceptual
overlap, we computed the similarities between the embeddings of different sets of responses.
Following Heusser et al. (2021), we defined the precision of each participants’ retrodictions or
predictions about a target segment as the median cosine similarities between the embeddings
of (a) the participant’s retrodiction or prediction response for the target segment and (b) each
other participant’s recalls of the same segment. In other words, precision is designed to measure
the extent to which retrodictions and predictions captured the conceptual content that (other)
participants remembered. We also developed a related measure, which we call convergence, to
characterize response similarities across participants. In particular, we defined convergence as the
mean cosine similarity between the embeddings of a participant’s responses to a target segment
and all other participants” responses (of the same type) to the same segment. We analyzed the
data using generalized linear mixed models, with participant and stimulus (e.g., target segment)

identities as crossed random effects (see Methods).
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Figure 3: Retrodiction, prediction, and recall performance by experimental condition. A. Methods
schematic. For each retrodiction, prediction, and recall response, we calculated the hit rate for events in
the target segment, the response precision (see Methods), and the response convergence across participants
(see Methods). B. Target event hit rate. Mean proportions of target events that were contained in participants’
responses, for each response type, averaged across target segments. C. Response precision. Mean precisions
of participants’ responses, for each response type, averaged across target segments. The horizontal lines
denote the mean pairwise semantic similarities (see Methods) across recall responses (re(R): orange; re(P):
blue). D. Response convergence. Mean (across-participant) convergence of participants’ responses, for each
response type, averaged across target segments. All panels: error bars denote bootstrapped 95% confidence
intervals. Asterisks indicate significance in the (generalized) linear mixed models: * denotes p < 0.05 and **
denotes p < 0.01.
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First we sought to validate a main effect of response type (i.e., uncued responses, character-
cued responses, and recalls), irrespective of the temporal direction (retrodiction versus prediction).
Across these three types of responses, participants have access to increasing amounts of infor-
mation about the target segment. Therefore, across these response types, we hypothesized that
participants’ responses should become both more accurate and more convergent across individ-
uals. Consistent with this hypothesis, participants” character-cued retrodictions and predictions
were associated with higher target event hit rates than uncued retrodictions and predictions (odds
ratio (OR): 2.65, Z = 4.24, p < 0.001, 95% confidence interval (CI): 1.69 to 4.16; Fig. 3B). These
character-cued responses were also more precise (b = 0.13, £(18.1) = 943, p < 0.001, CL 0.10 to
0.16; Fig. 3C) and convergent across individuals (b = 0.11, #(18.6) = 6.21, p < 0.001, CL: 0.07 to 0.15;
Fig. 3D). Relative to character-cued responses, participants’ recalls showed higher target event hit
rates (OR = 21.83, Z = 10.61, p < 0.001, CIL: 12.35 to 38.59) and were more convergence across
individuals (b = 0.20, #(19.4) = 9.10, p < 0.001, CI: 0.16 to 0.25). These results are consistent with
the common-sense notion that access to more information about a target segment yields better
performance (i.e., higher hit rates, precision, and convergence across individuals).

Next we carried out a series of analyses specifically aimed at characterizing temporal direc-
tion effects— i.e, the relative quality of retrodictions versus predictions across different types of
responses. We hoped that these analyses might provide insights into our central question about
whether inferences about the past and future are equally accurate. Across both uncued and
character-cued responses (Fig. 2), retrodictions had numerically higher hit rates than predictions
(Fig. 3B). However, these differences were only statistically reliable for character-cued responses
(uncued responses: OR = 1.17, Z = 0.35, p = 0.73, CI: 0.47 to 2.92; character-cued responses: OR =
1.93, Z = 2.15, p = 0.03, CI: 1.06 to 3.52). We observed a similar pattern of results for the precisions
of participants” responses (Fig. 3C). Specifically, their responses tended to be numerically more
precise for retrodictions versus predictions, but the differences were only statistically reliable for
character-cued responses (uncued responses: b = 0.03, $(20.9) = 1.09, p = 0.29, CI: -0.03 to 0.10;
character-cued responses: b = 0.06, £(20.8) = 3.01, p = 0.007, CIL: 0.02 to 0.11). We also consistently

observed numerically higher convergence across participants for retrodictions versus predictions

10
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(Fig. 3D), but neither of these differences were statistically reliable (uncued responses: b = 0.03,
t(17.9) = 0.75, p = 0.46, CI: -0.05 to 0.11; character-cued responses: b = 0.04, t(17.4) = 1.46, p = 0.16,
CL: -0.02 to 0.09). Taken together, these results suggest that participants are generally better at
making retrodictions than predictions. We also verified that this was not solely a consequence of
how participants’ memory performance might have been affected by watching different segments
(or making different responses to other segments) across conditions by comparing recall responses
in the retrodiction-matched recall (re(R)) and prediction-matched recall (re(P)) conditions. Recall
performance was similar in both conditions (target event hit rate: OR=1.12, Z = 1.07, p = 0.29, CL:
0.91 to 1.39; convergence: b = 0.03, £(19.3) = 1.89, p = 0.07, CI: 0.00 to 0.07).

The above analyses were focused solely on the target segment (i.e., retrodiction of segment n
after watching segments (n + 1)...11, or prediction of segment n after watching segments 1...(n — 1)).
We wondered whether participants’ responses might also contain longer-range information about
preceding or proceeding events. In order to carry out this analysis properly, we reasoned that
participants might reference past or future events that were implied to have occurred offscreen,
but not explicitly shown onscreen. For example, a character in location A during one scene might
appear in location B during the immediately following scene. Although it wasn’t shown onscreen,
we can infer that the character traveled between locations A and B sometime between the time
intervals separating the scenes (Bordwell, 2008). In all, we manually identified a set of 74 implicit
offscreen events that were implied to have occurred given what was (explicitly) depicted onscreen
(Fig. 4A), plus one additional partial event and one additional summary event. We defined the
just-watched segment as having a lag of 0. We assigned the target segment of a participant’s
retrodiction or prediction (i.e., the immediately preceding or proceeding segment) a lag of -1 or
+1, respectively. The segment following the next was assigned a lag of 2, and so on. We tagged
offscreen events using half steps. For example, an offscreen event that occurred after the prior
segment but before the just-watched segment would be assigned a lag of -0.5.

Because there is no “ground truth” number of offscreen events, we could not compute the hit
rates for offscreen events. Instead, we counted up the absolute number of retrodicted or predicted

events as a function of lag. In other words, given that the participant had just watched segment i,

11
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Figure 4: Retrodictions and predictions of temporally near and distant events. A.Illustration of annotation
approach. For each uncued retrodiction and prediction response, we calculated the number of (retrodicted
or predicted) events as a function of temporal distance from the target segment, or lag. Onscreen (explicit)
events are tagged using integer-valued lags, whereas offscreen (implicit) events are tagged using half-step
lags (+0.5, +1.5, etc.). B. Number of events hit in participants’ uncued retrodictions and predictions for
each event type. Here we separated events we identified in participants’ responses according to whether
they occurred in the target segment (lags of +1), during the interval between the target segment and the just-
watched segment (lags of +0.5), at longer temporal distances (|lag| > 1), or were incorrect (unmatched with
any past or future events in the narrative). The counts displayed in the panel are averaged across just-watched
segments. C. Number of events hit as a function of temporal distance. Here the (across-segment) mean
numbers of events hit in participants” uncued retrodictions (orange) and predictions (blue) are displayed
as a function of temporal distance to the just-watched segment (lag). Error bars denote bootstrapped 95%
confidence intervals. Colors denote temporal direction (orange: past; blue: future) and distance (darker
shading: onscreen events from segments adjacent to the target segment; lighter shading: offscreen events).
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we asked how many events from segment i + lag they retrodicted or predicted, on average, given
that they were aiming to retrodict or predict events at lags of +1. We also counted the numbers of
unmatched events in participants’ responses that did not correspond to any events in the relevant
segments of the narrative. We focused specifically on uncued retrodictions and predictions, which
we hypothesized would provide the cleanest characterizations of participants’ initial estimates of
the unobserved past and future (i.e., without potential biases introduced by additional character
information, as in the character-cued responses). The numbers of uncued retrodicted and predicted
target (lag = +1) events were not reliably different (OR = 0.92, Z = —-0.15, p = 0.88, CI: 0.30 to 2.84).
In other words, uncued retrodictions and predictions over short timescales did not exhibit reliable
asymmetries. However, when retrodicting, participants mentioned events from the distant past
(lag < —1) more often than participants predicted events from the distant future (lag > 1; OR =
9.10, Z = 3.80, p < 0.001, CI: 2.92 to 28.39; Fig. 4B, C; for results from the character-cued conditions,
see Fig. 52). Despite this asymmetry in the accuracies of participants’ long-range retrodictions
versus predictions, there were no reliable differences in the numbers of uncued retrodicted versus
predicted events (across all lags; OR = 1.05, Z = 0.75, p = 0.45, CI: 0.93 to 1.18). Nor did we find any
reliable differences in the numbers of offscreen events immediately before or after the just-watched
segment (lag = +£0.5; OR = 0.75, Z = —-0.36, p = 0.72, CI: 0.15 to 3.59). The apparent discrepancy
between participants’ asymmetric accuracy but symmetric event counts was due to participants’
tendencies to reference “unmatched” events (i.e., events that did not correspond to any explicit
or implicit event in the story) more in their predictions than retrodictions (OR = 0.36, Z = —4.53,
p < 0.001, CL: 0.23 to 0.56). We confirmed that the retrodiction advantage held when controlling
for absolute lag (OR = 34.31, Z = 3.28, p = 0.001, CI: 4.16 to 283.20), for onscreen events alone (OR
= 4754, Z = 374, p < 0.001, CI: 6.27 to 360.60), and marginally for offscreen events alone (OR =
24.76,7Z = 1.71,p = 0.09, CIL: 0.63 to 975.27). Taken together, these analyses show that (in generating
uncued responses) participants tend to reach “further” into the unobserved past, and with greater
accuracy, than the unobserved future.

What might be driving participants to retrodict further and more accurately into the unob-

served past, compared with their predictions of the unobserved future? By inspecting the video
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content, we noticed that characters in the television show frequently referenced both past events
and (planned or predicted) future events in their spoken conversations. We wondered whether the
characters’ references might show temporal asymmetries that might explain participants” behav-
iors. Across all of the characters” conversations, and across all of the video segments, we manually
identified a total of 82 references to past or future events (i.e., that occurred onscreen or offscreen
before or after the events depicted in the current segment; Fig. 5A, S3A). Characters tended to
reference the past (52 references) more than the future (30 references), consistent with previous
work (Demiray et al., 2018). References to the past were also skewed to more temporally distant
events compared with references to the future (Figs. 5B, S3B). These observations indicate that the
characters in the stimulus display a preference for the past (versus future) in their conversations.
Might this asymmetry be driving the asymmetries in participants’ retrodictions versus predictions?

Controlling for temporal distance (lag), past and future events that story characters referenced
in their conversations were associated with higher hit rates than unreferenced events (uncued
retrodiction: OR = 12.70, Z = 10.94, p < 0.001, CI: 8.06 to 20.03; uncued prediction: OR = 8.29,
Z =6.83, p <0.001, CL: 4.52 to 15.20; Fig. 5E). This indicates that participants” responses are at least
partially influenced by the characters’ conversations. To estimate the contributions of characters’
references on hit rates, we computed the difference in hit rates between all events (which comprised
both referenced and unreferenced events) and unreferenced events, as a function of lag. These
differences exhibited a temporal asymmetry in favor of retrodiction (Fig. 5C). This indicates that the
asymmetries in participants’ retrodictions versus predictions are also at least partially influenced by
the characters’ conversations. However, these temporal asymmetries in participants” retrodictions
and predictions persisted even for events that characters never referenced in their conversations
(hit rates of uncued retrodicted versus predicted unreferenced events: OR=2.00, Z = 2.40,p = 0.02,
CL: 1.14 to 3.51; Fig. 5D). When we further separated the unreferenced events into onscreen events
and offscreen events, we found that these asymmetries held only for the onscreen events (onscreen:
OR =265, Z = 2.59, p = 0.01, CI: 1.27 to 5.54; offscreen: OR = 1.50, Z = 0.91, p = 0.36, CIL: 0.63
to 3.62). Taken together, these analyses suggest that asymmetries in the number of references

characters make to past and future events partially (but not entirely) explain why participants tend
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Figure 5: Characters’ references drive participants’ retrodiction and prediction performance. A. Illustration
of annotation approach. We manually annotated references to events in past or future segments in characters’
spoken conversations. We matched each such reference with its corresponding storyline event (and its
corresponding segment number for onscreen events, or half-step segment number for offscreen events).
We then tracked the hit rate separately for referenced versus unreferenced events in participants’ uncued
retrodictions and predictions. B. Reference rate as a function of lag. Across all possible just-watched
segments (lag 0), the bar heights denote the average proportions of events referenced in other past (orange,
negative lags) or future (blue, positive lags) segments. C. Difference in hit rates between all events and
unreferenced events. To highlight the effect of characters’ references to past and future events on participants’
retrodictions and predictions, here we display the difference in across-segment mean hit rates between all
events and unreferenced events, as a function of temporal distance (lag) to the just-watched segment. D. Hit
rates for unreferenced events. The average response hit rates for unreferenced events are displayed as a
function of temporal distance to the just-watched segment. Error bars denote bootstrapped 95% confidence
intervals. Panels B-D: colors are described in the Figure 4 caption. E. Hit rates and counts of referenced and
unreferenced events. As a function of temporal distance to the just-watched segment, the sub-panels display
the across-segment mean numbers (x-axes) and hit rates (y-axes) of referenced (red) and unreferenced (gray)
events that participants hit (darker shading) or missed (lighter shading) in their uncued retrodictions (top
sub-panel) and uncued predictions (bottom sub-panel).

15



310

to retrodict the past further and more accurately than they predict the future.

If characters’ direct references cannot fully account for the temporal asymmetry in retrodicting
the unobserved past versus predicting the unobserved future, what other factors might explain this
phenomenon? The results above indicate that characters” references to specific unobserved events
in the past or future boost participants” estimates of these events. If there are associations and
dependencies between temporally adjacent events, might characters’ references to specific events
also boost participants” estimates of other events that were temporally adjacent to the referenced
events (Fig. 6A)? Because characters tended to refer to past events more often than future events,
the proportions of unreferenced events that were adjacent to referenced events should show a
similar temporal asymmetry in favor of the past. We tested this intuition by computing the
proportions of unreferenced events in the stimulus that were temporally adjacent to past or future
events referenced by the characters during a given segment. Here we defined temporally adjacent
as any event within an absolute lag of one relative to a referenced onscreen event, or within an
absolute lag of 0.5 to a referenced offscreen event. We also defined remaining events as unreferenced
events that were not temporally adjacent to any referenced events. As shown in Figure 6B, we
observed higher proportions of unreferenced past than future events that were temporally adjacent
to referenced events. Further, these reference-adjacent events had higher hit rates than remaining
events after controlling for absolute lag (uncued retrodiction: OR = 7.15, Z = 2.40, p = 0.02, CL
1.44 to 35.58; uncued prediction: OR =3.11, Z = 2.30, p = 0.02, CI: 1.18 to 8.21; Fig. 6E). To estimate
the contributions of reference adjacency on hit rates, we computed the difference in hit rates
between unreferenced events (which comprised both reference-adjacent and remaining events)
and remaining events, as a function of lag. These differences exhibited a temporal asymmetry in
favor of retrodiction. This suggests that reference-adjacent events also contribute to participants’
retrodiction advantage. Remaining events did not exhibit a reliable temporal asymmetry (OR =
0.75, Z = 0.33, p = 0.74, CL: 0.14 to 4.08; Fig. 6D), suggesting that, after accounting for temporal
adjacency, character’s references to past and future events can explain participants’ retrodiction
advantage.

The preceding analyses show that when characters reference past or future events, those refer-
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Figure 6: Reference-adjacent events are associated with higher hit rates. A. Illustration of annotation
approach. We extended the annotation procedure depicted in Figure 5A to also label unreferenced events that
were either temporally adjacent to (i.e., immediately preceding or proceeding) a referenced event (reference-
adjacent events) or not (remaining events). B. Adjacent reference rate for unreferenced events as a function
of lag. Across all possible just-watched segments (lag 0), the bar heights denote the average proportion
of unreferenced events in other past (orange, negative lags) or future (blue, positive lags) segments that
were temporally adjacent to any referenced event. C. Difference in hit rates between unreferenced events
and remaining events. To highlight the effect of reference adjacency on retrodiction and prediction of
unreferenced events, here we display the difference in across-segment mean hit rates between unreferenced
events and remaining events, as a function of temporal distance (lag) to the just-watched segment. D. Hit
rates for remaining events. The across-segment mean response hit rates for unreferenced events that were
not temporally adjacent to any referenced events are displayed as a function of temporal distance to the just-
watched segment. Error bars denote bootstrapped 95% confidence intervals. Panels B-D: colors are described
in the Figure 4 caption. E. Hit rates and counts of referenced, reference-adjacent, and remaining events.
As a function of temporal distance to the just-watched segment, the sub-panels display the numbers (x-axes)
and proportions (y-axes) of referenced (red), reference-adjacent (purple), and remaining (gray) events that
participants hit (darker shading) or missed (lighter shading) in their uncued retrodictions (top sub-panel) and
uncued predictions (bottom sub-panel).
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Figure7: Referenced events are associated with higher hit rates, but referring events are not. A. Illustration
of annotation approach. We extended the annotation procedure depicted in Figure 5A to also label which
events contained references to events in other segments. B. Referenced versus referring events. During
event i, when a character makes a reference to another event (j), we define i as the referring event and j as
the referenced event. C. Referring rate as a function of lag. Across all possible just-watched segments (lag
0), the bar heights denote the across-segment mean proportions of events containing references to events in
other past (orange, negative lags) or future (blue, positive lags) segments. The bar colors are described in
the Figure 4 caption. D. Hit rates and counts of referenced, referring, and other events. As a function of
temporal distance to the just-watched segment, the sub-panels display the numbers (x-axes) and hit rates
(y-axes) of referenced (red), referring (green), and other (gray) events that participants hit (darker shading)
or missed (lighter shading) in their uncued retrodictions (top sub-panel) and uncued predictions (bottom
sub-panel).
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enced events, and other events that are temporally adjacent to the referenced events, are more likely
to be retrodicted and predicted. In other words, referring to a past or future event in conversation
leads to a “boost” in that event’s hit rate. We wondered whether this boost was bi-directional. In
particular: when a character refers (during a referring event) to another event (i.e., the referenced
event), does this boost only the referenced event’s hit rate, or does the referring event also receive
a boost? We labeled each event as a “referring event,” a “referenced event,” or a “other event”
(i.e., not referring or referenced; Fig. 7A, B). We limited our analysis to references to onscreen
(explicit) events. Consistent with our analysis of the proportions of referenced events (Fig. 5B), the
proportions of referring events exhibited a forward temporal asymmetry (Fig. 7C). Controlling for
absolute lag, we found that referring events were associated with lower hit rates than referenced
events (uncued retrodiction: OR = 0.03, Z = —-4.81, p < 0.001, CI: 0.01 to 0.11; uncued prediction:
OR = 0.04, Z = -5.84, p < 0.001, CI: 0.01 to 0.12; Fig. 7D) and had no reliable differences in hit
rates compared with other events (uncued retrodiction: OR = 0.37, Z = -1.46, p = 0.15, CI: 0.10 to
1.41; uncued prediction: OR = 2.16, Z = 1.68, p = 0.09, CI: 0.88 to 5.30). This indicates that only
referenced events received a hit rate boost (relative to other events), suggesting that the retrodictive

and predictive benefits of references are directed (i.e., asymmetric).

Discussion

We asked participants to watch sequences of movie segments from a character-driven television
drama and then either retrodict what had happened prior to a just-watched segment, predict what
would happen next, or recall what they had just watched. We found that participants tended
to more accurately and more readily retrodict the unobserved past than predict the unobserved
future. We traced this temporal asymmetry to (a) characters’ tendencies to refer to past events
more than future events in their ongoing conversations, and (b) associations between temporally
proximal events (Fig. 8). Essentially, associations between temporally proximal events serve to
enhance asymmetries in inferences driven by conversational references (light orange and blue bars

in Fig. 8). Our findings show that other peoples” psychological arrows of time can affect external
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Figure 8: How much information about the past and future can be inferred by observing the present? By
definition, let us say that the present moment (lag 0) contains all information about itself (dark gray). Given
learned statistical regularities, one might extrapolate from the present moment into the past or future (light
gray). As illustrated in this schematic, the information contained in the present about other moments in time
falls off with absolute lag. This falloff is approximately time-symmetric. References in the present to past
events (dark orange) or future events (dark blue) provide additional information about those referenced mo-
ments in time, beyond what could be inferred solely from statistical regularities. This additional information
about those referenced moments can also be extrapolated to other moments that are temporally nearby to
them (light orange and blue).

observers’ inferences about the unobserved past and future.

When people communicate through language or other observable behaviors, they can transmit
their knowledge and memories to others (Hirst and Echterhoff, 2012; Mahr and Csibra, 2018;
Dessalles, 2007; Zadbood et al., 2017). A consequence of this sharing across people is that biases or
limitations in one person’s knowledge and memories may also be transmitted to external observers.
Although people can communicate their intentions and future plans (i.e., information about their
future), because people know more about their pasts than their futures, the knowledge transmitted
to observers is inherently biased in favor of the past (Fig. 8, Demiray et al., 2018). Since observers
leverage communicated knowledge to reconstruct the unobserved past and future, this explains
why observers’ inferences about observed people’s lives also favor the past.

People’s knowledge asymmetries are not always directly observable. For example, in a con-

versation where someone talks exclusively about their future plans, a passive observer might gain
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more insight into the speaker’s unobserved future than their unobserved past. However, because
the speaker is also guided by their own psychological arrow of time, the “upper limit” of knowledge
about their past is still higher than that of their future. Therefore, after accounting for knowledge
that could be revealed through active participation in the conversation, the seemingly future-biased
conversation masks an underlying knowledge asymmetry in favor of the past. This hypothesized
“unmasking” effect of interaction implies that the influence of other people’s psychological arrows
of time should be more robust when the receiver is an active participant in the conversation. Other
social dimensions, such as trust, motivation or level of engagement, personal goals, and beliefs,
might serve to modulate the effective “gain” of the communication channel- i.e., how much the
speaker’s knowledge influences the observer’s knowledge.

In typical statistical sequences used in laboratory studies, there is no temporal asymmetry,
either theoretically (Cover, 1994; Bialek et al., 2001; Ellison et al., 2009), or empirically (Jones and
Pashler, 2007). What makes narratives and real-world event sequences time-asymmetric? Of
course there are many superficial differences between simple laboratory-manufactured sequences
and real-world experiences. As one example, real-world experiences often involve other people
who have their own memories and goals. At a deeper level, however, are our subjective experi-
ences essentially more complicated versions of laboratory-manufactured sequences? Or are there
fundamental differences? One possibility is that real-life event sequences are not stationary (i.e.,
notin equilibrium). For example, real-life events might start from a special initial condition (Albert,
2000; Feynman, 1965) and proceed through a series of transitions from more-ordered to less-ordered
states, thus exhibiting an arrow time. When we retrodict, it is possible that we only consider possi-
ble past events that are compatible with the highly-ordered special initial state (Carroll, 2010, 2016).
For example, when we see a broken egg we might infer that the egg had been intact at some point in
the past. But it would be difficult to guess at what states or forms the broken egg might take in the
future (Carroll, 2010, 2016). In other words, the procession from order to disorder might result in
better retrodiction performance compared with that of (implicitly less-restricted) prediction tasks.
The special initial state might also explain why we remember the past, but not the future. Some

recent work suggests that the psychological arrow of time might be explained by a related concept

21



in the statistical physics literature, termed the “thermodynamic” arrow of time (Mlodinow and
Brun, 2014; Rovelli, 2022). However, the relation between the thermodynamic and psychological
arrows of time is still under debate (Gotosz, 2021; Hemmo and Shenker, 2019).

In our study, we explicitly designed participants’ experiences such that both the past and future
were unobserved. How representative is this scenario of everyday life? For example, we might
try to speculate about the unobserved future when making plans or goals, but when might we
encounter situations where the past is unobserved but still useful for us to speculate about? Real-life
events have long-range dependencies. In general, because the future depends on what happened
in the past, discovering or estimating information about the unobserved past can help us form
predictions about the future. We illustrate this point in Figure 8 by showing that the additional
information contributed by a referenced past event can also extend into the future (light orange bars
at lags > 0). This might explain why humans devote substantial effort and resources to attempting
to figure out what happened in the unobserved past: history, anthropology, geology, detective and
forensic science, and other related fields are each primarily focused on understanding, retrodicting,

or reconstructing unobserved past events.

Methods

Participants

A total of 36 participants (25 female, mean age 21.47 years, range 19-50 years) were recruited from
the Dartmouth College community. All participants had self-reported normal or corrected-to-
normal vision, hearing, and memory, and had not watched any episodes of Why Women Kill before
the experiment. Participants gave written consent to enroll in the study under a protocol approved
by the Committee for the Protection of Human Subjects at Dartmouth College. Participantsreceived
course credit or monetary compensation for their time. Two participants completed only the first
half of the study and one participant’s data from the second half of their testing session was lost

due to a technical error. All available data were used in the analyses.
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Stimuli

The stimulus used in the study were segments of the CBS television series Why Women Kill Season
1. The TV series contained three distinct storylines depicting three women’s marital relationships.
The three storylines, which took place in the 1960s, 1980s, and 2019, were shown in an interleaved
fashion in the original episodes. The first 11 segments from the 1960s and 1980s storylines, across
the first and second episodes, were used in our study. Segments were divided based on major
scene cuts, which primarily corresponded to storyline shifts in the original episodes. The mean
length of the segments was 2.05 min (range 0.97-3.87 min). We chose this TV series based on
its strictly linear storytelling (within each storyline) and its realistic settings where most events
depicted everyday life. The plots were focused on the main characters (Beth in storyline 1 and

Simone in storyline 2), who were present in all the segments in the corresponding storylines.

Task design and procedure

Our experimental paradigm was divided across two testing sessions. In each session, participants
performed a sequence of tasks on segments from one storyline (Fig. 2). For each storyline, there
were four different task sequences: two forward chronological order sequences and two backward
chronological order sequences. Participants completed one task sequence in forward chronological
order for one storyline, and one in backward chronological order for the other storyline. The order
of the two sessions (forward chronological order sequence first or backward chronological order
sequence first), and the pairing of task sequences with storylines, were counterbalanced across
participants.

Tasks in each sequence alternated between watching, recall, and retrodiction or prediction,
with the specific order of tasks differing across the four sequences. For example, in sequence Al,
participants first watched segment 1, followed by an immediate recall of segment 1. Then they
predicted what would happen in segment 2 (first uncued and then character-cued). Participants
then watched segment 3 and recalled segment 3. After that, participants guessed what happened in

segment 2 again, which we termed “updated prediction”. Then they watched segment 2, recalled
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segment 2, and so on as depicted in Figure 2. This procedure was repeated to cover all possible
segments. We also note several edge cases at the start and end of the narrative sequences. Since
no segments precede the first segment, participants could never make “prediction” responses with
the first segment as their target. For analogous reasons, participants never made “retrodiction”
responses with the last segment as their target. Another edge case occurred in task sequences
B2 and A2 (Fig. 2). In the Al and A2 sequences, participants experience the narrative in the
original (forward) order, predicting one segment ahead along the way. In the Bl and B2 sequences,
participants experience the narrative in the reverse order, retrodicting one segment ahead along
the way. However, because A2 and B2 are offset from Al and B2 by one segment, the initial A2
responses are retrodictions, and the initial B2 responses are predictions (i.e., they conflict with the
temporal directions of the remaining responses in those conditions). We therefore excluded from
our analysis those initial retrodiction responses from the A2 condition, and the initial prediction
responses from the B2 condition.

Before watching each segment, participants were given the following task instructions. After
watching the video, participants were instructed to type their responses (retrodiction, prediction,
or recall) in 1-4 sentences. Participants were also asked to specify the characters’ names in their
responses, i.e., avoiding use of characters’ pronouns. For the recall task, the names of the characters
in the recall segment were displayed, and participants were asked to summarize the major plot
points in the present tense. For the retrodiction and prediction tasks, participants were instructed
to retrodict or predict the major plot points of the segment (also in the present tense), as though
they had watched the segment and were writing a plot synopsis. They were also instructed to
avoid speculation words (e.g., “I think Beth will...”). For the uncued retrodiction and prediction
tasks, participants made retrodictions or predictions without any cues provided, so they had to
guess which of the characters would be present in the segment. For character-cued retrodictions
and predictions, the characters in the target segment were revealed on the screen, alongside
participants” previous responses. Participants were instructed to include or incorporate those
characters into their character-cued responses, if their previous responses did not contain all the

characters provided. They were also told that the characters were not necessarily listed in their
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order of appearance in the segment, and that only the main characters would be given. Also, the
characters given did not necessarily interact with each other in that segment, and they could appear
in successive events in that segment. If participants” previous responses included all the characters
given, then they could directly proceed to the next task without updating their responses. For
all of the prediction and retrodiction tasks, participants were instructed to provide at least one
response, but they were given the opportunity enter up to three responses if they felt that multiple
possibilities were more or less equally likely. Each response (including recall) was followed by a
confidence rating on a 1-5 point scale. However, these confidence data were not analyzed in the
present study.

Before their first testing session, participants were given a practice session, where they watched
the first segment of storyline 3 followed by a recall trial, an uncued prediction trial, and a character-
cued prediction trial. Participants’ responses were checked by the experimenter to ensure compli-
ance with the instructions. To provide participants with sufficient background information about
the storyline (especially for the backward chronological sequences), at the beginning of each ses-
sion, participants were shown the time, location, and the main characters (with pictures) of the
storyline. The first session was approximately 1.5 hlong and the second session was approximately
1 h long. We allowed participants, at their own discretion and convenience, to sign up for two
consecutive testing time-slots (i.e., with their testing sessions occurring in immediate succession),
or for testing sessions on two different days. The mean inter-session interval was 0.73 days (range:
0-4 days). The experiment was conducted in a sound- and light-attenuated testing room. Videos
were displayed using a 27-inch iMac desktop computer (resolution: 5120 x 2880) and sound was
presented using the iMac’s built-in speakers. The experiment was implemented using jsPsych (de
Leeuw, 2015) and JATOS (Lange et al., 2015).

Video annotation

Events in the first 11 segments of the two storylines were identified by the first author (X.X.),
corresponding to major plot points (total: 117; mean: 5.32 per segment; range 3-9). Additionally,

74 offscreen events were identified. Of these 74 offscreen events, 43 events were identified from
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references in conversations during onscreen events. Another 16 events were identified based on
characters’ implied movements and travels. For example, if in segment 1 character A was in place
A and in segment 2 she was in place B, then the transit from place A to B for character A would be
identified as an offscreen event. The remaining 15 offscreen events were identified based on logical
inferences. For example, if a photograph was shown in an onscreen event (but not the act of the
photograph being taken), then the action that someone took the photograph would be identified
as an offscreen event. Offscreen events always occurred between two contiguous segments, or
before the first segment. The purpose of identifying offscreen events was to match participants’
responses to video events; thus our identification of these offscreen events was not intended to be

exhaustive.

Response analyses

Participants’ retrodiction, prediction, and recall responses were minimally processed to correct
obvious typos (e.g., in characters’ names) and remove speculation descriptions (e.g., “I predict
that...”). All responses were manually coded and matched to events from the video annotations.
Retrodiction and prediction responses were coded by two coders (X.X. and Z.Z.). Recall responses
were coded by one coder (X.X.). While most responses were clearly identifiable as either matching
specific storyline events or as not matching any storyline events, several ambiguous cases arose.
First, some responses combined or summarized over several (distinct) storyline events. Second,
some responses lacked any specific detail (e.g., “character A and B talk” without describing the
specific topic(s) of conversation or providing other relevant details). Based on participants’ re-
sponses, in addition to the original 117 onscreen events and 74 offscreen events, we added 25 new
events (23 onscreen, 2 offscreen) that either summarized across several events or partially matched
the annotated events. Whereas the original events were each assigned a value of one point, we
assigned these additional events a half point. This point system enabled us to directly match events
in participants’ responses to the annotated events. In our analyses of retrodictions, predictions,
and recalls, we added up the number of points earned for each response to estimate participants’

event hit rates.
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We coded only the first retrodiction or prediction response in each trial. For these responses,
we also only considered storyline events that were in the same temporal direction as the target
segment. For example, if a participant was asked to retrodict what happened in segment n, only
events from segments 1...n were considered in our analysis. When coding recall responses, we
considered only events from the target segment.

An additional ambiguous case arose in one participant’s responses pertaining to segment 12,
storyline 2, whereby the participant correctly identified an onscreen event that had not been
included in our original annotations. To account for this participant’s response, we retroactively
added that event to our annotations of that segment. We also identified and counted unmatched
events in participants’ responses (i.e., events that did not match any annotated events). Cases
where the two coders’ independent scoring disagreed were resolved through discussions between
the two coders.

To estimate the semantic similarities between pairs of responses, we first transformed each
response into a 512-dimensional vector (embedding) using the Universal Sentence Encoder (Trans-
former USE, Cer et al.,, 2018). We defined similarity as the cosine of the angle formed by the
responses’ vectors. Following Heusser et al. (2021), we defined the precision of participants’ re-
sponses as the median similarity between that response’s vector and the embedding vectors for
all other participants” recalls of the target segment. We defined the convergence of a given response
as the mean similarity between that response’s vector and all other participants’ responses to the
corresponding segment, in the same condition. To compute these median or mean similarities we
first applied the Fisher z-transformation to the similarity values, then took the median or mean
of the z-transformed similarities, and finally applied the inverse z-transformation to obtain the
precision or convergence score.

To test the validity and reliability of the USE embeddings, we performed a classification analysis
of recall responses using a leave-one-out approach. For each recall response, we calculated its
semantic similarity with all other recall responses for the same storyline. We took the segment
with the highest median semantic similarity (to the recall response) as the “predicted” segment.

Across all responses, the predicted segments matched the true recalled segments” labels 98.6% of
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the time (1088 out of 1103 predictions; chance level: 9%).

Reference coding

Two coders (X.X. and Z.Z.) identified character dialogues in the narrative that referred to past
events or future (onscreen or offscreen) events. Only references to events that occurred in a different
segment were included in this tagging procedure. For each reference, the source (referring) segment
and the referred event number were recorded. A total of 82 references were identified. Of these, 30
referred to onscreen events and 52 referred to offscreen events. For these referenced events, their
corresponding summary events or partial events were also labelled as referenced. In instances
where the coders disagreed about a given tag, disagreements were resolved through discussions
between the two coders. In our analyses, each storyline event was coded according to whether
or not it had been referenced in the segment(s) that the participant had viewed thus far in the
experiment.

In principle, a given event could receive multiple labels. For example, during event A, a
character might speak about another event, B, during which a reference to a third event (C) was
made. In this scenario, event B could be both a “referring event” (B — C) and a referenced event
(A — B). In practice, however, this scenario was quite rare, accounting for only one out of a total

of 30 onscreen events.

Statistical analysis

We used (generalized) linear mixed models to analyze the hit rates and numbers of events retrod-
icted, predicted, and recalled, as well as the precisions and convergences of participants’ responses.
Our models were implemented in R using the afex package. We carried out comparisons or con-
trasts, and extracted p-values, using the emmeans package. Participants and stimuli (e.g., segment
identity) were modeled as crossed random effects (as specified below). Random effects were se-
lected as the maximal structure that allowed model convergence. All of our statistical tests were

two-sided.
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For our tests of the target event hit rates across four levels (uncued, character-cued, updated,

and recall; Fig. 3B), we fit a generalized linear mixed model with a binomial link function:

cbind (thp, ttp — thp) ™ direction x level = seg_cnt = storyline +
(direction = level | target) +

(direction » level » seg_cnt | subject)

where thp was the number of points hit for the target segment, ttp was the total number of points
for the target segment (from its annotations), directionwaseither retrodiction or prediction, level
had four levels (uncued, character-cued, updated, and recall), seg_cnt represented the number of
segments in the storyline that had been watched (1-10, centered), storyline had two levels (1
or 2), and target had 22 levels according to the identity of the target segment. For our tests of
precision and convergence (Fig. 3C, D), we fit linear mixed models using the same formula. To
test the effect of direction (retrodiction or prediction) on target event hit rates, precision, and
convergence, we fit a (generalized) linear mixed model separately for each of the three levels
(uncued, character-cued, and recall).

For our tests comparing the numbers of hits for different types of events (Fig. 4B), we fit
generalized linear mixed models using the same formula, but with a Poisson link function. For
these models, we manually doubled the point counts to ensure that half points were mapped onto
integers, ensuring compatibility with the Poisson link function.

For our analyses of the numbers of events hit, controlling for lag (Fig. 4C), we fit a generalized

linear mixed model with a Poisson link function:

hp_lag = direction = full_stp » lag » storyline +

(direction | base_seg) + (1 | base_seg_pair) +

(direction = full_stp | lag * storyline | subject)
where hp_lag is the number of “points” earned (for each lag) in each trial (we manually doubled
the point counts to ensure that half points were mapped onto integers, for compatibility with the

Poisson link function), full_stp denoted whether the given events (of the given lag) were onscreen

(i.e., full step) or offscreen (i.e., half step), 1ag denotes the (centered) absolute lag, base_seg denotes
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the identity of the just-watched segment (22 levels), and base_seg_pair denotes the pairing of the
just-watched segment and the segment at each lag (440 levels).
For our analyses of the proportions of events hit for referenced versus unreferenced events

(Fig. 5D, E), we fit a generalized linear model with a binomial link function:

cbind (hp_lag, tp_lag — hp_lag) ~ direction = reference = full_stp +

lag + (direction | base_seg) +

(1 | base_seg_pair) +

(direction = reference = full_stp + lag | subject)
where hp_lag denotes the number of earned hit points for each reference type (referenced or
unreferenced) at each lag, tp_lag denotes the total number of possible hit points for each reference
type at each lag, and the other variables adhered to the same notation used in the above formulas.

For our tests of the proportions of events hit for all three reference types (referenced, reference-
adjacent, and remaining: Fig. 6D, E; or referenced, referring, and other: Fig. 7D), we fit a generalized
linear mixed model using the same formula as above, but with three (rather than two) reference

levels.

Code and data availability

All of the code and data generated for the current manuscript are available online at:

https://github.com/ContextLab/prediction-retrodiction-paper
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