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4 Abstract

5 We perceive, interpret, and remember ongoing experiences through the lens of our prior
6 experiences. Inferring that we are in one type of situation versus another can lead us to interpret
7 the same physical experience differently. In turn, this can affect how we focus our attention,
8 form expectations about what will happen next, remember what is happening now, draw on
9 our prior related experiences, and so on. To study these phenomena, we asked participants
10 to perform simple word list-learning tasks. Across different experimental conditions, we held

11 the set of to-be-learned words constant, but we manipulated how incidental visual features

12 changed across words and lists, along with the orders in which the words were studied. We
13 found that these manipulations affected not only how the participants recalled the manipulated
14 lists, but also how they recalled later (randomly ordered) lists. Our work shows how structure
15 in our ongoing experiences can influence how we remember both our current experiences and
16 unrelated subsequent experiences.

17 Keywords: episodic memory, free recall, incidental features, implicit priming, temporal
18 order
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Introduction

Experience is subjective: different people who encounter identical physical experiences
can take away very different meanings and memories. One reason is that our moment-by-
moment subjective experiences are shaped in part by the idiosyncratic prior experiences,
memories, goals, thoughts, expectations, and emotions that we bring with us into the
present moment. These factors collectively define a context for our experiences (Manning,
2020).

The contexts we encounter help us to construct situation models (Manning et al., 2015;
Radvansky and Copeland, 2006; Ranganath and Ritchey, 2012; Zwaan et al., 1995; Zwaan
and Radvansky, 1998) or schemas (Baldassano et al., 2018; Masis-Obando et al., 2022;
Tse et al., 2007) that describe how experiences are likely to unfold based on our prior
experiences with similar contextual cues. For example, when we enter a sit-down restau-
rant, we might expect to be seated at a table, given a menu, and served food. Priming
someone to expect a particular situation or context can also influence how they resolve
potential ambiguities in their ongoing experiences, including in ambiguous movies and
narratives (Rissman et al., 2003; Yeshurun et al., 2017).

Our understanding of how we form situation models and schemas, and how they
interact with our subjective experiences and memories, is constrained in part by substantial
differences in how we study these processes. Situation models and schemas are most often
studied using “naturalistic” stimuli such as narratives and movies (Nastase et al., 2020;
Zwaan et al., 1995; Zwaan and Radvansky, 1998). In contrast, our understanding of how
we organize our memories has been most widely informed by more traditional paradigms
like free recall of random word lists (Kahana, 2012, 2020). In free recall, participants study
lists of items and are instructed to recall the items in any order they choose. The orders

in which words come to mind can provide insights into how participants have organized
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their memories of the studied words. Because random word lists are unstructured by
design, it is not clear if, or how, non-trivial situation models might apply to these stimuli.
Nevertheless, there are some commonalities between memory for word lists and memory
for real-world experiences.

Like remembering real-world experiences, remembering words on a studied list re-
quires distinguishing the current list from the rest of one’s experience. To model this
fundamental memory capability, cognitive scientists have posited a special context repre-
sentation that is associated with each list. According to early theories (e.g. Anderson and
Bower, 1972; Estes, 1955) context representations are composed of many features which
fluctuate from moment to moment, slowly drifting through a multidimensional feature
space. During recall, this representation forms part of the retrieval cue, enabling us to
distinguish list items from non-list items. Understanding the role of context in memory
processes is particularly important in self-cued memory tasks, such as free recall, where
the retrieval cue is “context” itself (Howard and Kahana, 2002a). Conceptually, the same
general processes might be said to describe how real-world contexts evolve during natural
experiences. However, this is still an open area of study (Manning, 2020, 2021).

Over the past half-century, context-based models have had impressive success at ex-
plaining many stereotyped behaviors observed during free recall and other list-learning
tasks (Estes, 1955; Glenberg et al., 1983; Howard and Kahana, 2002a; Kimball et al., 2007;
Polyn and Kahana, 2008; Polyn et al., 2009; Raaijmakers and Shiffrin, 1980; Sederberg
et al., 2008; Shankar and Howard, 2012; Sirotin et al., 2005). These phenomena include
the well known recency and primacy effects (superior recall of items from the end and,
to a lesser extent, from the beginning of the study list), as well as semantic and temporal
clustering effects (Howard and Kahana, 2002b; Kahana et al., 2008). The contiguity effect

is an example of temporal clustering, which is perhaps the dominant form of organization
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in free recall. This effect can be seen in people’s tendencies to successively recall items that
occupied neighboring positions in the studied list (Kahana, 1996). There are also striking
effects of semantic clustering (Bousfield, 1953; Bousfield et al., 1954; Jenkins and Russell,
1952; Manning and Kahana, 2012; Romney et al., 1993), whereby the recall of a given item
is more likely to be followed by recall of a similar or related item than a dissimilar or
unrelated one. In general, people organize memories for words along a wide variety of
stimulus dimensions. As formalized by models like the Context Maintenance and Retrieval
Model (Polyn et al., 2009), the stimulus features associated with each word (e.g. the word’s
meaning, size of the object the word represents, the letters that make up the word, font
size, font color, location on the screen, etc.) are incorporated into the participant’s mental
context representation (Manning, 2020; Manning et al., 2015, 2011, 2012; Smith and Vela,
2001). During a memory test, any of these features may serve as a memory cue, which in
turn leads the participant to recall in succession words that share stimulus features.

A key mystery is whether (and how) the sorts of situation models and schemas that
people use to organize their memories of real-world experiences might map onto the
clustering effects that reflect how people organize their memories for word lists. On
one hand, both situation models and clustering effects reflect statistical regularities in
ongoing experiences. Our memory systems exploit these regularities when generating
inferences about the unobserved past and yet-to-be-experienced future (Bower et al., 1979;
Momennejad et al., 2017; Ranganath and Ritchey, 2012; Schapiro and Turk-Browne, 2015;
Xu et al., 2023). On the other hand, the rich structures of real-world experiences and other
naturalistic stimuli that enable people to form deep and meaningful situation models and
schemas have no obvious analogs in simple word lists. Often, lists in free recall studies are
explicitly designed to be devoid of exploitable temporal structure, for example, by sorting

the words in a random order (Kahana, 2012).
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We designed an experimental paradigm to explore how people organize their mem-
ories for simple stimuli (word lists) whose temporal properties change across different
“situations,” analogous to how the content of real-world experiences change across dif-
ferent real-world situations. We asked participants to study and freely recall a series of
word lists (Fig. 1). In the different conditions in our experiment, we varied the lists’
appearances and presentation orders in different ways. The studied items (words) were
designed to vary along three general dimensions: semantic (word category and physical
size of the referent), lexicographic (word length and first letter), and visual (font color and
the onscreen location of each word). We used two control conditions as a baseline; in
these control conditions all of the lists were sorted randomly, but we manipulated the
presence or absence of the visual features. In two conditions, we manipulated whether
the words” appearances were fixed or variable within each list. In six conditions, we asked
participants to first study and recall eight lists whose items were sorted by a target feature
(e.g., word category), and then study and recall an additional eight lists whose items had
the same features, but that were sorted in a random temporal order. We were interested
in how these manipulations affected participants’ recall behaviors on early (manipulated)
lists, as well as how order manipulations on early lists affected recall behaviors on later
(randomly ordered) lists. Finally, in an adaptive experimental condition we used partici-
pants’ recall behaviors on early lists to manipulate, in real-time, the presentation orders
of subsequent lists. In this adaptive condition, we varied the agreement between how
participants preferred to organize their memories of the studied items versus the orders

in which the items were presented.
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Materials and methods

Participants

We enrolled a total of 491 members of the Dartmouth College community across 11 exper-
imental conditions. The conditions included two controls (feature rich and reduced), two
visual manipulation conditions [reduced (early) and reduced (late)], six order manipula-
tion conditions (category, size, length, first letter, color, and location), and a final adaptive
condition. Each of these conditions is described in the Experimental design subsection
below.

Participants either received course credit or a one-time $10 payment for enrolling in
our study. We asked each participant to fill out a demographic survey that included
questions about their age, gender, ethnicity, race, education, vision, reading impairments,
medications or recent injuries, coffee consumption on the day of testing, and level of
alertness at the time of testing. All components of the demographics survey were optional.
One participant elected not to fill out any part of the demographic survey, and all other
participants answered some or all of the survey questions.

We aimed to run (to completion) at least 60 participants in each of the two primary
control conditions and in the adaptive condition. In all of the other conditions, we set a
target enrollment of at least 30 participants. Because our data collection procedures en-
tailed the coordinated efforts of 12 researchers and multiple testing rooms and computers,
it was not feasible for individual experimenters to know how many participants had been
run in each experimental condition until the relevant databases were synchronized at the
end of each working day. We also over-enrolled participants for each condition to help
ensure that we met our minimum enrollment targets even if some participants dropped

out of the study prematurely or did not show up for their testing session. This led us to
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exceed our target enrollments for several conditions. Nevertheless, we analyze all viable
data in the present paper.

Participants were assigned to experimental conditions based loosely on their date of
participation. (This aspect of our procedure helped us to more easily synchronize the ex-
periment databases across multiple testing computers.) Of the 490 participants who opted
to fill out the demographics survey, reported ages ranged from 17 to 31 years (mean: 19.1
years; standard deviation: 1.356 years). A total of 318 participants reported their gender as
female, 170 as male, and two participants declined to report their gender. A total of 442 par-
ticipants reported their ethnicity as “not Hispanic or Latino,” 39 as “Hispanic or Latino,”
and nine declined to report their ethnicity. Participants reported their races as White (345
participants), Asian (120 participants), Black or African American (31 participants), Amer-
ican Indian or Alaska Native (11 participants), Native Hawaiian or Other Pacific Islander
(four participants), Mixed race (three participants), Middle Eastern (one participant), and
Arab (one participant). A total of five participants declined to report their race. We note
that several participants reported more than one of the above racial categories. Participants
reported their highest degrees achieved as “Some college” (359 participants), “High school
graduate” (117 participants), “College graduate” (seven participants), “Some high school”
(five participants), “Doctorate” (one participant), and “Master’s degree” (one participant).
A total of 482 participants reported no reading impairments, and eight reported having
mild reading impairments. A total of 489 participants reported having normal color vision
and one participant reported that they were red-green color blind. A total of 482 partic-
ipants reported taking no prescription medications and having no recent injuries; four
participants reported having ADHD, one reported having dyslexia, one reported having
allergies, one reported a recently torn ACL/MCL, and one reported a concussion from

several months prior. The participants reported consuming 0-3 cups of coffee prior to the



165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

testing session (mean: 0.32 cups; standard deviation: 0.58 cups). Participants reported
their current level of alertness, and we converted their responses to numerical scores as
follows: “very sluggish” (-2), “a little sluggish” (-1), “neutral” (0), “a little alert” (1), and
“very alert” (2). Across all participants, the full range of alertness levels were reported
(range: -2-2; mean: 0.35; standard deviation: 0.89).

We dropped from our dataset the one participant who reported having abnormal color
vision, as well as 38 participants whose data were corrupted due to technical failures while
running the experiment or during the daily database merges. In total, this left usable data
from 452 participants, broken down by experimental condition as follows: feature rich (67
participants), reduced (61 participants), reduced (early) (42 participants), reduced (late)
(41 participants), category (30 participants), size (30 participants), length (30 participants),
first letter (30 participants), color (31 participants), location (30 participants), and adaptive
(60 participants). The participant who declined to fill out their demographic survey
participated in the location condition, and we verified verbally that they had normal color

vision and no significant reading impairments.

Experimental design

Our experiment is a variant of the classic free recall paradigm that we term “feature-rich free
recall.” In feature-rich free recall, participants study 16 lists, each comprised of 16 words
that vary along a number of stimulus dimensions (Fig. 1). The stimulus dimensions include
two semantic features related to the meanings of the words (semantic category, referent
object size), two lexicographic features related to the letters that make up the words (word
length in number of letters, identity of the word’s first letter), and two visual features
that are independent of the words themselves (text color, presentation location). Each

list contains four words from each of four different semantic categories, with two object
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sizes reflected across all of the words. After studying each list, the participant attempts
to recall as many words as they can from that list, in any order they choose. Because
each individual word is associated with several well defined (and quantifiable) features,
and because each list incorporates a diverse mix of feature values along each dimension,
this allows us to estimate which features participants are considering or leveraging in

organizing their memories.

Stimuli

The stimuli in our paradigm were 256 English words selected in a previous study (Ziman
et al., 2018). The words all referred to concrete nouns, and were chosen from 15 unique se-
mantic categories: body parts, building-related, cities, clothing, countries, flowers, fruits,
insects, instruments, kitchen-related, mammals, (US) states, tools, trees, and vegetables.
We also tagged each word according to the approximate size of the object the word referred
to. Words were labeled as “small” if the corresponding object was likely able to “fit in
a standard shoebox” or “large” if the object was larger than a shoebox. Most semantic
categories comprised words that reflected both “small” and “large” object sizes, but sev-
eral included only one or the other (e.g., all countries, US states, and cities are larger than
a shoebox; mean number of different sizes per category: 1.33; standard deviation: 0.49).
The numbers of words in each semantic category also varied from 12-28 (mean number of
words per category: 17.07; standard deviation number of words: 4.65). We also identified
lexicographic features for each word, including the words’ first letters and lengths (i.e.,
number of letters). Across all categories, all possible first letters were represented except
for ‘Q’ (average number of unique first letters per category: 11; standard deviation: 2
letters). Word lengths ranged from 3-12 letters (average: 6.17 letters; standard deviation:
2.06 letters).
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Figure 1: Feature-rich free recall. After studying lists comprised of words that vary along several
feature dimensions, participants verbally recall words in any order (microphone icon). Each
experimental condition manipulates word features and/or presentation orders within and/or across
lists. The rows display representative (illustrated) examples of items from the first list participants
mightencounter in each condition. The rectangles during the “Presentation phase” show illustrated
screen captures during a series of word presentations. Each word appeared onscreen for 2 seconds,
followed by 2 seconds of blank screen. The red microphone icons during the “Recall” phase denote
the one minute verbal recall interval. The labels on the right (and corresponding groupings on the
left) denote experimental condition labels.
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We assigned the categorized words into a total of 16 lists with several constraints. First,
we required that each list contained words from exactly four unique categories, each with
exactly four exemplars from each category. Second, we required that (across all words
on the list) at least one instance of both object sizes were represented. On average, each
category was represented in 4.27 lists (standard deviation: 1.16 lists). Aside from these
two constraints, we assigned each word to a unique list. After random assignment, each
list contained words with an average of 11.13 unique starting letters (standard deviation:
1.15 letters) and an average word length of 6.17 letters (standard deviation: 0.34 letters).

The above assignments of words to lists was performed once across all participants,
such that every participant studied the same set of 16 lists. In every condition we random-
ized the study order of these lists across participants. For participants in most conditions,
on some or all of the lists, we also randomly varied two additional visual features associ-
ated with each word: the presentation font color, and the word’s onscreen location. These
attributes were assigned independently for each word (and for every participant). These
visual features were varied for words in all lists and conditions except for the “reduced”
condition (all lists), the first eight lists of the “reduced (early)” condition, and the last eight
lists of the “reduced (late)” condition. In these latter cases, words were all presented in
black at the center of the experimental computer’s display.

To select a random font color for each word, we drew three integers uniformly and
at random from the interval [0,255], corresponding to the red (r), green (g), and blue
(b) color channels for that word. To assign random presentation locations to each word,
we selected two floating point numbers uniformly and at random (one for the word’s
horizontal x-coordinate and the other for its vertical y-coordinate). The bounds of these
coordinates were selected to cover the entire visible area of the display without cutting off

any part of the words. The words were shown on 27-in (diagonal) Retina 5K iMac displays

11
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(resolution: 5120 x 2880 pixels).

Most of the experimental manipulations we carried out entailed presenting or sorting
the presented words differently on the first eight lists participants studied (which we call
early lists) versus on the final eight lists they studied (late lists). Since every participant
studied exactly 16 lists, every list was either “early” or “late” depending on its order in

the list study sequence.

Real-time speech-to-text processing

Our experimental paradigm incorporates the Google Cloud Speech API speech-to-text en-
gine (Halpern et al., 2016) to automatically transcribe participants” verbal recalls into text.
This allows recalls to be transcribed in real time—a distinguishing feature of the experi-
ment; in typical verbal recall experiments, the audio data must be parsed and transcribed
manually. In prior work, we used a similar experimental setup (equivalent to the “re-
duced” condition in the present study) to verify that the automatically transcribed recalls
were sufficiently close to human-transcribed recalls to yield reliable data (Ziman et al.,
2018). This real-time speech processing component of the paradigm plays an important

role in the “adaptive” condition of the experiment, as described below.

Random conditions (Fig. 1, top four rows)

We used two “control” conditions to evaluate and explore participants” baseline behaviors.
We also used performance on these control conditions to help interpret performance in
other “manipulation” conditions. In the first control condition, which we call the feature
rich condition, we randomly shuffled the presentation order (independently for each
participant) of the words on each list. In the second control condition, which we call the

reduced condition, we randomized word presentations as in the feature rich condition.

12



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

However, rather than assigning each word a random color and location, we instead
displayed all of the words in black and at the center of the screen.

We also designed two conditions where we varied the words’ visual appearances across
lists. In the reduced (early) condition, we followed the “reduced” procedure (presenting
each word in black at the center of the screen) for early lists, and followed the “feature rich”
procedure (presenting each word in a random color and location) for late lists. Finally, in
the reduced (late) condition, we followed the feature rich procedure for early lists and the

reduced procedure for late lists.

Order manipulation conditions (Fig. 1, middle six rows)

Each of six order manipulation conditions used a different feature-based sorting procedure
to order words on early lists, where each sorting procedure relied on one relevant feature
dimension. All of the irrelevant features varied freely across words on early lists, in that
we did not consider irrelevant features in ordering the early lists. However, we note that
some features were correlated—for example, some semantic categories of words referred
to objects that tended to be a particular size, which meant that category and size were not
fully independent. On late lists, the words were always presented in a randomized order
(chosen anew for each participant). In all of the order manipulation conditions, we varied

words’ font colors and onscreen locations, as in the feature rich condition.

Defining feature-based distances. Sorting words according to a given relevant feature
requires first defining a distance function for quantifying the dissimilarity between each
pair of features. This function varied according to the type of feature under consideration.
Semantic features (category and size) are categorical. For these features, we defined a
binary distance function: two words were considered to “match” (i.e., have a distance of

0) if their labels were the same (i.e., both from the same semantic category or both of the

13



285

286

287

288

289

290

291

292

294

295

296

297

298

299

300

301

302

303

304

305

306

307

same size). If two words’ labels were different for a given feature, we defined the words
to have a distance of 1 for that feature. Lexicographic features (length and first letter)
are discrete. For these features we defined a discrete distance function. Specifically, we
defined the distance between two words as either the absolute difference between their
lengths, or the absolute distance between their starting letters in the English alphabet,
respectively. For example, two words that started with the same letter would have a “first
letter” distance of 0, and a pair of words starting with ‘J” and “A” would have a first letter
distance of 9. Because words’ lengths and letters” positions in the alphabet are always
integers, these discrete distances always take on integer values. Finally, the visual features
(color and location) are continuous and multivariate, in that each “feature” is defined by
multiple (positive) real values. We defined the “color” and “location” distances between
two words as the Euclidean distances between their (7, g, b) color or (x, y) location vectors,
respectively. Therefore, the color and location distance measures always take on non-
negative real values (upper-bounded at 441.67 for color, or 27 in for location, reflecting the

distances between the corresponding maximally different vectors).

Constructing feature-sorted lists. Given a list of words, a relevant feature, and each
word’s value(s) for that feature, we developed a stochastic algorithm for (noisily) sorting
the words. The stochastic aspect of our sorting procedure enabled us to obtain unique
orderings for each participant. First, we choose a word uniformly and at random from
the set of words on the to-be-presented list. Second, we compute the distances between
the chosen word’s feature(s) and the corresponding feature(s) of all yet-to-be-presented
words. Third, we convert these distances (between the previously presented word’s

feature values, 4, and the candidate word’s feature values, b) to similarity scores:

similarity(a, b) = exp{—1 - distance(a, b)}, (1)

14
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Figure 2: Generating stochastic feature-sorted lists. For a given feature dimension (e.g., color),
we compute the similarity (Eqn. 1) between the feature value(s) of the previous item, x, and all
yet-to-be-presented items (a—-g). Next, we normalize these similarity scores so that they sum to 1.
We lay, in sequence, a set of “sticks,” one for each candidate item, whose lengths are equal to these
normalized similarity scores. To select the next to-be-presented item, we draw a random number,
7, from the uniform distribution bounded between 0 and 1 (inclusive). The identity of the next
item is given by the stick adjacent to an indicator that moves distance r (starting from 0) along the
sequence of sticks. In this case, the next to-be-presented item is e. Note that each item’s chances of
selection is proportional to its similarity to the previous item, along the given feature dimension
(e.g., color).

where 7 = 1 in our implementation. We note that increasing the value of T would amplify
the influence of similarity on order, and decreasing the value of T would diminish the
influence of similarity on order. Also note that this approach requires 7 > 0. Finally, we

computed a set of normalized similarity values by dividing the similarities by their sum:

similarity(a, b)

)

S somatiea® ) = FT G ilarity (0,1
i=1 4

where in the denominator, i takes on each of the n feature values of the to-be-presented
words. The resulting set of normalized similarity scores sums to 1.

As illustrated in Figure 2, we use these normalized similarity scores to construct a
sequence of “sticks” that we lay end to end in a line. Each of the 7 sticks corresponds to a
single to-be-presented word, and the stick lengths are proportional to the relative similar-
ities between each word’s feature value(s) and the feature value(s) of the just-presented
word. We choose the next to-be-presented word by moving an indicator along the set of
sticks, by a distance chosen uniformly and at random on the interval [0, 1]. We select the
word associated with the stick lying next to the indicator to be presented next. This process

continues iteratively (re-computing the similarity scores and stochastically choosing the
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next to-be-presented word using the just-presented word) until all of the words have been
presented. The result is an ordered list that tends to change gradually along the selected

feature dimension (for example “sorted” lists, see Fig. 1, Order manipulation lists).

Adaptive condition

We designed the adaptive experimental condition to study the effect on memory of lists
that matched (or mismatched) the ways participants “naturally” organized their memories.
Like the other conditions, all participants in the adaptive condition studied a total of 16
lists, in a randomized order. We varied the words’ colors and locations for every word
presentation, as in the feature rich and order manipulation conditions.

All participants in the adaptive condition began the experiment by studying a set of
four initialization lists. Words and features on these lists were presented in a randomized
order (computed independently for each participant). These initialization lists were used
to estimate each participant’s “memory fingerprint,” defined below. At a high level,
a participant’s memory fingerprint describes how they prioritize or consider different
semantic, lexicographic, and/or visual features when they organize their memories.

Next, participants studied a sequence of 12 lists in three batches of four lists each. These
batches came in three types: random, stabilize, and destabilize. The batch types determined
how words on the lists in that batch were ordered. Lists in each batch were always
presented consecutively (e.g., a participant might receive four random lists, followed
by four stabilize lists, followed by four destabilize lists). The batch orders were evenly
counterbalanced across participants: there are six possible orderings of the three batches,
and 10 participants were randomly assigned to each ordering sub-condition.

Lists in the random batches were sorted randomly (as on the initialization lists and in

the feature rich condition). Lists in the stabilize and destabilize batches were sorted in ways
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that either matched or mismatched each participant’s memory fingerprint, respectively.
Our procedures for estimating participants’ memory fingerprints and ordering the stabilize

and destabilize lists are described next.

Feature clustering scores (uncorrected). Feature clustering scores describe participants’
tendencies to recall similar presented items together in their recall sequences, where
“similarity” considers one given feature dimension (e.g., category, color, etc.). We base
our main approach to computing clustering scores on analogous temporal and semantic
clustering scores developed by Polyn et al. (2009). Computing the clustering score for
one feature dimension starts by considering the corresponding feature values from the
first word the participant recalled correctly from the just-studied list. Next, we sort all
not-yet-recalled words in ascending order according to their feature-based distance to the
just-recalled item (see Defining feature-based distances). We then compute the percentile rank
of the observed next recall. We average these percentile ranks across all of the participant’s
recalls for the current list to obtain a single uncorrected clustering score for the list, for the
given feature dimension. We repeated this process for each feature dimension in turn to

obtain a single uncorrected clustering score for each list, for each feature dimension.

Temporal clustering score (uncorrected). Temporal clustering describes a participant’s
tendency to organize their recall sequences by the learned items” encoding positions. For
instance, if a participant recalled the lists” words in the exact order they were presented (or
in exact reverse order), this would yield a score of 1. If a participant recalled the words in
a random order, this would yield an expected score of 0.5. For each recall transition (and
separately for each participant), we sorted all not-yet-recalled words according to their
absolute lag (that is, distance away in the list). We then computed the percentile rank of

the next word the participant recalled. We took an average of these percentile ranks across
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all of the participant’s recalls to obtain a single (uncorrected) temporal clustering score for

the participant.

Permutation-corrected feature clustering scores. Suppose that two lists contain unequal
numbers of items of each size. For example, suppose that list A contains all “large” items,
whereas list B contains an equal mix of “large” and “small” items. For a participant
recalling list A, any correctly recalled item will necessarily match the size of the previous
correctly recalled item. In other words, successively recalling several list A items of the
same size is essentially meaningless, since any correctly recalled list A word will be large.
In contrast, successively recalling several list B items of the same size could be meaningful,
since (early in the recall sequence) the yet-to-be-recalled items come from a mix of sizes.
However, once all of the small items on list B have been recalled, the best possible next
matching recall will be a large item. All subsequent correct recalls must also be large
items—so for those later recalls it becomes difficult to determine whether the participant
is successively recalling large items because they are organizing their memories according
to size, or (alternatively), whether they are simply recalling the yet-to-be-recalled items
in a random order. In general, the precise order and blend of feature values expressed
in a given list, the order and number of correct recalls a participant makes, the number
of intervening presentation positions between successive recalls, and so on, can all affect
the range of clustering scores that are possible to observe for a given list. An uncorrected
clustering score therefore conflates participants” actual memory organization with other
“nuisance” factors.

Following our prior work (Heusser et al., 2017), we used a permutation-based cor-
rection procedure to help isolate the behavioral aspects of clustering that we were most
interested in. After computing the uncorrected clustering score (for the given list and

observed recall sequence), we compute a “null” distribution of n additional clustering
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scores after randomly shuffling the order of the recalled words (we use n = 500 in the
present study). This null distribution represents an approximation of the range of cluster-
ing scores one might expect to observe by “chance,” given that a hypothetical participant
was not truly clustering their recalls, but where the hypothetical participant still studied
and recalled exactly the same items (with the same features) as the true participant. We
define the permutation-corrected clustering score as the percentile rank of the observed un-
corrected clustering score in this estimated null distribution. In this way, a corrected score
of 1 indicates that the observed score was greater than any clustering score one might
expect by chance—in other words, good evidence that the participant was truly clustering
their recalls along the given feature dimension. We applied this correction procedure to

all of the clustering scores (feature and temporal) reported in this paper.

Memory fingerprints. We define each participant’s memory fingerprint as the set of their
permutation-corrected clustering scores across all dimensions we tracked in our study,
including their six feature-based clustering scores (category, size, length, first letter, color,
and location) and their temporal clustering score. Conceptually, a participant’s memory
fingerprint describes their tendency to order in their recall sequences (and, presumably,
organize in memory) the studied words along each dimension. To obtain stable estimates
of these fingerprints for each participant, we averaged their clustering scores across lists.
We also tracked and characterized how participants’ fingerprints changed across lists (e.g.,

Figs. 6, S8).

Online “fingerprint” analysis. The presentation orders of some lists in the adaptive
condition of our experiment (see Adaptive condition) were sorted according to participants’
current memory fingerprint, estimated using all of the lists they had studied up to that point

in the experiment. Because our experiment incorporated a speech-to-text component, all
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of the behavioral data for each participant could be analyzed just a few seconds after the
conclusion of the recall intervals for each list. We used the Quail Python package (Heusser
et al., 2017) to apply speech-to-text algorithms to the just-collected audio data, aggregate
the data for the given participant, and estimate the participant’s memory fingerprint
using all of their available data up to that point in the experiment. Two aspects of our
implementation are worth noting. First, because memory fingerprints are computed
independently for each list and then averaged across lists, the already-computed memory
fingerprints for earlier lists could be cached and loaded as needed in future computations.
This meant that our computations pertaining to updating our estimate of a participant’s
memory fingerprint only needed to consider data from the most recent list. Second, each
element of the null distributions of uncorrected fingerprint scores (see Permutation-corrected
feature clustering scores) could be estimated independently from the others. This enabled
us to make use of the testing computers” multi-core CPU architectures by considering (in
parallel) elements of the null distributions in batches of eight (i.e., the number of CPU
cores on each testing computer). Taken together, we were able to compress the relevant
computations intojust a few seconds of computing time. The combined processing time for
the speech-to-text algorithm, fingerprint computations, and permutation-based ordering
procedure (described next) easily fit within the inter-list intervals, where participants

paused for a self-paced break before moving on to study and recall the next list.

Ordering “stabilize” and “destabilize” lists by an estimated fingerprint. In the adap-
tive condition of our experiment, the presentation orders for stabilize and destabilize lists
were chosen to either maximally or minimally (respectively) comport with participants’
memory fingerprints. Given a participant’s memory fingerprint and a to-be-presented set
of items, we designed a permutation-based procedure for ordering the items. First, we

dropped from the participant’s fingerprint the temporal clustering score. For the remain-
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ing feature dimensions, we arranged the clustering scores in the fingerprint into a template
vector, f. Second, we computed n = 2500 random permutations of the to-be-presented
items. These permutations served as candidate presentation orders. We sought to select
the specific order that most (or least) closely matched f. Third, for each random permu-
tation, we computed the (permutation-corrected) “fingerprint,” treating the permutation
as though it were a potential “perfect” recall sequence. (We did not include temporal
clustering scores in these fingerprints, since the temporal clustering score for every per-
mutation is always equal to 1.) This yielded a “simulated fingerprint” vector, f; for each
permutation p. We used these simulated fingerprints to select a specific permutation, i,
that either maximized (for stabilize lists) or minimized (for destabilize lists) the correlation

between f; and f.

Computing low-dimensional embeddings of memory fingerprints

Following some of our prior work (Heusser et al.,, 2021, 2018; Manning et al., 2022),
we use low-dimensional embeddings to help visualize how participants” memory fin-
gerprints change across lists (Figs. 6A, S8A). To compute a shared embedding space
across participants and experimental conditions, we concatenated the full set of across-
participant average fingerprints (for all lists and experimental conditions) to create a large
matrix with number-of-lists (16) X number-of-conditions (10, encluding the adaptive con-
dition) rows and seven columns (one for each feature clustering score, plus an additional
temporal clustering score column). We used principal components analysis to project
the seven-dimensional observations into a two-dimensional space (using the two prin-
cipal components that explained the most variance in the data). For two visualizations
(Figs. 6B, and S8B), we computed an additional set of two-dimensional embeddings for the

average fingerprints across lists within a given list grouping (i.e., early or late). For those
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visualizations, we averaged across the rows (for each condition and group of lists) in the
combined fingerprint matrix prior to projecting it into the shared two-dimensional space.
This yielded a single two-dimensional coordinate for each list group (in each condition),
rather than for each individual list. We used these embeddings solely for visualization.

All statistical tests were carried out in the original (seven-dimensional) feature spaces.

Analyses
Probability of n'" recall curves

Probability of first recall curves (Atkinson and Shiffrin, 1968; Postman and Phillips, 1965;
Welch and Burnett, 1924) reflect the probability that an item will be recalled first, as a
function of its serial position during encoding. To carry out this analysis, we initialized
(for each participant) a number-of-lists (16) by number-of-words-per-list (16) matrix of Os.
Then, for each list, we found the index of the word that was recalled first, and we filled
in that position in the matrix with a 1. Finally, we averaged over the rows of the matrix
to obtain a 1 by 16 array of probabilities, for each participant. We used an analogous
procedure to compute probability of n' recall curves for each participant. Specifically,
we filled in the corresponding matrices according to the n'" recall on each list that each
participant made. When a given participant had made fewer than n recalls for a given
list, we simply excluded that list from our analysis when computing that participant’s

curve(s). The probability of first recall curve corresponds to a special case where nn = 1.

Lag-conditional response probability curve

The lag-conditional response probability (lag-CRP) curve (Kahana, 1996) reflects the prob-
ability of recalling a given item after the just-recalled item, as a function of their relative

encoding positions (lag). In other words, a lag of 1 indicates that a recalled item was
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presented immediately after the previously recalled item, and a lag of —3 indicates that a
recalled item came three items before the previously recalled item. For each recall tran-
sition (following the first recall), we computed the lag between the just-recalled word’s
presentation position and the next-recalled word’s presentation position. We computed
the proportions of transitions (between successively recalled words) for each lag, nor-
malizing for the total numbers of possible transitions. In carrying out this analysis, we
excluded all incorrect recalls and successive repetitions (i.e., recalling the same word twice
in a row). This yielded, for each list, a 1 by number-of-lags (-15 to +15; 30 lags in total,
excluding lags of 0) array of conditional probabilities. We averaged these probabilities
across lists to obtain a single lag-CRP for each participant. Because transitions at large ab-
solute lags are rare, these curves are typically displayed using range restrictions (Kahana,

2012).

Serial position curve

Serial position curves (Murdock, 1962) reflect the proportion of participants who remember
each item as a function of the items’ serial positions during encoding. For each participant,
we initialized a number-of-lists (16) by number-of-words-per-list (16) matrix of Os. Then,
for each correct recall, we identified the presentation position of the word and entered a
1 into that position (row: list; column: presentation position) in the matrix. This resulted
in a matrix whose entries indicated whether or not the words presented at each position,
on each list, were recalled by the participant (depending on whether the corresponding
entires were set to 1 or 0). Finally, we averaged over the rows of the matrix to yield a
1 by 16 array representing the proportion of words at each position that the participant

remembered.
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Identifying event boundaries

We used the distances between feature values for successively presented words (see Defin-
ing feature-based distances) to estimate “event boundaries” where the feature values changed
more than usual (DuBrow and Davachi, 2016; Ezzyat and Davachi, 2011; Manning et al.,
2016; Radvansky and Copeland, 2006; Swallow et al., 2011, 2009). For each list, for each
feature dimension, we computed the distribution of distances between the feature values
for successively presented words. We defined event boundaries (e.g., Fig. 3B) as occurring
between any successive pair of words whose distances along the given feature dimension
were greater than one standard deviation above the mean for that list. Note that, because
event boundaries are defined for each feature dimension, each individual list may contain
several sets of event boundaries, each at different moments in the presentation sequence

(depending on the feature dimension of interest).

Results

While holding the set of words (and the assignments of words to lists) constant, we
manipulated two aspects of participants” experiences of studying each list. We sought to
understand the effects of these manipulations on participants” memories for the studied
words. First, we added two additional sources of visual variation to the individual word
presentations: font color and onscreen location. Importantly, these visual features were
independent of the meaning or semantic content of the words (e.g., word category, size
of the referent, etc.) and of the lexicographic properties of the words (e.g., word length,
first letter, etc.). We wondered whether this additional word-independent information
might facilitate recall (e.g., by providing new potential ways of organizing or retrieving

memories of the studied words) or impair recall (e.g., by distracting participants with
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irrelevant information). Second, we manipulated the orders in which words were studied
(and how those orderings changed over time). We wondered whether presenting the same
list of words with different appearances (e.g., by manipulating font size and onscreen
location) or in different orders (e.g., sorted along one feature dimension versus another)
might serve to influence how participants organized their memories of the words. We also
wondered whether some order manipulations might be temporally “sticky” by influencing
how future lists were remembered.

To obtain a clean preliminary estimate of the consequences on memory of randomly
varying the font colors and locations of presented words (versus holding the font color
fixed at black, and holding the display locations fixed at the center of the display) we
compared participants’ performance on the feature rich and reduced experimental conditions
(see Random conditions, Fig. S1). In the feature rich condition the words’ colors and
locations varied randomly across words, and in the reduced condition words were always
presented in black, at the center of the display. Aggregating across all lists for each
participant, we found no difference in recall accuracy (i.e., the proportions of correctly
recalled words) for feature rich versus reduced lists (£(126) = —0.290,p = 0.772). However,
participants in the feature rich condition clustered their recalls substantially more along
every dimension we examined (temporal clustering: #(126) = 10.624,p < 0.001; semantic
category clustering: #(126) = 10.077,p < 0.001; size clustering: #(126) = 11.829,p < 0.001;
word length clustering: #(126) = 10.639, p < 0.001; first letter clustering: #(126) = 7.775,p <
0.001; see Permutation-corrected feature clustering scores for more information about how we
quantified each participant’s clustering tendencies.) Taken together, these comparisons
suggest that adding new features changes how participants organize their memories of
studied words, even when those new features are independent of the words themselves

and even when the new features vary randomly across words. We found no evidence
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that those additional uninformative features were distracting (in terms of their impact on
memory performance), but they did affect participants” recall dynamics (measured via
their clustering scores).

We also wondered whether adding these incidental visual features to later lists (after
the participants had already studied impoverished lists), or removing the visual features
from later lists (after the participants had already studied visually diverse lists) might affect
memory performance. In other words, we sought to test for potential effects of changing
the “richness” of participants’ experiences over time. All participants studied and recalled
a total of 16 lists; we defined early lists as the first eight lists and late lists as the last eight lists
each participant encountered. To help interpret our results, we compared participants’
memories on early versus late lists in the above feature rich and reduced conditions.
Participants in both conditions remembered more words on early versus late lists (feature
rich: t(66) = 4.553,p < 0.001; reduced: t(60) = 2.434,p = 0.018). Participants in the feature
rich (but not reduced) conditions exhibited more temporal clustering on early versus
late lists (feature rich: #(66) = 2.318,p = 0.024; reduced: #(60) = 0.929,p = 0.357). And
participants in both conditions exhibited more semantic (category and size) clustering
on early versus late lists (feature rich, category: t(66) = 3.805,p < 0.001; feature rich,
size: t(66) = 2.190,p = 0.032; reduced, category: t(60) = 2.856,p = 0.006; reduced, size:
t(60) = 2.947,p = 0.005). Participants in the reduced (but not feature rich) conditions
exhibited more lexicographic clustering on early versus late lists (feature rich, word length:
t(66) = 0.161,p = 0.872; feature rich, first letter: #(66) = 0.410,p = 0.683; reduced, word
length: #(60) = 3.528,p = 0.001; reduced, first letter: #(60) = 2.275,p = 0.026). Taken
together, these comparisons suggest that even when the presence or absence of incidental
visual features is stable across lists, participants still exhibit some differences in their

performance and memory organization tendencies for early versus late lists.
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With these differences in mind, we next compared participants’ memories on early ver-
sus late lists for two additional experimental conditions (see Random conditions, Fig. S1). In
a reduced (early) condition, we held the visual features constant on early lists, but allowed
them to vary randomly on late lists. In a reduced (late) condition, we allowed the visual fea-
tures to vary randomly on early lists, but held them constant on late lists. Given our above
findings that (a) participants tended to remember more words and exhibit stronger cluster-
ing effects on feature rich (versus reduced) lists, and (b) participants tended to remember
more words and exhibit stronger clustering effects on early (versus late) lists, we expected
these early versus late differences to be enhanced in the reduced (early) condition and
diminished in the reduced (late) condition. However, to our surprise, participants in nei-
ther condition exhibited reliable early versus late differences in accuracy (reduced (early):
t(41) = 1.499,p = 0.141; reduced (late): +(40) = 1.462,p = 0.152), temporal clustering (re-
duced (early): #(41) = 0.998, p = 0.324; reduced (late): t(40) = 1.099, p = 0.278), nor feature-
based clustering (reduced (early), category: t(41) = 0.753,p = 0.456; reduced (early), size:
t(41) = 0.721,p = 0.475; reduced (early), length: #(41) = 0.493,p = 0.625; reduced (early),
first letter: t(41) = 0.780,p = 0.440; reduced (late), category: #(40) = —0.086,p = 0.932;
reduced (late), size: t(40) = 0.746, p = 0.460; reduced (late), length: t(40) = 1.476,p = 0.148;
reduced (late), firstletter: #(40) = 0.966, p = 0.340). We hypothesized that adding or remov-
ing the variability in the visual features was acting as a sort of “event boundary” between
early and late lists. In prior work, we (and others) have found that memories formed just
after event boundaries can be enhanced (e.g., due to less contextual interference between
pre- and post-boundary items; Flores et al., 2017; Gold et al., 2017; Manning et al., 2016;
Pettijohn et al., 2016).

We found that adding incidental visual features on later lists that had not been present

on early lists (as in the reduced (early) condition) served to enhance recall performance
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relative to conditions where all lists had the same blends of features (accuracy for feature
rich versus reduced (early): #(107) = —2.230,p = 0.028; reduced versus reduced (early):
t(101) = —2.045,p = 0.043; also see Fig. S3A). However, subtracting irrelevant visual fea-
tures on later lists that had been present on early lists (as in the reduced (late) condition) did
not appear to impact recall performance (accuracy for feature rich versus reduced (late):
t(106) = —0.638,p = 0.525; reduced versus reduced (late): #(100) = —0.407,p = 0.685).
These comparisons suggest that recall accuracy has a directional component: accuracy is
affected differently by removing features later that had been present earlier versus adding
features later that had not been present earlier. In contrast, we found that participants
exhibited more temporal and feature-based clustering when we added incidental visual
features to any lists (comparisons of clustering on feature rich versus reduced lists are
reported above; temporal clustering in reduced versus reduced (early) and reduced ver-
sus reduced (late) conditions: ts < —9.780, ps < 0.001; feature-based clustering in reduced
versus reduced (early) and reduced versus reduced (late) conditions: ts < —5.443, ps
< 0.001). Temporal and feature-based clustering were not reliably different in the feature
rich, reduced (early), and reduced (late) conditions (temporal clustering in feature rich
versus reduced (early) and feature rich versus reduced (late) conditions: ts > —1.434, ps
> (0.154; feature-based clustering in feature rich versus reduced (early) and feature rich
versus reduced (late) conditions: ts > —1.359, ps > 0.177).

Taken together, our findings thus far suggest that adding item features that change
over time, even when they vary randomly and independently of the items, can enhance
participants’ overall memory performance and can also enhance temporal and feature-
based clustering. To the extent that the number of item features that vary from moment
to moment approximates the “richness” of participants” experiences, our findings sug-

gest that participants remember “richer” stimuli better and organize richer stimuli more
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reliably in their memories. Next, we turn to examine the memory effects of varying the
temporal ordering of different stimulus features. We hypothesized that changing the
orders in which participants were exposed to the words on a given list might enhance
(or diminish) the relative influence of different features. For example, presenting a set
of words alphabetically might enhance participants” attention to the studied items” first
letters, whereas sorting the same list of words by semantic category might instead enhance
participants’ attention to the words” semantic attributes. Importantly, we expected these
order manipulations to hold even when the variation in the total set of features (across
words) was held constant across lists (e.g., unlike in the reduced (early) and reduced (late)
conditions, where variations in visual features were added or removed from a subset of
the lists participants studied).

Across each of six order manipulation conditions, we sorted early lists by one feature
dimension but randomly ordered the items on late lists (see Order manipulation condi-
tions; features: category, size, length, first letter, color, and location). Participants in
the category-ordered condition showed an increase in memory performance on early
lists (accuracy, relative to early feature rich lists; #(95) = 3.034,p = 0.003). Partici-
pants in the color-ordered condition also showed a trending increase in memory per-
formance on early lists (again, relative to early feature rich lists: #(96) = 1.850,p = 0.067).
Participants” performances on early lists in all of the other order manipulation con-
ditions were indistinguishable from performance on the early feature rich lists (Jt[|s
< 1.013,ps > 0.314). Participants in both of the semantically ordered conditions exhib-
ited stronger temporal clustering on early lists (versus early feature rich lists; category:
t(95) = 8.508,p < 0.001; size: t(95) = 2.429,p = 0.017). Participants in the length-ordered
condition tended to exhibit less temporal clustering on early lists relative to early feature

rich lists (£(95) = —1.666, p = 0.099), whereas participants in the first letter-ordered condi-
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Figure 3: Recall dynamics in feature rich free recall (order manipulation conditions). A. Be-
havioral plots. Left panels. The probabilities of initiating recall with each word are plotted as a
function of presentation position. Middle panels. The conditional probabilities of recalling each
word are plotted as a function of the relative position (Lag) to the words recalled just-prior. Right
panels. The overall probabilities of recalling each word are plotted as a function of presentation po-
sition. All panels. Error ribbons denote bootstrap-estimated 95% confidence intervals (calculated
across participants). Top panels display the recall dynamics for early (order manipulation) lists in
each condjition (color). Bottom panels display the recall dynamics for late (randomly ordered) lists.
See Figures S1 and S2 for analogous plots for the random and adaptive conditions. B. Proportion
of event boundaries (see Identifying event boundaries) for each condition’s feature of focus, plotted
as a function of presentation position.
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tion exhibited stronger temporal clustering on early lists (£(95) = 2.587,p = 0.011). Partici-
pants in the visually ordered conditions exhibited more similar performance on early lists,
relative to early feature rich lists (color: #(96) = —1.064,p = 0.290; we found a trending
enhancement for participants in the location-ordered condition: #(95) = 1.682,p = 0.096).
We also compared feature-based clustering on early lists across the order manipulation
and feature rich conditions. Since these results were similar across both semantic con-
ditions (category and size), both lexicographic conditions (length and first letter), and
both visual conditions (color and location), here we aggregate data from conditions that
manipulated each of these three feature groupings in our comparisons, to simplify the
presentation. On early lists, participants in the semantically ordered conditions exhibited
stronger semantic clustering relative to participants in the feature rich condition (category:
t(125) = 2.524, p = 0.013; size: +(125) = 3.510,p = 0.001), but showed no reliable differences
in lexicographic (length: #(125) = 0.539,p = 0.591; first letter: #(125) = —0.587,p = 0.558)
or visual (color: #(125) = —0.579, p = 0.564; location: £(125) = —0.346, p = 0.730) clustering.
Similarly, participants in the lexicographically ordered conditions exhibited stronger (rela-
tive to feature rich participants) lexicographic clustering (length: £(125) = 3.426,p = 0.001;
first letter: #(125) = 3.236,p = 0.002) on early lists, but showed no reliable differences in
semantic (category: #(125) = —1.078,p = 0.283; size: t(125) = —0.310,p = 0.757) or visual
(color: #(125) = —0.209,p = 0.835; location: #(125) = —0.004,p = 0.997) clustering. And
participants in the visually ordered conditions exhibited stronger visual clustering (again,
relative to feature rich participants, and on early lists; color: #(126) = 2.099,p = 0.038;
location: #(126) = 4.392,p < 0.001), but showed no reliable differences in semantic (cate-
gory: t(126) = 0.204,p = 0.839; size: t(126) = —0.093,p = 0.926) or lexicographic (length:
t(126) = 0.714,p = 0.476; first letter: £(126) = 0.820,p = 0.414) clustering. Taken together,

these order manipulation results suggest several broad patterns (Figs. 3A, 4). First, most of
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Figure 4: Memory “fingerprints” (order manipulation conditions). The across-participant distri-
butions of clustering scores for each feature type (x-coordinate) are displayed for each experimental
condition (color), separately for order manipulation (early, top) and randomly ordered (late, bot-
tom) lists. See Figures S5 and S6 for analogous plots for the random and adaptive conditions.

the order manipulations we carried out did not reliably affect overall recall performance.
Second, most of the order manipulations increased participants” tendencies to temporally
cluster their recalls. Third, all of the order manipulations enhanced participants” clus-
tering of each condition’s target feature (i.e., semantic manipulations enhanced semantic
clustering, lexicographic manipulations enhanced lexicographic clustering, and visual
manipulations enhanced visual clustering) while leaving clustering along other feature
dimensions roughly unchanged (i.e., semantic manipulations did not affect lexicographic
or visual clustering, and so on).

When we closely examined the sequences of words participants recalled from early
order-manipulated lists (Fig. 3A, top panel), we noticed several differences from the dy-
namics of participants’ recalls of randomly ordered lists (Figs. S1, S7). One difference is
that participants in the category condition (dark purple curves, Fig. 3) most often initiated

recall with the fourth-from-last item (Recall initiation, top left panel), whereas participants
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who recalled randomly ordered lists tended to initiate recall with either the first or last list
items (Fig. S1, top left panel). We hypothesized that the participants might be “clumping”
their recalls into groups of items that shared category labels. Indeed, when we com-
pared the positions of feature changes in the study sequence (Fig. 3B; see Identifying event
boundaries) with the positions of items participants recalled first, we noticed a striking
correspondence in both semantic conditions. Specifically, on category-ordered lists, the
category labels changed every four items on average (dark purple peaks in Fig. 3B), and
participants also seemed to display an increased tendency (relative to other order manipu-
lation and random conditions) to initiate recall of category-ordered lists with items whose
study positions were integer multiples of four. Similarly, for size-ordered lists, the size la-
bels changed every eight items on average (light purple peaks in Fig. 3B), and participants
also seemed to display an increased tendency to initiate recall of size-ordered lists with
items whose study positions were integer multiples of eight. A second striking difference
is that participants in the category condition exhibited a much steeper lag-CRP (Fig. 3A,
top middle panel) than participants in other conditions. (This is another expression of
participants’ increased tendencies to temporally cluster their recalls on category-ordered
lists, as we reported above.) Taken together, these order-specific idiosyncrasies suggest
a hierarchical set of influences on participants” memories. At longer timescales, “event
boundaries” (to use the term loosely) can be induced across lists by adding or removing
incidental visual features. Atshorter timescales, “event boundaries” can be induced across
items (within a single list) by adjusting how item features change throughout the list.
The above comparisons between memory performance on early lists in the order ma-
nipulation versus feature rich conditions highlight how sorted lists are remembered differ-
ently from random lists. We also wondered how sorting lists along each feature dimension

influenced memory relative to sorting lists along the other feature dimensions. Partici-

33



725

726

727

728

729

730

731

732

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

pants trended towards remembering early lists that were sorted semantically better than
lexicographically sorted lists (#(118) = 1.936,p = 0.055). Participants also remembered
visually sorted lists better than lexicographically sorted lists (£(119) = 2.145,p = 0.034).
However, participants showed no reliable differences in recall for semantically versus
visually sorted lists (£(119) = 0.113, p = 0.910). Participants temporally clustered semanti-
cally sorted lists more strongly than either lexicographically (£(118) = 5.572,p < 0.001) or
visually (£(119) = 6.215,p < 0.001) sorted lists, but did not show reliable differences in tem-
poral clustering on lexicographically versus visually sorted lists (£(119) = 0.189, p = 0.850).
Participants also showed reliably more semantic clustering on semantically sorted lists
than lexicographically (category: #(118) = 3.492,p = 0.001, size: t(118) = 3.972,p < 0.001)
or visually (category: #(119) = 2.702,p = 0.008, size: t(119) = 4.230,p < 0.001) sorted
lists; more lexicographic clustering on lexicographically sorted lists than semantically
(length: £(118) = 3.112,p = 0.002; first letter: #(118) = 3.686, p < 0.001) or visually (length:
t(119) = 3.024, p = 0.003; first letter: #(119) = 2.644, p = 0.009) sorted lists; and more visual
clustering on visually sorted lists than semantically (color: #(119) = —-2.659,p = 0.009;
location: #(119) = —4.604, p < 0.001) or lexicographically (color: #(119) = —2.366, p = 0.020;
location: #(119) = —4.265,p < 0.001) sorted lists. In summary, sorting lists by different
features appeared to have slightly different effects on overall memory performance and
temporal clustering. Participants also tended to cluster their recalls along a given fea-
ture dimension more when the studied lists were (versus were not) sorted along that
dimension.

Beyond affecting how we process and remember ongoing experiences, what is happen-
ing to us now can also affect how we process and remember future experiences. Within
the framework of our study, we wondered: if early lists are sorted along different feature

dimensions, might this affect how people remember later (random) lists? In exploring this
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question, we considered both group-level effects (i.e., effects that tended to be common
across individuals) and participant-level effects (i.e., effects that were idiosyncratic across
individuals).

At the group level, there seemed to be almost no lingering impact of sorting early
lists on memory for later lists. To simplify the presentation, we report these null results
in aggregate across the three feature groupings. Relative to memory performance on
late feature rich lists, participants” memory performance in all six order manipulation
conditions showed no reliable differences (semantic: #(125) = 0.487,p = 0.627; lexico-
graphic: #(125) = 0.878,p = 0.382; visual: #(126) = 1.437,p = 0.153). Nor did we observe
any reliable differences in temporal clustering on late lists (relative to late feature rich
lists; semantic: #(125) = 0.146,p = 0.884; lexicographic: #(125) = 0.923,p = 0.358; visual:
t(126) = 0.525,p = 0.601). Aside from a slightly increased tendency for participants to
cluster words by their length on late visual order manipulation lists (more than late fea-
ture rich lists; £(126) = 2.199, p = 0.030), we observed no reliable differences in any type of
feature clustering on late order manipulation condition lists versus late feature rich lists
(IItlls < 1.234, ps > 0.220).

We also looked for more subtle group-level patterns. For example, perhaps sorting
early lists by one feature dimension could affect how participants cluster other features
(on early and/or late lists) as well. We defined participants” memory fingerprints as the set
of their temporal and feature clustering scores (see Memory fingerprints). A participant’s
memory fingerprint describes how they tend to retrieve memories of the studied items,
perhaps searching in parallel through several feature spaces (or along several represen-
tational dimensions). To gain insights into the dynamics of how participants’ clustering
scores tended to change over time, we computed the average (across participants) finger-

print from each list, from each order manipulation condition (Fig. 6). We projected these
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Figure 5: Recall probability and clustering scores on early and late lists. The bar heights
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and feature clustering scores (C.) for early (gray) and late (gold) lists. For the feature rich bars (left),
the feature clustering scores are averaged across features. For the order manipulation conditions,
feature clustering scores are displayed for the focused-on feature for each condition (e.g., category
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bootstrap-estimated 95% confidence intervals. The horizontal dotted lines denote the average
values (across all lists and participants) for the feature rich condition.
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fingerprints into a two-dimensional space to help visualize the dynamics (top panels; see
Computing low-dimensional embeddings of memory fingerprints). We found that participants’
average fingerprints tended to remain relatively stable on early lists, and exhibited a
“jump” to another stable state on later lists. The sizes of these jumps varied somewhat
across conditions (the Euclidean distances between fingerprints in their original high di-
mensional spaces are displayed in the bottom panels). We also averaged the fingerprints
across early and late lists, respectively, for each condition (Fig. 6B). We found that par-
ticipants’ fingerprints on early lists seem to be influenced by the order manipulations
for those lists (see the locations of the circles in Fig. 6B). There also seemed to be some
consistency across different features within a broader type. For example, both semantic
feature conditions (category and size; purple markers) diverge in a similar direction from
the group; both lexicographic feature conditions (length and first letter; yellow markers)
diverge in a similar direction; and both visual conditions (color and location; green) also
diverge in a similar direction. But on late lists, participants” fingerprints seem to return
to a common state that is roughly shared across conditions (i.e., the stars in that panel are
clumped together).

When we examined the data at the level of individual participants (Figs. 7 and 8), a
clearer story emerged. Within each order manipulation condition, participants exhibited
a range of feature clustering scores on both early and late lists (Fig. 7A, B). Across every
order manipulation condition, participants who exhibited stronger feature clustering (for
their condition’s manipulated feature) recalled more words. This trend held overall across
conditions and participants (early: #(179) = 0.537,p < 0.001; late: 7(179) = 0.492, p < 0.001)
as well as for each condition individually for early (rs > 0.386, all ps < 0.035) and late
(rs > 0.462, all ps < 0.010) lists. We found no evidence of a condition-level trend; for

example, the conditions where participants tended to show stronger clustering scores
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Figure 6: Memory fingerprint dynamics (order manipulation conditions). A. Each column (and
color) reflects an experimental condition. In the top panels, each marker displays a 2D projection of
the (across-participant) average memory fingerprint for one list. Order manipulation (early) lists
are denoted by circles and randomly ordered (late) lists are denoted by stars. All of the fingerprints
(across all conditions and lists) are projected into a common space. The bar plots in the bottom
panels display the Euclidean distances of the per-list memory fingerprints to the list 0 fingerprint,
for each condition. Error bars denote bootstrap-estimated 95% confidence intervals. The dotted
vertical lines denote the boundaries between early and late lists. B. In this panel, the fingerprints
for early (circle) and late (star) lists are averaged across lists and participants before projecting the
fingerprints into a (new) 2D space. See Figure S8 for analogous plots for the random conditions.

were not correlated with the conditions where participants remembered more words
(early: r(4) = 0.526,p = 0.284; late: r(4) = —0.257,p = 0.623; see insets of Fig. 7A and B).
We observed carryover associations between feature clustering and recall performance
(Fig. 7C, D). Participants who showed stronger feature clustering on early lists tended to
recall more items on late lists (across conditions: r(179) = 0.492,p < 0.001; all conditions
individually: rs > 0.462, all ps < 0.010). Participants who recalled more items on early lists
also tended to show stronger feature clustering on late lists (across conditions: r(179) =
0.280, p < 0.001; all non-visual conditions: rs > 0.445, all ps < 0.014; color: 7(29) = 0.298,p =
0.103; location: r(28) = 0.354,p = 0.055). Neither of these effects showed condition-level
trends (early feature clustering versus late recall probability: r(4) = —0.299,p = 0.565;
early recall probability versus late feature clustering: r(4) = 0.400,p = 0.432). We also
looked for associations between feature clustering and temporal clustering. Across every

order manipulation condition, participants who exhibited stronger feature clustering also
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exhibited stronger temporal clustering. For early lists (Fig. 7E), this trend held overall
(r(179) = 0.924,p < 0.001), for each condition individually (all rs > 0.822, all ps < 0.001),
and across conditions (r(4) = 0.964, p = 0.002). For late lists (Fig. 7F), the results were more
variable (overall: 7(179) = 0.348,p < 0.001; all non-visual conditions: rs > 0.382, all ps
< 0.037; color: 7(29) = 0.453, p = 0.011; location: r(28) = 0.190, p = 0.314; across-conditions:
r(4) = —0.036, p = 0.945). While less robust than the carryover associations between feature
clustering and recall performance, we also observed some carryover associations between
feature clustering and temporal clustering (Fig. 7G, H). Participants who showed stronger
feature clustering on early lists trended towards showing stronger temporal clustering
on later lists (overall: r(179) = 0.301,p < 0.001; for individual conditions: all rs > 0.297,
all ps < 0.111; across conditions: r(4) = 0.107,p = 0.840). And participants who showed
stronger temporal clustering on early lists trended towards showing stronger feature
clustering on later lists (overall: 7(179) = 0.579,p < 0.001; all non-visual conditions: rs
> 0.323, all ps < 0.082; visual conditions: rs > 0.089, all ps < 0.632; across conditions:
r(4) = 0.916,p = 0.010). Taken together, the results displayed in Figure 7 show that
participants who were more sensitive to the order manipulations (i.e., participants who
showed stronger feature clustering for their condition’s feature on early lists) remembered
more words and showed stronger temporal clustering. These associations also appeared
to carry over across lists, even when the items on later lists were presented in a random
order.

If participants show different sensitivities to order manipulations, how do their be-
haviors carry over to later lists? We found that participants who showed strong feature
clustering on early lists often tended to show strong feature clustering on late lists (Fig. 8A;
overall across participants and conditions: r(179) = 0.592,p < 0.001; non-visual feature

conditions: all rs > 0.350, all ps < 0.058; color: r(29) = —0.071,p = 0.704; location:
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Figure 7: Interactions between feature clustering, recall probability, and contiguity. A. Recall
probability versus feature clustering scores for order manipulation (early) lists. B. Recall probability
versus feature clustering for randomly ordered (late) lists. C. Recall probability on late lists versus
feature clustering on early lists. D. Recall probability on early lists versus feature clustering
on late lists. E. Temporal clustering scores (contiguity) versus feature clustering scores on early
lists. F. Temporal clustering scores versus feature clustering scores on late lists. G. Temporal
clustering scores on late lists versus feature clustering scores on early lists. H. Temporal clustering
scores on early lists versus feature clustering scores on late lists. All panels. Each dot in the
main scatterplots denotes the average scores for one participant. The colored regression lines
are computed across participants. The inset displays condition-averaged results, where each dot
reflects a single condition and the regression line is computed across experimental conditions. All
error ribbons denote bootstrap-estimated 95% confidence intervals.
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Figure 8: Feature clustering carryover effects. A. Feature clustering scores for order manipulation
(early) versus randomly ordered (late) lists. B. Accuracy differences (on early versus late lists)
versus feature clustering “carryover” (defined as the differences between the average clustering
scores on early and late lists). C. Temporal clustering differences (on early versus late lists) versus
feature clustering carryover. All panels. Each dot in the main scatterplots denotes the average
scores for one participant. The colored regression lines are computed across participants. The inset
displays condition-averaged results, where each dot reflects a single condition and the regression
line is computed across experimental conditions. All error ribbons denote bootstrap-estimated
95% confidence intervals.

r(28) = 0.032,p = 0.868; across conditions: r(4) = 0.934,p = 0.006). Although participants
tended to show weaker feature clustering on late lists (Fig. 6) on average, the associations
between early and late lists for individual participants suggests that some influence of
early order manipulations may linger on late lists. We found that participants who exhib-
ited larger carryover in feature clustering (i.e., continued to show strong feature clustering
on late lists) for the semantic order manipulations (but not other manipulations) also
tended to show a larger improvement in recall (Fig. 8B; overall: r(179) = 0.378,p < 0.001;
category: r(28) = 0.419,p = 0.021; size: r(28) = 0.737,p < 0.001; non-semantic condi-
tions: all rs < 0.252, all ps > 0.179; across conditions: r(4) = 0.773,p = 0.072) on late
lists, relative to early lists. Participants who exhibited larger carryover in feature cluster-
ing also tended to show stronger temporal clustering on late lists (relative to early lists)
for all but the category condition (Fig. 8C; overall: 7(179) = 0.434,p < 0.001; category:
r(28) = 0.229,p = 0.223; all non-category conditions: all rs > 0.448, all ps < 0.012; across
conditions: r(4) = 0.598,p = 0.210).
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We suggest two potential interpretations of these findings. First, it is possible that
some participants are more “malleable” or “adaptable” with respect to how they organize
incoming information. When presented with list of items sorted along any feature dimen-
sion, they will simply adopt that feature as a dominant dimension for organizing those
items and subsequent (randomly ordered) items. This flexibility in memory organization
might afford such participants a memory advantage, explaining their strong recall perfor-
mance. An alternative interpretation is that each participant comes into our study with a
“preferred” way of organizing incoming information. If they happen to be assigned to an
order manipulation condition that matches their preferences, then they will appear to be
“sensitive” to the order manipulation and also exhibit a high degree of carryover in feature
clustering from early to late lists. These participants might demonstrate strong recall per-
formance not because of their inherently superior memory abilities, but rather because the
specific condition they were assigned to happened to be especially easy for them, given
their pre-experimental tendencies. To help distinguish between these interpretations, we
designed an adaptive experimental condition (see Adaptive condition). The primary ma-
nipulation in the adaptive condition is that participants each experience three key types
of lists. On random lists, words are ordered randomly (as in the feature rich condition).
On stabilize lists, the presentation order is adjusted to be maximally similar to the current
estimate of the participant’s memory fingerprint (see Online “fingerprint” analysis). Third,
on destabilize lists, the presentation order is adjusted to be minimally similar to the current
estimate of the participant’s memory fingerprint (see Ordering “stabilize” and “destabilize”
lists by an estimated fingerprint). The orders in which participants experienced each type
of list were counterbalanced across participants to help reduce the influence of potential
list-order effects. Because the presentation orders on stabilize and destabilize lists are

adjusted to best match each participant’s (potentially unique) memory fingerprint, the
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Figure 9: Adaptive free recall. A. Average probability of recall (taken across words, lists, and
participants) for lists from each adaptive condition. B. Average temporal clustering scores for
lists from each adaptive condition. C. Recall probability versus temporal clustering scores by
participant (main panel; each participant contributes one dot per condition) and averaged within
condition (inset; each dot represents a single condition). D. Per-list correlations between the current
list’s fingerprint and the average fingerprint computed from all previous lists. The normalized list
numbers (x-axis) denote the number of lists of the same type that the participant had experienced
at the time of the current list. All panels: Colors denote the sorting type (condition) for each list.
Error bars and ribbons denote bootstrap-estimated 95% confidence intervals. For additional details
about participants’ behavior and performance during the adaptive conditions, see Figure S2.

adaptive condition removes uncertainty about whether participants” assigned conditions
might just “happen” to match their preferred ways of organizing their memories.

Participants’ fingerprints on stabilize and random lists tended to become (numerically)
slightly more similar to their average fingerprints computed from the previous lists they
had experienced, and their fingerprints on destabilize lists tended to become numerically
less similar (Fig. 9D). Overall, we found that participants tended to be better at remember-
ing words on stabilize lists relative to words on both random (#(59) = 1.740, p = 0.087) and
destabilize (£(59) = 1.714,p = 0.092) lists (Fig. 9A). Participants showed no reliable differ-
ences in their memory performance on destabilize versus random lists (£(59) = —0.249,p =
0.804). Participants also exhibited stronger temporal clustering on stabilize lists, relative to
random (t(59) = 3.554, p = 0.001) and destabilize (t(59) = 4.045, p < 0.001) lists (Fig. 9B). We
found no reliable differences in temporal clustering for items on random versus destabilize
lists (£(59) = —0.781, p = 0.438).

As in the other experimental manipulations, participants in the adaptive condition

exhibited substantial variability with respect to their overall memory performance and
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their clustering tendencies (Fig. 9C). We found that individual participants who exhibited
strong temporal clustering scores also tended to recall more items. This held across
subjects, aggregating across all list types (1(178) = 0.721,p < 0.001), and for each list type
individually (all rs > 0.683, all ps < 0.001). Taken together, the results from the adaptive
condition suggest that each participant comes into the experiment with their own unique
memory organization tendencies, as characterized by their memory fingerprint. When
participants study lists whose items come pre-sorted according to their unique preferences,

they tend to remember more and show stronger temporal clustering.

Discussion

We asked participants to study and freely recall word lists. The words on each list (and
the total set of lists) were held constant across participants. For each word, we considered
(and manipulated) two semantic features (category and size) that reflected aspects of the
meanings of the words, along with two lexicographic features (word length and first letter),
which reflected characteristics of the words’ letters. These semantic and lexicographic
features are intrinsic to each word. We also considered and manipulated two additional
visual features (color and location) that affected the appearance of each studied item, but
could be varied independently of the words’ identities. Across different experimental
conditions, we manipulated how the visual features varied across words (within each
list), along with the orders of each list’s words. Although the participants’ task (verbally
recalling as many words as possible, in any order, within one minute) remained constant
across all of these conditions, and although the set of words they studied from each list
remained constant, our manipulations substantially affected participants’ memories. The
impact of some of the manipulations also affected how participants remembered future

lists that were sorted randomly.
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Recap: visual feature manipulations

We found that participants in our feature rich condition (where we varied words’ ap-
pearances) recalled similar proportions of words to participants in a reduced condition
(where appearance was held constant across words). However, varying the words” ap-
pearances led participants to exhibit much more temporal and feature-based clustering.
This suggests that even seemingly irrelevant elements of our experiences can affect how
we remember them.

When we held the within-list variability in participants’ visual experiences fixed across
lists (in the feature rich and reduced conditions), they remembered more words from early
lists than from late lists. For feature rich lists, they also showed stronger clustering for early
versus late lists. However, when we varied participants’ visual experiences across lists (in
the “reduced (early)” and “reduced (late)” conditions), these early versus late accuracy
and clustering differences disappeared. Abruptly changing how incidental visual features
varied across words seemed to act as a sort of “event boundary” that partially reset how
participants processed and remembered post-boundary lists. Within-list clustering also
increased in these manipulations, suggesting that the “within-event” words were being
more tightly associated with each other.

When we held the visual features constant during early lists, but then varied words’
appearances in later lists (i.e., the reduced (early) condition), participants” overall memory
performance improved. However, this impact was directional: when we removed visual
features from words in late lists that had been present in early lists (i.e., the reduced (late)

condition), we saw no memory improvement.
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Recap: order manipulations

When we (stochastically) sorted early lists along different feature dimensions, we found
several impacts on participants’ memories. Sorting early lists semantically (by word cat-
egory) enhanced participants’ memories for those lists, but the effects on performance of
sorting along other feature dimensions were inconclusive. However, each order manipu-
lation substantially affected how participants organized their memories of words from the
ordered lists. When we sorted lists semantically, participants displayed stronger semantic
clustering; when we sorted lists lexicographically, they displayed stronger lexicographic
clustering; and when we sorted lists visually, they displayed stronger visual clustering.
Clustering along the unmanipulated feature dimensions in each of these cases was un-
changed.

The order manipulations we examined also appeared to induce, in some cases, a
tendency to “clump” similar words within a list. This was most apparent on semantically
ordered lists, where the probability of initiating recall with a given word seemed to follow
groupings defined by feature change points.

We also examined the impact of early list order manipulations on memory for late
lists. At the group level, we found little evidence for lingering “carryover” effects of
these manipulations: participants in the order manipulation conditions showed similar
memory performance and clustering on late lists to participants in the corresponding
control (feature rich) condition. At the level of individual participants, however, we
found several meaningful patterns.

Participants who showed stronger feature clustering on early (order-manipulated) lists
tended to better remember late (randomly ordered) lists. Participants who remembered
early lists better also tended to show stronger feature clustering (along their condition’s

feature dimension) on late lists (even though the words on those late lists were presented
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in arandom order). We also observed some (weaker) carryover effects of temporal cluster-
ing. Participants who showed stronger feature clustering (along their condition’s feature
dimension) on early lists tended to show stronger temporal clustering on late lists. And
participants who showed stronger temporal clustering on early lists also tended to show
stronger feature clustering on late lists. Essentially, these order manipulations appeared to
affect each participant differently. Some participants were sensitive to our manipulations,
and those participants” memory performance was impacted more strongly, both for the
ordered lists and for future (random) lists. Other participants appeared relatively insen-
sitive to our manipulations, and those participants showed little carryover effects on late
lists.

These results at the individual participant level suggested to us that either (a) some
participants were more sensitive to any order manipulation, or (b) some participants might
be more (or less) sensitive to manipulations along particular (e.g., preferred) feature dimen-
sions. To help distinguish between these possibilities, we designed an adaptive condition
whereby we attempted to manipulate whether participants studied words in an order that
either matched or mismatched our estimate of how they would cluster or organize the
studied words in memory (i.e., their idiosyncratic memory fingerprint). We found that
when we presented words in orders that were consistent with participants” memory fin-
gerprints, they remembered more words overall and showed stronger temporal clustering.
This comports well with the second possibility described above. Specifically, each partici-
pant seems to bring into the experiment their own idiosyncratic preferences and strategies
for organizing the words in their memory. When we presented the words in an order
consistent with each participant’s idiosyncratic fingerprint, their memory performance
improved. This might indicate that the participants were spending less cognitive effort

“reorganizing” the incoming words on those lists, which freed up resources to devote to
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encoding processes instead.

Context effects on memory performance and organization

In real-world experience, each moment’s unique blend of contextual features (where we
are, who we are with, what else we are thinking of at the time, what else we experience
nearby in time, etc.) plays an important role in how we interpret, experience, and re-
member that moment, and how we relate it to our other experiences (e.g., for review see
Manning, 2020). What are the analogues of real-world contexts in laboratory tasks like
the free recall paradigm employed in our study? In general, modern formal accounts of
free recall (Kahana, 2020) describe context as comprising a mix of (a) features pertaining
to or associated with each item and (b) other items and thoughts experienced nearby in
time, e.g., that might still be “lingering” in the participant’s thoughts at the time they
study the item. Item features can include semantic properties (i.e., features related to the
item’s meaning), lexicographic properties (i.e., features related to the item’s letters), sen-
sory properties (i.e., feature related to the item’s appearance, sound, smell, etc.), emotional
properties (i.e., features related to how meaningful the item is, whether the item evokes
positive or negative feelings, etc.), utility-related properties (e.g., features that describe
how an item might be used or incorporated into a particular task or situation), and more.
Essentially any aspect of the participant’s experience that can be characterized, measured,
or otherwise described can be considered to influence the participant’s mental context at
the moment they experience that item. Temporally proximal features include aspects of
the participant’s internal or external experience that are not specifically occurring at the
moment they encounter an item, but that nonetheless influence how they process the item.
Thoughts related to percepts, goals, expectations, other experiences, and so on that might

have been cued (directly or indirectly) by the participant’s recent experiences prior to the

48



1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

current moment all fall into this category. Internally driven mental states, such as thinking
about an experience unrelated to the experiment, also fall into this category.

Contextual features need not be intentionally or consciously perceived by the partic-
ipant to affect memory, nor do they need to be relevant to the task instructions or the
participant’s goals. Incidental factors such as font color (Jones and Pyc, 2014), back-
ground color (Isarida and Isarida, 2007), inter-stimulus images (Chiu et al., 2021; Ger-
shman et al., 2013; Manning et al., 2016), background sounds (Beaman and Jones, 1998;
Sahakyan and Smith, 2014), secondary tasks (Masicampto and Sahakyan, 2014; Oberauer
and Lewandowsky, 2008; Polyn et al., 2009), and more can all impact how participants
remember, and organize in memory;, lists of studied items.

Consistent with this prior work, we found that participants were sensitive to task-
irrelevant visual features. We also found that changing the dynamics of those task-
irrelevant visual features (in the reduced (early) and reduced (late) conditions) also affected
participants’ memories. This suggests that it is not only the contextual features themselves
that affect memory, but also the dynamics of context—i.e., how the contextual features

associated with each item change over time.

Priming effects on memory performance and organization

When our ongoing experiences are ambiguous, we can draw on our past experiences,
expectations, and other real, perceived, or inferred cues to help resolve these ambiguities.
We may also be overtly or covertly “primed” to influence how we are likely to resolve
ambiguities. For example, before listening to a story with several equally plausible inter-
pretations, providing participants with “background” information beforehand can lead
them towards one interpretation versus another (Yeshurun et al., 2017). More broadly, our

conscious and unconscious biases and preferences can influence not only how we interpret
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high-level ambiguities, but even how we process low-level sensory information (Katabi
et al., 2023).

In more simplified scenarios, like list-learning paradigms, the stimuli and tasks partic-
ipants encounter before studying a given list can influence what and how they remember.
For example, when participants are directed to suppress, disregard, or ignore “distracting”
stimuli early on in an experiment, participants often tend to remember those stimuli less
well when they are re-used as to-be-remembered targets later on in the experiment (Tip-
per, 1985). In general, participants” memories can be influenced by exposing them to
a wide range of positive and negative priming factors before they encounter the to-be-
remembered information (Balota et al., 1992; Clayton and Chattin, 1989; Donnelly, 1988;
Flexser and Tulving, 1982; Gotts et al., 2012; Huang et al., 2004; Huber, 2008; Huber et al.,
2001; McNamara, 1994; Neely, 1977; Rabinowitz, 1986; Tulving and Schacter, 1991; Watkins
et al., 1992; Wiggs and Martin, 1998).

The order manipulation conditions in our experiment show that participants can also be
primed to pick up on more subtle statistical structure in their experiences, like the dynamics
of how the presentation orders of stimuli vary along particular feature dimensions. These
order manipulations affected not only how participants remembered the manipulated
lists, but also how they remembered future lists with different (randomized) temporal

properties.

Expectation, event boundaries, and situation models

Our findings that participants” current and future memory behaviors are sensitive to
manipulations in which features change over time, and how features change across items
and lists, suggest parallels with studies on how we form expectations and predictions,

segment our continuous experiences into discrete events, and make sense of different
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scenarios and situations. Each of these real-world cognitive phenomena entail identifying
statistical regularities in our experiences, and exploiting those regularities to gain insight,
form inferences, organize or interpret memories, and so on. Our past experiences enable
us to predict what is likely to happen in the future, given what happened “next” in our
previous experiences that were similar to now (Barron et al., 2020; Brigard, 2012; Chow
et al., 2016; Eichenbaum and Fortin, 2009; Gluck et al., 2002; Goldstein et al., 2021; Griffiths
and Steyvers, 2003; Jones and Pashler, 2007; Kim et al., 2014; Manning, 2020; Tamir and
Thornton, 2018; Xu et al., 2023).

When our expectations are violated, such as when our observations disagree with our
predictions, we may perceive the “rules” or “situation” to have changed. Event boundaries
denote abrupt changes in the state of our experience, for example, when we transition
from one situation to another (Radvansky and Zacks, 2017; Zwaan and Radvansky, 1998).
Crossing an event boundary can impair our memory for pre-boundary information and en-
hance our memory for post-boundary information (DuBrow and Davachi, 2013; Manning
et al., 2016; Radvansky and Copeland, 2006; Sahakyan and Kelley, 2002). Event bound-
aries are also tightly associated with the notion of situation models and schemas—mental
frameworks for organizing our understanding about the rules of how we and others are
likely to behave, how events are likely to unfold over time, how different elements are
likely to interact, and so on. For example, a situation model pertaining to a particular
restaurant might set our expectations about what we are likely to experience when we
visit that restaurant (e.g., what the building will look like, how it will smell when we enter,
how crowded the restaurant is likely to be, the sounds we are likely to hear, etc.). Similarly,
as mentioned in the Introduction, we might learn a schema describing how events are likely
to unfold across any sit-down restaurant—e.g., open the door, wait to be seated, receive a

menu, decide what to order, place the order, and so on. Situation models and schemas can
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help us to generalize across our experiences, and to generate expectations about how new
experiences are likely to unfold. When those expectations are violated, we can perceive
ourselves to have crossed into a new situation.

In our study, we found that abruptly changing the “rules” about how the visual
appearances of words are determined, or about the orders in which words are presented,
can lead participants to behave similarly to what one might expect upon crossing an event
boundary. Adding variability in font color and presentation location for words on late
lists, after those visual features had been held constant on early lists, led participants to
remember more words on those later lists. One potential explanation is that participants
perceive an “event boundary” to have occurred when they encounter the first “late” list.
According to contextual change accounts of memory across event boundaries (e.g., Flores
et al., 2017; Gold et al., 2017; Pettijohn et al., 2016; Sahakyan and Kelley, 2002), this could
help to explain why participants in the reduced (early) condition exhibited better overall
memory performance. Specifically, their memory for late list items could benefit from less
interference from early list items, and the contextual features associated with late list items
(after the “event boundary”) might serve as more specific recall cues for those late items

(relative to if the boundary had not occurred).

Theoretical implications

Although most modern formal theories of episodic memory have been developed and
tested to explain memory for list-learning tasks (Kahana, 2020), a number of recent studies
suggest some substantial differences between memory for lists versus naturalistic stim-
uli (e.g., real-world experiences, narratives, films, etc.; Heusser et al., 2021; Lee et al., 2020;
Manning, 2021; Nastase et al., 2020). One reason is that naturalistic stimuli are often much

more engaging than the highly simplified list-learning tasks typically employed in the
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psychological laboratory, perhaps leading participants to pay more attention, exert more
effort, and stay more consistently motivated to perform well (Nastase et al., 2020). Another
reason is that the temporal unfoldings of events and occurrences in naturalistic stimuli
tend to be much more meaningful than the temporal unfoldings of items on typical lists
used in laboratory memory tasks. Real-world events exhibit important associations at a
broad range of timescales. For example, an early detail in a detective story may prove to
be a clue to solving the mystery later on. Further, what happens in one moment typically
carries some predictive information about what came before or after (Xu et al., 2023). In
contrast, the lists used in laboratory memory tasks are most often ordered randomly, by
design, to remove meaningful temporal structure in the stimulus (Kahana, 2012).

On one hand, naturalistic stimuli provide a potential means of understanding how our
memory systems function in the circumstances we most often encounter in our everyday
lives. This implies that, to understand how memory works in the “real world,” we should
study memory for stimuli that reflect the relevant statistical structure of real-world expe-
riences. On the other hand, naturalistic stimuli can be difficult to precisely characterize or
model, making it difficult to distinguish whether specific behavioral trends follow from
fundamental workings of our memory systems, from some aspect of the stimulus, or from
idiosyncratic interactions or interference between participants’ memory systems and the
stimulus. This challenge implies that, to understand the fundamental nature of memory
in its “pure” form, we should study memory for highly simplified stimuli that can pro-
vide relatively unbiased (compared with real-world experiences) measures of the relevant
patterns and tendencies.

The experiment we report in this paper was designed to help bridge some of this gap
between naturalistic tasks and more traditional list-learning tasks. We had people study

word lists similar to those used in classic memory studies, but we also systematically var-
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ied the lists” “richness” (by adding or removing visual features) and temporal structure
(through order manipulations that varied over time and across experimental conditions).
We found that participants” memory behaviors were sensitive to these manipulations.
Some of the manipulations led to changes that were common across people (e.g., more
temporal clustering when words” appearances were varied, enhanced memory for lists
following an “event boundary,” more feature clustering on order-manipulated lists, etc.).
Other manipulations led to changes that were idiosyncratic (especially carryover effects
from order manipulations; e.g., participants who remembered more words on early order-
manipulated lists tended to show stronger feature clustering for their condition’s feature
dimension on late randomly ordered lists, etc.). We also found that participants remem-
bered more words from lists that were sorted to align with their idiosyncratic clustering
preferences. Taken together, our results suggest that our memories are susceptible to ex-
ternal influences (i.e., to the statistical structure of ongoing experiences), but the effects of

past experiences on future memory are largely idiosyncratic across people.

Potential applications

Every participant in our study encountered exactly the same words, split into exactly the
same lists. But participants’ memory performance, the orders in which they recalled the
words, and the effects of early list manipulations on later lists all varied according to how
we presented the to-be-remembered words.

Our findings raise a number of exciting questions. For example, how far might these
manipulations be extended? In other words, might there be more sophisticated or clever
feature or order manipulations that one could implement to have stronger impacts on
memory? Are there limits to how much impact (on memory performance and/or or-

ganization) these sorts of manipulations can have? Are those limits universal across
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people, or are there individual differences (based on prior experiences, natural strate-
gies, neuroanatomy, etc.) that impose person-specific limits on the potential impact of
presentation-level manipulations on memory?

Our findings indicate that the ways word lists are presented affects how people re-
member them. To the extent that word list memory reflects memory processes that are
relevant to real-world experiences, one could imagine potential real-world applications of
our findings. For example, we found that participants remembered more words when the
presentation order agreed with their memory fingerprints. If analogous fingerprints could
be estimated for classroom content, perhaps they could be utilized manually by teachers,
or even by automated content-presentation systems, to optimize how and what students

remember.

Concluding remarks

Our work raises deep questions about the fundamental nature of human learning. What
are the limits of our memory systems? How much does what we remember (and how we
remember) depend on how we learn or experience the to-be-remembered content? We
know that our expectations, strategies, situation models learned through prior experiences,
and more collectively shape how our experiences are remembered. But those aspects of
our memory are not fixed: when we are exposed to the same experience in a new way; it
can change how we remember that experience, and also how we remember, process, or

perceive future experiences.
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