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Abstract4

We perceive, interpret, and remember ongoing experiences through the lens of our prior5

experiences. Inferring that we are in one type of situation versus another can lead us to interpret6

the same physical experience differently. In turn, this can affect how we focus our attention,7

form expectations about what will happen next, remember what is happening now, draw on8

our prior related experiences, and so on. To study these phenomena, we asked participants9

to perform simple word list-learning tasks. Across different experimental conditions, we held10

the set of to-be-learned words constant, but we manipulated how incidental visual features11

changed across words and lists, along with the orders in which the words were studied. We12

found that these manipulations affected not only how the participants recalled the manipulated13

lists, but also how they recalled later (randomly ordered) lists. Our work shows how structure14

in our ongoing experiences can influence how we remember both our current experiences and15

unrelated subsequent experiences.16

Keywords: episodic memory, free recall, incidental features, implicit priming, temporal17

order18
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Introduction19

Experience is subjective: different people who encounter identical physical experiences20

can take away very different meanings and memories. One reason is that our moment-by-21

moment subjective experiences are shaped in part by the idiosyncratic prior experiences,22

memories, goals, thoughts, expectations, and emotions that we bring with us into the23

present moment. These factors collectively define a context for our experiences (Manning,24

2020).25

The contexts we encounter help us to construct situation models (Manning et al., 2015;26

Radvansky and Copeland, 2006; Ranganath and Ritchey, 2012; Zwaan et al., 1995; Zwaan27

and Radvansky, 1998) or schemas (Baldassano et al., 2018; Ması́s-Obando et al., 2022;28

Tse et al., 2007) that describe how experiences are likely to unfold based on our prior29

experiences with similar contextual cues. For example, when we enter a sit-down restau-30

rant, we might expect to be seated at a table, given a menu, and served food. Priming31

someone to expect a particular situation or context can also influence how they resolve32

potential ambiguities in their ongoing experiences, including in ambiguous movies and33

narratives (Rissman et al., 2003; Yeshurun et al., 2017).34

Our understanding of how we form situation models and schemas, and how they35

interact with our subjective experiences and memories, is constrained in part by substantial36

differences in how we study these processes. Situation models and schemas are most often37

studied using “naturalistic” stimuli such as narratives and movies (Nastase et al., 2020;38

Zwaan et al., 1995; Zwaan and Radvansky, 1998). In contrast, our understanding of how39

we organize our memories has been most widely informed by more traditional paradigms40

like free recall of random word lists (Kahana, 2012, 2020). In free recall, participants study41

lists of items and are instructed to recall the items in any order they choose. The orders42

in which words come to mind can provide insights into how participants have organized43
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their memories of the studied words. Because random word lists are unstructured by44

design, it is not clear if, or how, non-trivial situation models might apply to these stimuli.45

Nevertheless, there are some commonalities between memory for word lists and memory46

for real-world experiences.47

Like remembering real-world experiences, remembering words on a studied list re-48

quires distinguishing the current list from the rest of one’s experience. To model this49

fundamental memory capability, cognitive scientists have posited a special context repre-50

sentation that is associated with each list. According to early theories (e.g. Anderson and51

Bower, 1972; Estes, 1955) context representations are composed of many features which52

fluctuate from moment to moment, slowly drifting through a multidimensional feature53

space. During recall, this representation forms part of the retrieval cue, enabling us to54

distinguish list items from non-list items. Understanding the role of context in memory55

processes is particularly important in self-cued memory tasks, such as free recall, where56

the retrieval cue is “context” itself (Howard and Kahana, 2002a). Conceptually, the same57

general processes might be said to describe how real-world contexts evolve during natural58

experiences. However, this is still an open area of study (Manning, 2020, 2021).59

Over the past half-century, context-based models have had impressive success at ex-60

plaining many stereotyped behaviors observed during free recall and other list-learning61

tasks (Estes, 1955; Glenberg et al., 1983; Howard and Kahana, 2002a; Kimball et al., 2007;62

Polyn and Kahana, 2008; Polyn et al., 2009; Raaijmakers and Shiffrin, 1980; Sederberg63

et al., 2008; Shankar and Howard, 2012; Sirotin et al., 2005). These phenomena include64

the well known recency and primacy effects (superior recall of items from the end and,65

to a lesser extent, from the beginning of the study list), as well as semantic and temporal66

clustering effects (Howard and Kahana, 2002b; Kahana et al., 2008). The contiguity effect67

is an example of temporal clustering, which is perhaps the dominant form of organization68
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in free recall. This effect can be seen in people’s tendencies to successively recall items that69

occupied neighboring positions in the studied list (Kahana, 1996). There are also striking70

effects of semantic clustering (Bousfield, 1953; Bousfield et al., 1954; Jenkins and Russell,71

1952; Manning and Kahana, 2012; Romney et al., 1993), whereby the recall of a given item72

is more likely to be followed by recall of a similar or related item than a dissimilar or73

unrelated one. In general, people organize memories for words along a wide variety of74

stimulus dimensions. As formalized by models like the Context Maintenance and Retrieval75

Model (Polyn et al., 2009), the stimulus features associated with each word (e.g. the word’s76

meaning, size of the object the word represents, the letters that make up the word, font77

size, font color, location on the screen, etc.) are incorporated into the participant’s mental78

context representation (Manning, 2020; Manning et al., 2015, 2011, 2012; Smith and Vela,79

2001). During a memory test, any of these features may serve as a memory cue, which in80

turn leads the participant to recall in succession words that share stimulus features.81

A key mystery is whether (and how) the sorts of situation models and schemas that82

people use to organize their memories of real-world experiences might map onto the83

clustering effects that reflect how people organize their memories for word lists. On84

one hand, both situation models and clustering effects reflect statistical regularities in85

ongoing experiences. Our memory systems exploit these regularities when generating86

inferences about the unobserved past and yet-to-be-experienced future (Bower et al., 1979;87

Momennejad et al., 2017; Ranganath and Ritchey, 2012; Schapiro and Turk-Browne, 2015;88

Xu et al., 2023). On the other hand, the rich structures of real-world experiences and other89

naturalistic stimuli that enable people to form deep and meaningful situation models and90

schemas have no obvious analogs in simple word lists. Often, lists in free recall studies are91

explicitly designed to be devoid of exploitable temporal structure, for example, by sorting92

the words in a random order (Kahana, 2012).93
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We designed an experimental paradigm to explore how people organize their mem-94

ories for simple stimuli (word lists) whose temporal properties change across different95

“situations,” analogous to how the content of real-world experiences change across dif-96

ferent real-world situations. We asked participants to study and freely recall a series of97

word lists (Fig. 1). In the different conditions in our experiment, we varied the lists’98

appearances and presentation orders in different ways. The studied items (words) were99

designed to vary along three general dimensions: semantic (word category and physical100

size of the referent), lexicographic (word length and first letter), and visual (font color and101

the onscreen location of each word). We used two control conditions as a baseline; in102

these control conditions all of the lists were sorted randomly, but we manipulated the103

presence or absence of the visual features. In two conditions, we manipulated whether104

the words’ appearances were fixed or variable within each list. In six conditions, we asked105

participants to first study and recall eight lists whose items were sorted by a target feature106

(e.g., word category), and then study and recall an additional eight lists whose items had107

the same features, but that were sorted in a random temporal order. We were interested108

in how these manipulations affected participants’ recall behaviors on early (manipulated)109

lists, as well as how order manipulations on early lists affected recall behaviors on later110

(randomly ordered) lists. Finally, in an adaptive experimental condition we used partici-111

pants’ recall behaviors on early lists to manipulate, in real-time, the presentation orders112

of subsequent lists. In this adaptive condition, we varied the agreement between how113

participants preferred to organize their memories of the studied items versus the orders114

in which the items were presented.115
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Materials and methods116

Participants117

We enrolled a total of 491 members of the Dartmouth College community across 11 exper-118

imental conditions. The conditions included two controls (feature rich and reduced), two119

visual manipulation conditions [reduced (early) and reduced (late)], six order manipula-120

tion conditions (category, size, length, first letter, color, and location), and a final adaptive121

condition. Each of these conditions is described in the Experimental design subsection122

below.123

Participants either received course credit or a one-time $10 payment for enrolling in124

our study. We asked each participant to fill out a demographic survey that included125

questions about their age, gender, ethnicity, race, education, vision, reading impairments,126

medications or recent injuries, coffee consumption on the day of testing, and level of127

alertness at the time of testing. All components of the demographics survey were optional.128

One participant elected not to fill out any part of the demographic survey, and all other129

participants answered some or all of the survey questions.130

We aimed to run (to completion) at least 60 participants in each of the two primary131

control conditions and in the adaptive condition. In all of the other conditions, we set a132

target enrollment of at least 30 participants. Because our data collection procedures en-133

tailed the coordinated efforts of 12 researchers and multiple testing rooms and computers,134

it was not feasible for individual experimenters to know how many participants had been135

run in each experimental condition until the relevant databases were synchronized at the136

end of each working day. We also over-enrolled participants for each condition to help137

ensure that we met our minimum enrollment targets even if some participants dropped138

out of the study prematurely or did not show up for their testing session. This led us to139
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exceed our target enrollments for several conditions. Nevertheless, we analyze all viable140

data in the present paper.141

Participants were assigned to experimental conditions based loosely on their date of142

participation. (This aspect of our procedure helped us to more easily synchronize the ex-143

periment databases across multiple testing computers.) Of the 490 participants who opted144

to fill out the demographics survey, reported ages ranged from 17 to 31 years (mean: 19.1145

years; standard deviation: 1.356 years). A total of 318 participants reported their gender as146

female, 170 as male, and two participants declined to report their gender. A total of 442 par-147

ticipants reported their ethnicity as “not Hispanic or Latino,” 39 as “Hispanic or Latino,”148

and nine declined to report their ethnicity. Participants reported their races as White (345149

participants), Asian (120 participants), Black or African American (31 participants), Amer-150

ican Indian or Alaska Native (11 participants), Native Hawaiian or Other Pacific Islander151

(four participants), Mixed race (three participants), Middle Eastern (one participant), and152

Arab (one participant). A total of five participants declined to report their race. We note153

that several participants reported more than one of the above racial categories. Participants154

reported their highest degrees achieved as “Some college” (359 participants), “High school155

graduate” (117 participants), “College graduate” (seven participants), “Some high school”156

(five participants), “Doctorate” (one participant), and “Master’s degree” (one participant).157

A total of 482 participants reported no reading impairments, and eight reported having158

mild reading impairments. A total of 489 participants reported having normal color vision159

and one participant reported that they were red-green color blind. A total of 482 partic-160

ipants reported taking no prescription medications and having no recent injuries; four161

participants reported having ADHD, one reported having dyslexia, one reported having162

allergies, one reported a recently torn ACL/MCL, and one reported a concussion from163

several months prior. The participants reported consuming 0–3 cups of coffee prior to the164
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testing session (mean: 0.32 cups; standard deviation: 0.58 cups). Participants reported165

their current level of alertness, and we converted their responses to numerical scores as166

follows: “very sluggish” (-2), “a little sluggish” (-1), “neutral” (0), “a little alert” (1), and167

“very alert” (2). Across all participants, the full range of alertness levels were reported168

(range: -2–2; mean: 0.35; standard deviation: 0.89).169

We dropped from our dataset the one participant who reported having abnormal color170

vision, as well as 38 participants whose data were corrupted due to technical failures while171

running the experiment or during the daily database merges. In total, this left usable data172

from 452 participants, broken down by experimental condition as follows: feature rich (67173

participants), reduced (61 participants), reduced (early) (42 participants), reduced (late)174

(41 participants), category (30 participants), size (30 participants), length (30 participants),175

first letter (30 participants), color (31 participants), location (30 participants), and adaptive176

(60 participants). The participant who declined to fill out their demographic survey177

participated in the location condition, and we verified verbally that they had normal color178

vision and no significant reading impairments.179

Experimental design180

Our experiment is a variant of the classic free recall paradigm that we term “feature-rich free181

recall.” In feature-rich free recall, participants study 16 lists, each comprised of 16 words182

that vary along a number of stimulus dimensions (Fig. 1). The stimulus dimensions include183

two semantic features related to the meanings of the words (semantic category, referent184

object size), two lexicographic features related to the letters that make up the words (word185

length in number of letters, identity of the word’s first letter), and two visual features186

that are independent of the words themselves (text color, presentation location). Each187

list contains four words from each of four different semantic categories, with two object188
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sizes reflected across all of the words. After studying each list, the participant attempts189

to recall as many words as they can from that list, in any order they choose. Because190

each individual word is associated with several well defined (and quantifiable) features,191

and because each list incorporates a diverse mix of feature values along each dimension,192

this allows us to estimate which features participants are considering or leveraging in193

organizing their memories.194

Stimuli195

The stimuli in our paradigm were 256 English words selected in a previous study (Ziman196

et al., 2018). The words all referred to concrete nouns, and were chosen from 15 unique se-197

mantic categories: body parts, building-related, cities, clothing, countries, flowers, fruits,198

insects, instruments, kitchen-related, mammals, (US) states, tools, trees, and vegetables.199

We also tagged each word according to the approximate size of the object the word referred200

to. Words were labeled as “small” if the corresponding object was likely able to “fit in201

a standard shoebox” or “large” if the object was larger than a shoebox. Most semantic202

categories comprised words that reflected both “small” and “large” object sizes, but sev-203

eral included only one or the other (e.g., all countries, US states, and cities are larger than204

a shoebox; mean number of different sizes per category: 1.33; standard deviation: 0.49).205

The numbers of words in each semantic category also varied from 12–28 (mean number of206

words per category: 17.07; standard deviation number of words: 4.65). We also identified207

lexicographic features for each word, including the words’ first letters and lengths (i.e.,208

number of letters). Across all categories, all possible first letters were represented except209

for ‘Q’ (average number of unique first letters per category: 11; standard deviation: 2210

letters). Word lengths ranged from 3–12 letters (average: 6.17 letters; standard deviation:211

2.06 letters).212
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Figure 1: Feature-rich free recall. After studying lists comprised of words that vary along several
feature dimensions, participants verbally recall words in any order (microphone icon). Each
experimental condition manipulates word features and/or presentation orders within and/or across
lists. The rows display representative (illustrated) examples of items from the first list participants
might encounter in each condition. The rectangles during the “Presentation phase” show illustrated
screen captures during a series of word presentations. Each word appeared onscreen for 2 seconds,
followed by 2 seconds of blank screen. The red microphone icons during the “Recall” phase denote
the one minute verbal recall interval. The labels on the right (and corresponding groupings on the
left) denote experimental condition labels.
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We assigned the categorized words into a total of 16 lists with several constraints. First,213

we required that each list contained words from exactly four unique categories, each with214

exactly four exemplars from each category. Second, we required that (across all words215

on the list) at least one instance of both object sizes were represented. On average, each216

category was represented in 4.27 lists (standard deviation: 1.16 lists). Aside from these217

two constraints, we assigned each word to a unique list. After random assignment, each218

list contained words with an average of 11.13 unique starting letters (standard deviation:219

1.15 letters) and an average word length of 6.17 letters (standard deviation: 0.34 letters).220

The above assignments of words to lists was performed once across all participants,221

such that every participant studied the same set of 16 lists. In every condition we random-222

ized the study order of these lists across participants. For participants in most conditions,223

on some or all of the lists, we also randomly varied two additional visual features associ-224

ated with each word: the presentation font color, and the word’s onscreen location. These225

attributes were assigned independently for each word (and for every participant). These226

visual features were varied for words in all lists and conditions except for the “reduced”227

condition (all lists), the first eight lists of the “reduced (early)” condition, and the last eight228

lists of the “reduced (late)” condition. In these latter cases, words were all presented in229

black at the center of the experimental computer’s display.230

To select a random font color for each word, we drew three integers uniformly and231

at random from the interval [0, 255], corresponding to the red (r), green (g), and blue232

(b) color channels for that word. To assign random presentation locations to each word,233

we selected two floating point numbers uniformly and at random (one for the word’s234

horizontal x-coordinate and the other for its vertical y-coordinate). The bounds of these235

coordinates were selected to cover the entire visible area of the display without cutting off236

any part of the words. The words were shown on 27-in (diagonal) Retina 5K iMac displays237
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(resolution: 5120 × 2880 pixels).238

Most of the experimental manipulations we carried out entailed presenting or sorting239

the presented words differently on the first eight lists participants studied (which we call240

early lists) versus on the final eight lists they studied (late lists). Since every participant241

studied exactly 16 lists, every list was either “early” or “late” depending on its order in242

the list study sequence.243

Real-time speech-to-text processing244

Our experimental paradigm incorporates the Google Cloud Speech API speech-to-text en-245

gine (Halpern et al., 2016) to automatically transcribe participants’ verbal recalls into text.246

This allows recalls to be transcribed in real time—a distinguishing feature of the experi-247

ment; in typical verbal recall experiments, the audio data must be parsed and transcribed248

manually. In prior work, we used a similar experimental setup (equivalent to the “re-249

duced” condition in the present study) to verify that the automatically transcribed recalls250

were sufficiently close to human-transcribed recalls to yield reliable data (Ziman et al.,251

2018). This real-time speech processing component of the paradigm plays an important252

role in the “adaptive” condition of the experiment, as described below.253

Random conditions (Fig. 1, top four rows)254

We used two “control” conditions to evaluate and explore participants’ baseline behaviors.255

We also used performance on these control conditions to help interpret performance in256

other “manipulation” conditions. In the first control condition, which we call the feature257

rich condition, we randomly shuffled the presentation order (independently for each258

participant) of the words on each list. In the second control condition, which we call the259

reduced condition, we randomized word presentations as in the feature rich condition.260
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However, rather than assigning each word a random color and location, we instead261

displayed all of the words in black and at the center of the screen.262

We also designed two conditions where we varied the words’ visual appearances across263

lists. In the reduced (early) condition, we followed the “reduced” procedure (presenting264

each word in black at the center of the screen) for early lists, and followed the “feature rich”265

procedure (presenting each word in a random color and location) for late lists. Finally, in266

the reduced (late) condition, we followed the feature rich procedure for early lists and the267

reduced procedure for late lists.268

Order manipulation conditions (Fig. 1, middle six rows)269

Each of six order manipulation conditions used a different feature-based sorting procedure270

to order words on early lists, where each sorting procedure relied on one relevant feature271

dimension. All of the irrelevant features varied freely across words on early lists, in that272

we did not consider irrelevant features in ordering the early lists. However, we note that273

some features were correlated—for example, some semantic categories of words referred274

to objects that tended to be a particular size, which meant that category and size were not275

fully independent. On late lists, the words were always presented in a randomized order276

(chosen anew for each participant). In all of the order manipulation conditions, we varied277

words’ font colors and onscreen locations, as in the feature rich condition.278

Defining feature-based distances. Sorting words according to a given relevant feature279

requires first defining a distance function for quantifying the dissimilarity between each280

pair of features. This function varied according to the type of feature under consideration.281

Semantic features (category and size) are categorical. For these features, we defined a282

binary distance function: two words were considered to “match” (i.e., have a distance of283

0) if their labels were the same (i.e., both from the same semantic category or both of the284
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same size). If two words’ labels were different for a given feature, we defined the words285

to have a distance of 1 for that feature. Lexicographic features (length and first letter)286

are discrete. For these features we defined a discrete distance function. Specifically, we287

defined the distance between two words as either the absolute difference between their288

lengths, or the absolute distance between their starting letters in the English alphabet,289

respectively. For example, two words that started with the same letter would have a “first290

letter” distance of 0, and a pair of words starting with ‘J’ and ‘A’ would have a first letter291

distance of 9. Because words’ lengths and letters’ positions in the alphabet are always292

integers, these discrete distances always take on integer values. Finally, the visual features293

(color and location) are continuous and multivariate, in that each “feature” is defined by294

multiple (positive) real values. We defined the “color” and “location” distances between295

two words as the Euclidean distances between their (r, g, b) color or (x, y) location vectors,296

respectively. Therefore, the color and location distance measures always take on non-297

negative real values (upper-bounded at 441.67 for color, or 27 in for location, reflecting the298

distances between the corresponding maximally different vectors).299

Constructing feature-sorted lists. Given a list of words, a relevant feature, and each300

word’s value(s) for that feature, we developed a stochastic algorithm for (noisily) sorting301

the words. The stochastic aspect of our sorting procedure enabled us to obtain unique302

orderings for each participant. First, we choose a word uniformly and at random from303

the set of words on the to-be-presented list. Second, we compute the distances between304

the chosen word’s feature(s) and the corresponding feature(s) of all yet-to-be-presented305

words. Third, we convert these distances (between the previously presented word’s306

feature values, a, and the candidate word’s feature values, b) to similarity scores:307

similarity(a, b) = exp{−τ · distance(a, b)}, (1)
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r = 0.64

Cumulative similarity to previous item

ax b c d e f g

eSelected next item:

Figure 2: Generating stochastic feature-sorted lists. For a given feature dimension (e.g., color),
we compute the similarity (Eqn. 1) between the feature value(s) of the previous item, x, and all
yet-to-be-presented items (a–g). Next, we normalize these similarity scores so that they sum to 1.
We lay, in sequence, a set of “sticks,” one for each candidate item, whose lengths are equal to these
normalized similarity scores. To select the next to-be-presented item, we draw a random number,
r, from the uniform distribution bounded between 0 and 1 (inclusive). The identity of the next
item is given by the stick adjacent to an indicator that moves distance r (starting from 0) along the
sequence of sticks. In this case, the next to-be-presented item is e. Note that each item’s chances of
selection is proportional to its similarity to the previous item, along the given feature dimension
(e.g., color).

where τ = 1 in our implementation. We note that increasing the value of τwould amplify308

the influence of similarity on order, and decreasing the value of τ would diminish the309

influence of similarity on order. Also note that this approach requires τ > 0. Finally, we310

computed a set of normalized similarity values by dividing the similarities by their sum:311

similaritynormalized(a, b) =
similarity(a, b)∑n
i=1 similarity(a, i)

, (2)

where in the denominator, i takes on each of the n feature values of the to-be-presented312

words. The resulting set of normalized similarity scores sums to 1.313

As illustrated in Figure 2, we use these normalized similarity scores to construct a314

sequence of “sticks” that we lay end to end in a line. Each of the n sticks corresponds to a315

single to-be-presented word, and the stick lengths are proportional to the relative similar-316

ities between each word’s feature value(s) and the feature value(s) of the just-presented317

word. We choose the next to-be-presented word by moving an indicator along the set of318

sticks, by a distance chosen uniformly and at random on the interval [0, 1]. We select the319

word associated with the stick lying next to the indicator to be presented next. This process320

continues iteratively (re-computing the similarity scores and stochastically choosing the321
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next to-be-presented word using the just-presented word) until all of the words have been322

presented. The result is an ordered list that tends to change gradually along the selected323

feature dimension (for example “sorted” lists, see Fig. 1, Order manipulation lists).324

Adaptive condition325

We designed the adaptive experimental condition to study the effect on memory of lists326

that matched (or mismatched) the ways participants “naturally” organized their memories.327

Like the other conditions, all participants in the adaptive condition studied a total of 16328

lists, in a randomized order. We varied the words’ colors and locations for every word329

presentation, as in the feature rich and order manipulation conditions.330

All participants in the adaptive condition began the experiment by studying a set of331

four initialization lists. Words and features on these lists were presented in a randomized332

order (computed independently for each participant). These initialization lists were used333

to estimate each participant’s “memory fingerprint,” defined below. At a high level,334

a participant’s memory fingerprint describes how they prioritize or consider different335

semantic, lexicographic, and/or visual features when they organize their memories.336

Next, participants studied a sequence of 12 lists in three batches of four lists each. These337

batches came in three types: random, stabilize, and destabilize. The batch types determined338

how words on the lists in that batch were ordered. Lists in each batch were always339

presented consecutively (e.g., a participant might receive four random lists, followed340

by four stabilize lists, followed by four destabilize lists). The batch orders were evenly341

counterbalanced across participants: there are six possible orderings of the three batches,342

and 10 participants were randomly assigned to each ordering sub-condition.343

Lists in the random batches were sorted randomly (as on the initialization lists and in344

the feature rich condition). Lists in the stabilize and destabilize batches were sorted in ways345
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that either matched or mismatched each participant’s memory fingerprint, respectively.346

Our procedures for estimating participants’ memory fingerprints and ordering the stabilize347

and destabilize lists are described next.348

Feature clustering scores (uncorrected). Feature clustering scores describe participants’349

tendencies to recall similar presented items together in their recall sequences, where350

“similarity” considers one given feature dimension (e.g., category, color, etc.). We base351

our main approach to computing clustering scores on analogous temporal and semantic352

clustering scores developed by Polyn et al. (2009). Computing the clustering score for353

one feature dimension starts by considering the corresponding feature values from the354

first word the participant recalled correctly from the just-studied list. Next, we sort all355

not-yet-recalled words in ascending order according to their feature-based distance to the356

just-recalled item (see Defining feature-based distances). We then compute the percentile rank357

of the observed next recall. We average these percentile ranks across all of the participant’s358

recalls for the current list to obtain a single uncorrected clustering score for the list, for the359

given feature dimension. We repeated this process for each feature dimension in turn to360

obtain a single uncorrected clustering score for each list, for each feature dimension.361

Temporal clustering score (uncorrected). Temporal clustering describes a participant’s362

tendency to organize their recall sequences by the learned items’ encoding positions. For363

instance, if a participant recalled the lists’ words in the exact order they were presented (or364

in exact reverse order), this would yield a score of 1. If a participant recalled the words in365

a random order, this would yield an expected score of 0.5. For each recall transition (and366

separately for each participant), we sorted all not-yet-recalled words according to their367

absolute lag (that is, distance away in the list). We then computed the percentile rank of368

the next word the participant recalled. We took an average of these percentile ranks across369
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all of the participant’s recalls to obtain a single (uncorrected) temporal clustering score for370

the participant.371

Permutation-corrected feature clustering scores. Suppose that two lists contain unequal372

numbers of items of each size. For example, suppose that list A contains all “large” items,373

whereas list B contains an equal mix of “large” and “small” items. For a participant374

recalling list A, any correctly recalled item will necessarily match the size of the previous375

correctly recalled item. In other words, successively recalling several list A items of the376

same size is essentially meaningless, since any correctly recalled list A word will be large.377

In contrast, successively recalling several list B items of the same size could be meaningful,378

since (early in the recall sequence) the yet-to-be-recalled items come from a mix of sizes.379

However, once all of the small items on list B have been recalled, the best possible next380

matching recall will be a large item. All subsequent correct recalls must also be large381

items—so for those later recalls it becomes difficult to determine whether the participant382

is successively recalling large items because they are organizing their memories according383

to size, or (alternatively), whether they are simply recalling the yet-to-be-recalled items384

in a random order. In general, the precise order and blend of feature values expressed385

in a given list, the order and number of correct recalls a participant makes, the number386

of intervening presentation positions between successive recalls, and so on, can all affect387

the range of clustering scores that are possible to observe for a given list. An uncorrected388

clustering score therefore conflates participants’ actual memory organization with other389

“nuisance” factors.390

Following our prior work (Heusser et al., 2017), we used a permutation-based cor-391

rection procedure to help isolate the behavioral aspects of clustering that we were most392

interested in. After computing the uncorrected clustering score (for the given list and393

observed recall sequence), we compute a “null” distribution of n additional clustering394
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scores after randomly shuffling the order of the recalled words (we use n = 500 in the395

present study). This null distribution represents an approximation of the range of cluster-396

ing scores one might expect to observe by “chance,” given that a hypothetical participant397

was not truly clustering their recalls, but where the hypothetical participant still studied398

and recalled exactly the same items (with the same features) as the true participant. We399

define the permutation-corrected clustering score as the percentile rank of the observed un-400

corrected clustering score in this estimated null distribution. In this way, a corrected score401

of 1 indicates that the observed score was greater than any clustering score one might402

expect by chance—in other words, good evidence that the participant was truly clustering403

their recalls along the given feature dimension. We applied this correction procedure to404

all of the clustering scores (feature and temporal) reported in this paper.405

Memory fingerprints. We define each participant’s memory fingerprint as the set of their406

permutation-corrected clustering scores across all dimensions we tracked in our study,407

including their six feature-based clustering scores (category, size, length, first letter, color,408

and location) and their temporal clustering score. Conceptually, a participant’s memory409

fingerprint describes their tendency to order in their recall sequences (and, presumably,410

organize in memory) the studied words along each dimension. To obtain stable estimates411

of these fingerprints for each participant, we averaged their clustering scores across lists.412

We also tracked and characterized how participants’ fingerprints changed across lists (e.g.,413

Figs. 6, S8).414

Online “fingerprint” analysis. The presentation orders of some lists in the adaptive415

condition of our experiment (see Adaptive condition) were sorted according to participants’416

current memory fingerprint, estimated using all of the lists they had studied up to that point417

in the experiment. Because our experiment incorporated a speech-to-text component, all418
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of the behavioral data for each participant could be analyzed just a few seconds after the419

conclusion of the recall intervals for each list. We used the Quail Python package (Heusser420

et al., 2017) to apply speech-to-text algorithms to the just-collected audio data, aggregate421

the data for the given participant, and estimate the participant’s memory fingerprint422

using all of their available data up to that point in the experiment. Two aspects of our423

implementation are worth noting. First, because memory fingerprints are computed424

independently for each list and then averaged across lists, the already-computed memory425

fingerprints for earlier lists could be cached and loaded as needed in future computations.426

This meant that our computations pertaining to updating our estimate of a participant’s427

memory fingerprint only needed to consider data from the most recent list. Second, each428

element of the null distributions of uncorrected fingerprint scores (see Permutation-corrected429

feature clustering scores) could be estimated independently from the others. This enabled430

us to make use of the testing computers’ multi-core CPU architectures by considering (in431

parallel) elements of the null distributions in batches of eight (i.e., the number of CPU432

cores on each testing computer). Taken together, we were able to compress the relevant433

computations into just a few seconds of computing time. The combined processing time for434

the speech-to-text algorithm, fingerprint computations, and permutation-based ordering435

procedure (described next) easily fit within the inter-list intervals, where participants436

paused for a self-paced break before moving on to study and recall the next list.437

Ordering “stabilize” and “destabilize” lists by an estimated fingerprint. In the adap-438

tive condition of our experiment, the presentation orders for stabilize and destabilize lists439

were chosen to either maximally or minimally (respectively) comport with participants’440

memory fingerprints. Given a participant’s memory fingerprint and a to-be-presented set441

of items, we designed a permutation-based procedure for ordering the items. First, we442

dropped from the participant’s fingerprint the temporal clustering score. For the remain-443
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ing feature dimensions, we arranged the clustering scores in the fingerprint into a template444

vector, f . Second, we computed n = 2500 random permutations of the to-be-presented445

items. These permutations served as candidate presentation orders. We sought to select446

the specific order that most (or least) closely matched f . Third, for each random permu-447

tation, we computed the (permutation-corrected) “fingerprint,” treating the permutation448

as though it were a potential “perfect” recall sequence. (We did not include temporal449

clustering scores in these fingerprints, since the temporal clustering score for every per-450

mutation is always equal to 1.) This yielded a “simulated fingerprint” vector, f̂p for each451

permutation p. We used these simulated fingerprints to select a specific permutation, i,452

that either maximized (for stabilize lists) or minimized (for destabilize lists) the correlation453

between f̂i and f .454

Computing low-dimensional embeddings of memory fingerprints455

Following some of our prior work (Heusser et al., 2021, 2018; Manning et al., 2022),456

we use low-dimensional embeddings to help visualize how participants’ memory fin-457

gerprints change across lists (Figs. 6A, S8A). To compute a shared embedding space458

across participants and experimental conditions, we concatenated the full set of across-459

participant average fingerprints (for all lists and experimental conditions) to create a large460

matrix with number-of-lists (16) × number-of-conditions (10, encluding the adaptive con-461

dition) rows and seven columns (one for each feature clustering score, plus an additional462

temporal clustering score column). We used principal components analysis to project463

the seven-dimensional observations into a two-dimensional space (using the two prin-464

cipal components that explained the most variance in the data). For two visualizations465

(Figs. 6B, and S8B), we computed an additional set of two-dimensional embeddings for the466

average fingerprints across lists within a given list grouping (i.e., early or late). For those467
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visualizations, we averaged across the rows (for each condition and group of lists) in the468

combined fingerprint matrix prior to projecting it into the shared two-dimensional space.469

This yielded a single two-dimensional coordinate for each list group (in each condition),470

rather than for each individual list. We used these embeddings solely for visualization.471

All statistical tests were carried out in the original (seven-dimensional) feature spaces.472

Analyses473

Probability of nth recall curves474

Probability of first recall curves (Atkinson and Shiffrin, 1968; Postman and Phillips, 1965;475

Welch and Burnett, 1924) reflect the probability that an item will be recalled first, as a476

function of its serial position during encoding. To carry out this analysis, we initialized477

(for each participant) a number-of-lists (16) by number-of-words-per-list (16) matrix of 0s.478

Then, for each list, we found the index of the word that was recalled first, and we filled479

in that position in the matrix with a 1. Finally, we averaged over the rows of the matrix480

to obtain a 1 by 16 array of probabilities, for each participant. We used an analogous481

procedure to compute probability of nth recall curves for each participant. Specifically,482

we filled in the corresponding matrices according to the nth recall on each list that each483

participant made. When a given participant had made fewer than n recalls for a given484

list, we simply excluded that list from our analysis when computing that participant’s485

curve(s). The probability of first recall curve corresponds to a special case where n = 1.486

Lag-conditional response probability curve487

The lag-conditional response probability (lag-CRP) curve (Kahana, 1996) reflects the prob-488

ability of recalling a given item after the just-recalled item, as a function of their relative489

encoding positions (lag). In other words, a lag of 1 indicates that a recalled item was490
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presented immediately after the previously recalled item, and a lag of −3 indicates that a491

recalled item came three items before the previously recalled item. For each recall tran-492

sition (following the first recall), we computed the lag between the just-recalled word’s493

presentation position and the next-recalled word’s presentation position. We computed494

the proportions of transitions (between successively recalled words) for each lag, nor-495

malizing for the total numbers of possible transitions. In carrying out this analysis, we496

excluded all incorrect recalls and successive repetitions (i.e., recalling the same word twice497

in a row). This yielded, for each list, a 1 by number-of-lags (−15 to +15; 30 lags in total,498

excluding lags of 0) array of conditional probabilities. We averaged these probabilities499

across lists to obtain a single lag-CRP for each participant. Because transitions at large ab-500

solute lags are rare, these curves are typically displayed using range restrictions (Kahana,501

2012).502

Serial position curve503

Serial position curves (Murdock, 1962) reflect the proportion of participants who remember504

each item as a function of the items’ serial positions during encoding. For each participant,505

we initialized a number-of-lists (16) by number-of-words-per-list (16) matrix of 0s. Then,506

for each correct recall, we identified the presentation position of the word and entered a507

1 into that position (row: list; column: presentation position) in the matrix. This resulted508

in a matrix whose entries indicated whether or not the words presented at each position,509

on each list, were recalled by the participant (depending on whether the corresponding510

entires were set to 1 or 0). Finally, we averaged over the rows of the matrix to yield a511

1 by 16 array representing the proportion of words at each position that the participant512

remembered.513
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Identifying event boundaries514

We used the distances between feature values for successively presented words (see Defin-515

ing feature-based distances) to estimate “event boundaries” where the feature values changed516

more than usual (DuBrow and Davachi, 2016; Ezzyat and Davachi, 2011; Manning et al.,517

2016; Radvansky and Copeland, 2006; Swallow et al., 2011, 2009). For each list, for each518

feature dimension, we computed the distribution of distances between the feature values519

for successively presented words. We defined event boundaries (e.g., Fig. 3B) as occurring520

between any successive pair of words whose distances along the given feature dimension521

were greater than one standard deviation above the mean for that list. Note that, because522

event boundaries are defined for each feature dimension, each individual list may contain523

several sets of event boundaries, each at different moments in the presentation sequence524

(depending on the feature dimension of interest).525

Results526

While holding the set of words (and the assignments of words to lists) constant, we527

manipulated two aspects of participants’ experiences of studying each list. We sought to528

understand the effects of these manipulations on participants’ memories for the studied529

words. First, we added two additional sources of visual variation to the individual word530

presentations: font color and onscreen location. Importantly, these visual features were531

independent of the meaning or semantic content of the words (e.g., word category, size532

of the referent, etc.) and of the lexicographic properties of the words (e.g., word length,533

first letter, etc.). We wondered whether this additional word-independent information534

might facilitate recall (e.g., by providing new potential ways of organizing or retrieving535

memories of the studied words) or impair recall (e.g., by distracting participants with536
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irrelevant information). Second, we manipulated the orders in which words were studied537

(and how those orderings changed over time). We wondered whether presenting the same538

list of words with different appearances (e.g., by manipulating font size and onscreen539

location) or in different orders (e.g., sorted along one feature dimension versus another)540

might serve to influence how participants organized their memories of the words. We also541

wondered whether some order manipulations might be temporally “sticky” by influencing542

how future lists were remembered.543

To obtain a clean preliminary estimate of the consequences on memory of randomly544

varying the font colors and locations of presented words (versus holding the font color545

fixed at black, and holding the display locations fixed at the center of the display) we546

compared participants’ performance on the feature rich and reduced experimental conditions547

(see Random conditions, Fig. S1). In the feature rich condition the words’ colors and548

locations varied randomly across words, and in the reduced condition words were always549

presented in black, at the center of the display. Aggregating across all lists for each550

participant, we found no difference in recall accuracy (i.e., the proportions of correctly551

recalled words) for feature rich versus reduced lists (t(126) = −0.290, p = 0.772). However,552

participants in the feature rich condition clustered their recalls substantially more along553

every dimension we examined (temporal clustering: t(126) = 10.624, p < 0.001; semantic554

category clustering: t(126) = 10.077, p < 0.001; size clustering: t(126) = 11.829, p < 0.001;555

word length clustering: t(126) = 10.639, p < 0.001; first letter clustering: t(126) = 7.775, p <556

0.001; see Permutation-corrected feature clustering scores for more information about how we557

quantified each participant’s clustering tendencies.) Taken together, these comparisons558

suggest that adding new features changes how participants organize their memories of559

studied words, even when those new features are independent of the words themselves560

and even when the new features vary randomly across words. We found no evidence561
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that those additional uninformative features were distracting (in terms of their impact on562

memory performance), but they did affect participants’ recall dynamics (measured via563

their clustering scores).564

We also wondered whether adding these incidental visual features to later lists (after565

the participants had already studied impoverished lists), or removing the visual features566

from later lists (after the participants had already studied visually diverse lists) might affect567

memory performance. In other words, we sought to test for potential effects of changing568

the “richness” of participants’ experiences over time. All participants studied and recalled569

a total of 16 lists; we defined early lists as the first eight lists and late lists as the last eight lists570

each participant encountered. To help interpret our results, we compared participants’571

memories on early versus late lists in the above feature rich and reduced conditions.572

Participants in both conditions remembered more words on early versus late lists (feature573

rich: t(66) = 4.553, p < 0.001; reduced: t(60) = 2.434, p = 0.018). Participants in the feature574

rich (but not reduced) conditions exhibited more temporal clustering on early versus575

late lists (feature rich: t(66) = 2.318, p = 0.024; reduced: t(60) = 0.929, p = 0.357). And576

participants in both conditions exhibited more semantic (category and size) clustering577

on early versus late lists (feature rich, category: t(66) = 3.805, p < 0.001; feature rich,578

size: t(66) = 2.190, p = 0.032; reduced, category: t(60) = 2.856, p = 0.006; reduced, size:579

t(60) = 2.947, p = 0.005). Participants in the reduced (but not feature rich) conditions580

exhibited more lexicographic clustering on early versus late lists (feature rich, word length:581

t(66) = 0.161, p = 0.872; feature rich, first letter: t(66) = 0.410, p = 0.683; reduced, word582

length: t(60) = 3.528, p = 0.001; reduced, first letter: t(60) = 2.275, p = 0.026). Taken583

together, these comparisons suggest that even when the presence or absence of incidental584

visual features is stable across lists, participants still exhibit some differences in their585

performance and memory organization tendencies for early versus late lists.586
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With these differences in mind, we next compared participants’ memories on early ver-587

sus late lists for two additional experimental conditions (see Random conditions, Fig. S1). In588

a reduced (early) condition, we held the visual features constant on early lists, but allowed589

them to vary randomly on late lists. In a reduced (late) condition, we allowed the visual fea-590

tures to vary randomly on early lists, but held them constant on late lists. Given our above591

findings that (a) participants tended to remember more words and exhibit stronger cluster-592

ing effects on feature rich (versus reduced) lists, and (b) participants tended to remember593

more words and exhibit stronger clustering effects on early (versus late) lists, we expected594

these early versus late differences to be enhanced in the reduced (early) condition and595

diminished in the reduced (late) condition. However, to our surprise, participants in nei-596

ther condition exhibited reliable early versus late differences in accuracy (reduced (early):597

t(41) = 1.499, p = 0.141; reduced (late): t(40) = 1.462, p = 0.152), temporal clustering (re-598

duced (early): t(41) = 0.998, p = 0.324; reduced (late): t(40) = 1.099, p = 0.278), nor feature-599

based clustering (reduced (early), category: t(41) = 0.753, p = 0.456; reduced (early), size:600

t(41) = 0.721, p = 0.475; reduced (early), length: t(41) = 0.493, p = 0.625; reduced (early),601

first letter: t(41) = 0.780, p = 0.440; reduced (late), category: t(40) = −0.086, p = 0.932;602

reduced (late), size: t(40) = 0.746, p = 0.460; reduced (late), length: t(40) = 1.476, p = 0.148;603

reduced (late), first letter: t(40) = 0.966, p = 0.340). We hypothesized that adding or remov-604

ing the variability in the visual features was acting as a sort of “event boundary” between605

early and late lists. In prior work, we (and others) have found that memories formed just606

after event boundaries can be enhanced (e.g., due to less contextual interference between607

pre- and post-boundary items; Flores et al., 2017; Gold et al., 2017; Manning et al., 2016;608

Pettijohn et al., 2016).609

We found that adding incidental visual features on later lists that had not been present610

on early lists (as in the reduced (early) condition) served to enhance recall performance611
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relative to conditions where all lists had the same blends of features (accuracy for feature612

rich versus reduced (early): t(107) = −2.230, p = 0.028; reduced versus reduced (early):613

t(101) = −2.045, p = 0.043; also see Fig. S3A). However, subtracting irrelevant visual fea-614

tures on later lists that had been present on early lists (as in the reduced (late) condition) did615

not appear to impact recall performance (accuracy for feature rich versus reduced (late):616

t(106) = −0.638, p = 0.525; reduced versus reduced (late): t(100) = −0.407, p = 0.685).617

These comparisons suggest that recall accuracy has a directional component: accuracy is618

affected differently by removing features later that had been present earlier versus adding619

features later that had not been present earlier. In contrast, we found that participants620

exhibited more temporal and feature-based clustering when we added incidental visual621

features to any lists (comparisons of clustering on feature rich versus reduced lists are622

reported above; temporal clustering in reduced versus reduced (early) and reduced ver-623

sus reduced (late) conditions: ts ≤ −9.780, ps < 0.001; feature-based clustering in reduced624

versus reduced (early) and reduced versus reduced (late) conditions: ts ≤ −5.443, ps625

< 0.001). Temporal and feature-based clustering were not reliably different in the feature626

rich, reduced (early), and reduced (late) conditions (temporal clustering in feature rich627

versus reduced (early) and feature rich versus reduced (late) conditions: ts ≥ −1.434, ps628

≥ 0.154; feature-based clustering in feature rich versus reduced (early) and feature rich629

versus reduced (late) conditions: ts ≥ −1.359, ps > 0.177).630

Taken together, our findings thus far suggest that adding item features that change631

over time, even when they vary randomly and independently of the items, can enhance632

participants’ overall memory performance and can also enhance temporal and feature-633

based clustering. To the extent that the number of item features that vary from moment634

to moment approximates the “richness” of participants’ experiences, our findings sug-635

gest that participants remember “richer” stimuli better and organize richer stimuli more636
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reliably in their memories. Next, we turn to examine the memory effects of varying the637

temporal ordering of different stimulus features. We hypothesized that changing the638

orders in which participants were exposed to the words on a given list might enhance639

(or diminish) the relative influence of different features. For example, presenting a set640

of words alphabetically might enhance participants’ attention to the studied items’ first641

letters, whereas sorting the same list of words by semantic category might instead enhance642

participants’ attention to the words’ semantic attributes. Importantly, we expected these643

order manipulations to hold even when the variation in the total set of features (across644

words) was held constant across lists (e.g., unlike in the reduced (early) and reduced (late)645

conditions, where variations in visual features were added or removed from a subset of646

the lists participants studied).647

Across each of six order manipulation conditions, we sorted early lists by one feature648

dimension but randomly ordered the items on late lists (see Order manipulation condi-649

tions; features: category, size, length, first letter, color, and location). Participants in650

the category-ordered condition showed an increase in memory performance on early651

lists (accuracy, relative to early feature rich lists; t(95) = 3.034, p = 0.003). Partici-652

pants in the color-ordered condition also showed a trending increase in memory per-653

formance on early lists (again, relative to early feature rich lists: t(96) = 1.850, p = 0.067).654

Participants’ performances on early lists in all of the other order manipulation con-655

ditions were indistinguishable from performance on the early feature rich lists (∥t∥s656

< 1.013, ps > 0.314). Participants in both of the semantically ordered conditions exhib-657

ited stronger temporal clustering on early lists (versus early feature rich lists; category:658

t(95) = 8.508, p < 0.001; size: t(95) = 2.429, p = 0.017). Participants in the length-ordered659

condition tended to exhibit less temporal clustering on early lists relative to early feature660

rich lists (t(95) = −1.666, p = 0.099), whereas participants in the first letter-ordered condi-661
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Figure 3: Recall dynamics in feature rich free recall (order manipulation conditions). A. Be-
havioral plots. Left panels. The probabilities of initiating recall with each word are plotted as a
function of presentation position. Middle panels. The conditional probabilities of recalling each
word are plotted as a function of the relative position (Lag) to the words recalled just-prior. Right
panels. The overall probabilities of recalling each word are plotted as a function of presentation po-
sition. All panels. Error ribbons denote bootstrap-estimated 95% confidence intervals (calculated
across participants). Top panels display the recall dynamics for early (order manipulation) lists in
each condition (color). Bottom panels display the recall dynamics for late (randomly ordered) lists.
See Figures S1 and S2 for analogous plots for the random and adaptive conditions. B. Proportion
of event boundaries (see Identifying event boundaries) for each condition’s feature of focus, plotted
as a function of presentation position.
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tion exhibited stronger temporal clustering on early lists (t(95) = 2.587, p = 0.011). Partici-662

pants in the visually ordered conditions exhibited more similar performance on early lists,663

relative to early feature rich lists (color: t(96) = −1.064, p = 0.290; we found a trending664

enhancement for participants in the location-ordered condition: t(95) = 1.682, p = 0.096).665

We also compared feature-based clustering on early lists across the order manipulation666

and feature rich conditions. Since these results were similar across both semantic con-667

ditions (category and size), both lexicographic conditions (length and first letter), and668

both visual conditions (color and location), here we aggregate data from conditions that669

manipulated each of these three feature groupings in our comparisons, to simplify the670

presentation. On early lists, participants in the semantically ordered conditions exhibited671

stronger semantic clustering relative to participants in the feature rich condition (category:672

t(125) = 2.524, p = 0.013; size: t(125) = 3.510, p = 0.001), but showed no reliable differences673

in lexicographic (length: t(125) = 0.539, p = 0.591; first letter: t(125) = −0.587, p = 0.558)674

or visual (color: t(125) = −0.579, p = 0.564; location: t(125) = −0.346, p = 0.730) clustering.675

Similarly, participants in the lexicographically ordered conditions exhibited stronger (rela-676

tive to feature rich participants) lexicographic clustering (length: t(125) = 3.426, p = 0.001;677

first letter: t(125) = 3.236, p = 0.002) on early lists, but showed no reliable differences in678

semantic (category: t(125) = −1.078, p = 0.283; size: t(125) = −0.310, p = 0.757) or visual679

(color: t(125) = −0.209, p = 0.835; location: t(125) = −0.004, p = 0.997) clustering. And680

participants in the visually ordered conditions exhibited stronger visual clustering (again,681

relative to feature rich participants, and on early lists; color: t(126) = 2.099, p = 0.038;682

location: t(126) = 4.392, p < 0.001), but showed no reliable differences in semantic (cate-683

gory: t(126) = 0.204, p = 0.839; size: t(126) = −0.093, p = 0.926) or lexicographic (length:684

t(126) = 0.714, p = 0.476; first letter: t(126) = 0.820, p = 0.414) clustering. Taken together,685

these order manipulation results suggest several broad patterns (Figs. 3A, 4). First, most of686
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Figure 4: Memory “fingerprints” (order manipulation conditions). The across-participant distri-
butions of clustering scores for each feature type (x-coordinate) are displayed for each experimental
condition (color), separately for order manipulation (early, top) and randomly ordered (late, bot-
tom) lists. See Figures S5 and S6 for analogous plots for the random and adaptive conditions.

the order manipulations we carried out did not reliably affect overall recall performance.687

Second, most of the order manipulations increased participants’ tendencies to temporally688

cluster their recalls. Third, all of the order manipulations enhanced participants’ clus-689

tering of each condition’s target feature (i.e., semantic manipulations enhanced semantic690

clustering, lexicographic manipulations enhanced lexicographic clustering, and visual691

manipulations enhanced visual clustering) while leaving clustering along other feature692

dimensions roughly unchanged (i.e., semantic manipulations did not affect lexicographic693

or visual clustering, and so on).694

When we closely examined the sequences of words participants recalled from early695

order-manipulated lists (Fig. 3A, top panel), we noticed several differences from the dy-696

namics of participants’ recalls of randomly ordered lists (Figs. S1, S7). One difference is697

that participants in the category condition (dark purple curves, Fig. 3) most often initiated698

recall with the fourth-from-last item (Recall initiation, top left panel), whereas participants699
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who recalled randomly ordered lists tended to initiate recall with either the first or last list700

items (Fig. S1, top left panel). We hypothesized that the participants might be “clumping”701

their recalls into groups of items that shared category labels. Indeed, when we com-702

pared the positions of feature changes in the study sequence (Fig. 3B; see Identifying event703

boundaries) with the positions of items participants recalled first, we noticed a striking704

correspondence in both semantic conditions. Specifically, on category-ordered lists, the705

category labels changed every four items on average (dark purple peaks in Fig. 3B), and706

participants also seemed to display an increased tendency (relative to other order manipu-707

lation and random conditions) to initiate recall of category-ordered lists with items whose708

study positions were integer multiples of four. Similarly, for size-ordered lists, the size la-709

bels changed every eight items on average (light purple peaks in Fig. 3B), and participants710

also seemed to display an increased tendency to initiate recall of size-ordered lists with711

items whose study positions were integer multiples of eight. A second striking difference712

is that participants in the category condition exhibited a much steeper lag-CRP (Fig. 3A,713

top middle panel) than participants in other conditions. (This is another expression of714

participants’ increased tendencies to temporally cluster their recalls on category-ordered715

lists, as we reported above.) Taken together, these order-specific idiosyncrasies suggest716

a hierarchical set of influences on participants’ memories. At longer timescales, “event717

boundaries” (to use the term loosely) can be induced across lists by adding or removing718

incidental visual features. At shorter timescales, “event boundaries” can be induced across719

items (within a single list) by adjusting how item features change throughout the list.720

The above comparisons between memory performance on early lists in the order ma-721

nipulation versus feature rich conditions highlight how sorted lists are remembered differ-722

ently from random lists. We also wondered how sorting lists along each feature dimension723

influenced memory relative to sorting lists along the other feature dimensions. Partici-724
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pants trended towards remembering early lists that were sorted semantically better than725

lexicographically sorted lists (t(118) = 1.936, p = 0.055). Participants also remembered726

visually sorted lists better than lexicographically sorted lists (t(119) = 2.145, p = 0.034).727

However, participants showed no reliable differences in recall for semantically versus728

visually sorted lists (t(119) = 0.113, p = 0.910). Participants temporally clustered semanti-729

cally sorted lists more strongly than either lexicographically (t(118) = 5.572, p < 0.001) or730

visually (t(119) = 6.215, p < 0.001) sorted lists, but did not show reliable differences in tem-731

poral clustering on lexicographically versus visually sorted lists (t(119) = 0.189, p = 0.850).732

Participants also showed reliably more semantic clustering on semantically sorted lists733

than lexicographically (category: t(118) = 3.492, p = 0.001, size: t(118) = 3.972, p < 0.001)734

or visually (category: t(119) = 2.702, p = 0.008, size: t(119) = 4.230, p < 0.001) sorted735

lists; more lexicographic clustering on lexicographically sorted lists than semantically736

(length: t(118) = 3.112, p = 0.002; first letter: t(118) = 3.686, p < 0.001) or visually (length:737

t(119) = 3.024, p = 0.003; first letter: t(119) = 2.644, p = 0.009) sorted lists; and more visual738

clustering on visually sorted lists than semantically (color: t(119) = −2.659, p = 0.009;739

location: t(119) = −4.604, p < 0.001) or lexicographically (color: t(119) = −2.366, p = 0.020;740

location: t(119) = −4.265, p < 0.001) sorted lists. In summary, sorting lists by different741

features appeared to have slightly different effects on overall memory performance and742

temporal clustering. Participants also tended to cluster their recalls along a given fea-743

ture dimension more when the studied lists were (versus were not) sorted along that744

dimension.745

Beyond affecting how we process and remember ongoing experiences, what is happen-746

ing to us now can also affect how we process and remember future experiences. Within747

the framework of our study, we wondered: if early lists are sorted along different feature748

dimensions, might this affect how people remember later (random) lists? In exploring this749
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question, we considered both group-level effects (i.e., effects that tended to be common750

across individuals) and participant-level effects (i.e., effects that were idiosyncratic across751

individuals).752

At the group level, there seemed to be almost no lingering impact of sorting early753

lists on memory for later lists. To simplify the presentation, we report these null results754

in aggregate across the three feature groupings. Relative to memory performance on755

late feature rich lists, participants’ memory performance in all six order manipulation756

conditions showed no reliable differences (semantic: t(125) = 0.487, p = 0.627; lexico-757

graphic: t(125) = 0.878, p = 0.382; visual: t(126) = 1.437, p = 0.153). Nor did we observe758

any reliable differences in temporal clustering on late lists (relative to late feature rich759

lists; semantic: t(125) = 0.146, p = 0.884; lexicographic: t(125) = 0.923, p = 0.358; visual:760

t(126) = 0.525, p = 0.601). Aside from a slightly increased tendency for participants to761

cluster words by their length on late visual order manipulation lists (more than late fea-762

ture rich lists; t(126) = 2.199, p = 0.030), we observed no reliable differences in any type of763

feature clustering on late order manipulation condition lists versus late feature rich lists764

(∥t∥s ≤ 1.234, ps ≥ 0.220).765

We also looked for more subtle group-level patterns. For example, perhaps sorting766

early lists by one feature dimension could affect how participants cluster other features767

(on early and/or late lists) as well. We defined participants’ memory fingerprints as the set768

of their temporal and feature clustering scores (see Memory fingerprints). A participant’s769

memory fingerprint describes how they tend to retrieve memories of the studied items,770

perhaps searching in parallel through several feature spaces (or along several represen-771

tational dimensions). To gain insights into the dynamics of how participants’ clustering772

scores tended to change over time, we computed the average (across participants) finger-773

print from each list, from each order manipulation condition (Fig. 6). We projected these774
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Figure 5: Recall probability and clustering scores on early and late lists. The bar heights
display the average (across participants) recall probabilities (A.), temporal clustering scores (B.),
and feature clustering scores (C.) for early (gray) and late (gold) lists. For the feature rich bars (left),
the feature clustering scores are averaged across features. For the order manipulation conditions,
feature clustering scores are displayed for the focused-on feature for each condition (e.g., category
clustering scores are displayed for the category condition, and so on). All panels: error bars denote
bootstrap-estimated 95% confidence intervals. The horizontal dotted lines denote the average
values (across all lists and participants) for the feature rich condition.
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fingerprints into a two-dimensional space to help visualize the dynamics (top panels; see775

Computing low-dimensional embeddings of memory fingerprints). We found that participants’776

average fingerprints tended to remain relatively stable on early lists, and exhibited a777

“jump” to another stable state on later lists. The sizes of these jumps varied somewhat778

across conditions (the Euclidean distances between fingerprints in their original high di-779

mensional spaces are displayed in the bottom panels). We also averaged the fingerprints780

across early and late lists, respectively, for each condition (Fig. 6B). We found that par-781

ticipants’ fingerprints on early lists seem to be influenced by the order manipulations782

for those lists (see the locations of the circles in Fig. 6B). There also seemed to be some783

consistency across different features within a broader type. For example, both semantic784

feature conditions (category and size; purple markers) diverge in a similar direction from785

the group; both lexicographic feature conditions (length and first letter; yellow markers)786

diverge in a similar direction; and both visual conditions (color and location; green) also787

diverge in a similar direction. But on late lists, participants’ fingerprints seem to return788

to a common state that is roughly shared across conditions (i.e., the stars in that panel are789

clumped together).790

When we examined the data at the level of individual participants (Figs. 7 and 8), a791

clearer story emerged. Within each order manipulation condition, participants exhibited792

a range of feature clustering scores on both early and late lists (Fig. 7A, B). Across every793

order manipulation condition, participants who exhibited stronger feature clustering (for794

their condition’s manipulated feature) recalled more words. This trend held overall across795

conditions and participants (early: r(179) = 0.537, p < 0.001; late: r(179) = 0.492, p < 0.001)796

as well as for each condition individually for early (rs ≥ 0.386, all ps ≤ 0.035) and late797

(rs ≥ 0.462, all ps ≤ 0.010) lists. We found no evidence of a condition-level trend; for798

example, the conditions where participants tended to show stronger clustering scores799
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Figure 6: Memory fingerprint dynamics (order manipulation conditions). A. Each column (and
color) reflects an experimental condition. In the top panels, each marker displays a 2D projection of
the (across-participant) average memory fingerprint for one list. Order manipulation (early) lists
are denoted by circles and randomly ordered (late) lists are denoted by stars. All of the fingerprints
(across all conditions and lists) are projected into a common space. The bar plots in the bottom
panels display the Euclidean distances of the per-list memory fingerprints to the list 0 fingerprint,
for each condition. Error bars denote bootstrap-estimated 95% confidence intervals. The dotted
vertical lines denote the boundaries between early and late lists. B. In this panel, the fingerprints
for early (circle) and late (star) lists are averaged across lists and participants before projecting the
fingerprints into a (new) 2D space. See Figure S8 for analogous plots for the random conditions.

were not correlated with the conditions where participants remembered more words800

(early: r(4) = 0.526, p = 0.284; late: r(4) = −0.257, p = 0.623; see insets of Fig. 7A and B).801

We observed carryover associations between feature clustering and recall performance802

(Fig. 7C, D). Participants who showed stronger feature clustering on early lists tended to803

recall more items on late lists (across conditions: r(179) = 0.492, p < 0.001; all conditions804

individually: rs ≥ 0.462, all ps ≤ 0.010). Participants who recalled more items on early lists805

also tended to show stronger feature clustering on late lists (across conditions: r(179) =806

0.280, p < 0.001; all non-visual conditions: rs≥ 0.445, all ps≤ 0.014; color: r(29) = 0.298, p =807

0.103; location: r(28) = 0.354, p = 0.055). Neither of these effects showed condition-level808

trends (early feature clustering versus late recall probability: r(4) = −0.299, p = 0.565;809

early recall probability versus late feature clustering: r(4) = 0.400, p = 0.432). We also810

looked for associations between feature clustering and temporal clustering. Across every811

order manipulation condition, participants who exhibited stronger feature clustering also812
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exhibited stronger temporal clustering. For early lists (Fig. 7E), this trend held overall813

(r(179) = 0.924, p < 0.001), for each condition individually (all rs ≥ 0.822, all ps < 0.001),814

and across conditions (r(4) = 0.964, p = 0.002). For late lists (Fig. 7F), the results were more815

variable (overall: r(179) = 0.348, p < 0.001; all non-visual conditions: rs ≥ 0.382, all ps816

≤ 0.037; color: r(29) = 0.453, p = 0.011; location: r(28) = 0.190, p = 0.314; across-conditions:817

r(4) = −0.036, p = 0.945). While less robust than the carryover associations between feature818

clustering and recall performance, we also observed some carryover associations between819

feature clustering and temporal clustering (Fig. 7G, H). Participants who showed stronger820

feature clustering on early lists trended towards showing stronger temporal clustering821

on later lists (overall: r(179) = 0.301, p < 0.001; for individual conditions: all rs ≥ 0.297,822

all ps ≤ 0.111; across conditions: r(4) = 0.107, p = 0.840). And participants who showed823

stronger temporal clustering on early lists trended towards showing stronger feature824

clustering on later lists (overall: r(179) = 0.579, p < 0.001; all non-visual conditions: rs825

≥ 0.323, all ps ≤ 0.082; visual conditions: rs ≥ 0.089, all ps ≤ 0.632; across conditions:826

r(4) = 0.916, p = 0.010). Taken together, the results displayed in Figure 7 show that827

participants who were more sensitive to the order manipulations (i.e., participants who828

showed stronger feature clustering for their condition’s feature on early lists) remembered829

more words and showed stronger temporal clustering. These associations also appeared830

to carry over across lists, even when the items on later lists were presented in a random831

order.832

If participants show different sensitivities to order manipulations, how do their be-833

haviors carry over to later lists? We found that participants who showed strong feature834

clustering on early lists often tended to show strong feature clustering on late lists (Fig. 8A;835

overall across participants and conditions: r(179) = 0.592, p < 0.001; non-visual feature836

conditions: all rs ≥ 0.350, all ps ≤ 0.058; color: r(29) = −0.071, p = 0.704; location:837
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Figure 7: Interactions between feature clustering, recall probability, and contiguity. A. Recall
probability versus feature clustering scores for order manipulation (early) lists. B. Recall probability
versus feature clustering for randomly ordered (late) lists. C. Recall probability on late lists versus
feature clustering on early lists. D. Recall probability on early lists versus feature clustering
on late lists. E. Temporal clustering scores (contiguity) versus feature clustering scores on early
lists. F. Temporal clustering scores versus feature clustering scores on late lists. G. Temporal
clustering scores on late lists versus feature clustering scores on early lists. H. Temporal clustering
scores on early lists versus feature clustering scores on late lists. All panels. Each dot in the
main scatterplots denotes the average scores for one participant. The colored regression lines
are computed across participants. The inset displays condition-averaged results, where each dot
reflects a single condition and the regression line is computed across experimental conditions. All
error ribbons denote bootstrap-estimated 95% confidence intervals.
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Figure 8: Feature clustering carryover effects. A. Feature clustering scores for order manipulation
(early) versus randomly ordered (late) lists. B. Accuracy differences (on early versus late lists)
versus feature clustering “carryover” (defined as the differences between the average clustering
scores on early and late lists). C. Temporal clustering differences (on early versus late lists) versus
feature clustering carryover. All panels. Each dot in the main scatterplots denotes the average
scores for one participant. The colored regression lines are computed across participants. The inset
displays condition-averaged results, where each dot reflects a single condition and the regression
line is computed across experimental conditions. All error ribbons denote bootstrap-estimated
95% confidence intervals.

r(28) = 0.032, p = 0.868; across conditions: r(4) = 0.934, p = 0.006). Although participants838

tended to show weaker feature clustering on late lists (Fig. 6) on average, the associations839

between early and late lists for individual participants suggests that some influence of840

early order manipulations may linger on late lists. We found that participants who exhib-841

ited larger carryover in feature clustering (i.e., continued to show strong feature clustering842

on late lists) for the semantic order manipulations (but not other manipulations) also843

tended to show a larger improvement in recall (Fig. 8B; overall: r(179) = 0.378, p < 0.001;844

category: r(28) = 0.419, p = 0.021; size: r(28) = 0.737, p < 0.001; non-semantic condi-845

tions: all rs ≤ 0.252, all ps ≥ 0.179; across conditions: r(4) = 0.773, p = 0.072) on late846

lists, relative to early lists. Participants who exhibited larger carryover in feature cluster-847

ing also tended to show stronger temporal clustering on late lists (relative to early lists)848

for all but the category condition (Fig. 8C; overall: r(179) = 0.434, p < 0.001; category:849

r(28) = 0.229, p = 0.223; all non-category conditions: all rs ≥ 0.448, all ps ≤ 0.012; across850

conditions: r(4) = 0.598, p = 0.210).851
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We suggest two potential interpretations of these findings. First, it is possible that852

some participants are more “malleable” or “adaptable” with respect to how they organize853

incoming information. When presented with list of items sorted along any feature dimen-854

sion, they will simply adopt that feature as a dominant dimension for organizing those855

items and subsequent (randomly ordered) items. This flexibility in memory organization856

might afford such participants a memory advantage, explaining their strong recall perfor-857

mance. An alternative interpretation is that each participant comes into our study with a858

“preferred” way of organizing incoming information. If they happen to be assigned to an859

order manipulation condition that matches their preferences, then they will appear to be860

“sensitive” to the order manipulation and also exhibit a high degree of carryover in feature861

clustering from early to late lists. These participants might demonstrate strong recall per-862

formance not because of their inherently superior memory abilities, but rather because the863

specific condition they were assigned to happened to be especially easy for them, given864

their pre-experimental tendencies. To help distinguish between these interpretations, we865

designed an adaptive experimental condition (see Adaptive condition). The primary ma-866

nipulation in the adaptive condition is that participants each experience three key types867

of lists. On random lists, words are ordered randomly (as in the feature rich condition).868

On stabilize lists, the presentation order is adjusted to be maximally similar to the current869

estimate of the participant’s memory fingerprint (see Online “fingerprint” analysis). Third,870

on destabilize lists, the presentation order is adjusted to be minimally similar to the current871

estimate of the participant’s memory fingerprint (see Ordering “stabilize” and “destabilize”872

lists by an estimated fingerprint). The orders in which participants experienced each type873

of list were counterbalanced across participants to help reduce the influence of potential874

list-order effects. Because the presentation orders on stabilize and destabilize lists are875

adjusted to best match each participant’s (potentially unique) memory fingerprint, the876
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Figure 9: Adaptive free recall. A. Average probability of recall (taken across words, lists, and
participants) for lists from each adaptive condition. B. Average temporal clustering scores for
lists from each adaptive condition. C. Recall probability versus temporal clustering scores by
participant (main panel; each participant contributes one dot per condition) and averaged within
condition (inset; each dot represents a single condition). D. Per-list correlations between the current
list’s fingerprint and the average fingerprint computed from all previous lists. The normalized list
numbers (x-axis) denote the number of lists of the same type that the participant had experienced
at the time of the current list. All panels: Colors denote the sorting type (condition) for each list.
Error bars and ribbons denote bootstrap-estimated 95% confidence intervals. For additional details
about participants’ behavior and performance during the adaptive conditions, see Figure S2.

adaptive condition removes uncertainty about whether participants’ assigned conditions877

might just “happen” to match their preferred ways of organizing their memories.878

Participants’ fingerprints on stabilize and random lists tended to become (numerically)879

slightly more similar to their average fingerprints computed from the previous lists they880

had experienced, and their fingerprints on destabilize lists tended to become numerically881

less similar (Fig. 9D). Overall, we found that participants tended to be better at remember-882

ing words on stabilize lists relative to words on both random (t(59) = 1.740, p = 0.087) and883

destabilize (t(59) = 1.714, p = 0.092) lists (Fig. 9A). Participants showed no reliable differ-884

ences in their memory performance on destabilize versus random lists (t(59) = −0.249, p =885

0.804). Participants also exhibited stronger temporal clustering on stabilize lists, relative to886

random (t(59) = 3.554, p = 0.001) and destabilize (t(59) = 4.045, p < 0.001) lists (Fig. 9B). We887

found no reliable differences in temporal clustering for items on random versus destabilize888

lists (t(59) = −0.781, p = 0.438).889

As in the other experimental manipulations, participants in the adaptive condition890

exhibited substantial variability with respect to their overall memory performance and891
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their clustering tendencies (Fig. 9C). We found that individual participants who exhibited892

strong temporal clustering scores also tended to recall more items. This held across893

subjects, aggregating across all list types (r(178) = 0.721, p < 0.001), and for each list type894

individually (all rs ≥ 0.683, all ps ≤ 0.001). Taken together, the results from the adaptive895

condition suggest that each participant comes into the experiment with their own unique896

memory organization tendencies, as characterized by their memory fingerprint. When897

participants study lists whose items come pre-sorted according to their unique preferences,898

they tend to remember more and show stronger temporal clustering.899

Discussion900

We asked participants to study and freely recall word lists. The words on each list (and901

the total set of lists) were held constant across participants. For each word, we considered902

(and manipulated) two semantic features (category and size) that reflected aspects of the903

meanings of the words, along with two lexicographic features (word length and first letter),904

which reflected characteristics of the words’ letters. These semantic and lexicographic905

features are intrinsic to each word. We also considered and manipulated two additional906

visual features (color and location) that affected the appearance of each studied item, but907

could be varied independently of the words’ identities. Across different experimental908

conditions, we manipulated how the visual features varied across words (within each909

list), along with the orders of each list’s words. Although the participants’ task (verbally910

recalling as many words as possible, in any order, within one minute) remained constant911

across all of these conditions, and although the set of words they studied from each list912

remained constant, our manipulations substantially affected participants’ memories. The913

impact of some of the manipulations also affected how participants remembered future914

lists that were sorted randomly.915
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Recap: visual feature manipulations916

We found that participants in our feature rich condition (where we varied words’ ap-917

pearances) recalled similar proportions of words to participants in a reduced condition918

(where appearance was held constant across words). However, varying the words’ ap-919

pearances led participants to exhibit much more temporal and feature-based clustering.920

This suggests that even seemingly irrelevant elements of our experiences can affect how921

we remember them.922

When we held the within-list variability in participants’ visual experiences fixed across923

lists (in the feature rich and reduced conditions), they remembered more words from early924

lists than from late lists. For feature rich lists, they also showed stronger clustering for early925

versus late lists. However, when we varied participants’ visual experiences across lists (in926

the “reduced (early)” and “reduced (late)” conditions), these early versus late accuracy927

and clustering differences disappeared. Abruptly changing how incidental visual features928

varied across words seemed to act as a sort of “event boundary” that partially reset how929

participants processed and remembered post-boundary lists. Within-list clustering also930

increased in these manipulations, suggesting that the “within-event” words were being931

more tightly associated with each other.932

When we held the visual features constant during early lists, but then varied words’933

appearances in later lists (i.e., the reduced (early) condition), participants’ overall memory934

performance improved. However, this impact was directional: when we removed visual935

features from words in late lists that had been present in early lists (i.e., the reduced (late)936

condition), we saw no memory improvement.937
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Recap: order manipulations938

When we (stochastically) sorted early lists along different feature dimensions, we found939

several impacts on participants’ memories. Sorting early lists semantically (by word cat-940

egory) enhanced participants’ memories for those lists, but the effects on performance of941

sorting along other feature dimensions were inconclusive. However, each order manipu-942

lation substantially affected how participants organized their memories of words from the943

ordered lists. When we sorted lists semantically, participants displayed stronger semantic944

clustering; when we sorted lists lexicographically, they displayed stronger lexicographic945

clustering; and when we sorted lists visually, they displayed stronger visual clustering.946

Clustering along the unmanipulated feature dimensions in each of these cases was un-947

changed.948

The order manipulations we examined also appeared to induce, in some cases, a949

tendency to “clump” similar words within a list. This was most apparent on semantically950

ordered lists, where the probability of initiating recall with a given word seemed to follow951

groupings defined by feature change points.952

We also examined the impact of early list order manipulations on memory for late953

lists. At the group level, we found little evidence for lingering “carryover” effects of954

these manipulations: participants in the order manipulation conditions showed similar955

memory performance and clustering on late lists to participants in the corresponding956

control (feature rich) condition. At the level of individual participants, however, we957

found several meaningful patterns.958

Participants who showed stronger feature clustering on early (order-manipulated) lists959

tended to better remember late (randomly ordered) lists. Participants who remembered960

early lists better also tended to show stronger feature clustering (along their condition’s961

feature dimension) on late lists (even though the words on those late lists were presented962
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in a random order). We also observed some (weaker) carryover effects of temporal cluster-963

ing. Participants who showed stronger feature clustering (along their condition’s feature964

dimension) on early lists tended to show stronger temporal clustering on late lists. And965

participants who showed stronger temporal clustering on early lists also tended to show966

stronger feature clustering on late lists. Essentially, these order manipulations appeared to967

affect each participant differently. Some participants were sensitive to our manipulations,968

and those participants’ memory performance was impacted more strongly, both for the969

ordered lists and for future (random) lists. Other participants appeared relatively insen-970

sitive to our manipulations, and those participants showed little carryover effects on late971

lists.972

These results at the individual participant level suggested to us that either (a) some973

participants were more sensitive to any order manipulation, or (b) some participants might974

be more (or less) sensitive to manipulations along particular (e.g., preferred) feature dimen-975

sions. To help distinguish between these possibilities, we designed an adaptive condition976

whereby we attempted to manipulate whether participants studied words in an order that977

either matched or mismatched our estimate of how they would cluster or organize the978

studied words in memory (i.e., their idiosyncratic memory fingerprint). We found that979

when we presented words in orders that were consistent with participants’ memory fin-980

gerprints, they remembered more words overall and showed stronger temporal clustering.981

This comports well with the second possibility described above. Specifically, each partici-982

pant seems to bring into the experiment their own idiosyncratic preferences and strategies983

for organizing the words in their memory. When we presented the words in an order984

consistent with each participant’s idiosyncratic fingerprint, their memory performance985

improved. This might indicate that the participants were spending less cognitive effort986

“reorganizing” the incoming words on those lists, which freed up resources to devote to987
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encoding processes instead.988

Context effects on memory performance and organization989

In real-world experience, each moment’s unique blend of contextual features (where we990

are, who we are with, what else we are thinking of at the time, what else we experience991

nearby in time, etc.) plays an important role in how we interpret, experience, and re-992

member that moment, and how we relate it to our other experiences (e.g., for review see993

Manning, 2020). What are the analogues of real-world contexts in laboratory tasks like994

the free recall paradigm employed in our study? In general, modern formal accounts of995

free recall (Kahana, 2020) describe context as comprising a mix of (a) features pertaining996

to or associated with each item and (b) other items and thoughts experienced nearby in997

time, e.g., that might still be “lingering” in the participant’s thoughts at the time they998

study the item. Item features can include semantic properties (i.e., features related to the999

item’s meaning), lexicographic properties (i.e., features related to the item’s letters), sen-1000

sory properties (i.e., feature related to the item’s appearance, sound, smell, etc.), emotional1001

properties (i.e., features related to how meaningful the item is, whether the item evokes1002

positive or negative feelings, etc.), utility-related properties (e.g., features that describe1003

how an item might be used or incorporated into a particular task or situation), and more.1004

Essentially any aspect of the participant’s experience that can be characterized, measured,1005

or otherwise described can be considered to influence the participant’s mental context at1006

the moment they experience that item. Temporally proximal features include aspects of1007

the participant’s internal or external experience that are not specifically occurring at the1008

moment they encounter an item, but that nonetheless influence how they process the item.1009

Thoughts related to percepts, goals, expectations, other experiences, and so on that might1010

have been cued (directly or indirectly) by the participant’s recent experiences prior to the1011
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current moment all fall into this category. Internally driven mental states, such as thinking1012

about an experience unrelated to the experiment, also fall into this category.1013

Contextual features need not be intentionally or consciously perceived by the partic-1014

ipant to affect memory, nor do they need to be relevant to the task instructions or the1015

participant’s goals. Incidental factors such as font color (Jones and Pyc, 2014), back-1016

ground color (Isarida and Isarida, 2007), inter-stimulus images (Chiu et al., 2021; Ger-1017

shman et al., 2013; Manning et al., 2016), background sounds (Beaman and Jones, 1998;1018

Sahakyan and Smith, 2014), secondary tasks (Masicampto and Sahakyan, 2014; Oberauer1019

and Lewandowsky, 2008; Polyn et al., 2009), and more can all impact how participants1020

remember, and organize in memory, lists of studied items.1021

Consistent with this prior work, we found that participants were sensitive to task-1022

irrelevant visual features. We also found that changing the dynamics of those task-1023

irrelevant visual features (in the reduced (early) and reduced (late) conditions) also affected1024

participants’ memories. This suggests that it is not only the contextual features themselves1025

that affect memory, but also the dynamics of context—i.e., how the contextual features1026

associated with each item change over time.1027

Priming effects on memory performance and organization1028

When our ongoing experiences are ambiguous, we can draw on our past experiences,1029

expectations, and other real, perceived, or inferred cues to help resolve these ambiguities.1030

We may also be overtly or covertly “primed” to influence how we are likely to resolve1031

ambiguities. For example, before listening to a story with several equally plausible inter-1032

pretations, providing participants with “background” information beforehand can lead1033

them towards one interpretation versus another (Yeshurun et al., 2017). More broadly, our1034

conscious and unconscious biases and preferences can influence not only how we interpret1035
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high-level ambiguities, but even how we process low-level sensory information (Katabi1036

et al., 2023).1037

In more simplified scenarios, like list-learning paradigms, the stimuli and tasks partic-1038

ipants encounter before studying a given list can influence what and how they remember.1039

For example, when participants are directed to suppress, disregard, or ignore “distracting”1040

stimuli early on in an experiment, participants often tend to remember those stimuli less1041

well when they are re-used as to-be-remembered targets later on in the experiment (Tip-1042

per, 1985). In general, participants’ memories can be influenced by exposing them to1043

a wide range of positive and negative priming factors before they encounter the to-be-1044

remembered information (Balota et al., 1992; Clayton and Chattin, 1989; Donnelly, 1988;1045

Flexser and Tulving, 1982; Gotts et al., 2012; Huang et al., 2004; Huber, 2008; Huber et al.,1046

2001; McNamara, 1994; Neely, 1977; Rabinowitz, 1986; Tulving and Schacter, 1991; Watkins1047

et al., 1992; Wiggs and Martin, 1998).1048

The order manipulation conditions in our experiment show that participants can also be1049

primed to pick up on more subtle statistical structure in their experiences, like the dynamics1050

of how the presentation orders of stimuli vary along particular feature dimensions. These1051

order manipulations affected not only how participants remembered the manipulated1052

lists, but also how they remembered future lists with different (randomized) temporal1053

properties.1054

Expectation, event boundaries, and situation models1055

Our findings that participants’ current and future memory behaviors are sensitive to1056

manipulations in which features change over time, and how features change across items1057

and lists, suggest parallels with studies on how we form expectations and predictions,1058

segment our continuous experiences into discrete events, and make sense of different1059
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scenarios and situations. Each of these real-world cognitive phenomena entail identifying1060

statistical regularities in our experiences, and exploiting those regularities to gain insight,1061

form inferences, organize or interpret memories, and so on. Our past experiences enable1062

us to predict what is likely to happen in the future, given what happened “next” in our1063

previous experiences that were similar to now (Barron et al., 2020; Brigard, 2012; Chow1064

et al., 2016; Eichenbaum and Fortin, 2009; Gluck et al., 2002; Goldstein et al., 2021; Griffiths1065

and Steyvers, 2003; Jones and Pashler, 2007; Kim et al., 2014; Manning, 2020; Tamir and1066

Thornton, 2018; Xu et al., 2023).1067

When our expectations are violated, such as when our observations disagree with our1068

predictions, we may perceive the “rules” or “situation” to have changed. Event boundaries1069

denote abrupt changes in the state of our experience, for example, when we transition1070

from one situation to another (Radvansky and Zacks, 2017; Zwaan and Radvansky, 1998).1071

Crossing an event boundary can impair our memory for pre-boundary information and en-1072

hance our memory for post-boundary information (DuBrow and Davachi, 2013; Manning1073

et al., 2016; Radvansky and Copeland, 2006; Sahakyan and Kelley, 2002). Event bound-1074

aries are also tightly associated with the notion of situation models and schemas—mental1075

frameworks for organizing our understanding about the rules of how we and others are1076

likely to behave, how events are likely to unfold over time, how different elements are1077

likely to interact, and so on. For example, a situation model pertaining to a particular1078

restaurant might set our expectations about what we are likely to experience when we1079

visit that restaurant (e.g., what the building will look like, how it will smell when we enter,1080

how crowded the restaurant is likely to be, the sounds we are likely to hear, etc.). Similarly,1081

as mentioned in the Introduction, we might learn a schema describing how events are likely1082

to unfold across any sit-down restaurant—e.g., open the door, wait to be seated, receive a1083

menu, decide what to order, place the order, and so on. Situation models and schemas can1084
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help us to generalize across our experiences, and to generate expectations about how new1085

experiences are likely to unfold. When those expectations are violated, we can perceive1086

ourselves to have crossed into a new situation.1087

In our study, we found that abruptly changing the “rules” about how the visual1088

appearances of words are determined, or about the orders in which words are presented,1089

can lead participants to behave similarly to what one might expect upon crossing an event1090

boundary. Adding variability in font color and presentation location for words on late1091

lists, after those visual features had been held constant on early lists, led participants to1092

remember more words on those later lists. One potential explanation is that participants1093

perceive an “event boundary” to have occurred when they encounter the first “late” list.1094

According to contextual change accounts of memory across event boundaries (e.g., Flores1095

et al., 2017; Gold et al., 2017; Pettijohn et al., 2016; Sahakyan and Kelley, 2002), this could1096

help to explain why participants in the reduced (early) condition exhibited better overall1097

memory performance. Specifically, their memory for late list items could benefit from less1098

interference from early list items, and the contextual features associated with late list items1099

(after the “event boundary”) might serve as more specific recall cues for those late items1100

(relative to if the boundary had not occurred).1101

Theoretical implications1102

Although most modern formal theories of episodic memory have been developed and1103

tested to explain memory for list-learning tasks (Kahana, 2020), a number of recent studies1104

suggest some substantial differences between memory for lists versus naturalistic stim-1105

uli (e.g., real-world experiences, narratives, films, etc.; Heusser et al., 2021; Lee et al., 2020;1106

Manning, 2021; Nastase et al., 2020). One reason is that naturalistic stimuli are often much1107

more engaging than the highly simplified list-learning tasks typically employed in the1108
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psychological laboratory, perhaps leading participants to pay more attention, exert more1109

effort, and stay more consistently motivated to perform well (Nastase et al., 2020). Another1110

reason is that the temporal unfoldings of events and occurrences in naturalistic stimuli1111

tend to be much more meaningful than the temporal unfoldings of items on typical lists1112

used in laboratory memory tasks. Real-world events exhibit important associations at a1113

broad range of timescales. For example, an early detail in a detective story may prove to1114

be a clue to solving the mystery later on. Further, what happens in one moment typically1115

carries some predictive information about what came before or after (Xu et al., 2023). In1116

contrast, the lists used in laboratory memory tasks are most often ordered randomly, by1117

design, to remove meaningful temporal structure in the stimulus (Kahana, 2012).1118

On one hand, naturalistic stimuli provide a potential means of understanding how our1119

memory systems function in the circumstances we most often encounter in our everyday1120

lives. This implies that, to understand how memory works in the “real world,” we should1121

study memory for stimuli that reflect the relevant statistical structure of real-world expe-1122

riences. On the other hand, naturalistic stimuli can be difficult to precisely characterize or1123

model, making it difficult to distinguish whether specific behavioral trends follow from1124

fundamental workings of our memory systems, from some aspect of the stimulus, or from1125

idiosyncratic interactions or interference between participants’ memory systems and the1126

stimulus. This challenge implies that, to understand the fundamental nature of memory1127

in its “pure” form, we should study memory for highly simplified stimuli that can pro-1128

vide relatively unbiased (compared with real-world experiences) measures of the relevant1129

patterns and tendencies.1130

The experiment we report in this paper was designed to help bridge some of this gap1131

between naturalistic tasks and more traditional list-learning tasks. We had people study1132

word lists similar to those used in classic memory studies, but we also systematically var-1133
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ied the lists’ “richness” (by adding or removing visual features) and temporal structure1134

(through order manipulations that varied over time and across experimental conditions).1135

We found that participants’ memory behaviors were sensitive to these manipulations.1136

Some of the manipulations led to changes that were common across people (e.g., more1137

temporal clustering when words’ appearances were varied, enhanced memory for lists1138

following an “event boundary,” more feature clustering on order-manipulated lists, etc.).1139

Other manipulations led to changes that were idiosyncratic (especially carryover effects1140

from order manipulations; e.g., participants who remembered more words on early order-1141

manipulated lists tended to show stronger feature clustering for their condition’s feature1142

dimension on late randomly ordered lists, etc.). We also found that participants remem-1143

bered more words from lists that were sorted to align with their idiosyncratic clustering1144

preferences. Taken together, our results suggest that our memories are susceptible to ex-1145

ternal influences (i.e., to the statistical structure of ongoing experiences), but the effects of1146

past experiences on future memory are largely idiosyncratic across people.1147

Potential applications1148

Every participant in our study encountered exactly the same words, split into exactly the1149

same lists. But participants’ memory performance, the orders in which they recalled the1150

words, and the effects of early list manipulations on later lists all varied according to how1151

we presented the to-be-remembered words.1152

Our findings raise a number of exciting questions. For example, how far might these1153

manipulations be extended? In other words, might there be more sophisticated or clever1154

feature or order manipulations that one could implement to have stronger impacts on1155

memory? Are there limits to how much impact (on memory performance and/or or-1156

ganization) these sorts of manipulations can have? Are those limits universal across1157
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people, or are there individual differences (based on prior experiences, natural strate-1158

gies, neuroanatomy, etc.) that impose person-specific limits on the potential impact of1159

presentation-level manipulations on memory?1160

Our findings indicate that the ways word lists are presented affects how people re-1161

member them. To the extent that word list memory reflects memory processes that are1162

relevant to real-world experiences, one could imagine potential real-world applications of1163

our findings. For example, we found that participants remembered more words when the1164

presentation order agreed with their memory fingerprints. If analogous fingerprints could1165

be estimated for classroom content, perhaps they could be utilized manually by teachers,1166

or even by automated content-presentation systems, to optimize how and what students1167

remember.1168

Concluding remarks1169

Our work raises deep questions about the fundamental nature of human learning. What1170

are the limits of our memory systems? How much does what we remember (and how we1171

remember) depend on how we learn or experience the to-be-remembered content? We1172

know that our expectations, strategies, situation models learned through prior experiences,1173

and more collectively shape how our experiences are remembered. But those aspects of1174

our memory are not fixed: when we are exposed to the same experience in a new way, it1175

can change how we remember that experience, and also how we remember, process, or1176

perceive future experiences.1177
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