
Text embedding models yield high-resolution insights1

into conceptual knowledge from short multiple-choice2

quizzes3

Paxton C. Fitzpatrick1, Andrew C. Heusser1, 2, and Jeremy R. Manning1, *

1Department of Psychological and Brain Sciences

Dartmouth College, Hanover, NH 03755, USA

2Akili Interactive Labs

Boston, MA 02110, USA

*Corresponding author: Jeremy.R.Manning@Dartmouth.edu

4

Abstract5

We develop a mathematical framework, based on natural language processing models, for track-6

ing and characterizing the acquisition of conceptual knowledge. Our approach embeds each7

concept in a high-dimensional representation space, where nearby coordinates reflect similar or8

related concepts. We test our approach using behavioral data from participants who answered9

small sets of multiple-choice quiz questions, interleaved between watching two course videos10

from the Khan Academy platform. We apply our framework to the videos’ transcripts and11

the text of the quiz questions to quantify the content of each moment of video and each quiz12

question. We use these embeddings, along with participants’ quiz responses, to track how the13

learners’ knowledge changed after watching each video. Our findings show how a small set of14

quiz questions may be used to obtain rich and meaningful, high-resolution insights into what15

each learner knows, and how their knowledge changes over time as they learn.16

Keywords: education, learning, knowledge, concepts, natural language processing17
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Introduction18

Suppose that a teacher had access to a complete, tangible “map” of everything a student knew.19

Defining what such a map might even look like, let alone how it might be constructed or filled in, is20

itself a non-trivial problem. But if a teacher were to gain access to such a map, how might it change21

their ability to teach that student? Perhaps they might start by checking how well the student knew22

the to-be-learned information already, or how much they knew about related concepts. For some23

students, they could potentially optimize their teaching efforts to maximize efficiency by focusing24

primarily on not-yet-known content. For other students (or other content areas), it might be more25

effective to optimize for direct connections between already known content and new material.26

Observing how the student’s knowledge changed over time, in response to their teaching, could27

also help to guide the teacher towards the most effective strategy for that individual student.28

A common approach to assessing a student’s knowledge is to present them with a set of quiz29

questions, calculate the proportion they answer correctly, and provide them with feedback in the30

form of a simple numeric or letter grade. While such a grade can provide some indication of whether31

the student has mastered the to-be-learned material, any univariate measure of performance on a32

complex task sacrifices certain relevant information, risks conflating underlying factors, and so on.33

For example, consider the relative utility of the imaginary map described above that characterizes34

a student’s knowledge in detail, versus a single annotation saying that the student answered 85%35

of their quiz questions correctly, or that they received a ‘B’. Here, we show that the same quiz data36

required to compute proportion-correct scores or letter grades can instead be used to obtain much37

more detailed insights into what the student knows at the time they took the quiz.38

Designing and building procedures and tools for mapping out knowledge touches on deep39

questions about what it means to learn. For example, how do we acquire conceptual knowledge?40

Memorizing course lectures or textbook chapters by rote can lead to the superficial appearance41

of understanding the underlying content, but achieving true conceptual understanding seems to42

require something deeper and richer. Does conceptual understanding entail connecting newly43

acquired information to the scaffolding of one’s existing knowledge or experience [2, 6, 8, 9, 43]?44
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Or weaving a lecture’s atomic elements (e.g., its component words) into a structured network that45

describes how those individual elements are related [26]? Conceptual understanding could also46

involve building a mental model that transcends the meanings of those individual atomic elements47

by reflecting the deeper meaning underlying the gestalt whole [23, 27, 40].48

The difference between “understanding” and “memorizing,” as framed by researchers in ed-49

ucation, cognitive psychology, and cognitive neuroscience (e.g., 14, 16, 19, 27, 40) has profound50

analogs in the fields of natural language processing and natural language understanding. For51

example, considering the raw contents of a document (e.g., its constituent symbols, letters, and52

words) might provide some clues as to what the document is about, just as memorizing a pas-53

sage might provide some ability to answer simple questions about it. However, text embedding54

models (e.g., 3–5, 7, 10, 25, 33) also attempt to capture the deeper meaning underlying those atomic55

elements. These models consider not only the co-occurrences of those elements within and across56

documents, but also patterns in how those elements appear across different scales (e.g., sentences,57

paragraphs, chapters, etc.), the temporal and grammatical properties of the elements, and other58

high-level characteristics of how they are used [28, 29]. According to these models, the deep59

conceptual meaning of a document may be captured by a feature vector in a high-dimensional60

representation space, wherein nearby vectors reflect conceptually related documents. A model61

that succeeds at capturing an analogue of “understanding” is able to assign nearby feature vectors62

to two conceptually related documents, even when the specific words contained in those documents have63

very little overlap.64

Given these insights, what form might a representation of the sum total of a person’s knowledge65

take? First, we might require a means of systematically describing or representing the nearly66

infinite set of possible things a person could know. Second, we might want to account for potential67

associations between different concepts. For example, the concepts of “fish” and “water” might be68

associated in the sense that fish live in water. Third, knowledge may have a critical dependency69

structure, such that knowing about a particular concept might require first knowing about a set of70

other concepts. For example, understanding the concept of a fish swimming in water first requires71

understanding what fish and water are. Fourth, as we learn, our “current state of knowledge”72
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should change accordingly. Learning new concepts should both update our characterizations of73

“what is known” and also unlock any now-satisfied dependencies of those newly learned concepts74

so that they are “tagged” as available for future learning.75

Here we develop a framework for modeling how conceptual knowledge is acquired during76

learning. The central idea behind our framework is to use text embedding models to define the77

coordinate systems of two maps: a knowledge map that describes the extent to which each concept is78

currently known, and a learning map that describes changes in knowledge over time. Each location79

on these maps represents a single concept, and the maps’ geometries are defined such that related80

concepts are located nearby in space. We use this framework to analyze and interpret behavioral81

data collected from an experiment that had participants answer sets multiple-choice questions82

about a series of recorded course lectures.83

Our primary research goal is to advance our understanding of what it means to acquire deep,84

real-world conceptual knowledge. Traditional laboratory approaches to studying learning and85

memory (e.g., list-learning studies) often draw little distinction between memorization and under-86

standing. Instead, these studies typically focus on whether information is effectively encoded or87

retrieved, rather than whether the information is understood. Approaches to studying conceptual88

learning, such as category learning experiments, can begin to investigate the distinction between89

memorization and understanding, often by training participants to distinguish arbitrary or random90

features in otherwise meaningless categorized stimuli. However the objective of real-world train-91

ing, or learning from life experiences more generally, is often to develop new knowledge that may92

be applied in useful ways in the future. In this sense, the gap between modern learning theories and93

modern pedagogical approaches that inform classroom learning strategies is enormous: most of94

our theories about how people learn are inspired by experimental paradigms and models that have95

only peripheral relevance to the kinds of learning that students and teachers actually seek [16, 27].96

To help bridge this gap, our study uses course materials from real online courses to inform, fit,97

and test models of real-world conceptual learning. We also provide a demonstration of how our98

models can be used to construct “maps” of what students know, and how their knowledge changes99

with training. In addition to helping to visualize knowledge (and changes in knowledge), we hope100
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that such maps might lead to real-world tools for improving how we educate. Taken together, our101

work shows that existing course materials and evaluative tools like short multiple-choice quizzes102

may be leveraged to gain highly detailed insights into what students know and how they learn.103

Results104

At its core, our main modeling approach is based around a simple assumption that we sought to105

test empirically: all else being equal, knowledge about a given concept is predictive of knowledge106

about similar or related concepts. From a geometric perspective, this assumption implies that107

knowledge is fundamentally “smooth.” In other words, as one moves through a space representing108

an individual’s knowledge (where similar concepts occupy nearby coordinates), their “level of109

knowledge” should change relatively gradually throughout that space. To begin to test this110

smoothness assumption, we sought to track participants’ knowledge and how it changed over111

time in response to training. Two overarching goals guide our approach. First, we want to gain112

detailed insights into what learners know, at different points in their training. For example, rather113

than simply reporting on the proportions of questions participants answer correctly (i.e., their114

overall performance), we seek estimates of their knowledge about a variety of specific concepts.115

Second, we want our approach to be potentially scalable to large numbers of concepts, courses, and116

students. This requires that the conceptual content of interest be discovered automatically, rather117

than relying on manually produced ratings or labels.118

We asked participants in our study to complete brief multiple-choice quizzes before, between,119

and after watching two lecture videos from the Khan Academy [22] platform (Fig. 1). The first120

lecture video, entitled Four Fundamental Forces, discussed the four fundamental forces in physics:121

gravity, strong and weak interactions, and electromagnetism. The second, entitled Birth of Stars,122

provided an overview of our current understanding of how stars form. We selected these particular123

lectures to satisfy three general criteria. First, we wanted both lectures to be accessible to a broad124

audience (i.e., with minimal prerequisite knowledge) so as to limit the impact of prior training on125

our participants’ abilities to learn from the lectures. To this end, we selected two introductory videos126
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Quiz 1 Lecture 1 Quiz 2 Lecture 2 Quiz 3

13 questions 13 questions 13 questions

A B DC A B DC A B DC

10 min 29s 7 min 57s

Four
Fundamental

Forces

Birth of
Stars

Four Fundamental Forces Birth of Stars General physics knowledge

Figure 1: Experimental paradigm. Participants alternate between completing three 13-question multiple-
choice quizzes and watching two Khan Academy lectures. Each quiz contains a mix of 5 questions about
lecture 1, 5 questions about lecture 2, and 3 questions about general physics knowledge. The specific questions
reflected on each quiz, and the orders of each quiz’s questions, were randomized across participants.

that were intended to be viewed at the start of students’ training in their respective content areas.127

Second, we wanted both lectures to have some related content, so that we could test our approach’s128

ability to distinguish similar conceptual content. To this end, we chose two videos from the same129

(per instructor annotations) Khan Academy course domain, “Cosmology and Astronomy.” Third,130

we sought to minimize dependencies and specific overlap between the videos. For example, we131

did not want participants’ abilities to understand one video to (directly) influence their abilities to132

understand the other. To satisfy this last criterion, we chose videos from two different lecture series133

(lectures 1 and 2 were from the “Scale of the Universe” and “Stars, Black Holes, and Galaxies”134

series, respectively).135

We also wrote a set of multiple-choice quiz questions that we hoped would enable us to136

evaluate participants’ knowledge about each individual lecture, along with related knowledge137

about physics not specifically presented in either video (see Tab. S1 for the full list of questions138

in our stimulus pool). Participants answered questions randomly drawn from each content area139

(lecture 1, lecture 2, and general physics knowledge) on each of the three quizzes. Quiz 1 was140

intended to assess participants’ “baseline” knowledge before training, Quiz 2 assessed knowledge141

after watching the Four Fundamental Forces video (i.e., lecture 1), and Quiz 3 assessed knowledge142

after watching the Birth of Stars video (i.e., lecture 2).143

To study in detail how participants’ conceptual knowledge changed over the course of the144
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What I want to do in this video is give 
a very high-level overview of the four 
fundamental forces four fundamental
forces of the universe. And I’m going to
start with gravity I’m going to start
with gravity. And it might surprise some 
of you that gravity is actually the...

other at other masses. And so it’ll keep
attracting things to it. So it kind of
snowballs the process, and that’s why
gravity can operate on these really,
really large, large objects in our
universe and the universe as a whole.
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0:07.62
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0:12.72
0:15.57

10:15.59
10:17.99
10:20.15
10:22.01
10:24.14
10:26.27
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Lecture transcript Sliding windows Lecture trajectory
A. B.

x15 x15

C.

...

Shared embedding space

Four Fundamental Forces
Birth of Stars

General physics knowledge

Lecture Questions

Figure 2: Modeling course content. A. Building a document pool from sliding windows of text. We
decompose each lecture’s transcript into a series of overlapping sliding windows. The full set of transcript
snippets (across all windows) may be treated as a set of “documents” for training a text embedding model.
B. Constructing lecture content trajectories. After training our model on the sliding windows from both
lectures, we transform each lecture into a “trajectory” through text embedding space by joining the embedding
coordinates of successive sliding windows parsed from its transcript. C. Embedding multiple lectures and
questions in a shared space. We apply the same model (trained on the two lectures’ windows) to both lectures,
along with the text of each question in our pool (Tab. S1), to project them into a shared text embedding space.
This results in one trajectory per lecture and one coordinate for each question. Here, we have projected the
15-dimensional embeddings onto their first 3 principal components for visualization.

experiment, we first sought to model the conceptual content presented to them at each moment145

throughout each of the two lectures. We adapted an approach we developed in prior work [17] to146

identify the latent themes in the lectures using a topic model [4]. Briefly, topic models take as input147

a collection of text documents, and learn a set of “topics” (i.e., latent themes) from their contents.148

Once fit, a topic model can be used to transform arbitrary (potentially new) documents into sets149

of “topic proportions,” describing the weighted blend of learned topics reflected in their texts. We150

parsed automatically generated transcripts of the two lectures into overlapping sliding windows,151

where each window contained the text of the lecture transcript from a particular time span. We152

treated the set of text snippets (across all of these windows) as documents to fit our model (Fig. 2A;153

see Constructing text embeddings of multiple lectures and questions). Transforming the text from every154

sliding window with our model yielded a number-of-windows by number-of-topics (15) topic-155

proportions matrix that described the unique mixture of broad themes from both lectures reflected156

in each window’s text. Each window’s “topic vector” (i.e., column of the topic-proportions matrix)157

is analogous to a coordinate in a 15-dimensional space whose axes are topics discovered by the158

model. Within this space, each lecture’s sequence of topic vectors (i.e., corresponding to its159
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transcript’s overlapping text snippets across sliding windows) forms a trajectory that captures how160

its conceptual content unfolds over time (Fig. 2B). We resampled these trajectories to a resolution161

of one topic vector for each second of video (i.e., 1 Hz).162

We hypothesized that a topic model trained on transcripts of the two lectures should also capture163

the conceptual knowledge probed by each quiz question. If indeed the topic model could capture164

information about the deeper conceptual content of the lectures (i.e., beyond surface-level details165

such as particular word choices), then we should be able to recover a correspondence between each166

lecture and questions about each lecture. Importantly, such a correspondence could not solely arise167

from superficial text matching between lecture transcripts and questions, since the lectures and168

questions used different words. Simply comparing the average topic weights from each lecture and169

question set (averaging across time and questions, respectively) reveals a striking correspondence170

(Fig. S1). Specifically, the average topic weights from lecture 1 are strongly correlated with the171

average topic weights from lecture 1 questions (r(13) = 0.809, p < 0.001, 95% confidence interval172

(CI) = [0.633, 0.962]), and the average topic weights from lecture 2 are strongly correlated with the173

average topic weights from lecture 2 questions (r(13) = 0.728, p = 0.002, 95% CI = [0.456, 0.920]).174

At the same time, the average topic weights from the two lectures are negatively correlated with175

their non-matching question sets (lecture 1 video vs. lecture 2 questions: r(13) = −0.547, p = 0.035,176

95% CI = [−0.812, −0.231]; lecture 2 video vs. lecture 1 questions: r(13) = −0.612, p = 0.015, 95%177

CI = [−0.874, −0.281]), indicating that the topic model also exhibits some degree of specificity. The178

full set of pairwise comparisons between average topic weights for the lectures and question sets179

is reported in Figure S1.180

Another, more sensitive, way of summarizing the conceptual content of the lectures and ques-181

tions is to look at variability in how topics are weighted over time and across different questions182

(Fig. 3). Intuitively, the variability in the expression of a given topic relates to how much “infor-183

mation” [13] the lecture (or question set) reflects about that topic. For example, suppose a given184

topic is weighted on heavily throughout a lecture. That topic might be characteristic of some185

aspect or property of the lecture overall (conceptual or otherwise), but unless the topic’s weights186

changed in meaningful ways over time, the topic would be a poor indicator of any specific concep-187
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Figure 3: Lecture and question topic overlap. A. Topic weight variability. The bar plots display the variance
of each topic’s weight across lecture timepoints (top row) and questions (bottom row); colors denote topics.
The top-weighted words from the most “expressive” (i.e., variable across observations) topic from each lecture
are displayed in the upper right (orange: topic 2; yellow-green: topic 4). The top-weighted words from the
full set of topics may be found in Table S2. B. Relationships between topic weight variability. Pairwise
correlations between the distributions of topic weight variance for each lecture and question set. Each row
and column corresponds to a bar plot in Panel A.

tual content in the lecture. We therefore also compared the variances in topic weights (across time188

or questions) between the lectures and questions. The variability in topic expression (over time189

and across questions) was similar for the lecture 1 video and questions (r(13) = 0.824, p < 0.001,190

95% CI = [0.696, 0.973]) and the lecture 2 video and questions (r(13) = 0.801, p < 0.001, 95%191

CI = [0.539, 0.958]). However, as reported in Figure 3B, the variability in topic expressions across192

different videos and lecture-specific questions (i.e., lecture 1 video vs. lecture 2 questions; lecture 2193

video vs. lecture 1 questions) were negatively correlated, and neither video’s topic variability was194

reliably correlated with the topic variability across general physics knowledge questions. Taken195

together, the analyses reported in Figures 3 and S1 indicate that a topic model fit to the videos’196

transcripts can also reveal correspondences (at a coarse scale) between the lectures and questions.197

Although a single lecture may be organized around a single broad theme at a coarse scale, at a198

finer scale each moment of a lecture typically covers a narrower range of content. We wondered199

whether a text embedding model trained on the lectures’ transcripts might capture some of this200

finer scale content. For example, if a particular question asks about the content from one small part201
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Q 15
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Lecture time

B. Birth of Stars

Q 16
Q 17

Q 18
Q 19

Q 20
Q 21

Q 22
Q 23

Q 24
Q 25

Q 26
Q 27

Q 28
Q 29

Q 30

1:43–2:13

Q 2

“...And just to give you an example of the actual weak interaction, if I had 
some cesium-137—137 means it has 137 nucleons. A nucleon is either a 
proton or a neutron [...] And it is cesium because it has exactly 55 pro-
tons. Now, the weak interaction is what's responsible for one of the neu-
trons—essentially one of its quarks �ipping and turning into a proton...”

“Which of the following is an example of the Weak Interaction?”

“...then all of a sudden, the strong force will overtake. It's much stronger 
than the Coulomb force, and then these two hydrogens will actually [...] 
fuse together. And so that is what actually happens once this gets hot 
and dense enough. You now have enough pressure and enough tem-
perature to overcome the Coulomb force and bring these protons close 
enough to each other for fusion to occur.”

“Which of the following can overcome the Coulomb Force?”

2:36–3:06

Q 19

Figure 4: Which parts of each lecture are captured by each question? Each panel displays timeseries
plots showing how each question’s topic vector correlates with each video timepoint’s topic vector (Panel
A.: correlations for the Four Fundamental Forces lecture and associated questions; Panel B.: correlations for
the Birth of Stars lecture and associated questions). The colors denote question identities. The diamonds in
each panel denote the moment of peak correlation between the indicated question and the lecture trajectory.
The associated questions’ text and snippets of the lectures’ transcripts from the surrounding 30 seconds, are
displayed at the bottom of the figure.

of a lecture, we wondered whether the text embeddings could be used to automatically identify202

the “matching” moment(s) in the lecture. When we correlated each question’s topic vector with203

the topic vectors from each second of the lectures, we found some evidence that each question is204

temporally specific (Fig. 4). In particular, most questions’ topic vectors were maximally correlated205

with a well-defined (and relatively narrow) range of timepoints from their corresponding lectures,206

and the correlations fell off sharply outside of that range. We also qualitatively examined the best-207

matching intervals for each question by comparing the text of the question to the text of the most-208

correlated parts of the lectures. Despite that the questions were excluded from the text embedding209

model’s training set, in general we found (through manual inspection) a close correspondence210

between the conceptual content that each question probed and the content covered by the best-211

matching moments of the lectures. Two representative examples are shown at the bottom of212

Figure 4.213

The ability to quantify how much each question is “asking about” the content from each moment214
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of the lectures could enable high-resolution insights into participants’ knowledge. Traditional215

approaches to estimating how much a student “knows” about the content of a given lecture entail216

computing the proportion of correctly answered questions. But if two students receive identical217

scores on an exam, might our modeling framework help us to gain more nuanced insights into218

the specific content that each student has mastered (or failed to master)? For example, a student219

who misses three questions that were all about the same concept (e.g., concept A) will have gotten220

the same proportion of questions correct as another student who missed three questions about221

three different concepts (e.g., A, B, and C). But if we wanted to fill in the “gaps” in the two222

students’ understandings, we might do well to focus on concept A for the first student, but to223

also add in materials pertaining to concepts B and C for the second student. In other words, raw224

“proportion-correct” measures may capture how much a student knows, but not what they know.225

We wondered whether our modeling framework might enable us to (formally and automatically)226

infer participants’ knowledge at the scale of individual concepts (e.g., as captured by a single227

moment of a lecture).228

We developed a simple formula (Eqn. 1) for using a participant’s responses to a small set229

of multiple-choice questions to estimate how much the participant “knows” about the concept230

reflected by any arbitrary coordinate, x, in text embedding space (e.g., the content reflected by231

any moment in a lecture they had watched; see Estimating dynamic knowledge traces). Essentially,232

the estimated knowledge at the coordinate is given by the weighted average proportion of quiz233

questions the participant answered correctly, where the weights reflect how much each question234

is “about” the content at x. When we apply this approach to estimate the participant’s knowledge235

about the content presented in each moment of each lecture, we can obtain a detailed timecourse236

describing how much “knowledge” the participant has about any part of the lecture. As shown237

in Figure 5, we can also apply this approach separately for the questions from each quiz the238

participants took throughout the experiment. From just a few questions per quiz, we obtain a239

high-resolution snapshot (at the time each quiz was taken) of what the participants knew about240

any moment’s content, from either of the two lectures they watched (comprising a total of 1,100241

samples across the two lectures).242
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Figure 5: Estimating moment-by-moment knowledge acquisition. A. Moment-by-moment knowledge
about the Four Fundamental Forces. Each trace displays the weighted proportion of correctly answered
questions about the content reflected in each moment of the lecture (see Estimating dynamic knowledge traces),
using responses from one quiz (color). The traces are averaged across participants. B. Average estimated
knowledge about the Four Fundamental Forces. Each bar displays the across-timepoint average knowledge,
estimated using the responses to one quiz’s questions. C. Moment-by-moment knowledge about the Birth
of Stars. The panel is in the same format as Panel A, but here the knowledge estimates are for the moment-
by-moment content of the Birth of Stars lecture. D. Average estimated knowledge about the Birth of Stars.
The panel is in the same format as Panel B, but here the knowledge estimates are for the content of the Birth
of Stars lecture. All panels: error ribbons and error bars denote 95% confidence intervals, estimated across
participants.
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Of course, even though the timecourses in Figure 5A and C provide detailed estimates about243

participants’ knowlege, those estimates are only useful to the extent that they accurately reflect what244

participants actually know. As one sanity check, we anticipated that the knowledge estimates245

should show a content-specific “boost” in participants’ knowledge after watching each lecture.246

In other words, if participants learn about each lecture’s content when they watch each lecture,247

the knowledge estimates should reflect that. After watching the Four Fundamental Forces lecture,248

participants should show more knowledge for the content of that lecture than they had before,249

and that knowledge should persist for the remainder of the experiment. Specifically, knowledge250

about that lecture’s content should be relatively low when estimated using Quiz 1 responses,251

but should increase when estimated using Quiz 2 or 3 responses (Fig. 5B). Indeed, we found252

that participants’ estimated knowledge about the content of the Four Fundamental Forces was253

substantially higher on Quiz 2 versus Quiz 1 (t(49) = 8.764, p < 0.001) and on Quiz 3 versus Quiz254

1 (t(49) = 10.519, p < 0.001). We found no reliable differences in estimated knowledge about255

that lecture’s content on Quiz 2 versus 3 (t(49) = 0.160, p = 0.874). Similarly, we hypothesized256

(and subsequently confirmed) that participants should show more estimated knowledge about the257

content of the Birth of Stars lecture after (versus before) watching it (Fig. 5D). Specifically, since258

participants watched that lecture after taking Quiz 2 (but before Quiz 3), we hypothesized that their259

knowledge estimates should be relatively low on Quizzes 1 and 2, but should show a “boost” on260

Quiz 3. Consistent with this prediction, we found no reliable differences in estimated knowledge261

about the Birth of Stars lecture content on Quizzes 1 versus 2 (t(49) = 1.013, p = 0.316), but the262

estimated knowledge was substantially higher on Quiz 3 versus 2 (t(49) = 10.561, p < 0.001) and263

Quiz 3 versus 1 (t(49) = 8.969, p < 0.001).264

If we are able to accurately estimate a participant’s knowledge about the content tested by a265

given question, our estimates of their knowledge should carry some predictive information about266

whether the participant is likely to answer the question correctly or incorrectly. We developed267

a statistical approach to test this claim. For each question in turn, for each participant, we used268

Equation 1 to estimate (using all other questions from the same quiz, from the same participant)269

the participant’s knowledge at the held-out question’s embedding coordinate. For each quiz, we270
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quiz (panel), we plot the distributions of predicted knowledge at the embedding coordinates of each held-out
correctly (blue) or incorrectly (red) answered question. The t-tests reported in each panel are between the
distributions of estimated knowledge at the coordinates of correctly versus incorrectly answered held-out
questions.

grouped these estimates into two distributions: one for the estimated knowledge at the coordinates271

of each correctly answered question, and another for the estimated knowledge at the coordinates of272

each incorrectly answered question (Fig. 6). We then used independent samples t-tests to compare273

the means of these distributions of estimated knowledge.274

For the initial quizzes participants took (prior to watching either lecture), participants’ estimated275

knowledge tended to be low overall, and relatively unstructured (Fig. 6, left panel). When we held276

out individual questions and estimated their knowledge at the held-out questions’ embedding277

coordinates, we found no reliable differences in the estimates when the held-out question had278

been correctly versus incorrectly answered (t(633) = 0.577, p = 0.564). After watching the first279

video, estimated knowledge for held-out correctly answered questions (from the second quiz;280

Fig. 6, middle panel) exhibited a positive shift relative to held-out incorrectly answered questions281

(t(633) = 3.961, p < 0.001). After watching the second video, estimated knowledge (from the282

third quiz; Fig. 6, right panel) for all questions exhibited a positive shift. However, the increase283

in estimated knowledge for held-out correctly answered questions was larger than for held-out284

incorrectly answered questions (estimated knowledge for correctly versus incorrectly answered285

Quiz 3 questions: t(628) = 2.045, p = 0.041).286
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Knowledge estimates need not be limited to the content of the lectures. As illustrated in287

Figure 7, our general approach to estimating knowledge from a small number of quiz questions288

may be applied to any content, given its text embedding coordinate. To visualize how knowledge289

“spreads” through text embedding space to content beyond the lectures participants watched,290

we first fit a new topic model to the lectures’ sliding windows with k = 100 topics. We hoped291

that increasing the number of topics from 15 to 100 might help us to generalize the knowledge292

predictions. (Aside from increasing the number of topics from 15 to 100, all other procedures and293

model parameters were carried over from the preceding analyses.) As in our other analyses, we294

resampled each lecture’s topic trajectory to 1 Hz and also projected each question into a shared295

text embedding space.296

We projected the resulting 100-dimensional topic vectors (for each second of video and for each297

question) onto a shared 2-dimensional plane (see Creating knowledge and learning map visualizations).298

Next, we sampled points from a 100×100 grid of coordinates that evenly tiled a rectangle enclosing299

the 2D projections of the videos and questions. We used Equation 4 to estimate participants’ knowl-300

edge at each of these 10,000 sampled locations, and averaged these estimates across participants to301

obtain an estimated average knowledge map (Fig. 7A). Intuitively, the knowledge map constructed302

from a given quiz’s responses provides a visualization of how “much” participants know about303

any content expressible by the fitted text embedding model.304

Several features of the resulting knowledge maps are worth noting. The average knowledge305

map estimated from Quiz 1 responses (Fig. 7A, leftmost map) shows that participants tended to306

have relatively little knowledge about any parts of the text embedding space (i.e., the shading is307

relatively dark everywhere). The knowledge map estimated from Quiz 2 responses shows a marked308

increase in knowledge on the left side of the map (around roughly the same range of coordinates309

traversed by the Four Fundamental Forces lecture, indicated by the dotted blue line). In other words,310

participants’ estimated increase in knowledge is localized to conceptual content that is nearby (i.e.,311

related to) the content from the lecture they watched prior to taking Quiz 2. This localization312

is non-trivial: the knowledge estimates are informed only by the embedded coordinates of the313

quiz questions, not by the embeddings of either lecture (see Eqn. 4). Finally, the knowledge map314
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estimated from Quiz 3 responses shows a second increase in knowledge, localized to the region315

surrounding the embedding of the Birth of Stars lecture participants watched immediately prior to316

taking Quiz 3.317

Another way of visualizing these content-specific increases in knowledge after participants318

viewed each lecture is displayed in Figure 7B. Taking the point-by-point difference between the319

knowledge maps estimated from responses to a successive pair of quizzes yields a learning map320

that describes the change in knowledge estimates from one quiz to the next. These learning maps321

highlight that the estimated knowledge increases we observed across maps were specific to the322

regions around the embeddings of each lecture in turn.323

Because the 2D projection we used to construct the knowledge and learning maps is invertible,324

we may gain additional insights into these maps’ meaning by reconstructing the original high-325

dimensional topic vector for any location on the map we are interested in. For example, this could326

serve as a useful tool for an instructor looking to better understand which content areas a student327

(or a group of students) knows well (or poorly). As a demonstration, we show the top-weighted328

words from the blends of topics reconstructed from three example locations on the maps (Fig. 7C):329

one point near the Four Fundamental Forces embedding (yellow); a second point near the Birth of330

Stars embedding (orange), and a third point between the two lectures’ embeddings (pink). As331

shown in the word clouds in the Panel, the top-weighted words at the example coordinate near332

the Four Fundamental Forces embedding also tended to be weighted heavily by the topics expressed333

in that lecture. Similarly, the top-weighted words at the example coordinate near the Birth of Stars334

embedding tended to be weighted most heavily by the topics expressed in that lecture. And the335

top-weighted words at the example coordinate between the two lectures’ embeddings show a336

roughly even mix of words most strongly associated with each lecture.337

Discussion338

We developed a computational framework that uses short multiple-choice quizzes to gain nuanced339

insights into what learners know and how their knowledge changes with training. First, we show340
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that our approach can automatically match the conceptual knowledge probed by individual quiz341

questions to the corresponding moments in lecture videos when those concepts were presented342

(Fig. 4). Next, we demonstrate how we can estimate moment-by-moment “knowledge traces”343

that reflect the degree of knowledge participants have about each video’s time-varying content,344

and capture temporally specific increases in knowledge after viewing each lecture (Fig. 5). We345

also show that these knowledge estimates can generalize to held-out questions (Fig. 6). Finally,346

we use our framework to construct visual maps that provide snapshot estimates of how much347

participants know about any concept within the scope of our text embedding model, and how348

much their knowledge changes with training (Fig. 7).349

Over the past several years, the global pandemic has forced many educators to teach re-350

motely [21, 34, 42, 45]. This change in world circumstances is happening alongside (and perhaps351

accelerating) geometric growth in the availability of high quality online courses on platforms such352

as Khan Academy [22], Coursera [46], EdX [24], and others [39]. Continued expansion of the global353

internet backbone and improvements in computing hardware have also facilitated improvements354

in video streaming, enabling videos to be easily shared and viewed by large segments of the355

world’s population. This exciting time for online course instruction provides an opportunity to356

re-evaluate how we, as a global community, educate ourselves and each other. For example, we357

can ask: what makes an effective course or training program? Which aspects of teaching might358

be optimized and/or augmented by automated tools? How and why do learning needs and goals359

vary across people? How might we lower barriers to achieving a high-quality education?360

Alongside these questions, there is a growing desire to extend existing theories beyond the361

domain of lab testing rooms and into real classrooms [20]. In part, this has led to a recent362

resurgence of “naturalistic” or “observational” experimental paradigms that attempt to better363

reflect more ethologically valid phenomena that are more directly relevant to real-world situations364

and behaviors [35]. In turn, this has brought new challenges in data analysis and interpretation. A365

key step towards solving these challenges will be to build explicit models of real-world scenarios366

and how people behave in them (e.g., models of how people learn conceptual content from real-367

world courses, as in our current study). A second key step will be to understand which sorts of368
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signals derived from behaviors and/or other measurements (e.g., neurophysiological data; 1, 12, 32,369

36, 37) might help to inform these models. A third major step will be to develop and employ reliable370

ways of evaluating the complex models and data that are a hallmark of naturalistic paradigms.371

Beyond specifically predicting what people know, the fundamental ideas we develop here also372

relate to the notion of “theory of mind” of other individuals [15, 18, 31]. Considering others’ unique373

perspectives, prior experiences, knowledge, goals, etc., can help us to more effectively interact and374

communicate [38, 41, 44]. One could imagine future extensions of our work (e.g., analogous to375

the knowledge and learning maps shown in Fig. 7), that attempt to characterize how well-aligned376

different people’s knowledge bases or backgrounds are. In turn, this might be used to model how377

knowledge (or other forms of communicable information) flows not just between teachers and378

students, but between friends having a conversation, individuals on a first date, participants at379

a business meeting, doctors and patients, experts and non-experts, political allies or adversaries,380

and more. For example, the extent to which two people’s knowledge maps “match” or “align” in381

a given region of text embedding space might serve as a predictor of how effectively they will be382

able to communicate about the corresponding conceptual content.383

Ultimately, our work suggests a rich new line of questions about the geometric “form” of384

knowledge, how knowledge changes over time, and how we might map out the full space of385

what an individual knows. Our finding that detailed estimates about knowledge may be obtained386

from short quizzes shows one way that traditional approaches to evaluation in education may be387

extended. We hope that these advances might help pave the way for new approaches to teaching388

or delivering educational content that are tailored to individual students’ learning needs and goals.389

Materials and methods390

Participants391

We enrolled a total of 50 Dartmouth undergraduate students in our study. Participants received392

course credit for enrolling. We asked each participant to complete a demographic survey that393
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included questions about their age, gender, native spoken language, ethnicity, race, hearing, color394

vision, sleep, coffee consumption, level of alertness, and several aspects of their educational back-395

ground and prior coursework.396

Participants’ ages ranged from 18 to 22 years (mean: 19.52 years; standard deviation: 1.09397

years). A total of 15 participants reported their gender as male and 35 participants reported their398

gender as female. A total of 49 participants reported their native language as “English” and 1399

reported having another native language. A total of 47 participants reported their ethnicity as400

“Not Hispanic or Latino” and three reported their ethnicity as “Hispanic or Latino.” Participants401

reported their races as White (32 participants), Asian (14 participants), Black or African American402

(5 participants), American Indian or Alaska Native (1 participant), and Native Hawaiian or Other403

Pacific Islander (1 participant). (Note that some participants selected multiple racial categories.)404

A total of 49 participants reporting having normal hearing and 1 participant reported having405

some hearing impairment. A total of 49 participants reported having normal color vision and 1406

participant reported being color blind. Participants reported having had, on the night prior to407

testing, 2–4 hours of sleep (1 participant), 4–6 hours of sleep (9 participants), 6–8 hours of sleep (35408

participants), or 8+ hours of sleep (5 participants). They reported having consumed, on the same409

day and leading up to their testing session, 0 cups of coffee (38 participants), 1 cup of coffee (10410

participants), 3 cups of coffee (1 participant), or 4+ cups of coffee (1 participant).411

No participants reported that their focus was currently impaired (e.g., by drugs or alcohol).412

Participants reported their current level of alertness, and we converted their responses to numerical413

scores as follows: “very sluggish” (-2), “a little sluggish” (-1), “neutral” (0), “fairly alert” (1), and414

“very alert” (2). Across all participants, a range of alertness levels were reported (range: -2 – 1;415

mean: -0.10; standard deviation: 0.84).416

Participants reported their undergraduate major(s) as “social sciences” (28 participants), “nat-417

ural sciences” (16 participants), “professional” (e.g., pre-med or pre-law; 8 participants), “mathe-418

matics and engineering” (7 participants), “humanities” (4 participants), or “undecided” (3 partici-419

pants). Note that some participants selected multiple categories for their undergraduate major. We420

also asked participants about the courses they had taken. In total, 45 participants reported having421
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taken at least one Khan Academy course in the past, and 5 reported not having taken any Khan422

Academy courses. Of those who reported having watched at least one Khan Academy course,423

7 participants reported having watched 1–2 courses, 11 reported having watched 3–5 courses, 8424

reported having watched 5–10 courses, and 19 reported having watched 10 or more courses. We425

also asked participants about the specific courses they had watched, categorized under different426

subject areas. In the “Mathematics” area, participants reported having watched videos on AP427

Calculus AB (21 participants), Precalculus (17 participants), Algebra 2 (14 participants), AP Cal-428

culus BC (12 participants), Trigonometry (11 participants), Algebra 1 (10 participants), Geometry429

(8 participants), Pre-algebra (7 participants), Multivariable Calculus (5 participants), Differential430

Equations (5 participants), Statistics and Probability (4 participants), AP Statistics (2 participants),431

Linear Algebra (2 participants), Early Math (1 participant), Arithmetic (1 participant), and other432

videos not listed in our survey (5 participants). In the “Science and engineering” area, participants433

reported having watched videos on Chemistry, AP Chemistry, or Organic Chemistry (21 partic-434

ipants); Physics, AP Physics I, or AP Physics II (15 participants); Biology, AP Biology; or High435

school Biology (15 participants); Health and Medicine (1 participant); or other videos not listed436

in our survey (19 participants). We also asked participants whether they had specifically seen the437

videos used in our experiment. Of the 45 participants who reported having having taken at least438

one Khan Academy course in the past, 44 participants reported that they had not watched the Four439

Fundamental Forces video, and 1 participant reported that they were not sure whether they had440

watched it. All participants reported that they had not watched the Birth of Stars video. When441

we asked participants about non-Khan Academy online courses, they reported having watched442

or taken courses on Mathematics (15 participants), Science and engineering (11 participants), Test443

preparation (9 participants), Economics and finance (3 participants), Arts and humanities (2 partic-444

ipants), Computing (2 participants), and other categories not listed in our survey (18 participants).445

Finally, we asked participants about in-person courses they had taken in different subject areas.446

They reported taking courses in Mathematics (39 participants), Science and engineering (38 par-447

ticipants), Arts and humanities (35 participants), Test preparation (27 participants), Economics448

and finance (26 participants), Computing (15 participants), College and careers (7 participants), or449
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other courses not listed in our survey (6 participants).450

Experiment451

We hand-selected two course videos from the Khan Academy platform: Four Fundamental Forces452

(an introduction to gravity, electromagnetism, the weak nuclear force, and the strong nuclear force;453

duration: 10 minutes and 29 seconds) and Birth of Stars (an introduction to how stars are formed;454

duration: 7 minutes and 57 seconds). We then hand-created 39 multiple-choice questions: 15 about455

the conceptual content of Four Fundamental Forces (i.e., lecture 1), 15 about the conceptual content456

of Birth of Stars (i.e., lecture 2), and 9 questions that tested for general conceptual knowledge about457

basic physics (covering material that was not presented in either video). The full set of questions458

and answer choices may be found in Table S1.459

Over the course of the experiment, participants completed three 13-question multiple-choice460

quizzes: the first before viewing lecture 1, the second between lectures 1 and 2, and the third461

after viewing lecture 2 (Fig. 1). The questions appearing on each quiz, for each participant, were462

randomly chosen from the full set of 39, with the constraints that (a) each quiz contain 5 questions463

about lecture 1, 5 questions about lecture 2, and 3 questions about general physics knowledge, and464

(b) each question appear exactly once for each participant. The orders of questions on each quiz,465

and the orders of answer options for each question, were also randomized. Our experimental466

protocol was approved by the Committee for the Protection of Human Subjects at Dartmouth467

College. We used the experiment to develop and test our computational framework for estimating468

knowledge and learning.469

Analysis470

Constructing text embeddings of multiple lectures and questions471

We adapted an approach we developed in prior work [17] to embed each moment of the two472

lectures and each question in our pool in a common representational space. Briefly, our approach473

uses a topic model (Latent Dirichlet Allocation; 4), trained on a set of documents, to discover a set474
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of k “topics” or “themes.” Formally, each topic is defined as a set of weights over each word in475

the model’s vocabulary (i.e., the union of all unique words, across all documents, excluding “stop476

words.”). Conceptually, each topic is intended to give larger weights to words that are semantically477

related or tend to co-occur in the same documents. After fitting a topic model, each document478

in the training set, or any new document that contains at least some of the words in the model’s479

vocabulary, may be represented as a k-dimensional vector describing how much the document480

(most probably) reflects each topic. (Unless, otherwise noted, we used k = 15 topics.)481

As illustrated in Figure 2A, we start by building up a corpus of documents using overlapping482

sliding windows that span each video’s transcript. Khan Academy provides professionally created,483

manual transcriptions of all videos for closed captioning. However, such transcripts would not484

be readily available in all contexts to which our framework could potentially be applied. Khan485

Academy videos are hosted on the YouTube platform, which additionally provides automated486

captions. We opted to use these automated transcripts (which, in prior work, we have found are487

of sufficiently near-human quality yield reliable data in behavioral studies; 47) when developing488

our framework in order to make it more directly extensible and adaptable by others in the future.489

We fetched these automated transcripts using the youtube-transcript-api Python pack-490

age [11]. The transcripts consisted of one timestamped line of text for every few seconds (mean:491

2.34 s; standard deviation: 0.83 s) of spoken content in the video (i.e., corresponding to each indi-492

vidual caption that would appear on-screen if viewing the lecture via YouTube, and when those493

lines would appear). We defined a sliding window length of (up to) w = 30 transcript lines, and494

assigned each window a timestamp corresponding to the midpoint between its first and last lines’495

timestamps. These sliding windows ramped up and down in length at the very beginning and496

end of the transcript, respectively. In other words, the first sliding window covered only the first497

line from the transcript; the second sliding window covered the first two lines; and so on. This498

insured that each line of the transcript appeared in the same number (w) of sliding windows. After499

performing various standard text preprocessing (e.g., normalizing case, lemmatizing, removing500

punctuation and stop-words), we treated the text from each sliding window as a single “docu-501

ment,” and combined these documents across the two videos’ windows to create a single training502
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corpus for the topic model. The top words from each of the 15 discovered topics may be found in503

Table S2.504

After fitting a topic model to the two videos’ transcripts, we could use the trained model to505

transform arbitrary (potentially new) documents into k-dimensional topic vectors. A convenient506

property of these topic vectors is that documents that reflect similar blends of topics (i.e., documents507

that reflect similar themes, according to the model) will yield similar coordinates (in terms of508

Euclidean distance, correlation, or other geometric measures). In general, the similarity between509

different documents’ topic vectors may be used to characterize the similarity in conceptual content510

between the documents.511

We transformed each sliding window’s text into a topic vector, and then used linear interpo-512

lation (independently for each topic dimension) to resample the resulting timeseries to one vector513

per second. We also used the fitted model to obtain topic vectors for each question in our pool514

(Tab. S1). Taken together, we obtained a trajectory for each video, describing its path through topic515

space, and a single coordinate for each question (Fig. 2C). Embedding both videos and all of the516

questions using a common model enables us to compare the content from different moments of517

videos, compare the content across videos, and estimate potential associations between specific518

questions and specific moments of video.519

Estimating dynamic knowledge traces520

We used the following equation to estimate each participant’s knowledge about timepoint t of a521

given lecture, k̂(t):522

k̂
(

f (t,L)
)
=

∑
i∈correct ncorr

(
f (t,L), f (i,Q)

)∑N
j=1 ncorr

(
f (t,L), f ( j,Q)

) , (1)

where523

ncorr(x, y) =
corr(x, y) − mincorr
maxcorr − mincorr

, (2)

and where mincorr and maxcorr are the minimum and maximum correlations between any lecture524

timepoint and question, taken over all timepoints in the given lecture, and all five questions about525
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that lecture appearing on the given quiz. We also define f (s,Ω) as the sth topic vector from the set526

of topic vectors Ω. Here t indexes the set of lecture topic vectors, L, and i and j index the topic527

vectors of questions used to estimate the knowledge trace, Q. Note that “correct” denotes the set528

of indices of the questions the participant answered correctly on the given quiz.529

Intuitively, ncorr(x, y) is the correlation between two topic vectors (e.g., the topic vector from one530

timepoint in a lecture, x, and the topic vector for one question, y), normalized by the minimum and531

maximum correlations (across all timepoints t and questions Q) to range between 0 and 1, inclusive.532

Equation 1 then computes the weighted average proportion of correctly answered questions about533

the content presented at timepoint t, where the weights are given by the normalized correlations534

between timepoint t’s topic vector and the topic vectors for each question. The normalization535

step (i.e., using ncorr instead of the raw correlations) insures that every question contributes some536

non-zero amount to the knowledge estimate.537

Creating knowledge and learning map visualizations538

An important feature of our approach is that, given a trained text embedding model and partic-539

ipants’ quiz performance on each question, we can estimate their knowledge about any content540

expressible by the embedding model—not solely the content explicitly probed by the quiz ques-541

tions or even appearing in the lectures. To visualize these estimates (Figs. 7, S2, S3, S4, S5, and S6),542

we used Uniform Manifold Approximation and Projection (UMAP; 30) to construct a 2D projection543

of the text embedding space. Sampling the original 100-dimensional space at high resolution to544

obtain an adequate set of topic vectors spanning the embedding space would be computationally545

intractable. However, sampling a 2D grid is trivial.546

At a high level, the UMAP algorithm obtains low-dimensional embeddings by minimizing547

the cross-entropy between the pairwise (clustered) distances between the observations in their548

original (e.g., 100-dimensional) space and the pairwise (clustered) distances in the low-dimensional549

embedding space (in our approach, the embedding space is 2D). In our implementation, pairwise550

distances in the original high-dimensional space were defined as 1 minus the correlation between551

the pair of coordinates, and pairwise distances in the low-dimensional embedding space were552

25



defiend as the Euclidean distance between the pair of coordinates.553

In our application, all of the coordinates we embedded were topic vectors, whose elements554

are always non-negative. Although UMAP is an invertible transformation at the embedding555

locations of the original data, other locations in the embedding space will not necessarily follow556

the same implicit “rules” as the original high-dimensional data. For example, inverting an arbitrary557

coordinate in the embedding space might result in negative-valued vectors, which are incompatable558

with the topic modeling framework. To protect against this issue, we log-transformed the topic559

vectors prior to embedding them in the 2D space. When we inverted the embedded vectors (e.g.,560

to estimate topic vectors or word clouds, as in Fig. 7C), we passed the inverted (log-transformed)561

values through the exponential function to obtain a vector of non-negative values.562

After embedding both lectures’ topic trajectories and the topic vectors of every question, we563

defined a rectangle enclosing the 2D projections of the lectures’ and quizzes’ embeddings. We then564

sampled points from a regular 100×100 grid of coordinates that evenly tiled this enclosing rectangle.565

We sought to estimate participants’ knowledge (and learning, i.e., changes in knowledge) at each566

of the resulting 10,000 coordinates.567

To generate our estimates, we placed a set of 39 radial basis functions (RBFs) throughout the568

embedding space, centered on the 2D projections for each question (i.e., we included one RBF for569

each question). At coordinate x, the value of an RBF centered on a question’s coordinate µ, is given570

by:571

RBF(x, µ, λ) = exp
{
−
||x − µ||2

λ

}
. (3)

The λ term in the RBF equation controls the “smoothness” of the function, where larger values572

of λ result in smoother maps. In our implementation we used λ = 50. Next, we estimated the573

“knowledge” at each coordinate, x, using:574

k̂(x) =
∑

i∈correct RBF(x, qi, λ)∑N
j=1 RBF(x, q j, λ)

. (4)

Intuitively, Equation 4 computes the weighted proportion of correctly answered questions, where575

the weights are given by how nearby (in the 2D space) each question is to the x. We also defined576
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learning maps as the coordinate-by-coordinate differences between any pair of knowledge maps.577

Intuitively, learning maps reflect the change in knowledge across two maps.578

Author contributions579

Conceptualization: PCF, ACH, and JRM. Methodology: PCF, ACH, and JRM. Software: PCF.580

Validation: PCF. Formal analysis: PCF. Resources: PCF, ACH, and JRM. Data curation: PCF.581

Writing (original draft): JRM. Writing (review and editing): PCF, ACH, and JRM. Visualization:582

PCF and JRM. Supervision: JRM. Project administration: PCF. Funding acquisition: JRM.583

Data and code availability584

All of the data analyzed in this manuscript, along with all of the code for running our experiment585

and carrying out the analyses may be found at https://github.com/ContextLab/efficient-learning-586

khan.587

Acknowledgements588

We acknowledge useful discussions, assistance in setting up an earlier (unpublished) version of589

this study, and assistance with data collection efforts from Will Baxley, Max Bluestone, Daniel590

Carstensen, Kunal Jha, Caroline Lee, Lucy Owen, Xinming Xu, and Kirsten Ziman. Our work591

was supported in part by NSF CAREER Award Number 2145172 to JRM. The content is solely the592

responsibility of the authors and does not necessarily represent the official views of our supporting593

organizations. The funders had no role in study design, data collection and analysis, decision to594

publish, or preparation of the manuscript.595

27



References596

[1] Bevilacque, D., Davidesco, I., Wan, L., and Chaloner, K. (2019). Brain-to-brain synchrony and597

learning outcomes vary by student-teacher dynamics: evidence from a real-world classroom598

electroencephalography study. Journal of Cognitive Neuroscience, 31(3):401–411.599

[2] Blaye, A., Bernard-Peyron, V., Paour, J.-L., and Bonthoux, F. (2006). Category flexibility in chil-600

dren: distinguishing response flexibility from conceptual flexibility; the protracted development601

of taxonomic representations. European Journal of Developmental Psychology, 3(2):163–188.602

[3] Blei, D. M. and Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the International603

Conference on Machine Learning, pages 113–120, New York, NY. Association for Computing604

Machinery.605

[4] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine606

Learning Research, 3:993–1022.607

[5] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,608

Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child,609

R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,610

Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei,611

D. (2020). Language models are few-shot learners. arXiv, 2005.14165.612

[6] Caramazza, A. and Mahon, B. Z. (2003). The organization of conceptual knowledge: the613

evidence from category-specific semantic deficits. Trends in Cognitive Sciences, 7(8):354–361.614

[7] Cer, D., Yang, Y., Kong, S. Y., Hua, N., Limtiaco, N., John, R. S., Constant, N., Guajardo-615

Cespedes, M., Yuan, S., Tar, C., Sung, Y.-H., Strope, B., and Kurzweil, R. (2018). Universal616

sentence encoder. arXiv, 1803.11175.617

[8] Constantinescu, A. O., O’Reilly, J. X., and Behrens, T. E. J. (2016). Organizing conceptual618

knowledge in humans with a gridlike code. Science, 352(6292):1464–1468.619

28



[9] Deacon, D., Grose-Fifer, J., Yang, C. M., Stanick, V., Hewitt, S., and Dynowska, A. (2004).620

Evidence for a new conceptualization of semantic representation in the left and right cerebral621

hemispheres. Cortex, 40(3):467–478.622

[10] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).623

Indexing by latent semantic analysis. Journal of the American Society for Information Science,624

41(6):391–407.625

[11] Depoix, J. (2019). YouTube transcript/subtitle API. https://github.com/jdepoix/626

youtube-transcript-api.627

[12] Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., Rowland, J.,628

Michalareas, G., van Bavel, J. J., Ding, M., and Poeppel, D. (2017). Brain-to-brain synchrony629

tracks real-world dynamic group interactions in the classroom. Current Biology, 27(9):1375–1380.630

[13] Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical631

Transactions of the Royal Society A, 222(602):309–368.632

[14] Gallagher, J. J. (2000). Teaching for understanding and application of science knowledge.633

School Science and Mathematics, 100(6):310–318.634

[15] Goldstein, T. R. and Winner, E. (2012). Enhancing empathy and theory of mind. Journal of635

Cognition and Development, 13(1):19–37.636

[16] Hall, R. and Greeno, J. (2008). 21st century education: A reference handbook, chapter Conceptual637

learning, pages 212–221. Sage Publications.638

[17] Heusser, A. C., Fitzpatrick, P. C., and Manning, J. R. (2021). Geometric models reveal be-639

havioral and neural signatures of transforming naturalistic experiences into episodic memories.640

Nature Human Behavior, 5:905–919.641
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