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Abstract

We develop a mathematical framework, based on natural language processing models, for track-
ing and characterizing the acquisition of conceptual knowledge. Our approach embeds each
concept in a high-dimensional representation space, where nearby coordinates reflect similar or
related concepts. We test our approach using behavioral data from participants who answered
small sets of multiple-choice quiz questions, interleaved between watching two course videos
from the Khan Academy platform. We apply our framework to the videos’ transcripts and
the text of the quiz questions to quantify the content of each moment of video and each quiz
question. We use these embeddings, along with participants’” quiz responses, to track how the
learners” knowledge changed after watching each video. Our findings show how a small set of
quiz questions may be used to obtain rich and meaningful, high-resolution insights into what
each learner knows, and how their knowledge changes over time as they learn.
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Introduction

Suppose that a teacher had access to a complete, tangible “map” of everything a student knew.
Defining what such a map might even look like, let alone how it might be constructed or filled in, is
itself a non-trivial problem. But if a teacher were to gain access to such a map, how might it change
their ability to teach that student? Perhaps they might start by checking how well the student knew
the to-be-learned information already, or how much they knew about related concepts. For some
students, they could potentially optimize their teaching efforts to maximize efficiency by focusing
primarily on not-yet-known content. For other students (or other content areas), it might be more
effective to optimize for direct connections between already known content and new material.
Observing how the student’s knowledge changed over time, in response to their teaching, could
also help to guide the teacher towards the most effective strategy for that individual student.

A common approach to assessing a student’s knowledge is to present them with a set of quiz
questions, calculate the proportion they answer correctly, and provide them with feedback in the
form of a simple numeric or letter grade. While such a grade can provide some indication of whether
the student has mastered the to-be-learned material, any univariate measure of performance on a
complex task sacrifices certain relevant information, risks conflating underlying factors, and so on.
For example, consider the relative utility of the imaginary map described above that characterizes
a student’s knowledge in detail, versus a single annotation saying that the student answered 85%
of their quiz questions correctly, or that they received a ‘B’. Here, we show that the same quiz data
required to compute proportion-correct scores or letter grades can instead be used to obtain much
more detailed insights into what the student knows at the time they took the quiz.

Designing and building procedures and tools for mapping out knowledge touches on deep
questions about what it means to learn. For example, how do we acquire conceptual knowledge?
Memorizing course lectures or textbook chapters by rote can lead to the superficial appearance
of understanding the underlying content, but achieving true conceptual understanding seems to
require something deeper and richer. Does conceptual understanding entail connecting newly

acquired information to the scaffolding of one’s existing knowledge or experience [2, 6, 8, 9, 43]?
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Or weaving a lecture’s atomic elements (e.g., its component words) into a structured network that
describes how those individual elements are related [26]? Conceptual understanding could also
involve building a mental model that transcends the meanings of those individual atomic elements
by reflecting the deeper meaning underlying the gestalt whole [23, 27, 40].

The difference between “understanding” and “memorizing,” as framed by researchers in ed-
ucation, cognitive psychology, and cognitive neuroscience (e.g., 14, 16, 19, 27, 40) has profound
analogs in the fields of natural language processing and natural language understanding. For
example, considering the raw contents of a document (e.g., its constituent symbols, letters, and
words) might provide some clues as to what the document is about, just as memorizing a pas-
sage might provide some ability to answer simple questions about it. However, text embedding
models (e.g., 3-5, 7, 10, 25, 33) also attempt to capture the deeper meaning underlying those atomic
elements. These models consider not only the co-occurrences of those elements within and across
documents, but also patterns in how those elements appear across different scales (e.g., sentences,
paragraphs, chapters, etc.), the temporal and grammatical properties of the elements, and other
high-level characteristics of how they are used [28, 29]. According to these models, the deep
conceptual meaning of a document may be captured by a feature vector in a high-dimensional
representation space, wherein nearby vectors reflect conceptually related documents. A model
that succeeds at capturing an analogue of “understanding” is able to assign nearby feature vectors
to two conceptually related documents, even when the specific words contained in those documents have
very little overlap.

Given these insights, what form might a representation of the sum total of a person’s knowledge
take? First, we might require a means of systematically describing or representing the nearly
infinite set of possible things a person could know. Second, we might want to account for potential
associations between different concepts. For example, the concepts of “fish” and “water” might be
associated in the sense that fish live in water. Third, knowledge may have a critical dependency
structure, such that knowing about a particular concept might require first knowing about a set of
other concepts. For example, understanding the concept of a fish swimming in water first requires

understanding what fish and water are. Fourth, as we learn, our “current state of knowledge”
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should change accordingly. Learning new concepts should both update our characterizations of
“what is known” and also unlock any now-satisfied dependencies of those newly learned concepts
so that they are “tagged” as available for future learning.

Here we develop a framework for modeling how conceptual knowledge is acquired during
learning. The central idea behind our framework is to use text embedding models to define the
coordinate systems of two maps: a knowledge map that describes the extent to which each concept is
currently known, and a learning map that describes changes in knowledge over time. Each location
on these maps represents a single concept, and the maps’ geometries are defined such that related
concepts are located nearby in space. We use this framework to analyze and interpret behavioral
data collected from an experiment that had participants answer sets multiple-choice questions
about a series of recorded course lectures.

Our primary research goal is to advance our understanding of what it means to acquire deep,
real-world conceptual knowledge. Traditional laboratory approaches to studying learning and
memory (e.g., list-learning studies) often draw little distinction between memorization and under-
standing. Instead, these studies typically focus on whether information is effectively encoded or
retrieved, rather than whether the information is understood. Approaches to studying conceptual
learning, such as category learning experiments, can begin to investigate the distinction between
memorization and understanding, often by training participants to distinguish arbitrary or random
features in otherwise meaningless categorized stimuli. However the objective of real-world train-
ing, or learning from life experiences more generally, is often to develop new knowledge that may
be applied in useful ways in the future. In this sense, the gap between modern learning theories and
modern pedagogical approaches that inform classroom learning strategies is enormous: most of
our theories about how people learn are inspired by experimental paradigms and models that have
only peripheral relevance to the kinds of learning that students and teachers actually seek [16, 27].
To help bridge this gap, our study uses course materials from real online courses to inform, fit,
and test models of real-world conceptual learning. We also provide a demonstration of how our
models can be used to construct “maps” of what students know, and how their knowledge changes

with training. In addition to helping to visualize knowledge (and changes in knowledge), we hope
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that such maps might lead to real-world tools for improving how we educate. Taken together, our
work shows that existing course materials and evaluative tools like short multiple-choice quizzes

may be leveraged to gain highly detailed insights into what students know and how they learn.

Results

At its core, our main modeling approach is based around a simple assumption that we sought to
test empirically: all else being equal, knowledge about a given concept is predictive of knowledge
about similar or related concepts. From a geometric perspective, this assumption implies that
knowledge is fundamentally “smooth.” In other words, as one moves through a space representing
an individual’s knowledge (where similar concepts occupy nearby coordinates), their “level of
knowledge” should change relatively gradually throughout that space. To begin to test this
smoothness assumption, we sought to track participants” knowledge and how it changed over
time in response to training. Two overarching goals guide our approach. First, we want to gain
detailed insights into what learners know, at different points in their training. For example, rather
than simply reporting on the proportions of questions participants answer correctly (i.e., their
overall performance), we seek estimates of their knowledge about a variety of specific concepts.
Second, we want our approach to be potentially scalable to large numbers of concepts, courses, and
students. This requires that the conceptual content of interest be discovered automatically, rather
than relying on manually produced ratings or labels.

We asked participants in our study to complete brief multiple-choice quizzes before, between,
and after watching two lecture videos from the Khan Academy [22] platform (Fig. 1). The first
lecture video, entitled Four Fundamental Forces, discussed the four fundamental forces in physics:
gravity, strong and weak interactions, and electromagnetism. The second, entitled Birth of Stars,
provided an overview of our current understanding of how stars form. We selected these particular
lectures to satisfy three general criteria. First, we wanted both lectures to be accessible to a broad
audience (i.e., with minimal prerequisite knowledge) so as to limit the impact of prior training on

our participants’ abilities to learn from the lectures. To this end, we selected two introductory videos
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Figure 1: Experimental paradigm. Participants alternate between completing three 13-question multiple-
choice quizzes and watching two Khan Academy lectures. Each quiz contains a mix of 5 questions about
lecture 1, 5 questions about lecture 2, and 3 questions about general physics knowledge. The specific questions
reflected on each quiz, and the orders of each quiz’s questions, were randomized across participants.

that were intended to be viewed at the start of students’ training in their respective content areas.
Second, we wanted both lectures to have some related content, so that we could test our approach’s
ability to distinguish similar conceptual content. To this end, we chose two videos from the same
(per instructor annotations) Khan Academy course domain, “Cosmology and Astronomy.” Third,
we sought to minimize dependencies and specific overlap between the videos. For example, we
did not want participants” abilities to understand one video to (directly) influence their abilities to
understand the other. To satisfy this last criterion, we chose videos from two different lecture series
(lectures 1 and 2 were from the “Scale of the Universe” and “Stars, Black Holes, and Galaxies”
series, respectively).

We also wrote a set of multiple-choice quiz questions that we hoped would enable us to
evaluate participants” knowledge about each individual lecture, along with related knowledge
about physics not specifically presented in either video (see Tab. S1 for the full list of questions
in our stimulus pool). Participants answered questions randomly drawn from each content area
(lecture 1, lecture 2, and general physics knowledge) on each of the three quizzes. Quiz 1 was
intended to assess participants” “baseline” knowledge before training, Quiz 2 assessed knowledge
after watching the Four Fundamental Forces video (i.e., lecture 1), and Quiz 3 assessed knowledge
after watching the Birth of Stars video (i.e., lecture 2).

To study in detail how participants’ conceptual knowledge changed over the course of the
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Figure 2: Modeling course content. A. Building a document pool from sliding windows of text. We
decompose each lecture’s transcript into a series of overlapping sliding windows. The full set of transcript
snippets (across all windows) may be treated as a set of “documents” for training a text embedding model.
B. Constructing lecture content trajectories. After training our model on the sliding windows from both
lectures, we transform each lecture into a “trajectory” through text embedding space by joining the embedding
coordinates of successive sliding windows parsed from its transcript. C. Embedding multiple lectures and
questions in a shared space. We apply the same model (trained on the two lectures’ windows) to both lectures,
along with the text of each question in our pool (Tab. S1), to project them into a shared text embedding space.
This results in one trajectory per lecture and one coordinate for each question. Here, we have projected the
15-dimensional embeddings onto their first 3 principal components for visualization.

experiment, we first sought to model the conceptual content presented to them at each moment
throughout each of the two lectures. We adapted an approach we developed in prior work [17] to
identify the latent themes in the lectures using a topic model [4]. Briefly, topic models take as input
a collection of text documents, and learn a set of “topics” (i.e., latent themes) from their contents.
Once fit, a topic model can be used to transform arbitrary (potentially new) documents into sets
of “topic proportions,” describing the weighted blend of learned topics reflected in their texts. We
parsed automatically generated transcripts of the two lectures into overlapping sliding windows,
where each window contained the text of the lecture transcript from a particular time span. We
treated the set of text snippets (across all of these windows) as documents to fit our model (Fig. 2A;
see Constructing text embeddings of multiple lectures and questions). Transforming the text from every
sliding window with our model yielded a number-of-windows by number-of-topics (15) topic-
proportions matrix that described the unique mixture of broad themes from both lectures reflected
in each window’s text. Each window’s “topic vector” (i.e., column of the topic-proportions matrix)
is analogous to a coordinate in a 15-dimensional space whose axes are topics discovered by the

model. Within this space, each lecture’s sequence of topic vectors (i.e., corresponding to its
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transcript’s overlapping text snippets across sliding windows) forms a trajectory that captures how
its conceptual content unfolds over time (Fig. 2B). We resampled these trajectories to a resolution
of one topic vector for each second of video (i.e., 1 Hz).

We hypothesized that a topic model trained on transcripts of the two lectures should also capture
the conceptual knowledge probed by each quiz question. If indeed the topic model could capture
information about the deeper conceptual content of the lectures (i.e., beyond surface-level details
such as particular word choices), then we should be able to recover a correspondence between each
lecture and questions about each lecture. Importantly, such a correspondence could not solely arise
from superficial text matching between lecture transcripts and questions, since the lectures and
questions used different words. Simply comparing the average topic weights from each lecture and
question set (averaging across time and questions, respectively) reveals a striking correspondence
(Fig. S1). Specifically, the average topic weights from lecture 1 are strongly correlated with the
average topic weights from lecture 1 questions (r(13) = 0.809, p < 0.001, 95% confidence interval
(CI) = [0.633, 0.962]), and the average topic weights from lecture 2 are strongly correlated with the
average topic weights from lecture 2 questions (r(13) = 0.728, p = 0.002, 95% CI = [0.456, 0.920]).
At the same time, the average topic weights from the two lectures are negatively correlated with
their non-matching question sets (lecture 1 video vs. lecture 2 questions: r(13) = —0.547, p = 0.035,
95% CI = [-0.812, —0.231]; lecture 2 video vs. lecture 1 questions: #(13) = —0.612, p = 0.015, 95%
CI = [-0.874, —0.281]), indicating that the topic model also exhibits some degree of specificity. The
full set of pairwise comparisons between average topic weights for the lectures and question sets
is reported in Figure S1.

Another, more sensitive, way of summarizing the conceptual content of the lectures and ques-
tions is to look at variability in how topics are weighted over time and across different questions
(Fig. 3). Intuitively, the variability in the expression of a given topic relates to how much “infor-
mation” [13] the lecture (or question set) reflects about that topic. For example, suppose a given
topic is weighted on heavily throughout a lecture. That topic might be characteristic of some
aspect or property of the lecture overall (conceptual or otherwise), but unless the topic’s weights

changed in meaningful ways over time, the topic would be a poor indicator of any specific concep-
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Figure 3: Lecture and question topic overlap. A. Topic weight variability. The bar plots display the variance
of each topic’s weight across lecture timepoints (top row) and questions (bottom row); colors denote topics.
The top-weighted words from the most “expressive” (i.e., variable across observations) topic from each lecture
are displayed in the upper right (orange: topic 2; yellow-green: topic 4). The top-weighted words from the
full set of topics may be found in Table S2. B. Relationships between topic weight variability. Pairwise
correlations between the distributions of topic weight variance for each lecture and question set. Each row
and column corresponds to a bar plot in Panel A.

tual content in the lecture. We therefore also compared the variances in topic weights (across time
or questions) between the lectures and questions. The variability in topic expression (over time
and across questions) was similar for the lecture 1 video and questions (#(13) = 0.824, p < 0.001,
95% CI = [0.696, 0.973]) and the lecture 2 video and questions (#(13) = 0.801, p < 0.001, 95%
CI =[0.539, 0.958]). However, as reported in Figure 3B, the variability in topic expressions across
different videos and lecture-specific questions (i.e., lecture 1 video vs. lecture 2 questions; lecture 2
video vs. lecture 1 questions) were negatively correlated, and neither video’s topic variability was
reliably correlated with the topic variability across general physics knowledge questions. Taken
together, the analyses reported in Figures 3 and S1 indicate that a topic model fit to the videos’
transcripts can also reveal correspondences (at a coarse scale) between the lectures and questions.

Although a single lecture may be organized around a single broad theme at a coarse scale, at a
finer scale each moment of a lecture typically covers a narrower range of content. We wondered
whether a text embedding model trained on the lectures’ transcripts might capture some of this

finer scale content. For example, if a particular question asks about the content from one small part
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Figure 4: Which parts of each lecture are captured by each question? Each panel displays timeseries
plots showing how each question’s topic vector correlates with each video timepoint’s topic vector (Panel
A.: correlations for the Four Fundamental Forces lecture and associated questions; Panel B.: correlations for
the Birth of Stars lecture and associated questions). The colors denote question identities. The diamonds in
each panel denote the moment of peak correlation between the indicated question and the lecture trajectory.
The associated questions’ text and snippets of the lectures’ transcripts from the surrounding 30 seconds, are
displayed at the bottom of the figure.

of a lecture, we wondered whether the text embeddings could be used to automatically identify
the “matching” moment(s) in the lecture. When we correlated each question’s topic vector with
the topic vectors from each second of the lectures, we found some evidence that each question is
temporally specific (Fig. 4). In particular, most questions’ topic vectors were maximally correlated
with a well-defined (and relatively narrow) range of timepoints from their corresponding lectures,
and the correlations fell off sharply outside of that range. We also qualitatively examined the best-
matching intervals for each question by comparing the text of the question to the text of the most-
correlated parts of the lectures. Despite that the questions were excluded from the text embedding
model’s training set, in general we found (through manual inspection) a close correspondence
between the conceptual content that each question probed and the content covered by the best-
matching moments of the lectures. Two representative examples are shown at the bottom of
Figure 4.

The ability to quantify how much each question is “asking about” the content from each moment

10
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of the lectures could enable high-resolution insights into participants’ knowledge. Traditional
approaches to estimating how much a student “knows” about the content of a given lecture entail
computing the proportion of correctly answered questions. But if two students receive identical
scores on an exam, might our modeling framework help us to gain more nuanced insights into
the specific content that each student has mastered (or failed to master)? For example, a student
who misses three questions that were all about the same concept (e.g., concept A) will have gotten
the same proportion of questions correct as another student who missed three questions about
three different concepts (e.g., A, B, and C). But if we wanted to fill in the “gaps” in the two
students” understandings, we might do well to focus on concept A for the first student, but to
also add in materials pertaining to concepts B and C for the second student. In other words, raw
“proportion-correct” measures may capture how much a student knows, but not what they know.
We wondered whether our modeling framework might enable us to (formally and automatically)
infer participants” knowledge at the scale of individual concepts (e.g., as captured by a single
moment of a lecture).

We developed a simple formula (Eqn. 1) for using a participant’s responses to a small set
of multiple-choice questions to estimate how much the participant “knows” about the concept
reflected by any arbitrary coordinate, x, in text embedding space (e.g., the content reflected by
any moment in a lecture they had watched; see Estimating dynamic knowledge traces). Essentially,
the estimated knowledge at the coordinate is given by the weighted average proportion of quiz
questions the participant answered correctly, where the weights reflect how much each question
is “about” the content at x. When we apply this approach to estimate the participant’s knowledge
about the content presented in each moment of each lecture, we can obtain a detailed timecourse
describing how much “knowledge” the participant has about any part of the lecture. As shown
in Figure 5, we can also apply this approach separately for the questions from each quiz the
participants took throughout the experiment. From just a few questions per quiz, we obtain a
high-resolution snapshot (at the time each quiz was taken) of what the participants knew about
any moment’s content, from either of the two lectures they watched (comprising a total of 1,100

samples across the two lectures).

11
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Figure 5: Estimating moment-by-moment knowledge acquisition. A. Moment-by-moment knowledge
about the Four Fundamental Forces. Each trace displays the weighted proportion of correctly answered
questions about the content reflected in each moment of the lecture (see Estimating dynamic knowledge traces),
using responses from one quiz (color). The traces are averaged across participants. B. Average estimated
knowledge about the Four Fundamental Forces. Each bar displays the across-timepoint average knowledge,
estimated using the responses to one quiz’s questions. C. Moment-by-moment knowledge about the Birth
of Stars. The panel is in the same format as Panel A, but here the knowledge estimates are for the moment-
by-moment content of the Birth of Stars lecture. D. Average estimated knowledge about the Birth of Stars.
The panel is in the same format as Panel B, but here the knowledge estimates are for the content of the Birth
of Stars lecture. All panels: error ribbons and error bars denote 95% confidence intervals, estimated across
participants.
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Of course, even though the timecourses in Figure 5A and C provide detailed estimates about
participants’ knowlege, those estimates are only useful to the extent that they accurately reflect what
participants actually know. As one sanity check, we anticipated that the knowledge estimates
should show a content-specific “boost” in participants’ knowledge after watching each lecture.
In other words, if participants learn about each lecture’s content when they watch each lecture,
the knowledge estimates should reflect that. After watching the Four Fundamental Forces lecture,
participants should show more knowledge for the content of that lecture than they had before,
and that knowledge should persist for the remainder of the experiment. Specifically, knowledge
about that lecture’s content should be relatively low when estimated using Quiz 1 responses,
but should increase when estimated using Quiz 2 or 3 responses (Fig. 5B). Indeed, we found
that participants’ estimated knowledge about the content of the Four Fundamental Forces was
substantially higher on Quiz 2 versus Quiz 1 (£(49) = 8.764, p < 0.001) and on Quiz 3 versus Quiz
1 (#(49) = 10.519, p < 0.001). We found no reliable differences in estimated knowledge about
that lecture’s content on Quiz 2 versus 3 (t(49) = 0.160, p = 0.874). Similarly, we hypothesized
(and subsequently confirmed) that participants should show more estimated knowledge about the
content of the Birth of Stars lecture after (versus before) watching it (Fig. 5D). Specifically, since
participants watched that lecture after taking Quiz 2 (but before Quiz 3), we hypothesized that their
knowledge estimates should be relatively low on Quizzes 1 and 2, but should show a “boost” on
Quiz 3. Consistent with this prediction, we found no reliable differences in estimated knowledge
about the Birth of Stars lecture content on Quizzes 1 versus 2 (#(49) = 1.013, p = 0.316), but the
estimated knowledge was substantially higher on Quiz 3 versus 2 (£(49) = 10.561, p < 0.001) and
Quiz 3 versus 1 (£(49) = 8.969, p < 0.001).

If we are able to accurately estimate a participant’s knowledge about the content tested by a
given question, our estimates of their knowledge should carry some predictive information about
whether the participant is likely to answer the question correctly or incorrectly. We developed
a statistical approach to test this claim. For each question in turn, for each participant, we used
Equation 1 to estimate (using all other questions from the same quiz, from the same participant)

the participant’s knowledge at the held-out question’s embedding coordinate. For each quiz, we
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Figure 6: Estimating knowledge at the embedding coordinates of held-out questions. Separately for each
quiz (panel), we plot the distributions of predicted knowledge at the embedding coordinates of each held-out
correctly (blue) or incorrectly (red) answered question. The t-tests reported in each panel are between the
distributions of estimated knowledge at the coordinates of correctly versus incorrectly answered held-out
questions.

grouped these estimates into two distributions: one for the estimated knowledge at the coordinates
of each correctly answered question, and another for the estimated knowledge at the coordinates of
each incorrectly answered question (Fig. 6). We then used independent samples ¢-tests to compare
the means of these distributions of estimated knowledge.

For the initial quizzes participants took (prior to watching either lecture), participants’ estimated
knowledge tended to be low overall, and relatively unstructured (Fig. 6, left panel). When we held
out individual questions and estimated their knowledge at the held-out questions” embedding
coordinates, we found no reliable differences in the estimates when the held-out question had
been correctly versus incorrectly answered (£(633) = 0.577, p = 0.564). After watching the first
video, estimated knowledge for held-out correctly answered questions (from the second quiz;
Fig. 6, middle panel) exhibited a positive shift relative to held-out incorrectly answered questions
(t(633) = 3.961, p < 0.001). After watching the second video, estimated knowledge (from the
third quiz; Fig. 6, right panel) for all questions exhibited a positive shift. However, the increase
in estimated knowledge for held-out correctly answered questions was larger than for held-out
incorrectly answered questions (estimated knowledge for correctly versus incorrectly answered

Quiz 3 questions: $(628) = 2.045, p = 0.041).
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Knowledge estimates need not be limited to the content of the lectures. As illustrated in
Figure 7, our general approach to estimating knowledge from a small number of quiz questions
may be applied to any content, given its text embedding coordinate. To visualize how knowledge
“spreads” through text embedding space to content beyond the lectures participants watched,
we first fit a new topic model to the lectures’ sliding windows with k = 100 topics. We hoped
that increasing the number of topics from 15 to 100 might help us to generalize the knowledge
predictions. (Aside from increasing the number of topics from 15 to 100, all other procedures and
model parameters were carried over from the preceding analyses.) As in our other analyses, we
resampled each lecture’s topic trajectory to 1 Hz and also projected each question into a shared
text embedding space.

We projected the resulting 100-dimensional topic vectors (for each second of video and for each
question) onto a shared 2-dimensional plane (see Creating knowledge and learning map visualizations).
Next, we sampled points from a 100 x 100 grid of coordinates that evenly tiled a rectangle enclosing
the 2D projections of the videos and questions. We used Equation 4 to estimate participants” knowl-
edge at each of these 10,000 sampled locations, and averaged these estimates across participants to
obtain an estimated average knowledge map (Fig. 7A). Intuitively, the knowledge map constructed
from a given quiz’s responses provides a visualization of how “much” participants know about
any content expressible by the fitted text embedding model.

Several features of the resulting knowledge maps are worth noting. The average knowledge
map estimated from Quiz 1 responses (Fig. 7A, leftmost map) shows that participants tended to
have relatively little knowledge about any parts of the text embedding space (i.e., the shading is
relatively dark everywhere). The knowledge map estimated from Quiz 2 responses shows a marked
increase in knowledge on the left side of the map (around roughly the same range of coordinates
traversed by the Four Fundamental Forces lecture, indicated by the dotted blue line). In other words,
participants’ estimated increase in knowledge is localized to conceptual content that is nearby (i.e.,
related to) the content from the lecture they watched prior to taking Quiz 2. This localization
is non-trivial: the knowledge estimates are informed only by the embedded coordinates of the

quiz questions, not by the embeddings of either lecture (see Eqn. 4). Finally, the knowledge map
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Figure 7: Mapping out the geometry of knowledge and learning. A. Average “knowledge maps” estimated
using each quiz. Each map displays a 2D projection of the estimated knowledge about the content reflected
by all regions of topic space (see Creating knowledge and learning map visualizations). The topic trajectories of
each lecture are indicated by dotted lines, and the coordinates of each question are indicated by dots. Each
map reflects an average across all participants. For individual participants’ maps, see Figures S2, S3, and S4.
B. Average “learning maps” estimated between each successive pair of quizzes. The learning maps follow
the same general format as the knowledge maps in Panel A, but here the shading at each coordinate indicates
the difference between the corresponding coordinates in the indicated pair of knowledge maps—i.e., how
much the estimated knowledge “changed” between the two quizzes. Each map reflects an average across all
participants. For individual participants” maps, see Figures S5 and S6. C. Word clouds for sampled points
in topic space. Each word cloud displays the relative weights of each word (via their relative sizes) reflected
by the blend of topics represented at the locations of the stars on the maps. The words’ colors indicate how
much each word is weighted, on average, across all timepoints’ topic vectors in the Four Fundamental Forces
(blue) and Birth of Stars (green) videos, respectively.
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estimated from Quiz 3 responses shows a second increase in knowledge, localized to the region
surrounding the embedding of the Birth of Stars lecture participants watched immediately prior to
taking Quiz 3.

Another way of visualizing these content-specific increases in knowledge after participants
viewed each lecture is displayed in Figure 7B. Taking the point-by-point difference between the
knowledge maps estimated from responses to a successive pair of quizzes yields a learning map
that describes the change in knowledge estimates from one quiz to the next. These learning maps
highlight that the estimated knowledge increases we observed across maps were specific to the
regions around the embeddings of each lecture in turn.

Because the 2D projection we used to construct the knowledge and learning maps is invertible,
we may gain additional insights into these maps’ meaning by reconstructing the original high-
dimensional topic vector for any location on the map we are interested in. For example, this could
serve as a useful tool for an instructor looking to better understand which content areas a student
(or a group of students) knows well (or poorly). As a demonstration, we show the top-weighted
words from the blends of topics reconstructed from three example locations on the maps (Fig. 7C):
one point near the Four Fundamental Forces embedding (yellow); a second point near the Birth of
Stars embedding (orange), and a third point between the two lectures” embeddings (pink). As
shown in the word clouds in the Panel, the top-weighted words at the example coordinate near
the Four Fundamental Forces embedding also tended to be weighted heavily by the topics expressed
in that lecture. Similarly, the top-weighted words at the example coordinate near the Birth of Stars
embedding tended to be weighted most heavily by the topics expressed in that lecture. And the
top-weighted words at the example coordinate between the two lectures’” embeddings show a

roughly even mix of words most strongly associated with each lecture.

Discussion

We developed a computational framework that uses short multiple-choice quizzes to gain nuanced

insights into what learners know and how their knowledge changes with training. First, we show
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that our approach can automatically match the conceptual knowledge probed by individual quiz
questions to the corresponding moments in lecture videos when those concepts were presented
(Fig. 4). Next, we demonstrate how we can estimate moment-by-moment “knowledge traces”
that reflect the degree of knowledge participants have about each video’s time-varying content,
and capture temporally specific increases in knowledge after viewing each lecture (Fig. 5). We
also show that these knowledge estimates can generalize to held-out questions (Fig. 6). Finally,
we use our framework to construct visual maps that provide snapshot estimates of how much
participants know about any concept within the scope of our text embedding model, and how
much their knowledge changes with training (Fig. 7).

Over the past several years, the global pandemic has forced many educators to teach re-
motely [21, 34, 42, 45]. This change in world circumstances is happening alongside (and perhaps
accelerating) geometric growth in the availability of high quality online courses on platforms such
as Khan Academy [22], Coursera [46], EAX [24], and others [39]. Continued expansion of the global
internet backbone and improvements in computing hardware have also facilitated improvements
in video streaming, enabling videos to be easily shared and viewed by large segments of the
world’s population. This exciting time for online course instruction provides an opportunity to
re-evaluate how we, as a global community, educate ourselves and each other. For example, we
can ask: what makes an effective course or training program? Which aspects of teaching might
be optimized and/or augmented by automated tools? How and why do learning needs and goals
vary across people? How might we lower barriers to achieving a high-quality education?

Alongside these questions, there is a growing desire to extend existing theories beyond the
domain of lab testing rooms and into real classrooms [20]. In part, this has led to a recent
resurgence of “naturalistic” or “observational” experimental paradigms that attempt to better
reflect more ethologically valid phenomena that are more directly relevant to real-world situations
and behaviors [35]. In turn, this has brought new challenges in data analysis and interpretation. A
key step towards solving these challenges will be to build explicit models of real-world scenarios
and how people behave in them (e.g., models of how people learn conceptual content from real-

world courses, as in our current study). A second key step will be to understand which sorts of
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signals derived from behaviors and/or other measurements (e.g., neurophysiological data; 1,12, 32,
36, 37) might help to inform these models. A third major step will be to develop and employ reliable
ways of evaluating the complex models and data that are a hallmark of naturalistic paradigms.

Beyond specifically predicting what people know, the fundamental ideas we develop here also
relate to the notion of “theory of mind” of other individuals [15, 18, 31]. Considering others’ unique
perspectives, prior experiences, knowledge, goals, etc., can help us to more effectively interact and
communicate [38, 41, 44]. One could imagine future extensions of our work (e.g., analogous to
the knowledge and learning maps shown in Fig. 7), that attempt to characterize how well-aligned
different people’s knowledge bases or backgrounds are. In turn, this might be used to model how
knowledge (or other forms of communicable information) flows not just between teachers and
students, but between friends having a conversation, individuals on a first date, participants at
a business meeting, doctors and patients, experts and non-experts, political allies or adversaries,
and more. For example, the extent to which two people’s knowledge maps “match” or “align” in
a given region of text embedding space might serve as a predictor of how effectively they will be
able to communicate about the corresponding conceptual content.

Ultimately, our work suggests a rich new line of questions about the geometric “form” of
knowledge, how knowledge changes over time, and how we might map out the full space of
what an individual knows. Our finding that detailed estimates about knowledge may be obtained
from short quizzes shows one way that traditional approaches to evaluation in education may be
extended. We hope that these advances might help pave the way for new approaches to teaching

or delivering educational content that are tailored to individual students’ learning needs and goals.

Materials and methods

Participants

We enrolled a total of 50 Dartmouth undergraduate students in our study. Participants received

course credit for enrolling. We asked each participant to complete a demographic survey that
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included questions about their age, gender, native spoken language, ethnicity, race, hearing, color
vision, sleep, coffee consumption, level of alertness, and several aspects of their educational back-
ground and prior coursework.

Participants” ages ranged from 18 to 22 years (mean: 19.52 years; standard deviation: 1.09
years). A total of 15 participants reported their gender as male and 35 participants reported their
gender as female. A total of 49 participants reported their native language as “English” and 1
reported having another native language. A total of 47 participants reported their ethnicity as
“Not Hispanic or Latino” and three reported their ethnicity as “Hispanic or Latino.” Participants
reported their races as White (32 participants), Asian (14 participants), Black or African American
(5 participants), American Indian or Alaska Native (1 participant), and Native Hawaiian or Other
Pacific Islander (1 participant). (Note that some participants selected multiple racial categories.)

A total of 49 participants reporting having normal hearing and 1 participant reported having
some hearing impairment. A total of 49 participants reported having normal color vision and 1
participant reported being color blind. Participants reported having had, on the night prior to
testing, 2—4 hours of sleep (1 participant), 4-6 hours of sleep (9 participants), 6-8 hours of sleep (35
participants), or 8+ hours of sleep (5 participants). They reported having consumed, on the same
day and leading up to their testing session, 0 cups of coffee (38 participants), 1 cup of coffee (10
participants), 3 cups of coffee (1 participant), or 4+ cups of coffee (1 participant).

No participants reported that their focus was currently impaired (e.g., by drugs or alcohol).
Participants reported their current level of alertness, and we converted their responses to numerical
scores as follows: “very sluggish” (-2), “a little sluggish” (-1), “neutral” (0), “fairly alert” (1), and
“very alert” (2). Across all participants, a range of alertness levels were reported (range: -2 — 1;
mean: -0.10; standard deviation: 0.84).

Participants reported their undergraduate major(s) as “social sciences” (28 participants), “nat-
ural sciences” (16 participants), “professional” (e.g., pre-med or pre-law; 8 participants), “mathe-
matics and engineering” (7 participants), “humanities” (4 participants), or “undecided” (3 partici-
pants). Note that some participants selected multiple categories for their undergraduate major. We

also asked participants about the courses they had taken. In total, 45 participants reported having
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taken at least one Khan Academy course in the past, and 5 reported not having taken any Khan
Academy courses. Of those who reported having watched at least one Khan Academy course,
7 participants reported having watched 1-2 courses, 11 reported having watched 3-5 courses, 8
reported having watched 5-10 courses, and 19 reported having watched 10 or more courses. We
also asked participants about the specific courses they had watched, categorized under different
subject areas. In the “Mathematics” area, participants reported having watched videos on AP
Calculus AB (21 participants), Precalculus (17 participants), Algebra 2 (14 participants), AP Cal-
culus BC (12 participants), Trigonometry (11 participants), Algebra 1 (10 participants), Geometry
(8 participants), Pre-algebra (7 participants), Multivariable Calculus (5 participants), Differential
Equations (5 participants), Statistics and Probability (4 participants), AP Statistics (2 participants),
Linear Algebra (2 participants), Early Math (1 participant), Arithmetic (1 participant), and other
videos not listed in our survey (5 participants). In the “Science and engineering” area, participants
reported having watched videos on Chemistry, AP Chemistry, or Organic Chemistry (21 partic-
ipants); Physics, AP Physics I, or AP Physics II (15 participants); Biology, AP Biology; or High
school Biology (15 participants); Health and Medicine (1 participant); or other videos not listed
in our survey (19 participants). We also asked participants whether they had specifically seen the
videos used in our experiment. Of the 45 participants who reported having having taken at least
one Khan Academy course in the past, 44 participants reported that they had not watched the Four
Fundamental Forces video, and 1 participant reported that they were not sure whether they had
watched it. All participants reported that they had not watched the Birth of Stars video. When
we asked participants about non-Khan Academy online courses, they reported having watched
or taken courses on Mathematics (15 participants), Science and engineering (11 participants), Test
preparation (9 participants), Economics and finance (3 participants), Arts and humanities (2 partic-
ipants), Computing (2 participants), and other categories not listed in our survey (18 participants).
Finally, we asked participants about in-person courses they had taken in different subject areas.
They reported taking courses in Mathematics (39 participants), Science and engineering (38 par-
ticipants), Arts and humanities (35 participants), Test preparation (27 participants), Economics

and finance (26 participants), Computing (15 participants), College and careers (7 participants), or
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other courses not listed in our survey (6 participants).

Experiment

We hand-selected two course videos from the Khan Academy platform: Four Fundamental Forces
(an introduction to gravity, electromagnetism, the weak nuclear force, and the strong nuclear force;
duration: 10 minutes and 29 seconds) and Birth of Stars (an introduction to how stars are formed;
duration: 7 minutes and 57 seconds). We then hand-created 39 multiple-choice questions: 15 about
the conceptual content of Four Fundamental Forces (i.e., lecture 1), 15 about the conceptual content
of Birth of Stars (i.e., lecture 2), and 9 questions that tested for general conceptual knowledge about
basic physics (covering material that was not presented in either video). The full set of questions
and answer choices may be found in Table S1.

Over the course of the experiment, participants completed three 13-question multiple-choice
quizzes: the first before viewing lecture 1, the second between lectures 1 and 2, and the third
after viewing lecture 2 (Fig. 1). The questions appearing on each quiz, for each participant, were
randomly chosen from the full set of 39, with the constraints that (a) each quiz contain 5 questions
about lecture 1, 5 questions about lecture 2, and 3 questions about general physics knowledge, and
(b) each question appear exactly once for each participant. The orders of questions on each quiz,
and the orders of answer options for each question, were also randomized. Our experimental
protocol was approved by the Committee for the Protection of Human Subjects at Dartmouth
College. We used the experiment to develop and test our computational framework for estimating

knowledge and learning.

Analysis
Constructing text embeddings of multiple lectures and questions

We adapted an approach we developed in prior work [17] to embed each moment of the two
lectures and each question in our pool in a common representational space. Briefly, our approach

uses a topic model (Latent Dirichlet Allocation; 4), trained on a set of documents, to discover a set
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of k “topics” or “themes.” Formally, each topic is defined as a set of weights over each word in
the model’s vocabulary (i.e., the union of all unique words, across all documents, excluding “stop
words.”). Conceptually, each topicis intended to give larger weights to words that are semantically
related or tend to co-occur in the same documents. After fitting a topic model, each document
in the training set, or any new document that contains at least some of the words in the model’s
vocabulary, may be represented as a k-dimensional vector describing how much the document
(most probably) reflects each topic. (Unless, otherwise noted, we used k = 15 topics.)

As illustrated in Figure 2A, we start by building up a corpus of documents using overlapping
sliding windows that span each video’s transcript. Khan Academy provides professionally created,
manual transcriptions of all videos for closed captioning. However, such transcripts would not
be readily available in all contexts to which our framework could potentially be applied. Khan
Academy videos are hosted on the YouTube platform, which additionally provides automated
captions. We opted to use these automated transcripts (which, in prior work, we have found are
of sufficiently near-human quality yield reliable data in behavioral studies; 47) when developing
our framework in order to make it more directly extensible and adaptable by others in the future.

We fetched these automated transcripts using the youtube-transcript-api Python pack-
age [11]. The transcripts consisted of one timestamped line of text for every few seconds (mean:
2.34 s; standard deviation: 0.83 s) of spoken content in the video (i.e., corresponding to each indi-
vidual caption that would appear on-screen if viewing the lecture via YouTube, and when those
lines would appear). We defined a sliding window length of (up to) w = 30 transcript lines, and
assigned each window a timestamp corresponding to the midpoint between its first and last lines’
timestamps. These sliding windows ramped up and down in length at the very beginning and
end of the transcript, respectively. In other words, the first sliding window covered only the first
line from the transcript; the second sliding window covered the first two lines; and so on. This
insured that each line of the transcript appeared in the same number (w) of sliding windows. After
performing various standard text preprocessing (e.g., normalizing case, lemmatizing, removing
punctuation and stop-words), we treated the text from each sliding window as a single “docu-

ment,” and combined these documents across the two videos” windows to create a single training

23



503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

corpus for the topic model. The top words from each of the 15 discovered topics may be found in
Table S2.

After fitting a topic model to the two videos’ transcripts, we could use the trained model to
transform arbitrary (potentially new) documents into k-dimensional topic vectors. A convenient
property of these topic vectors is that documents that reflect similar blends of topics (i.e., documents
that reflect similar themes, according to the model) will yield similar coordinates (in terms of
Euclidean distance, correlation, or other geometric measures). In general, the similarity between
different documents’ topic vectors may be used to characterize the similarity in conceptual content
between the documents.

We transformed each sliding window’s text into a topic vector, and then used linear interpo-
lation (independently for each topic dimension) to resample the resulting timeseries to one vector
per second. We also used the fitted model to obtain topic vectors for each question in our pool
(Tab. S1). Taken together, we obtained a trajectory for each video, describing its path through topic
space, and a single coordinate for each question (Fig. 2C). Embedding both videos and all of the
questions using a common model enables us to compare the content from different moments of
videos, compare the content across videos, and estimate potential associations between specific

questions and specific moments of video.

Estimating dynamic knowledge traces

We used the following equation to estimate each participant’s knowledge about timepoint ¢ of a

given lecture, k(b):
iccorrect NCOIT (f(t/ L)' f(l/ Q))

. z
k t, L = 7
v YL neorr (f(t,L), £(j, Q)

1)

where

corr(x, ¥) — mincorr

)

ncorr(x, y) = - ,
maxcorr — mincorr

and where mincorr and maxcorr are the minimum and maximum correlations between any lecture

timepoint and question, taken over all timepoints in the given lecture, and all five questions about
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that lecture appearing on the given quiz. We also define f(s, Q) as the s topic vector from the set
of topic vectors Q). Here t indexes the set of lecture topic vectors, L, and i and j index the topic
vectors of questions used to estimate the knowledge trace, Q. Note that “correct” denotes the set
of indices of the questions the participant answered correctly on the given quiz.

Intuitively, ncorr(x, y) is the correlation between two topic vectors (e.g., the topic vector from one
timepoint in a lecture, x, and the topic vector for one question, y), normalized by the minimum and
maximum correlations (across all timepoints f and questions Q) to range between 0 and 1, inclusive.
Equation 1 then computes the weighted average proportion of correctly answered questions about
the content presented at timepoint ¢, where the weights are given by the normalized correlations
between timepoint t’s topic vector and the topic vectors for each question. The normalization
step (i.e., using ncorr instead of the raw correlations) insures that every question contributes some

non-zero amount to the knowledge estimate.

Creating knowledge and learning map visualizations

An important feature of our approach is that, given a trained text embedding model and partic-
ipants’ quiz performance on each question, we can estimate their knowledge about any content
expressible by the embedding model—not solely the content explicitly probed by the quiz ques-
tions or even appearing in the lectures. To visualize these estimates (Figs. 7, S2, S3, 54, S5, and S6),
we used Uniform Manifold Approximation and Projection (UMAP; 30) to construct a 2D projection
of the text embedding space. Sampling the original 100-dimensional space at high resolution to
obtain an adequate set of topic vectors spanning the embedding space would be computationally
intractable. However, sampling a 2D grid is trivial.

At a high level, the UMAP algorithm obtains low-dimensional embeddings by minimizing
the cross-entropy between the pairwise (clustered) distances between the observations in their
original (e.g., 100-dimensional) space and the pairwise (clustered) distances in the low-dimensional
embedding space (in our approach, the embedding space is 2D). In our implementation, pairwise
distances in the original high-dimensional space were defined as 1 minus the correlation between

the pair of coordinates, and pairwise distances in the low-dimensional embedding space were
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defiend as the Euclidean distance between the pair of coordinates.

In our application, all of the coordinates we embedded were topic vectors, whose elements
are always non-negative. Although UMAP is an invertible transformation at the embedding
locations of the original data, other locations in the embedding space will not necessarily follow
the same implicit “rules” as the original high-dimensional data. For example, inverting an arbitrary
coordinate in the embedding space might result in negative-valued vectors, which are incompatable
with the topic modeling framework. To protect against this issue, we log-transformed the topic
vectors prior to embedding them in the 2D space. When we inverted the embedded vectors (e.g.,
to estimate topic vectors or word clouds, as in Fig. 7C), we passed the inverted (log-transformed)
values through the exponential function to obtain a vector of non-negative values.

After embedding both lectures’ topic trajectories and the topic vectors of every question, we
defined a rectangle enclosing the 2D projections of the lectures’ and quizzes’ embeddings. We then
sampled points from a regular 100x100 grid of coordinates that evenly tiled this enclosing rectangle.
We sought to estimate participants’ knowledge (and learning, i.e., changes in knowledge) at each
of the resulting 10,000 coordinates.

To generate our estimates, we placed a set of 39 radial basis functions (RBFs) throughout the
embedding space, centered on the 2D projections for each question (i.e., we included one RBF for
each question). At coordinate x, the value of an RBF centered on a question’s coordinate 1, is given

by:

RBE(x, 1, A) = exp {—M} . 3)

The A term in the RBF equation controls the “smoothness” of the function, where larger values
of A result in smoother maps. In our implementation we used A = 50. Next, we estimated the

“knowledge” at each coordinate, x, using:

Ziecorrect RBF(X, qi, /\)

k(x) =
Y}L1 RBE(x, g;,A)

(4)

Intuitively, Equation 4 computes the weighted proportion of correctly answered questions, where

the weights are given by how nearby (in the 2D space) each question is to the x. We also defined
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learning maps as the coordinate-by-coordinate differences between any pair of knowledge maps.

Intuitively, learning maps reflect the change in knowledge across two maps.
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