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Process data refer to data recorded in log files of computer-based items. These data, represented as
timestamped action sequences, keep track of respondents’ response problem-solving behaviors. Process
data analysis aims at enhancing educational assessment accuracy and serving other assessment purposes by
utilizing the rich information contained in response processes. The R package ProcData presented in this
article is designed to provide tools for inspecting, processing, and analyzing process data. We define an S3
class ‘proc’ for organizing process data and extend generic methods summary and print for ‘proc’.
Feature extraction methods for process data are implemented in the package for compressing information
in the irregular response processes into regular numeric vectors. ProcData also provides functions for
making predictions from neural-network-based sequence models. In addition, a real dataset of response
processes from the climate control item in the 2012 Programme for International Student Assessment is
included in the package.
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1. Introduction

With the advancement of technology, computer-based assessments have become popular in
measuring complex human skills such as problem solving skills. In these assessments, participants
are often asked to accomplish real-life tasks in a simulated environment. As a participant interacts
with a computer to complete the tasks, the entire interaction process is recorded in a log file.
Each process includes actions such as mouse clicks and keystrokes and timestamps at which these
actions took place. Such data describe the process of responding to an item and are thus called
response process data, or in short, process data.

Naturally, process data contain substantially more information concerning each respondent
than traditional dichotomous or polytomous item responses. A response process not only indicates
whether the final answer to the item is correct or not but also details how the problem is solved.
The detailed information enables researchers to compare behavior patterns in successful and
unsuccessful responses, detect abnormal behaviors, and study other problems that are otherwise
difficult or even impossible to study (Ren et al., 2019; Stadler, Fischer, & Greiff, 2019; C. Wang,
Xu, Shang, & Kuncel, 2018). It has also been quantitatively verified that the variables constructed
from process data have higher prediction power for a wide range of variables that are directly or
indirectly related to problem-solving behaviors (X. Tang, Wang, He, Liu, & Ying, 2020; X. Tang,
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Wang, Liu, & Ying, 2020, Zhang, Tang, He, Liu, & Ying, 2021). Moreover, with an appropriate
design of the scoring rule, process-data-based assessment substantially improves assessment reli-
ability compared to the item-response-theory-based (IRT-based) scores (Zhang, Wang, Qi, Liu, &
Ying, 2021). In particular, the process-data-based score of one item is as accurate as the IRT-based
score of three items. In addition, differential item functioning may be reduced or even completely
removed by looking into the response processes and making use of the information appropriately.
There are many other ways that researchers may make use of process data, and they are yet to be
discovered.

Process data analysis has gained prominence in the past few years. Various methods have
been developed. He and von Davier (2016) and Qiao and Jiao (2018) found that n-grams of action
sequences are useful for predicting the item performance and for clustering respondents. Chen, Li,
Liu, and Ying (2019) analyzed process data through an event history analysis approach. Recently,
two generic feature extraction methods have been developed to automatically construct informa-
tive features from process data (X. Tang, Wang, He, et al., 2020, X. Tang, Wang, Liu, & Ying,
2020). These methods transform response processes into real-valued vectors (features) without
losing too much information. One of the two methods is based on multidimensional scaling, and
the other is based on a type of neural networks called autoencoder. Besides autoencoders, other
neural networks such as recurrent neural networks (RNNs) have also been found potentially useful
for analyzing process data (S. Tang, Peterson, & Pardos, 2016).

Although the methodology development has been prosperous, software for analyzing process
data has not been developed in parallel. Due to the special structure of response processes, few
existing packages for analyzing real-valued or categorical time series are applicable to process
data analysis. Recently, a Python library glassPy (Hao, Smith, Mislevy, von Davier, & Bauer,
2016) is developed for analyzing game/simulation-based assessment log files. This library focuses
on processing and summarizing the raw log files in extensive markup language (XML). It also
includes tools for visualizing the summarized information. As far as the authors’ knowledge,
there is currently no software implementing advanced statistical and machine learning methods
designed for process data. The lack of software implementation hinders the applications of the
state-of-the-art methods and slows down the roll-out of scientific discovery. We try to fill in this
gap by developing an R package ProcData. This package provides easy-to-use tools for basic
exploration and operation of process data. It also includes functions implementing the state-of-the-
art methods for process data analysis. ProcData is available at the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=ProcData and under development on
GitHub at https://github.com/xytangtang/ProcData.

The remaining sections of this article are organized as follows. In Sect. 2, we describe the
state-of-the-art methods implemented in ProcData. We select a set of important elements of
the ProcData package and present them in Sect. 3. A case study of the climate control item
in PISA 2012 is presented in Sect. 4 to demonstrate the usage of the package.1 A summary is
included in Sect. 5.

2. Methods

In this article, a response process is represented by o = (s, t). Each response process consists
of two sequences, an action sequence s = (s1, . . . , sL) and a timestamp sequence t = (t1, . . . , tL)

where L denotes the length of the response process, that is, the total number of actions taken during
the process. The action sequence s records the actions taken by the respondent to solve the item
in order. Each element in s is one of the M possible actions, a1, . . . , aM , in the item. We call

1ProcData 0.2.5 is used to produce the results in the case study. This version is available on CRAN at https://
cran.r-project.org/src/contrib/Archive/ProcData/ or onGithub at https://github.com/xytangtang/ProcData/tree/95a3658?.

http://CRAN.R-project.org/package=ProcData
https://github.com/xytangtang/ProcData
https://cran.r-project.org/src/contrib/Archive/ProcData/
https://cran.r-project.org/src/contrib/Archive/ProcData/
https://github.com/xytangtang/ProcData/tree/95a3658?
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Figure 1.
Structure of recurrent neural networks. At each time step, the hidden state mt is obtained by synthesizing the current xt
and the previous hidden state mt−1

A = {a1, . . . , aM } the action set of the item. The timestamp sequence t records the time of
actions in s from inception and therefore 0 ≤ t1 ≤ t2 ≤ · · · ≤ tL . For a set of response processes
o1, . . . , oN of N respondents, the length of a process is likely to vary across observations. We
write oi = (si , t i ), si = (si1, . . . , si Li ), and t i = (ti1, . . . , ti Li ), where Li denotes the length of
the response process for oi , i = 1, . . . , N .

A major technical difficulty for process data analysis is that response processes cannot be
conveniently organized as a matrix. Thus, standard statistical methods are not directly applicable
to process data. Feature extraction methods have been shown useful for exploratory process data
analysis. These methods compress response processes into vectors of a prespecified dimension.
These vectors are deemed as features of the response processes and are readily incorporated
in traditional statistical models such as regression models. Furthermore, the extracted features
are less noisy than the original response processes whose high noise level constitutes another
challenge of direct analysis of process data. In this section, we describe two unsupervised feature
extraction methods (X. Tang, Wang, He, et al., 2020, X. Tang, Wang, Liu, & Ying, 2020) and
an RNN-based supervised learning model for response processes. We begin the discussion by
briefly introducing RNNs, a key building block in these methods. We refer readers to Goodfellow,
Bengio, and Courville (2016) and Patterson and Gibson (2017) for a more thorough description
of neural networks.

2.1. Introduction to Neural Networks

Artificial neural networks or, in short, neural networks are nonlinear models describing rela-
tionships among variables. Each neural network is essentially a parameterized family of nonlinear
functions. Its structure is specially designed to achieve a specific modeling aim while being flex-
ible.

RNNsare a class of artificial neural networks oftenused for processing sequential information.
Unlike the feedforward neural network (FNN; Goodfellow et al., 2016, Chapter 6) that treats an
input as a simple vector, RNNs have a special structure to utilize the sequential information in
the data. As depicted in Fig. 1, an RNN has three components: inputs, hidden states, and outputs,
each of which is a multivariate time series. The inputs x1, . . . , xL are K (I)-dimensional vectors.
The hidden states m1, . . . ,mL are K (H)-dimensional and can be viewed as the memory that
helps process the input information sequentially. The hidden state evolves as the elements in the
input are processed. Each ml summarizes the information in the input sequence up to step l by
integrating the current information xl with the previous memory ml−1, that is, ml is a function
of xl and ml−1

ml = f (xl ,ml−1), (1)
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Figure 2.
Structure of autoencoders. The encoder φ transforms the input o into a low-dimensional vector θ and the decoder ψ

reconstructs o from θ . The low-dimensional vector θ is the feature vector of o

for l = 1, . . . , L . The initial hidden state m0 is often set to be the zero vector. To extract the
information useful for subsequent tasks from the memory, a K (O)-dimensional output vector yl
is produced as a function of the hidden state ml at each step l,

yl = g(ml). (2)

Both f and g are specified as a parametric family of functions with parameters to be estimated
based on data. Various choices of f and g have been proposed to compute the hidden states and
the outputs. Two most widely used ones are the long-short-term-memory (LSTM) unit and the
gate recurrent unit (GRU). They are designed to mitigate the vanishing or exploding gradient
problem of a basic RNN (Bengio, Simard, & Frasconi, 1994). We refer the readers to Hochreiter
and Schmidhuber 1997 and Cho et al. (2014) for the expressions of LSTM and GRU.

RNNs take input process sequences of different lengths. Note that the functions f and g in
(1) and (2) are the same across time steps. Therefore, the total number of parameters for an RNN
does not depend on the sequence length.

2.2. Autoencoder Feature Extraction

Autoencoders (Goodfellow et al., 2016, Chapter 14) are a class of neural networks aiming at
reconstructing the input in the output. It consists of two components (Figure 2), an encoder that
maps the complex and/or high-dimensional input to a low-dimensional vector and a decoder that
reconstructs the input from the low dimensional vector. The low-dimensional vector produced by
the encoder contains condensed information to rebuild the input. Therefore, its elements can be
treated as features of the input data.

Xueying Tang, Wang, Liu, and Ying (2020) proposed to extract features from the action
sequences in process data by means of a sequence autoencoder (SeqAE) . The structure of the
action SeqAE is depicted in Fig. 3. Its encoder consists of three steps. In the first step, each unique
action inA is associatedwith a numeric vector (embedding) inRK so that an input action sequence
is transformed into a sequence of K -dimensional embeddings. In the second step, an RNN is used
to sequentially summarize the information in the embedding sequence up to a time step. In the last
step, the last vector in the output of the encoder RNN is retained as the feature vector. The decoder
of the action SeqAE also consists of three steps. In the first step, the feature vector is repeated to
form a sequence of vectors which are then passed into another RNN in the second step to obtain
another sequence of vectors. Each vector in this latter sequence contains the information of the
action at the corresponding time step. In the last step, for l = 1, . . . , L , a probability distribution
ŝl = (ŝ(1)

l , ŝ(2)
l , . . . , ŝ(M)

l ) on A is constructed at time step l using a multinomial logit model
(MLM). The output vector yl of the decoder RNN is used as the covariates in the MLM. The
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Figure 3.
Structure of an action SeqAE that reconstructs an action sequence s = (s1, . . . , sL ) as a sequence of probability distri-
butions ŝ1, . . . , ŝL on the action set A. The encoder embeds the action sequence into a sequence of real-valued vectors
which is then processed by an RNN. The last output vector of the RNN is the feature vector θ of the action sequence. The
decoder reconstructs the action sequence from a sequence of θ’s via an RNN and a multinomial logistic model
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Figure 4.
Structure of a time SeqAE that reconstructs a timestamp sequence t = (t1, . . . , tL ) as t̂ = (t̂1, . . . , t̂L ) . The encoder
processes the timestamp sequence by an RNN. The last output vector of the RNN is the feature vector θ of the timestamp
sequence. The decoder reconstructs the timestamp sequence from a sequence of θ’s via an RNN and a linear model

MLMs at different time steps share the parameters. In both the encoder RNN and the decoder
RNN, K (I) = K (H) = K (O) = K .

Xueying Tang, Wang, Liu, and Ying (2020) focused on the action sequences in process data.
The idea of action SeqAE can be easily extended to the time sequences or both action and time
sequences to construct a time SeqAE or an action-time SeqAE. As shown in Fig. 4, the structure
of a time SeqAE resembles that of an action SeqAE. RNNs are used in both encoder and decoder
to summarize the sequential information. However, because timestamps are numeric, in a time
SeqAE, an embedding step is not needed in the encoder and the timestamps are reconstructed
through a linear model instead of a multinomial logit model. An action-time SeqAE can be
constructed by combining an action SeqAE and a time SeqAE as shown in Fig. 5.

Given the structure of a SeqAE, the parameters of the autoencoder, including the embeddings,
the parameters in the encoder and decoder RNNs, and the parameters in the multinomial logit
model and the linear model, are estimated by minimizing the discrepancy between the input
sequences and the output sequences. To be more specific, the estimated parameter vector η̂ is
obtained by minimizing

F(η̂) =
∑

i∈�

δ(oi , ôi ; η), (3)

where ô = (ŝ, t̂) denotes the output of a SeqAE for input o, δ(o, ô) is a function measuring the
discrepancy between o and ô, and η is a vector containing all parameters to be estimated in the
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SeqAE. For an action SeqAE,

δ(o, ô) = δa(s, ŝ) = − 1

L

L∑

l=1

M∑

j=1

1{sl = a j } log(ŝ( j)
l ).

For a time SeqAE,

δ(o, ô) = δt(t, t̂) =
L∑

l=1

(tl − t̂l)
2.

For an action-time SeqAE,
δ(o, ô) = waδa(s, ŝ) + wtδt(t, t̂),

where w = (wa, wt ) assigns different weights on the discrepancy between action sequences and
the discrepancy between time sequences. The objective function (3) is usually minimized via
gradient-based stochastic approximation (Hinton, Srivastava, & Swersky, 2014, Kingma & Ba,
2015, Robbins &Monro, 1951, Zeiler, 2012). Since neural networks are often over-parametrized,
the algorithm is usually stopped before convergence to avoid overfitting. A widely used early
stopping method monitors the value of the objection function on a validation set. After running
the algorithm long enough, one uses the parameter value producing the lowest monitored value
as the estimate.

2.3. Multidimensional Scaling Feature Extraction

Multidimensional scaling (MDS) (Borg & Groenen, 2005) is a technique often used for
dimension reduction and data visualization. Its goal is to embed objects in a space in such a way
that the dissimilarity between objects is approximated by the distance between their embedded
features. Similar objects are located close to each other, while dissimilar objects are far apart.
Given a dissimilarity measure that comprehensively characterizes the difference between objects,
the object coordinates obtained fromMDScanbe viewed as features describing the latent attributes
of the objects. Given a dissimilarity measure d and the latent feature dimension K , features of a
set of response processes o1, . . . , on are a solution to the optimization problem

min
θ1,...,θ N ∈RK

∑

1≤i< j≤n

(di j − ‖θ i − θ j‖)2, (4)

where di j = d(oi , o j ) is the dissimilarity between response processes oi and o j , θ i is the feature

vector of response process oi , and ‖x‖ = √
x�x.

Xueying Tang,Wang, He, et al. (2020) consider the optimal symbol similarity (OSS)measure
proposed in Gómez-Alonso and Valls (2008). For two response processes oi and o j , the OSS
measure is

dOSS(oi , o j ) = fOSS(si , s j ) + gOSS(si , s j )

Li + L j
, (5)

where fOSS(si , s j ) quantifies the dissimilarity among the actions that appear in both si and s j

and gOSS(si , s j ) is the count of actions appearing in only one of si and s j . More precisely,

fOSS(si , s j ) =
∑

a∈Ci j

∑K a
i j

k=1 |sa
i (k) − sa

j (k)|
max{Li , L j } , (6)
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and

gOSS(si , s j ) =
∑

a∈Ui j

La
i +

∑

a∈U ji

La
j , (7)

where sa denotes the sequence consisting of chronologically ordered positions of action a in action
sequence s, La is the length of sa , sa(k) represents the kth element of sa , and K a

i j = min{La
i , La

j }.
The OSS measure only takes the action sequences into account when characterizing the

differences between two response processes. To account for the difference in both action sequences
and time sequences, a time-weighted version of OSS (TOSS) can be considered. The length of a
response process in OSS is replaced by the total response time of the response process in TOSS,
and La is replaced by the total time spent on a. In (6), |sa

i (k) − sa
j (k)| is the difference between

the positions of the kth appearance of a in si and s j . In TOSS, this quantity is replaced by the
difference between the two corresponding timestamps. Namely,

dTOSS(oi , o j ) = fTOSS(oi , o j ) + gTOSS(oi , o j )

ti Li + t j L j

, (8)

where

fTOSS(oi , o j ) =
∑

a∈Ci j

∑K a
i j

k=1 |ti sa
i (k) − t j sa

j (k)|
max{ti Li , t j L j }

, (9)

and

gTOSS(oi , o j ) =
∑

a∈Ui j

∑

l:sil=a

(til − ti,l−1) +
∑

a∈U ji

∑

l:s jl=a

(t jl − t j,l−1). (10)

Given the dissimilarity function d, the solution to (4) is approximated by performing an
eigenvalue decomposition of the matrix − 1

2JD
(2)J where J = I − 1

N 1�1 and D(2) = (d2
i j ). This

is called classical MDS. The computational complexity of the algorithm is O(N 3), which is very
expensive if the number of processes N is large. Moreover, the N × N dissimilarity matrix D
consumes a large amount of memory. Paradis 2018 proposed an algorithm to perform MDS for
a large N . This algorithm first chooses a small subset � of the objects and obtains θ̂ i , i ∈ � by
performing classical MDS on this subset. Then, it minimizes

F(θ i ) =
∑

j∈�

(di j − ‖θ i − θ̂ j‖)2 (11)

by the BFGS method (Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970) for each
i �∈ �. In this way, only the dissimilarities for O(Ñ N ) pairs of objects are calculated where Ñ is
the subset size and the eigenvalue decomposition for a large matrix is avoided.

The MDS feature extraction method requires specifying K , the number of features to be
extracted. In X. Tang, Wang, He, et al. (2020), K is selected by k-fold cross-validation. The
authors also recommended performing principal component analysis on the extracted feature to
obtain more interpretable features.
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Table 1.
Summary of ProcData features. The functions marked by † depend on the keras package

Topic Objects

Data structure proc, print.proc, summary.proc
Data input and output read.seqs, write.seqs, cc_data
Process manipulation remove_repeat, remove_action,

replace_action, combine_actions
Feature extraction seq2feature_mds, chooseK_mds,

seq2feature_seq2seq†, chooseK_seq2seq†

Sequence model seqm†, predict.seqm†

2.4. Sequence Models

The feature extraction methods described above are designed to capture the variations among
response processes. We further present a sequence model that extracts features for some specific
variable of interest. As depicted in Fig. 6, a sequence model has two parts. The first part is
identical to the encoder. It embeds a response process to a fixed dimensional vector θ via an RNN.
In the second part, instead of reconstructing the response process, the sequence model utilizes a
generalized linear model (GLM) to predict the target variable y given θ . Thus, the feature vector
is trained to explain the target variable instead of the variations in response processes. Besides
GLMs, other supervised learning models such as FNNs can also be used in the second part to
describe a more complex relationship between θ and y.

Figure 6 illustrates the structure of the sequence model when the information in both the
action sequence and the timestamp sequence is considered. Similar structures have been used for
sentiment analysis in natural language processing (X. Wang, Liu, Sun, Wang, & Wang, 2015).

The parameters in the sequence model include the embedding, the parameters in the RNN,
and the parameters in the GLM or FNN. Given a set of response processes and the corresponding
values of the target variable, the parameters can be estimated by themaximum likelihood approach
or, equivalently, minimizing the discrepancy between the observed y and the estimatedmean value
ŷ based on the model. More specifically, the estimated value of the parameters minimizes

F(η) =
∑

i∈�

δ(yi , ŷi ), (12)

where δ(y, ŷ) = −y log(ŷ) − (1 − y) log(1 − ŷ) if y is binary and δ(y, ŷ) = (y − ŷ)2 if
y is continuous. Similar to SeqAE, the objective function (12) can be optimized by stochastic
approximation with early stopping. Once the parameters in the sequence model are estimated, the
model output ŷ is a prediction of the response variable. The output of the first part of the model
is the features most relevant to the target response variable.

3. The ProcData Package

We develop the ProcData package to provide tools for process data analysis. ProcData
defines an S3 object for process data and includes functions for data processing, inspection, and
modeling. The main features of ProcData are summarized in Table 1. The details of these
features are described in Sects. 3.1–3.5.
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As described in Sect. 2, some methods for process data require construction and training
of neural networks. ProcData relies on R package keras for achieving this functionality.
The keras package is an R interface to a high level neural network API developed for fast
experimentation of neural networks in Python. The functions in ProcData that are built on
functions in keras are marked by † in Table 1. If keras is not installed properly, calling these
functions will lead to an error, while other functions in ProcData can still be used normally.
The installation guide of the keras package can be found at https://keras.rstudio.com/. Note that
a successful installation of keras requires an installation of Python.

3.1. Data Input and Output

ProcData includes a dataset from the climate control item in PISA 2012. The dataset
contains the response processes and the dichotomous response outcomes of 16,763 students. The
item interface is described later in Sect. 4 and is available online.2 The data are loaded as follows.

library("ProcData")
data("cc_data")

The data object cc_data is a list of two elements, seqs and responses. The response
outcomes are contained in responses as a numeric vector. The response processes are stored
in seqs as an object of class ‘proc’, which will be specified in Sect. 3.2.

To read and write datasets on hard drive, ProcData provides functions for data input and
output. Process data are usually stored as comma separated values (CSV) files in either “single” or
“multiple” style. In both styles, all the action sequences form a column (action column) and all the
timestamp sequences form another column (time column). In the “single” style, the process for
one respondent takes up a single row in the CSV file. The entire action sequence of the respondent
is stored as one entry of the action column. The timestamp sequence of the respondent is stored
in the corresponding entry of the time column. Figure 7 presents a CSV file storing five response
processes in the “single” style. In the “multiple” style, each action in the process and its timestamp
occupy one row in the CSV file. A process of length L takes up L consecutive rows. A CSV file
that stores two response processes in the “multiple” style is displayed in Fig. 8. The two response
processes are the same as the first two shown in Fig. 7.

In ProcData, functions read.seqs() and write.seqs() read and write process data
from and to a CSV file. The file style is specified via argument style as shown in the sample
code below. Reading and writing files require specification of id_var, action_var, and
time_var, which are the column names for respondent identity number, action sequence, and
timestamp sequence, respectively. The separator of the elements in the action sequence and the
timestamp sequence is provided via step_sep if the file to read or write is in the single style.
write.seqs(cc_data$seqs, file="seqs_format_multiple.csv", style = "multiple",

id_var="ID", action_var="Action", time_var="Time")
write.seqs(cc_data$seqs, file="seqs_format_single.csv", style = "single",

id_var="ID", action_var="Action", time_var="Time", step_sep=",")
seqs_multiple <- read.seqs("seqs_format_multiple.csv", style = "multiple",

id_var = "ID", action_var = "Action", time_var = "Time")
seqs_single <- read.seqs("seqs_format_single.csv", style = "single", id_var = "ID",

action_var = "Action", time_var = "Time", step_sep = ",")

3.2. S3 class ‘proc’

ProcDatadefines anS3 class ‘proc’ for organizingprocess data.Anobject of class ‘proc’
is a list of two elements, action_seqs and time_seqs. In a ‘proc’ object storing response
processes o1, . . . , on , action_seqs is a list with elements s1, . . . , sn and time_seqs is a

2http://www.oecd.org/pisa/test-2012/testquestions/question3/.

https://keras.rstudio.com/
http://www.oecd.org/pisa/test-2012/testquestions/question3/
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Table 2.
Functions for sequence manipulation

Function Description

sub_seqs() Subsetting a set of response processes
remove_repeat() Removing consecutive repeated actions and their timestamps
replace_action() Renaming an action
remove_action() Removing a set of actions and their timestamps
combine_actions() Combining a given pattern of consecutive actions into a single action

list with elements t1, . . . , tn . The names of the elements in action_seqs and time_seqs
are the identity of the respondents. If the timestamp sequences are not available, time_seqs is
set to NULL. The seqs element in cc_data is a ‘proc’ object.

Anobject of class ‘proc’ is printedby theprintmethod for class ‘proc’,print.proc().
The function prints response processes one by one in an easy-to-read format. For each process,
the action sequence and the timestamp sequence are aligned and are printed horizontally. One can
print either the first several processes or a selected subset of the processes in the ‘proc’ object.
The format of the printed processes is demonstrated below.
ARE000000300079

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9
Event start 1_1_1 reset 0_0_1 reset 0_1_0 reset 1_0_0 end
Time 0.0 113.2 119.1 122.0 135.4 138.5 147.8 149.8 157.0

We also extend the summary method for class ‘proc’. Function summary.proc()
returns a list containing various summary statistics of the action sequences and the timestamp
sequences in the ‘proc’ object.

3.3. Sequence Manipulation

Process data often contain a large amount of noise, and data cleaning is often necessary before
further analysis. Table 2 lists the functions provided in ProcData for cleaning data in ‘proc’
objects. Their basic usage is demonstrated below.

# obtain processes 4, 8, 12, ..., 40 from cc_data
seqs <- sub_seqs(cc_data$seqs, ids = 4*1:10)
# remove repetitive actions in the response processes
seqs1 <- remove_repeat(seqs)
# remove action "0_0_0"
seqs2 <- remove_action(seqs1, actions = "0_0_0")
# rename "reset" with "RESET"
seqs3 <- replace_action(seqs2, old_action = "reset",

new_action = "RESET")
# combine actions "0_0_1" and "0_0_2" into a new action

"BOTTOM_MOVE_ONE"
seqs4 <- combine_actions(seqs2, old_actions = c("0_0_1", "0_0_2"),

new_action = "BOTTOM_MOVE_ONE")

3.4. Feature Extraction

3.4.1. Feature Extraction via Multidimensional Scaling In ProcData, seq2feature
_mds() extracts feature from process data via MDS. It takes a ‘proc’ object (seqs), the num-
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ber of features to be extracted (K), and some other control arguments to calculate the dissimilarity
matrix for the input response processes and then performs MDS.

The dissimilarity measure is specified via dist_type. In particular, two dissimilarity mea-
sures in Sect. 2.3 are implemented with dist_type = "oss_action" and dist_type
= "oss_both" standing for OSS and TOSS, respectively. Users may also use their own dis-
similarity measure by providing the dissimilarity matrix through seqs.

In seq2feature_mds(), the objective function (4) is optimized by either calling function
cmdscale() in R to perform the classical MDS or applying the large sample size algorithm
(Paradis, 2018). By default, seq2feature_mds() uses the classical MDS if there are fewer
than 5000 response processes and the large sample size algorithm otherwise. Onemay also choose
the algorithmby settingmethod = "small" for the classicalMDSor method = "large"
for the other algorithm.

Following the recommendation inX. Tang,Wang, He, et al. (2020),seq2feature_mds()
performs principal component analysis on the extracted features to enhance the interpretability of
the features.This canbe turnedoff by settingpca = FALSE. Bydefault,seq2feature_mds()
returns a list containing the latent features (theta) and the value of the optimized objective func-
tion (loss). The dissimilarity matrix (dist_mat) is returned if return_dist = TRUE.
ProcData also provides a function chooseK_mds() to select the feature dimension by k-
fold cross-validation.

3.4.2. Sequence Autoencoder Feature Extraction In ProcData, function seq2feature
_seq2seq() is provided to extract K features from a given set of response processes (seqs)
via SeqAEs. The SeqAE type is specified through argument ae_type as "action" (default),
"time", or "action_time". As described in Sect. 2.2, RNNs are a critical component in
SeqAEs. Inseq2feature_seq2seq(), the choice of the recurrent units ("lstm" or "gru")
in the encoder and decoder RNNs is set by argument rnn_type.

By default, the original timestamp sequences are used for constructing time SeqAEs and
action-time SeqAEs in seq2feature_seq2seq(). The inter-arrival time sequences are used
by setting cumulative = FALSE. The natural logarithm of the timestamps or the inter-arrival
time is used if log = TRUE.

The objective function (3) is minimized by stochastic approximation with early stop-
ping as described in Sect. 2.2. The algorithms available are stochastic gradient descent
(optimizer_name = "sgd"; Robbins & Monro, 1951), Adam (optimizer_name =
"adam"; Kingma & Ba, 2015), AdaDelta (optimizer_name = "adadelta"; Zeiler,
2012), and RMSprop (optimizer_name = "rmsprop" Hinton et al., 2014). The (base-
line) step size is set by argument step_size. The training and validation sets are specified in
samples_train and samples_valid, respectively.

The training time of SeqAEs varies from a few minutes to a few hours depending on
the number of possible actions in the item and the number of features to be extracted. In
seq2feature_seq2seq(), one sets verbose = TRUE to print out and monitor the train-
ing progress.

3.5. Sequence Models

In ProcData, function seqm() constructs and fits a sequence model described in Sect. 2.4
with a target response variable y whose type is set by response_type. Currently, y can
be either a binary variable ("binary") or a continuous variable ("scale"). The dimensions
of the action embeddings and the output of the RNN are specified through K_emb and K_rnn,
respectively. By default, seqm() uses a generalized linear model to predict y based on the RNN
output. Alternatively, one may use an FNN for this predictive model.



XUEYING TANG ET AL. 1073

As a default choice, seqm() extracts features only from the action sequences. Timestamp
sequences, if available, can be incorporated by setting include_time = TRUE. In this case,
the logarithms of the inter-arrival time sequences are used by default. To use the original timestamp
sequences, set time_interval = FALSE and log_time = FALSE.

Function seqm() returns an object of class ‘seqm’, which is a list containing the neural
network architecture, the estimated parameters, and other information about modeling fitting. The
key elements of a ‘seqm’ object are a character string describing the neural network structure
(structure) and a matrix giving the training and validation loss at the end of each epoch for
convergence check (history). Once a sequence model is fit, prediction and feature extraction
are performed by predict.seqm(), the predict method of ‘seqm’ objects.

4. Examples

In this section, we demonstrate the ProcData package through a case study of the climate
control item in PISA 2012. The dataset cc_data is included in the package. In the demonstra-
tion, we extract features from the response processes and use them to predict respondents’ task
accomplishment. Furthermore, we investigate the behavior patterns in response processes related
to task accomplishment.

4.1. PISA Climate Control Item

The climate control item is part of the Programme for International Student Assessment
(PISA) 2012 for assessing students’ problem solving skills. Figure 9 is a screenshot of the item
interface. In the simulated environment, there is a newair conditionerwith no instructions. Students
are asked to figure out which climate variable, temperature or humidity, that each of the three
controls on the air conditioner influences. They can slide the control bars through the simulation
interface and read how the temperature and humidity change. In the process, how the controls
are moved and what buttons are clicked are recorded in the log files. For example, if a student
clicked the “APPLY” button after moving the top control to “+” and the middle control to “−−”,
then action “1_-2_0” along with the time elapsed since the start of the item, say 5.4 seconds,
are recorded. A recorded process with action sequence (“start”, ‘1_0_0”, “RESET”, “0_0_-2”,
“end”) and timestamp sequence (0.0, 4.9, 6.3, 10.6, 12.5) indicates that the student moved the
top control to “+” and clicked “APPLY” 4.9 seconds after the item started. The positions of the
three controls were reset by a click of the “RESET” button 1.4 seconds later. Then, the bottom
control was moved to “−−” and “APPLY” was clicked again 10.6 seconds after the item started.
The total response time is 12.5 seconds.

4.2. Data Preprocessing

We randomly sample 2000 response processes from dataset cc_data for our analysis.
Given a vector of randomly sampled indices, subsetting a ‘proc’ object can be easily done using
sub_seqs() provided in ProcData. In the subset, 53.7% of the respondents answered the
item correctly. The sampled processes are then split into training, validation, and test sets.

# randomly sample a subset of size 2000 from cc_data
set.seed(12345)
n <- 2000
idx <- sample(1:length(cc_data$responses), n)
seqs <- sub_seqs(cc_data$seqs, idx)
y <- cc_data$responses[idx]
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# proportion of incorrect (0) and correct (1) answers
table(y) / n
# split sampled processes into training, validation, and test set
n_train <- 1000; n_valid <- 500; n_test <- 500
index_train <- sample(1:n, n_train)
index_valid <- sample(setdiff(1:n, index_train), n_valid)
index_test <- setdiff(1:n, c(index_train, index_valid))

The following code demonstrates the summary method for ‘proc’ objects.

seqs_summary <- summary(seqs)
# number of unique actions
seqs_summary$n_action
# action set
seqs_summary$actions
# range of sequence lengths
range(seqs_summary$seq_length)
# action transition probability matrix
trans_mat <- seqs_summary$trans_count
trans_mat <- trans_mat / rowSums(trans_mat)

The output shows that there are 128 unique actions in the 2000 response processes. The
process length ranges from 3 to 183. Figure 10 presents a 25×25 submatrix of the 128×128 full
action transition probability matrix trans_mat. The 25 actions corresponding to the submatrix
are randomly selected from the action set. The dark diagonal of the submatrix indicates that
respondents tend to repeat an action several times before taking a different action.

4.3. Unsupervised Feature Extraction

We begin the illustration of feature extraction with the intuitive action count features obtained
as follows.
get_action_counts <- function(x, actions) sapply(actions, function(a) sum(x == a))
theta_action <- t(sapply(seqs$action_seqs, get_action_counts,

actions = seqs_summary$actions))

The output object theta_action is a 2000×128 matrix. The rows are feature vectors for
different respondents. The columns correspond to the actions in the action set. The elements in
a feature vector are the counts of the corresponding actions in the response process. Using these
action features as covariates, we fit a logistic regression for the response outcome via glm() on
the training and validation set combined. The prediction accuracy of the fitted model on the test
set is 0.766.

Next, we extract features from response processes through multidimensional scaling.
The number of features is chosen by fivefold cross-validation. We only consider the action
sequences here and set dist_type = "oss_action". We set return_dist = TRUE,
and chooseK_mds() returns the dissimilarity matrix for later use to avoid repeated calcula-
tions. The returned dissimilarity matrix and the selected number of features are then passed to
seq2feature_mds() for feature extraction.

mds_K_res <- chooseK_mds(seqs, 1:10*10, dist_type = "oss_action",
return_dist = TRUE)

K <- mds_K_res$K; K
mds_res <- seq2feature_mds(mds_K_res$dist_mat, K = K)
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As a result, 40 MDS features are extracted. These features are used similarly as the action
count features to fit a logistic regression for the response outcome. The prediction accuracy based
on MDS features is 0.81, which is slightly higher than that obtained from the model based on
action count features. We further investigate the glm output and refit a logistic regression with
the first MDS only. We find that including this single feature yields a prediction accuracy of 0.8.

Now, we examine the behavior patterns associated with the first MDS feature. We order the
response processes according to the value of their first feature and use the print method for
class ‘proc’ to display the response processes with the highest and lowest values.

o_mds1 <- order(mds_res$theta[,1])
# response processes corresponding to the lowest feature values
print(seqs, index = head(o_mds1))
# response processes corresponding to the highest feature values
print(seqs, index = tail(o_mds1))

The output of the above code is included in Appendix. The response processes corresponding
to the highest feature values are often very short, meaning that little meaningful interaction with
computer interface is made. Respondents with this type of behaviors are unlikely to answer the
question correctly. The response processes corresponding to the lowest feature values are often
longer. However, their lengths are not the longest according to Fig. 11 where the value of the first
feature is plotted against the logarithm of the length of the corresponding process. A closer look
at the response processes with the lowest values of the feature reveals that these respondents often
move one control bar at a time. This “varying-one-thing-at-a-time” strategy is efficient to get the
correct answer.

We further extract features by constructing an action SeqAE. Below is an example of extract-
ing action SeqAE features by seq2feature_seq2seq() in ProcData.
ae_res <- seq2feature_seq2seq(seqs, ae_type = "action", K = K,

rnn_type = "gru", samples_train = index_train,
samples_valid = index_valid, verbose = TRUE)

We set verbose = TRUE to print out the epoch number during the training of the autoen-
coder so that we can monitor the training progress. The extracted SeqAE features stored in
ae_res$theta are used to predict the task accomplishment. The prediction accuracy is 0.836,
slightly higher than that of the model with MDS features.

4.4. Feature Extraction with Targeted Variables via Sequence Model

We demonstrate the usage of seqm() and other relevant functions in this section. We still
use the task accomplishment as the target variable. The training and validation sets are used for
fitting the sequence model, while the testing set is used for evaluating the prediction performance
of the fitted model. The response processes used for model fitting and testing are obtained by
subsetting the ‘proc’ object seqs with function sub_seqs() in ProcData.

seqs_train <- sub_seqs(seqs, c(index_train, index_valid))
seqs_test <- sub_seqs(seqs, index_test)
y_train <- y[c(index_train, index_valid)]
y_test <- y[index_test]

We first consider predicting y from the action sequence in a response process. The sequence
model that fulfills this task can be fitted by calling function seqm().

seqm_res <- seqm(seqs_train, y_train, response_type = "binary",
K_emb = 5, K_rnn = 5, n_epoch = 20,
max_len = max(seqs_summary$seq_length),
index_valid = n_train + 1:n_valid)
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Since the response outcome is a binary variable, we specify response_type =
"binary". n_epoch is the total number of epochs to be run for estimating the parameters. In
each epoch, the chosen stochastic approximation algorithm goes through the entire training set
once.

The convergence of the training process is examined by a plot of the loss function values
at the end of each epoch stored in seqm_res$history (Fig. 12). We then make predictions
based on the fitted model by calling the predict method for ‘seqm’ objects.

seq_pred_res <- predict(seqm_res, new_seqs = seqs_test)
mean(as.numeric(seq_pred_res > 0.5) == y_test)

The resulting prediction accuracy is 0.836.
To conclude the section, we present an example for both action sequences and time sequences.

Time sequences are incorporated in addition to the action sequences by setting include_time
= TRUE in seqm(). Other settings remain.

seqm_res2 <- seqm(seqs_train, y_train, response_type = "binary",
include_time = TRUE, K_emb = 5, K_rnn = 5, n_epoch = 20,
max_len = max(seqs_summary$seq_length),
index_valid = n_train + 1:n_valid)

seq_pred_res2 <- predict(seqm_res2, new_seqs = seqs_test)
mean(as.numeric(seq_pred_res2 > 0.5) == y_test)

The resulting prediction accuracy is 0.734, much lower than what we obtained previously.
Although time sequences can provide more information, they at the same time introduce an
excessive amount of noise, which can reduce the prediction accuracy. It is also possible that
the current sequence model is not able to efficiently incorporating the information in timestamp
sequences, causing a decreased prediction performance.

5. Summary

ProcData is an R package designed for process data analysis. It is applicable to pro-
cess data generated by a wide range of human–computer interfaces. ProcData includes an
S3 class "proc" for organizing response processes. Functions for inspecting and processing
"proc" objects are also included in the package. More importantly, two unsupervised learning
feature extraction methods and the neural-network-based sequence models are implemented in
ProcData. These tools are easy to use. The functions for each method integrate the major steps
of the method while allowing the flexibility to change the settings to some degree. In particular,
the functions for neural-network-based methods wrap several function calls for constructing and
training of neural network and thus simplify the application of these methods.

The feature extraction methods implemented in ProcData require little knowledge of the
itemdesigns. Thesemethods compress the information in response processes into fixed-dimension
real-valued vectors that can be analyzed using conventional statistical tools. The sequence model
describes the relationship between response processes and a target variable. It can be used to make
predictions of the target variable from response processes. This model can also be used to extract
from response processes the features that are most relevant to the target variable.

The extracted features can be used in various psychometric applications. For instance,
process-data-based scoring rules can be constructed based on the extracted features. The spe-
cific functional form is obtained by, for example, regressing a reliable estimate of the target scale
on the features (Zhang, Wang, et al., 2021). The extracted features are also useful for exploratory
analysis of response processes (Zhang, Tang, et al., 2021). The prediction-based framework used
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in Sect. 4 can be adapted to exploring whether the response processes provide information on the
variable of interest. If positive results are obtained from the preliminary analysis, more efforts
can be devoted to examining the exact characteristics in the response processes that contribute to
the effect.

Most of the existing methodology development for process data focuses on extracting infor-
mation from the response processes produced by a single item.ProcData follows suit. Although
features extracted frommultiple items can be aggregated together in the subsequent analysis,meth-
ods that directly synthesize information in multiple items are much more preferable and could
be helpful for understanding the relationship among items. Process data analysis is an active and
quickly rising field. We envision to include more state-of-the-art methods in future versions of
ProcData.
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Appendix

This appendix contains the output of print() in Sect. 4.3.
> # response processes corresponding to the lowest feature values
> print(seqs, index = head(o_mds1))
’proc’ object of 2000 processes

AUT000007001735
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -2_0_0 -1_0_0 0_1_0 0_2_0 0_-1_0 0_-2_0 0_0_1
Time 0.0 57.4 60.6 62.8 67.1 79.6 81.1 83.3 85.3 97.2

Step 11 Step 12 Step 13 Step 14
Event 0_0_2 0_0_-1 0_0_-2 end
Time 98.6 100.7 102.5 119.5

BRA000083118946
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -1_0_0 -2_0_0 reset 0_1_0 0_2_0 0_-1_0 0_-2_0
Time 0.0 141.7 151.2 157.7 164.6 182.1 185.1 188.8 194.2 196.3

Step 11 Step 12 Step 13 Step 14 Step 15 Step 16
Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 end
Time 204.0 206.6 209.4 215.9 218.6 240.4

KOR000006202016
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 2_0_0 1_0_0 -1_0_0 -2_0_0 reset 0_1_0 0_2_0 0_-1_0 0_-2_0
Time 0.0 46.1 52.4 56.4 59.2 62.5 67.3 69.3 70.3 72.4

Step 11 Step 12 Step 13 Step 14 Step 15 Step 16
Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 end
Time 78.9 81.1 84.1 86.6 89.0 94.6

PRT000009602769
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -1_0_0 -2_0_0 0_1_0 0_2_0 0_-1_0 0_0_1 0_0_2
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Time 0.0 73.1 82.5 89.2 94.3 109.5 114.8 119.8 128.8 131.4
Step 11

Event end
Time 139.7

ESP000073120436
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8 Step 9 Step 10

Event start 1_0_0 2_0_0 -1_0_0 -2_0_0 reset 0_1_0 0_2_0 0_-1_0 0_-2_0
Time 0.0 69.0 73.4 77.0 80.8 94.8 100.3 102.6 105.1 107.1

Step 11 Step 12 Step 13 Step 14 Step 15 Step 16 Step 17
Event reset 0_0_1 0_0_2 0_0_-1 0_0_-2 reset end
Time 116.9 118.9 121.9 125.1 127.2 136.0 140.6

> # response processes corresponding to the highest feature values
> print(seqs, index = tail(o_mds1))
’proc’ object of 2000 processes

BGR000010603028
Step 1 Step 2 Step 3

Event start 1_1_1 end
Time 0.0 39.7 49.9

AUS000012802387
Step 1 Step 2 Step 3

Event start 1_1_1 end
Time 0.0 56.4 60.8

HRV000007702394
Step 1 Step 2 Step 3

Event start 1_1_1 end
Time 0.0 67.4 116.9

BGR000010903115
Step 1 Step 2 Step 3

Event start 1_1_1 end
Time 0.0 211.3 237.4

IRL000006501691
Step 1 Step 2 Step 3

Event start 1_1_1 end
Time 0.0 125.9 136.6
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