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Abstract

Standard federated optimization methods success-

fully apply to stochastic problems with single-

level structure. However, many contemporary

ML problems ± including adversarial robustness,

hyperparameter tuning, actor-critic ± fall under

nested bilevel programming that subsumes min-

imax and compositional optimization. In this

work, we propose FEDNEST: A federated alter-

nating stochastic gradient method to address gen-

eral nested problems. We establish provable con-

vergence rates for FEDNEST in the presence of

heterogeneous data and introduce variations for

bilevel, minimax, and compositional optimization.

FEDNEST introduces multiple innovations includ-

ing federated hypergradient computation and vari-

ance reduction to address inner-level heterogene-

ity. We complement our theory with experiments

on hyperparameter & hyper-representation learn-

ing and minimax optimization that demonstrate

the benefits of our method in practice.

1. Introduction

In the federated learning (FL) paradigm, multiple clients

cooperate to learn a model under the orchestration of a

central server (McMahan et al., 2017) without directly ex-

changing local client data with the server or other clients.

The locality of data distinguishes FL from traditional dis-

tributed optimization and also motivates new methodologies

to address heterogeneous data across clients. Additionally,

cross-device FL across many edge devices presents addi-

tional challenges since only a small fraction of clients partic-

ipate in each round, and clients cannot maintain state across

rounds (Kairouz et al., 2019).

Traditional distributed SGD methods are often unsuitable in
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FL and incur high communication costs. To overcome this

issue, popular FL methods, such as FEDAVG (McMahan

et al., 2017), use local client updates, i.e. clients update their

models multiple times before communicating with the server

(aka, local SGD). Although FEDAVG has seen great success,

recent works have exposed convergence issues in certain

settings (Karimireddy et al., 2020; Hsu et al., 2019). This

is due to a variety of factors, including client drift, where

local models move away from globally optimal models due

to objective and/or systems heterogeneity.

Existing FL methods, such as FEDAVG, are widely applied

to stochastic problems with single-level structure. Instead,

many machine learning tasks ± such as adversarial learning

(Madry et al., 2017), meta learning (Bertinetto et al., 2018),

hyperparameter optimization (Franceschi et al., 2018), rein-

forcement/imitation learning (Wu et al., 2020; Arora et al.,

2020), and neural architecture search (Liu et al., 2018) ± ad-

mit nested formulations that go beyond the standard single-

level structure. Towards addressing such nested problems,

bilevel optimization has received significant attention in

the recent literature (Ghadimi & Wang, 2018; Hong et al.,

2020; Ji et al., 2021); albeit in non-FL settings. On the

other hand, federated versions have been elusive perhaps

due to the additional challenges surrounding heterogeneity,

communication, and inverse Hessian approximation.

Contributions: This paper addresses these challenges and

develops FEDNEST: A federated machinery for nested

problems with provable convergence and lightweight com-

munication. FEDNEST is composed of FEDINN: a feder-

ated stochastic variance reduction algorithm (FEDSVRG)

to solve the inner problem while avoiding client drift, and

FEDOUT: a communication-efficient federated hypergra-

dient algorithm for solving the outer problem. Importantly,

we allow both inner & outer objectives to be finite sums over

heterogeneous client functions. FEDNEST runs a variant

of FEDSVRG on inner & outer variables in an alternating

fashion as outlined in Algorithm 1. We make multiple algo-

rithmic and theoretical contributions summarized below.

• The variance reduction of FEDINN enables robustness

in the sense that local models converge to the globally

optimal inner model despite client drift/heterogeneity

unlike FEDAVG. While FEDINN is similar to

FEDSVRG (Konečnỳ et al., 2018) and FEDLIN (Mi-

tra et al., 2021), we make two key contributions: (i) We
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Figure 1: Depiction of federated bilevel nested optimization and high-level summary of FEDNEST (Algorithm 1). At

outer loop, FEDIHGP uses multiple rounds of matrix-vector products to facilitate hypergradient computation while only

communicating vectors. At inner loop, FEDINN uses FEDSVRG to avoid client drift and find the unique global minima.

Both are crucial for establishing provable convergence of FEDNEST.

leverage the global convergence of FEDINN to ensure

accurate hypergradient computation which is crucial for

our bilevel proof. (ii) We establish new convergence guar-

antees for single-level stochastic non-convex FEDSVRG,

which are then integrated within our FEDOUT.

• Communication efficient bilevel optimization: Within

FEDOUT, we develop an efficient federated method for

hypergradient estimation that bypass Hessian compu-

tation. Our approach approximates the global Inverse

Hessian-Gradient-Product (IHGP) via computation of

matrix-vector products over few communication rounds.

• LFEDNEST: To further improve communication effi-

ciency, we additionally propose a Light-FEDNEST algo-

rithm, which computes hypergradients locally and only

needs a single communication round for the outer update.

Experiments reveal that LFEDNEST becomes very com-

petitive as client functions become more homogeneous.

• Unified federated nested theory: We specialize our

bilevel results to minimax and compositional optimiza-

tion with emphasis on the former. For these, FEDNEST

significantly simplifies and leads to faster convergence.

Importantly, our results are on par with the state-of-the-

art non-federated guarantees for nested optimization lit-

erature without additional assumptions (Table 1).

• We provide extensive numerical experiments 1 on

bilevel and minimax optimization problems. These

demonstrate the benefits of FEDNEST, efficiency of

LFEDNEST, and shed light on tradeoffs surrounding com-

munication, computation, and heterogeneity.

2. Federated Nested Problems & FEDNEST

We will first provide the background on bilevel nested prob-

lems and then introduce our general federated method.

1FEDNEST code is available at https://github.com/
ucr-optml/FedNest.
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Stochastic Minimax Optimization
Non-Federated

FEDNEST ALSET SGDA SMD

batch size O(1) O(1) O(ϵ−1) N.A.

samples O(κ3
f ϵ

−2)

Stochastic Compositional Optimization
Non-Federated

FEDNEST ALSET SCGD NASA

batch size O(1)
samples O(ϵ−2) O(ϵ−2) O(ϵ−4) O(ϵ−2)

Table 1: Sample complexity of FEDNEST and comparable non-FL
methods to find an ϵ-stationary point of f : κg := ℓg,1/µg and
κf := ℓf,1/µf . κp

g denotes a polynomial function of κg . ALSET
(Chen et al., 2021a), BSA (Ghadimi & Wang, 2018), TTSA (Hong
et al., 2020), SGDA (Lin et al., 2020), SMD (Rafique et al., 2021),
SCGD (Wang et al., 2017), and NASA (Ghadimi et al., 2020).

Notation. For a differentiable function h(x,y) : Rd1 ×
R

d2 → R in which y = y(x) : Rd1 → R
d2 , we denote

∇h ∈ R
d1 the gradient of h as a function of x and ∇xh,

∇yh the partial derivatives of h with respect to x and y,

respectively. We let ∇2
xy

h and ∇2
y
h denote the Jacobian

and Hessian of h, respectively. We consider FL optimization

over m clients and we denote S = {1, . . . ,m}. For vectors

v ∈ R
d and matrix M ∈ R

d×d, we denote ∥v∥ and ∥M∥
the respective Euclidean and spectral norms.

2.1. Preliminaries on Federated Nested Optimization

In federated bilevel learning, we consider the following

nested optimization problem as depicted in Figure 1:

min
x∈Rd1

f(x) = 1

m

∑m
i=1

fi (x,y
∗(x))

subj. to y∗(x) ∈ argmin
y∈Rd2

1

m

∑m
i=1

gi (x,y) .
(1a)
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Algorithm 1 FEDNESTFEDNESTFEDNEST

1: Inputs: K,T ∈ N; (x0,y0) ∈ R
d1+d2 ; FEDINN,

2: FEDOUT with stepsizes {(αk, βk)}K−1

k=0

3: for k = 0, · · · ,K − 1 do

4: yk,0 = yk

5: for t = 0, · · · , T − 1 do

6: yk,t+1 = FEDINNFEDINNFEDINN
(
xk,yk,t, βk

)

7: end for

8: yk+1 = yk,T

9: xk+1 = FEDOUTFEDOUTFEDOUT
(
xk,yk+1, αk

)

10: end for

Recall that m is the number of clients. Here, to model

objective heterogeneity, each client i is allowed to have its

own individual outer & inner functions (fi, gi). Moreover,

we consider a general stochastic oracle model, access to

local functions (fi, gi) is via stochastic sampling as follows:

fi(x,y
∗(x)) := Eξ∼Ci [fi(x,y

∗(x); ξ)] ,

gi(x,y) := Eζ∼Di [gi(x,y; ζ)] , (1b)

where (ξ, ζ) ∼ (Ci,Di) are outer/inner sampling distribu-

tions for the ith client. We emphasize that for i ̸= j, the

tuples (fi, gi, Ci,Di) and (fj , gj , Cj ,Dj) can be different.

Example 1 (Hyperparameter tuning). Each client has lo-

cal validation and training datasets associated with objec-

tives (fi, gi)
m
i=1 corresponding to validation and training

losses, respectively. The goal is finding hyper-parameters x

that lead to learning model parameters y that minimize the

(global) validation loss.

The stochastic bilevel problem (1) subsumes two popular

problem classes with the nested structure: Stochastic Mini-

Max & Stochastic Compositional. Therefore, results on the

general nested problem (1) also imply the results in these

special cases. Below, we briefly describe them.

Minimax optimization. If gi(x,y; ζ) := −fi(x,y; ξ) for

all i ∈ S, the stochastic bilevel problem (1) reduces to the

stochastic minimax problem

min
x∈Rd1

f(x) :=
1

m
max
y∈Rd2

m∑

i=1

E[fi (x,y; ξ)]. (2)

Motivated by applications in fair beamforming, training

generative-adversarial networks (GANs) and robust ma-

chine learning, significant efforts have been made for solv-

ing (2) including (Daskalakis & Panageas, 2018; Gidel et al.,

2018; Mokhtari et al., 2020; Thekumparampil et al., 2019).

Example 2 (GANs). We train a generative model gx(·) and

an adversarial model ay(·) using client datasets Ci. The

local functions may for example take the form fi(x,y) =
Es∼Ci{log ay(s)}+ Ez∼Dnoise

{log[1− ay(gx(z))]}.

Compositional optimization. Suppose fi(x,y; ξ) :=
fi(y; ξ) and gi is quadratic in y given as gi(x,y; ζ) :=
∥y − ri(x; ζ)∥2. Then, the bilevel problem (1) reduces to

min
x∈Rd1

f(x) = 1

m

∑m
i=1

fi (y
∗(x))

subj. to y∗(x) = argmin
y∈Rd2

1

m

∑m
i=1

gi (x,y)
(3)

with fi(y
∗(x)) := Eξ∼Ci

[fi(y
∗(x); ξ)] and gi(x,y) :=

Eζ∼Di
[gi(x,y; ζ)]. Optimization problems in the form of

(3) occur for example in model agnostic meta-learning and

policy evaluation in reinforcement learning (Finn et al.,

2017; Ji et al., 2020b; Dai et al., 2017; Wang et al., 2017).

Assumptions. Let z = (x,y) ∈ R
d1+d2 . Throughout, we

make the following assumptions on inner/outer objectives.

Assumption A (Well-behaved objectives). For all i ∈ [m]:

(A1) fi(z),∇fi(z),∇gi(z),∇2gi(z) are ℓf,0,ℓf,1,ℓg,1,

ℓg,2-Lipschitz continuous, respectively; and

(A2) gi(x,y) is µg-strongly convex in y for all x ∈ R
d1 .

Throughout, we use κg = ℓg,1/µg to denote the condition

number of the inner function g.

Assumption B (Stochastic samples). For all i ∈ [m]:

(B1) ∇fi(z; ξ),∇gi(z; ζ),∇2gi(z; ζ) are unbiased estima-

tors of ∇fi(z), ∇gi(z), ∇2gi(z), respectively; and

(B2) Their variances are bounded, i.e., Eξ[∥∇fi(z; ξ) −
∇fi(z)∥2] ≤ σ2

f , Eζ [∥∇2gi(z; ζ) − ∇2gi(z)∥2] ≤
σ2
g,1, and Eζ [∥∇2gi(z; ζ) − ∇2gi(z)∥2] ≤ σ2

g,2 for

some σ2
f , σ

2
g,1, and σ2

g,2.

These assumptions are common in the bilevel optimization

literature (Ghadimi & Wang, 2018; Chen et al., 2021a; Ji

et al., 2021). Assumption A requires that the inner and outer

functions are well-behaved. Specifically, strong-convexity

of the inner objective is a recurring assumption in bilevel

optimization theory implying a unique solution to the inner

minimization in (1).

2.2. Proposed Algorithm: FEDNEST

In this section, we develop FEDNEST, which is formally pre-

sented in Algorithm 1. The algorithm operates in two nested

loops. The outer loop operates in rounds k ∈ {1, . . . ,K}.
Within each round, an inner loop operating for T iterations

is executed. Given estimates xk and yk, each iteration

t ∈ {1, . . . , T} of the inner loop produces a new global

model yk,t+1 of the inner optimization variable y∗(xk) as

the output of an optimizer FEDINN. The final estimate

yk+1 = yk,T of the inner variable is then used by an opti-

mizer FEDOUT to update the outer global model xk+1.

The subroutines FEDINN and FEDOUT are gradient-based

optimizers. Each subroutine involves a certain number of
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local training steps indexed by ν ∈ {0, . . . , τi − 1} that

are performed at the ith client. The local steps of FEDINN

iterate over local models yi,ν of the inner variable. Ac-

cordingly, FEDOUT iterates over local models xi,ν of the

global variable. A critical component of FEDOUT is a

communication-efficient federated hypergradient estimation

routine, which we call FEDIHGP. The implementation of

FEDINN, FEDOUT and FEDIHGP is critical to circumvent

the algorithmic challenges of federated bilevel optimization.

In the remaining of this section, we detail the challenges and

motivate our proposed implementations. Later, in Section 3,

we provide a formal convergence analysis of FEDNEST.

2.3. Key Challenge: Federated Hypergradient

Estimation

FEDOUT is a gradient-based optimizer for the outer min-

imization in (1); thus each iteration involves computing

∇f(x) = (1/m)
∑m

i=1
∇fi(x,y∗(x)). Unlike single-

level FL, the fact that the outer objective f depends ex-

plicitly on the inner minimizer y∗(x) introduces a new

challenge. A good starting point to understand the challenge

is the following evaluation of ∇f(x) in terms of partial

derivatives. The result is well-known from properties of

implicit functions.

Lemma 2.1. Under Assumption A, for all i ∈ [m]:

∇fi(x,y∗(x)) = ∇Dfi (x,y
∗(x)) +∇Ifi (x,y

∗(x)) ,

where the direct and indirect gradient components are:

∇Dfi(x,y
∗(x)) := ∇xfi (x,y

∗(x)) , (4a)

∇Ifi(x,y
∗(x)) := −∇2

xy
g(x,y∗(x))

·
[
∇2

y
g(x,y∗(x))

]−1∇yfi (x,y
∗(x)) . (4b)

We now use the above formula to describe the two core

challenges of bilevel FL optimization.

First, evaluation of any of the terms in (4) requires access

to the minimizer y∗(x) of the inner problem. On the other

hand, one may at best hope for a good approximation to

y∗(x) produced by the inner optimization subroutine. Of

course, this challenge is inherent in any bilevel optimization

setting, but is exacerbated in the FL setting because of client

drift. Specifically, when clients optimize their individual

(possibly different) local inner objectives, the global esti-

mate of the inner variable produced by SGD-type methods

may drift far from (a good approximation to) y∗(x). We

explain in Section 2.5 how FEDINN solves that issue.

The second challenge comes from the stochastic nature of

the problem. Observe that the indirect component in (4b)

is nonlinear in the Hessian ∇2
y
g(x,y∗(x)), complicating

an unbiased stochastic approximation of ∇fi(x,y∗(x)).
As we expose here, solutions to this complication devel-

oped in the non-federated bilevel optimization literature, are

not directly applicable in the FL setting. Indeed, existing

stochastic bilevel algorithms, e.g. (Ghadimi & Wang, 2018),

define ∇̄f(x,y) := ∇̄Df(x,y) + ∇̄If(x,y) as a surro-

gate of ∇f(x,y∗(x)) by replacing y∗(x) in definition (4)

with an approximation y and using the following stochastic

approximations:

∇̄Df(x,y) ≈ ∇xf(x,y; ξ̇), (5a)

∇̄If(x,y) ≈ −∇2
xy

g(x,y; ζN ′+1)

[ N

ℓg,1

N ′∏

n=1

(
I − 1

ℓg,1
∇2

y
g(x,y; ζn)

)]
∇yf(x,y; ξ̇). (5b)

Here, N ′ is drawn from {0, . . . , N−1} uniformly at random

(UAR) and {ξ̇, ζ1, . . . , ζN ′+1} are i.i.d. samples. Ghadimi

& Wang (2018); Hong et al. (2020) have shown that us-

ing (5), the inverse Hessian estimation bias exponentially

decreases with the number of samples N .

One might hope to directly leverage the above approach in

a local computation fashion by replacing the global outer

function f with the individual function fi. However, note

from (4b) and (5b) that the proposed stochastic approxima-

tion of the indirect gradient involves in a nonlinear way

the global Hessian, which is not available at the client 2.

Communication efficiency is one of the core objectives of

FL making the idea of communicating Hessians between

clients and server prohibitive. Is it then possible, in a FL

setting, to obtain an accurate stochastic estimate of the in-

direct gradient while retaining communication efficiency?

In Section 2.4, we show how FEDOUT and its subroutine

FEDIHGP, a matrix-vector products-based (thus, communi-

cation efficient) federated hypergradient estimator, answer

this question affirmatively.

2.4. Outer Optimizer: FEDOUT

This section presents the outer optimizer FEDOUT, formally

described in Algorithm 2. As a subroutine of FEDNEST

(see Line 9, Algorithm 1), at each round k = 0, . . . ,K − 1,

FEDOUT takes the most recent global outer model xk to-

gether the updated (by FEDINN) global inner model yk+1

and produces an update xk+1. To lighten notation, for a

round k, denote the function’s input as (x,y+) (instead

of (xk,yk+1)) and the output as x+ (instead of xk+1).

For each client i ∈ S, FEDOUT uses stochastic approxi-

mations of ∇̄Ifi(x,y
+) and ∇̄Dfi(x,y

+), which we call

hI
i (x,y

+) and hD
i (x,y

+), respectively. The specific choice

of these approximations (see Line 5) is critical and is dis-

cussed in detail later in this section. Before that, we explain

2We note that the approximation in (5) is not the only construc-
tion, and bilevel optimization can accommodate other forms of
gradient surrogates (Ji et al., 2021). Yet, all these approximations
require access (in a nonlinear fashion) to the global Hessian; thus,
they suffer from the same challenge in FL setting.
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Algorithm 2 x+ = FEDOUTFEDOUTFEDOUT (x,y+, α) for stochastic

bilevel and minimax problems

1: Fi(·)← ∇xfi(·,y+; ·)
2: xi,0 = x and αi ∈ (0, α]

3: Choose N ≥ 1 and set pN
′ = FEDIHGPFEDIHGPFEDIHGP (x,y+, N)

4: for i ∈ S in parallel do

5: hi = Fi(x; ξi)−∇2
xy

gi(x,y
+; ζi)pN

′

6: hi = Fi(x; ξi)

7: end for

8: h = |S|−1
∑

i∈S hi

9: for i ∈ S in parallel do

10: for ν = 0, . . . , τi − 1 do

11: hi,ν = Fi(xi,ν ; ξi,ν)− Fi(x; ξi,ν) + h

12: xi,ν+1 = xi,ν − αihi,ν

13: end for

14: end for

15: x+ = |S|−1
∑

i∈S xi,τi

how each client uses these proxies to form local updates of

the outer variable. In each round, starting from a common

global model xi,0 = x, each client i performs τi local steps

(in parallel):

xi,ν+1 = xi,ν − αihi,ν , (6)

and then the server aggregates local models via x+ =
|S|−1

∑
i∈S xi,τi . Here, αi ∈ (0, α] is the local stepsize,

hi,ν :=hI(x,y+) + hD(x,y+)

− hD
i (x,y

+) + hD
i (xi,ν ,y

+) ,
(7)

and, h(x,y) := |S|−1
∑

i∈S hi(x,y) =
|S|−1

∑
i∈S (hD

i (x,y
+)− hI

i (x,y
+)) .

The key features of updates (6)±(7) are exploiting past gra-

dients (variance reduction) to account for objective het-

erogeneity. Indeed, the ideal update in FEDOUT would

perform the update xi,ν+1 = xi,ν − αi

(
hI(xi,ν ,y

+) +

hD(xi,ν ,y
+)
)

using the global gradient estimates. But this

requires each client i to have access to both direct and indi-

rect gradients of all other clients±which it does not, since

clients do not communicate between rounds. To overcome

this issue, each client i uses global gradient estimates, i.e.,

hI(x,y+) + hD(x,y+) from the beginning of each round

as a guiding direction in its local update rule. However,

since both hD and hI are computed at a previous (x,y+),
client i makes a correction by subtracting off the stale di-

rect gradient estimate hD
i (x,y

+) and adding its own local

estimate hD
i (xi,ν ,y

+). Our local update rule in Step 11

of Algorithm 2 is precisely of this form, i.e., hi,ν approx-

imates hI(xi,ν ,y
+) + hD(xi,ν ,y

+) via (7). Note here

that the described local correction of FEDOUT only applies

Algorithm 3 pN ′ = FEDIHGPFEDIHGPFEDIHGP (x,y+, N): Federated

approximation of inverse-Hessian-gradient product

1: Select N ′ ∈ {0, . . . , N − 1} UAR.

2: Select S0 ∈ S UAR.

3: for i ∈ S0 in parallel do

4: pi,0 = ∇yfi(x,y
+; ξi,0)

5: end for

6: p0 = N
ℓg,1
|S0|−1

∑
i∈S0

pi,0

7: if N ′ = 0 then

8: Return pN ′

9: end if

10: Select S1, . . . ,SN ′ ∈ S UAR.

11: for n = 1, . . . , N ′ do

12: for i ∈ Sn in parallel do

13: pi,n =
(
I − 1

ℓg,1
∇2

y
gi(x,y

+; ζi,n)
)
pn−1

14: end for

15: pn = |Sn|−1
∑

i∈Sn
pi,n

16: end for

to the direct gradient component (the indirect component

would require global Hessian information). An alterantive

approach leading to LFEDNEST is discussed in Section 2.6.

FEDOUT applied to special nested problems. Algo-

rithm 2 naturally allows the use of other optimizers for

minimax & compositional optimization. For example,

in the minimax problem (2), the bilevel gradient com-

ponents are ∇Dfi(x,y
∗(x)) = ∇xfi (x,y

∗(x)) and

∇Ifi(x,y
∗(x)) = 0 for all i ∈ S. Hence, the hyper-

gradient estimate (7) reduces to

hi,ν = hD(x,y+)− hD
i (x,y

+) + hD
i (xi,ν ,y

+). (8)

For the compositional problem (3), Hessian becomes the

identity matrix, the direct gradient is the zero vector, and

∇xyg(x,y) = −(1/m)
∑m

i=1
∇ri(x)⊤. Hence, hi =

ℓg,1∇ri(x)⊤p0 for all i ∈ S .

More details on these special cases are provided in Appen-

dices D and E.

Indirect gradient estimation & FEDIHGP. Here, we aim

to address one of the key challenges in nested FL: inverse

Hessian gradient product. Note from (5b) that the proposed

stochastic approximation of the indirect gradient involves in

a nonlinear way the global Hessian, which is not available at

the client. To get around this, we use a client sampling strat-

egy and recursive reformulation of (5b) so that ∇̄Ifi(x,y)
can be estimated in an efficient federated manner. In par-

ticular, given N ∈ N, we select N ′ ∈ {0 . . . , N − 1} and

S0, . . . ,SN ′ ∈ S UAR. For all i ∈ S , we then define

hI
i (x,y) = −∇2

xy
gi(x,y; ζi)pN ′ , (9a)

where pN ′ = |S0|−1Ĥy

∑
i∈S0
∇yfi(x,y; ξi,0) and Ĥy
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is the approximate inverse Hessian:

N

ℓg,1

N ′∏

n=1

(
I − 1

ℓg,1|Sn|

|Sn|∑

i=1

∇2
y
gi(x,y; ζi,n)

)
. (9b)

The subroutine FEDIHGP provides a recursive strategy to

compute pN ′ and FEDOUT multiplies pN ′ with the global

Jacobian to drive an indirect gradient estimate. Importantly,

these approximations require only matrix-vector products

and vector communications.

Lemma 2.2. Under Assumptions A and B, the approximate

inverse Hessian Ĥy defined in (9b) satisfies the following

for any x and y:

∥∥∥
[
∇2

y
g(x,y)

]−1 − EW [Ĥy]
∥∥∥ ≤ 1

µg

(
κg − 1

κg

)N

,

EW

[∥∥∥
[
∇2

y
g(x,y)

]−1 − Ĥy

∥∥∥
]
≤ 2

µg

. (10)

Here, W := {Sn, ξi, ζi, ξi,0, ζi,n | i ∈ Sn, 0 ≤ n ≤ N ′}.
Further, for all i ∈ S , hI

i (x,y) defined in (9a) satisfies

∥∥EW [hI

i (x,y)]− ∇̄Ifi(x,y)
∥∥ ≤ b, (11)

where b := κgℓf,1
(
(κg − 1)/κg

)N
.

2.5. Inner Optimizer: FEDINN

In FL, each client performs multiple local training steps in

isolation on its own data (using for example SGD) before

communicating with the server. Due to such local steps,

FEDAVG suffers from a client-drift effect under objective

heterogeneity; that is, the local iterates of each client drift-

off towards the minimum of their own local function. In

turn, this can lead to convergence to a point different from

the global optimum y∗(x) of the inner problem; e.g., see

(Mitra et al., 2021). This behavior is particularly undesirable

in a nested optimization setting since it directly affects the

outer optimization; see, e.g. (Liu et al., 2021, Section 7).

In light of this observation, we build on the recently

proposed FEDLIN (Mitra et al., 2021) which improves

FEDSVRG (Konečnỳ et al., 2018) to solve the inner prob-

lem; see Algorithm 4. For each i ∈ S, let qi(x,y) de-

note an unbiased estimate of the gradient ∇ygi(x,y). In

each round, starting from a common global model y, each

client i performs τi local SVRG-type training steps in par-

allel: yi,ν+1 = yi,ν − βiqi,ν , where qi,ν := qi(x,yi,ν)−
qi(x,y) + q(x,y), βi ∈ (0, β] is the local inner step-

size, and q(x,y) := |S|−1
∑

i∈S qi(x,y). We note that

for the optimization problems (1), (2), and (3), qi(x,yi,ν)
is equal to ∇ygi(x,yi,ν ; ζi,ν), −∇yfi(x,yi,ν ; ξi,ν), and

yi,ν − ri(x; ζi,ν), respectively; see Appendices C±E.

Algorithm 4 y+ = FEDINNFEDINNFEDINN (x,y, β)

1: Gi(·)← ∇ygi(x, ·) (bilevel) , −∇yfi(x, ·) (minimax)

2: yi,0 = y and βi ∈ (0, β]
3: for i ∈ S in parallel do

4: qi = Gi(y; ζi)
5: end for

6: q = |S|−1
∑

i∈S qi
7: for i ∈ S in parallel do

8: for ν = 0, . . . , τi − 1 do

9: qi,ν = Gi(yi,ν ; ζi,ν)−Gi(y; ζi,ν) + q

10: yi,ν+1 = yi,ν − βiqi,ν
11: end for

12: end for

13: y+ = |S|−1
∑

i∈S yi,τi

2.6. Light-FEDNEST: Communication Efficiency via

Local Hypergradients

Each FEDNEST epoch k requires 2T +N + 3 communica-

tion rounds as follows: 2T rounds for SVRG of FEDINN, N
iterations for inverse Hessian approximation within FEDI-

HGP and 3 additional aggregations. Note that, these are

vector communications and we fully avoid Hessian com-

munication. In Appendix A, we also propose simplified

variants of FEDOUT and FEDIHGP, which are tailored to

homogeneous or high-dimensional FL settings. These algo-

rithms can then either use local Jacobian / inverse Hessian

or their approximation, and can use either SVRG or SGD.

Light-FEDNEST: Specifically, we propose LFEDNEST

where each client runs IHGP locally. This reduces the num-

ber of rounds to T + 1, saving T + N + 2 rounds (see

experiments in Section 4 for performance comparison and

Appendix A for further discussion.)

3. Convergence Analysis for FEDNEST

In this section, we present convergence results for FEDNEST.

All proofs are relegated to Appendices C±E.

Theorem 3.1. Suppose Assumptions A and B hold. Further,

assume αk
i = αk/τi and βk

i = βk/τi for all i ∈ S , where

βk =
β̄αk

T
, αk = min

{
ᾱ1, ᾱ2, ᾱ3,

ᾱ√
K

}
(12)

for some positive constants ᾱ1, ᾱ2, ᾱ3, ᾱ, and β̄ indepen-

dent of K. Then, for any T ≥ 1, the iterates {(xk,yk)}k≥0

generated by FEDNEST satisfy

1

K

K∑

k=1

E

[∥∥∇f(xk)
∥∥2
]
= O

( ᾱmax(σ2
g,1, σ

2
g,2, σ

2
f )√

K

+
1

min(ᾱ1, ᾱ2, ᾱ3)K
+ b2

)
,
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where b = κgℓf,1
(
(κg − 1)/κg

)N
and N is the input pa-

rameter to FEDIHGP.

Corollary 3.1 (Bilevel). Under the same conditions as in

Theorem 3.1, if N = O(κg logK) and T = O(κ4
g), then

1

K

K∑

k=1

E

[∥∥∇f(xk)
∥∥2
]
= O

(
κ4
g

K
+

κ2.5
g√
K

)
.

For ϵ-accurate stationary point, we need K = O(κ5
gϵ

−2).

Above, we choose N ∝ κg logK to guarantee b2 ≲ 1/
√
K.

In contrast, we use T ≳ κ4
g inner SVRG epochs. From

Section 2.6, this would imply the communication cost is

dominated by SVRG epochs N and O(κ4
g) rounds.

From Corollary 3.1, we remark that FEDNEST matches the

guarantees of centralized alternating SGD methods, such as

ALSET (Chen et al., 2021a) and BSA (Ghadimi & Wang,

2018), despite federated setting, i.e. communication chal-

lenge, heterogeneity in the client objectives, and device

heterogeneity.

3.1. Minimax Federated Learning

We focus on special features of federated minimax prob-

lems and customize the general results to yield improved

convergence results for this special case. Recall from (2)

that gi(x,y) = −fi(x,y) which implies that b = 0 and

following Assumption A, fi(x,y) is µf±strongly concave

in y for all x.

Corollary 3.2 (Minimax). Denote κf = ℓf,1/µf . Assume

same conditions as in Theorem 3.1 and T = O(κf ). Then,

1

K

K∑

k=1

E

[∥∥∇f(xk)
∥∥2
]
= O

(
κ2
f

K
+

κf√
K

)
.

Corrollary 3.2 implies that for the minimax problem, the

convergence rate of FEDNEST to the stationary point of f
is O(1/

√
K). Again, we note this matches the convergence

rate of non-FL algorithms (see also Table 1) such as SGDA

(Lin et al., 2020) and SMD (Rafique et al., 2021).

3.2. Compositional Federated Learning

Observe that in the compositional problem (3), the outer

function is fi(x,y; ξ) = fi(y; ξ) and the inner function

is gi(x,y; ζ) = 1

2
∥y − ri(x; ζ)∥2, for all i ∈ S. Hence,

b = 0 and κg = 1.

Corollary 3.3 (Compositional). Under the same conditions

as in Theorem 3.1, if we select T = 1 in (12). Then,

1

K

K∑

k=1

E

[∥∥∇f(xk)
∥∥2
]
= O

(
1√
K

)
.

Corrollary 3.3 implies that for the compositional problem

(3), the convergence rate of FEDNEST to the stationary point

of f is O(1/
√
K). This matches the convergence rate of

non-federated stochastic algorithms such as SCGD (Wang

et al., 2017) and NASA (Ghadimi et al., 2020) (Table 1).

3.3. Single-Level Federated Learning

Building upon the general results for stochastic nonconvex

nested problems, we establish new convergence guaran-

tees for single-level stochastic non-convex federated SVRG

which is integrated within our FEDOUT. Note that in the

single-level setting, the optimization problem (1) reduces to

min
x∈Rd1

f(x) =
1

m

m∑

i=1

fi (x) (13)

with fi(x) := Eξ∼Ci
[fi(x; ξ)], where ξ ∼ Ci is sampling

distribution for the ith client.

We make the following assumptions on (13) that are coun-

terparts of Assumptions A and B.

Assumption C (Lipschitz continuity). For all i ∈ [m],
∇fi(x) is Lf -Lipschitz continuous.

Assumption D (Stochastic samples). For all i ∈ [m],
∇fi(x; ξ) is an unbiased estimator of ∇fi(x) and its vari-

ance is bounded, i.e., Eξ[∥∇fi(x; ξ)−∇fi(x)∥2] ≤ σ2
f .

Theorem 3.2 (Single-Level). Suppose Assumptions C and

D hold. Further, assume αk
i = αk/τi for all i ∈ S , where

αk = min

{
ᾱ1,

ᾱ√
K

}
(14)

for some ᾱ1, ᾱ > 0. Then,

1

K

K∑

k=1

E

[∥∥∇f(xk)
∥∥2
]
= O

(
∆f

ᾱ1K
+

∆f

ᾱ
+ ᾱσ2

f√
K

)
,

where ∆f := f(x0)− E[f(xK)].

Theorem 3.2 extends recent results by (Mitra et al., 2021)

from the stochastic strongly convex to the stochastic noncon-

vex setting. The above rate is also consistent with existing

single-level non-FL guarantees (Ghadimi & Lan, 2013).

4. Numerical Experiments

In this section, we numerically investigate the impact of sev-

eral attributes of our algorithms on a hyper-representation

problem (Franceschi et al., 2018), a hyper-parameter opti-

mization problem for loss function tuning (Li et al., 2021),

and a federated minimax optimization problem.

4.1. Hyper-Representation Learning

Modern approaches in meta learning such as MAML (Finn

et al., 2017) and reptile (Nichol & Schulman, 2018) learn
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Figure 2: Hyper-representation experiments on a 2-layer MLP and MNIST dataset.

representations (that are shared across all tasks) in a bilevel

manner. Similarly, the hyper-representation problem opti-

mizes a classification model in a two-phased process. The

outer objective optimizes the model backbone to obtain

better feature representation on validation data. The inner

problem optimizes a header for downstream classification

tasks on training data. In this experiment, we use a 2-layer

multilayer perceptron (MLP) with 200 hidden units. The

outer problem optimizes the hidden layer with 157,000 pa-

rameters, and the inner problem optimizes the output layer

with 2,010 parameters. We study both i.i.d and non-i.i.d.

ways of partitioning the MNIST data exactly following FE-

DAVG (McMahan et al., 2017), and split each client’s data

evenly to train and validation datasets. Thus, each client has

300 train and 300 validation samples.

Figure 2 demonstrates the impact on test accuracy of several

important components of FEDNEST. Figure 2a compares

FEDNEST and LFEDNEST. Both algorithms perform well

on the i.i.d. setup, while on the non-i.i.d. setup, FEDNEST

achieves i.i.d. performance, significantly outperforming

LFEDNEST. These findings are in line with our discussions

in Section 2.6. LFEDNEST saves on communication rounds

compared to FEDNEST and performs well on homogeneous

clients. However, for heterogeneous clients, the isolation

of local Hessian in LFEDNEST (see Algorithm 5 in Ap-

pendix A) degrades the test performance. Next, Figure 2b

demonstrates the importance of SVRG in FEDINN algo-

rithm for heterogeneous data (as predicted by our theoretical

considerations in Section 2.5). To further clarify the algo-

rithm difference in Figures 2b and 3a, we use FEDNESTSGD

to denote the FEDNEST algorithm where SGD is used in

FEDINN. Finally, Figure 2c elucidates the role of local

epoch τ in FEDOUT: larger τ saves on communication and

improves test performance by enabling faster convergence.

4.2. Loss Function Tuning on Imbalanced Dataset

We use bilevel optimization to tune a loss function for learn-

ing an imbalanced MNIST dataset. We aim to maximize

the class-balanced validation accuracy (which helps mi-
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(a) FEDNEST achieves simi-
lar performance as centralized
bilevel loss function tuning.
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(b) SVRG in FEDINN provides
better convergence and stabil-
ity especially in non-iid setup.

Figure 3: Loss function tuning on a 3-layer MLP and im-

balanced MNIST dataset to maximize class-balanced test

accuracy. The brown dashed line is the accuracy on non-

federated bilevel optimization (Li et al., 2021), and the black

dashed line is the accuracy without tuning the loss function.

nority/tail classes). Following the problem formulation in

(Li et al., 2021) we tune the so-called VS-loss function

(Kini et al., 2021) in a federated setting. In particular, we

first create a long-tail imbalanced MNIST dataset by ex-

ponentially decreasing the number of examples per class

(e.g. class 0 has 6,000 samples, class 1 has 3,597 samples

and finally, class 9 has only 60 samples). We partition the

dataset to 100 clients following again FEDAVG (McMahan

et al., 2017) on both i.i.d. and non-i.i.d. setups. Differ-

ent from the hyper-representation experiment, we employ

80%-20% train-validation on each client and use a 3-layer

MLP model with 200, 100 hidden units, respectively. It

is worth noting that, in this problem, the outer objective f
(aka validation cost) only depends on the hyperparameter

x through the optimal model parameters y∗(x); thus, the

direct gradient ∇Dfi(x,y
∗(x)) is zero for all i ∈ S .

Figure 3 displays test accuracy vs epochs/rounds for our fed-

erated bilevel algorithms. The horizontal dashed lines serve

as centralized baselines: brown depicts accuracy reached by

bilevel optimization in non-FL setting, and, black depicts

accuracy without any loss tuning. Compared to these, Fig-

ure 3a shows that FEDNEST achieves near non-federated

performance. In Figure 3b, we investigate the key role of

SVRG in FEDINN by comparing it with possible alternative
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Figure 4: FEDNEST converges linearly despite heterogene-

ity. LFEDNEST slightly outperforms FEDAVG-S.

implementation that uses SGD-type updates. The figure

confirms our discussion in Section 2.5: SVRG offers sig-

nificant performance gains that are pronounced by client

heterogeneity.

4.3. Federated Minimax Problem

We conduct experiments on the minimax problem (2) with

fi(x,y) := −
[
1

2
∥y∥2 − b⊤i y + y⊤Aix

]
+

λ

2
∥x∥2,

to compare standard FEDAVG saddle-point (FEDAVG-

S) method updating (x,y) simultaneously (Hou et al.,

2021) and our alternative approaches (LFEDNEST and

FEDNEST). This is a saddle-point formulation of

minx∈Rd1
1

2
∥ 1

m

∑m
i=1

Aix − bi∥2. We set λ = 10, bi =
b′i − 1

m

∑m
i=1

b′i and Ai = tiI , where b′i ∼ N (0, s2Id),
and ti is drawn UAR over (0, 0.1). Figure 4 shows that

LFEDNEST and FEDNEST outperform FEDAVG-S thanks

to their alternating nature. FEDNEST significantly improves

the convergence of LFEDNEST due to controlling client-

drift. To our knowledge, FEDNEST is the only alternating

federated SVRG for minimax problems.

5. Related Work

Federated learning. FEDAVG was first introduced by

McMahan et al. (2017), who showed it can dramatically

reduce communication costs. For identical clients, FEDAVG

coincides with local SGD (Zinkevich et al., 2010) which has

been analyzed by many works (Stich, 2019; Yu et al., 2019;

Wang & Joshi, 2018). Recently, many variants of FEDAVG

have been proposed to tackle issues such as convergence and

client drift. Examples include FEDPROX (Li et al., 2020b),

SCAFFOLD (Karimireddy et al., 2020), FEDSPLIT (Pathak

& Wainwright, 2020), FEDNOVA (Wang et al., 2020), and,

the most closely relevant to us FEDLIN (Mitra et al., 2021).

A few recent studies are also devoted to the extension of

FEDAVG to the minimax optimization (Rasouli et al., 2020;

Deng et al., 2020) and compositional optimization (Huang

et al., 2021). In contrast to these methods, FEDNEST makes

alternating SVRG updates between the global variables x

and y, and yields sample complexity bounds and batch size

choices that are on par with the non-FL guarantees (Table 1).

Evaluations in the Appendix H.1 reveal that both alternating

updates and SVRG provides a performance boost over these

prior approaches.

Bilevel optimization. This class of problems was first in-

troduced by (Bracken & McGill, 1973), and since then, dif-

ferent types of approaches have been proposed. See (Sinha

et al., 2017; Liu et al., 2021) for surveys. Earlier works

in (Aiyoshi & Shimizu, 1984; Lv et al., 2007) reduced

the bilevel problem to a single-level optimization prob-

lem. However, the reduced problem is still difficult to

solve due to for example a large number of constraints.

Recently, more efficient gradient-based algorithms have

been proposed by estimating the hypergradient of ∇f(x)
through iterative updates (Maclaurin et al., 2015; Franceschi

et al., 2017; Domke, 2012; Pedregosa, 2016). The asymp-

totic and non-asymptotic analysis of bilevel optimization

has been provided in (Franceschi et al., 2018; Shaban

et al., 2019; Liu et al., 2020) and (Ghadimi & Wang, 2018;

Hong et al., 2020), respectively. There is also a line of

work focusing on minimax optimization (Nemirovski, 2004;

Daskalakis & Panageas, 2018) and compositional optimiza-

tion (Wang et al., 2017). Closely related to our work are

(Lin et al., 2020; Rafique et al., 2021; Chen et al., 2021a)

and (Ghadimi et al., 2020; Chen et al., 2021a) which provide

non-asymptotic analysis of SGD-type methods for minimax

and compositional problems with outer nonconvex objective,

respectively.

A more in-depth discussion of related work is given in Ap-

pendix B. We summarize the complexities of different meth-

ods for FL/non-FL bilevel optimization in Table 1.

6. Conclusions

We presented a new class of federated algorithms for solv-

ing general nested stochastic optimization spanning bilevel

and minimax problems. FEDNEST runs a variant of fed-

erated SVRG on inner & outer variables in an alternating

fashion. We established provable convergence rates for

FEDNEST under arbitrary client heterogeneity and intro-

duced variations for min-max and compositional problems

and for improved communication efficiency (LFEDNEST).

We showed that, to achieve an ϵ-stationary point of the

nested problem, FEDNEST requires O(ϵ−2) samples in to-

tal, which matches the complexity of the non-federated

nested algorithms in the literature.

Acknowledgements

Davoud Ataee Tarzanagh was supported by ARO YIP award

W911NF1910027 and NSF CAREER award CCF-1845076.

Christos Thrampoulidis was supported by NSF Grant Num-

bers CCF-2009030 and HDR-1934641, and an NSERC

Discovery Grant. Mingchen Li and Samet Oymak were sup-

ported by the NSF CAREER award CCF-2046816, Google

Research Scholar award, and ARO grant W911NF2110312.



FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization

References

Aiyoshi, E. and Shimizu, K. A solution method for the static

constrained stackelberg problem via penalty method.

IEEE Transactions on Automatic Control, 29(12):1111±

1114, 1984.

Al-Khayyal, F. A., Horst, R., and Pardalos, P. M. Global

optimization of concave functions subject to quadratic

constraints: an application in nonlinear bilevel program-

ming. Annals of Operations Research, 34(1):125±147,

1992.

Arora, S., Du, S., Kakade, S., Luo, Y., and Saunshi, N.

Provable representation learning for imitation learning

via bi-level optimization. In International Conference on

Machine Learning, pp. 367±376. PMLR, 2020.

Barazandeh, B., Huang, T., and Michailidis, G. A decentral-

ized adaptive momentum method for solving a class of

min-max optimization problems. Signal Processing, 189:

108245, 2021a.

Barazandeh, B., Tarzanagh, D. A., and Michailidis, G. Solv-

ing a class of non-convex min-max games using adaptive

momentum methods. In ICASSP 2021-2021 IEEE In-

ternational Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 3625±3629. IEEE, 2021b.

Basu, D., Data, D., Karakus, C., and Diggavi, S. Qsparse-

local-SGD: Distributed SGD with quantization, sparsifi-

cation and local computations. In Advances in Neural

Information Processing Systems, pp. 14668±14679, 2019.

Bertinetto, L., Henriques, J. F., Torr, P. H., and Vedaldi,

A. Meta-learning with differentiable closed-form solvers.

arXiv preprint arXiv:1805.08136, 2018.

Bracken, J. and McGill, J. T. Mathematical programs with

optimization problems in the constraints. Operations

Research, 21(1):37±44, 1973.

Brown, G. W. Iterative solution of games by fictitious play.

Activity analysis of production and allocation, 13(1):374±

376, 1951.

Chen, T., Sun, Y., and Yin, W. Closing the gap: Tighter anal-

ysis of alternating stochastic gradient methods for bilevel

problems. Advances in Neural Information Processing

Systems, 34, 2021a.

Chen, T., Sun, Y., and Yin, W. A single-timescale

stochastic bilevel optimization method. arXiv preprint

arXiv:2102.04671, 2021b.

Dagréou, M., Ablin, P., Vaiter, S., and Moreau, T. A frame-

work for bilevel optimization that enables stochastic and

global variance reduction algorithms. arXiv preprint

arXiv:2201.13409, 2022.

Dai, B., He, N., Pan, Y., Boots, B., and Song, L. Learn-

ing from conditional distributions via dual embeddings.

In Artificial Intelligence and Statistics, pp. 1458±1467.

PMLR, 2017.

Daskalakis, C. and Panageas, I. The limit points of (opti-

mistic) gradient descent in min-max optimization. arXiv

preprint arXiv:1807.03907, 2018.

Deng, Y. and Mahdavi, M. Local stochastic gradient de-

scent ascent: Convergence analysis and communication

efficiency. In International Conference on Artificial Intel-

ligence and Statistics, pp. 1387±1395. PMLR, 2021.

Deng, Y., Kamani, M. M., and Mahdavi, M. Distributionally

robust federated averaging. Advances in Neural Informa-

tion Processing Systems, 33:15111±15122, 2020.

Diakonikolas, J., Daskalakis, C., and Jordan, M. Efficient

methods for structured nonconvex-nonconcave min-max

optimization. In International Conference on Artificial

Intelligence and Statistics, pp. 2746±2754. PMLR, 2021.

Domke, J. Generic methods for optimization-based model-

ing. In Artificial Intelligence and Statistics, pp. 318±326.

PMLR, 2012.

Edmunds, T. A. and Bard, J. F. Algorithms for nonlinear

bilevel mathematical programs. IEEE transactions on

Systems, Man, and Cybernetics, 21(1):83±89, 1991.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-

learning for fast adaptation of deep networks. In Interna-

tional Conference on Machine Learning, pp. 1126±1135.

PMLR, 2017.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M.

Forward and reverse gradient-based hyperparameter opti-

mization. In International Conference on Machine Learn-

ing, pp. 1165±1173. PMLR, 2017.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., and Pontil,

M. Bilevel programming for hyperparameter optimiza-

tion and meta-learning. In International Conference on

Machine Learning, pp. 1568±1577. PMLR, 2018.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order

methods for nonconvex stochastic programming. SIAM

Journal on Optimization, 23(4):2341±2368, 2013.

Ghadimi, S. and Wang, M. Approximation methods for

bilevel programming. arXiv preprint arXiv:1802.02246,

2018.

Ghadimi, S., Ruszczynski, A., and Wang, M. A single

timescale stochastic approximation method for nested

stochastic optimization. SIAM Journal on Optimization,

30(1):960±979, 2020.



FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and

Lacoste-Julien, S. A variational inequality perspec-

tive on generative adversarial networks. arXiv preprint

arXiv:1802.10551, 2018.

Grazzi, R., Franceschi, L., Pontil, M., and Salzo, S. On

the iteration complexity of hypergradient computation.

In International Conference on Machine Learning, pp.

3748±3758. PMLR, 2020.

Guo, Z., Xu, Y., Yin, W., Jin, R., and Yang, T. On stochastic

moving-average estimators for non-convex optimization.

arXiv preprint arXiv:2104.14840, 2021.

Hansen, P., Jaumard, B., and Savard, G. New branch-and-

bound rules for linear bilevel programming. SIAM Jour-

nal on scientific and Statistical Computing, 13(5):1194±

1217, 1992.

Hong, M., Wai, H.-T., Wang, Z., and Yang, Z. A two-

timescale framework for bilevel optimization: Complex-

ity analysis and application to actor-critic. arXiv preprint

arXiv:2007.05170, 2020.

Hou, C., Thekumparampil, K. K., Fanti, G., and Oh, S. Effi-

cient algorithms for federated saddle point optimization.

arXiv preprint arXiv:2102.06333, 2021.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects

of non-identical data distribution for federated visual clas-

sification. arXiv preprint arXiv:1909.06335, 2019.

Huang, F. and Huang, H. Biadam: Fast adaptive bilevel

optimization methods. arXiv preprint arXiv:2106.11396,

2021.

Huang, F., Li, J., and Huang, H. Compositional federated

learning: Applications in distributionally robust averag-

ing and meta learning. arXiv preprint arXiv:2106.11264,

2021.

Ji, K. and Liang, Y. Lower bounds and accelerated algo-

rithms for bilevel optimization. ArXiv, abs/2102.03926,

2021.

Ji, K., Yang, J., and Liang, Y. Provably faster algorithms

for bilevel optimization and applications to meta-learning.

ArXiv, abs/2010.07962, 2020a.

Ji, K., Yang, J., and Liang, Y. Theoretical convergence of

multi-step model-agnostic meta-learning. arXiv preprint

arXiv:2002.07836, 2020b.

Ji, K., Yang, J., and Liang, Y. Bilevel optimization: Con-

vergence analysis and enhanced design. In Interna-

tional Conference on Machine Learning, pp. 4882±4892.

PMLR, 2021.

Ji, S. A pytorch implementation of federated learning. Mar

2018. doi: 10.5281/zenodo.4321561.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,

M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,

G., Cummings, R., et al. Advances and open problems

in federated learning. arXiv preprint arXiv:1912.04977,

2019.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,

and Suresh, A. T. Scaffold: Stochastic controlled averag-

ing for federated learning. In International Conference

on Machine Learning, pp. 5132±5143. PMLR, 2020.

Khaled, A., Mishchenko, K., and Richtárik, P. First anal-

ysis of local GD on heterogeneous data. arXiv preprint

arXiv:1909.04715, 2019.

Khanduri, P., Zeng, S., Hong, M., Wai, H.-T., Wang, Z.,

and Yang, Z. A near-optimal algorithm for stochas-

tic bilevel optimization via double-momentum. arXiv

preprint arXiv:2102.07367, 2021.

Khodak, M., Tu, R., Li, T., Li, L., Balcan, M.-F. F., Smith,

V., and Talwalkar, A. Federated hyperparameter tuning:

Challenges, baselines, and connections to weight-sharing.

Advances in Neural Information Processing Systems, 34,

2021.

Kini, G. R., Paraskevas, O., Oymak, S., and Thram-

poulidis, C. Label-imbalanced and group-sensitive clas-

sification under overparameterization. arXiv preprint

arXiv:2103.01550, 2021.
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APPENDIX

FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization

The appendix is organized as follows: Section A introduces the LFEDNEST algorithm. Section B discusses the related

work. We provide all details for the proof of the main theorems in Sections C, D, E, and F for federated bilevel, minimax,

compositional, and single-level optimization, respectively. In Section G, we state a few auxiliary technical lemmas. Finally,

in Section H, we provide the detailed parameters of our numerical experiments (Section 4) and then introduce further

experiments.

A. LFEDNEST

Implementing FEDINN and FEDOUT naively by using the global direct and indirect gradients and sending the local

information to the server that would then calculate the global gradients leads to a communication and space complexity of

which can be prohibitive for large-sized d1 and d2. One can consider possible local variants of FEDINN and FEDOUT tailore

to such scenarios. Each of the possible algorithms (See Table 2) can then either use the global gradient or only the local

gradient, either use a SVRG or SGD.

Algorithm 5 x+ = LFEDOUTLFEDOUTLFEDOUT (x,y, α) for stochastic bilevel , minimax , and compositional problems

1: xi,0 = x and αi ∈ (0, α] for each i ∈ S .
2: Choose N ∈ {1, 2, . . .} (the number of terms of Neumann series).
3: for i ∈ S in parallel do
4: for ν = 0, . . . , τi − 1 do

5: Select N ′ ∈ {0, . . . , N − 1} UAR.

6: hi,ν = ∇xfi(xi,ν ,y; ξi,ν)−
N

ℓg,1
∇2

xygi(xi,ν ,y; ζi,ν)
N′

∏

n=1

(

I − 1

ℓg,1
∇2

ygi(xi,ν ,y; ζi,n)
)

∇xfi(yi,ν ,y, ξi,ν)

7: hi,ν = ∇xfi(xi,ν ,y; ξi,ν)

8: hi,ν = ∇ri(xi,ν ; ζi,ν)
⊤∇fi(yi,ν ; ξi,ν)

9: xi,ν+1 = xi,ν − αihi,ν

10: end for
11: end for
12: x+ = |S|−1

∑

i∈S
xi,τi

Algorithm 6 y+ = LFEDINNLFEDINNLFEDINN (x,y, β) for stochastic bilevel , minimax , and compositional problems

1: yi,0 = y and βi ∈ (0, β] for each i ∈ S .
2: for i ∈ S in parallel do
3: for ν = 0, . . . , τi − 1 do

4: qi,ν = ∇ygi(x,yi,ν ; ζi,ν) qi,ν = −∇yfi(x,yi,ν ; ξi,ν) qi,ν = yi,ν − ri(x; ζi,ν)

5: yi,ν+1 = yi,ν − βiqi,ν

6: end for
7: end for
8: y+ = |S|−1

∑

i∈S
yi,τi
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definition properties

outer inner global global global # communication

optimization optimization outer gradient IHGP inner gradient rounds

FEDNESTFEDNESTFEDNEST
Algorithm 2 Algorithm 4

yes yes yes 2T +N + 3
(SVRG on x) (SVRG on y)

LFEDNESTLFEDNESTLFEDNEST
Algorithm 5 Algorithm 6

no no no T + 1
(SGD on x) (SGD on y)

FEDNESTFEDNESTFEDNESTSGD
Algorithm 2 Algorithm 6

yes yes no T +N + 3
(SVRG on x) (SGD on y)

LFEDNESTLFEDNESTLFEDNESTSVRG
Algorithm 5 Algorithm 4

no no yes 2T + 1
(SGD on x) (SVRG on y)

Table 2: Definition of studied algorithms by using inner/outer optimization algorithms and server updates and resulting

properties of these algorithms. T and N denote the number of inner iterations and terms of Neumann series, respectively.

B. Related Work

We provide an overview of the current literature on non-federated nested (bilevel, minmimax, and compositional) optimiza-

tion and federated learning.

B.1. Bilevel Optimization

A broad collection of algorithms have been proposed to solve bilevel nonlinear programming problems. Aiyoshi & Shimizu

(1984); Edmunds & Bard (1991); Al-Khayyal et al. (1992); Hansen et al. (1992); Shi et al. (2005); Lv et al. (2007); Moore

(2010) reduce the bilevel problem to a single-level optimization problem using for example the Karush-Kuhn-Tucker (KKT)

conditions or penalty function methods. A similar idea was also explored in Khodak et al. (2021) where the authors provide

a reformulation of the hyperparameter optimization (bilevel objective) into a single-level objective and develop a federated

online method to solve it. However, the reduced single-level problem is usually difficult to solve (Sinha et al., 2017).

In comparison, alternating gradient-based approaches designed for the bilevel problems are more attractive due to their

simplicity and effectiveness. This type of approaches estimate the hypergradient ∇f(x) for iterative updates, and are

generally divided to approximate implicit differentiation (AID) and iterative differentiation (ITD) categories. ITD-based

approaches (Maclaurin et al., 2015; Franceschi et al., 2017; Finn et al., 2017; Grazzi et al., 2020) estimate the hypergradient

∇f(x) in either a reverse (automatic differentiation) or forward manner. AID-based approaches (Pedregosa, 2016; Grazzi

et al., 2020; Ghadimi & Wang, 2018) estimate the hypergradient via implicit differentiation which involves solving a linear

system. Our algorithms follow the latter approach.

Theoretically, bilevel optimization has been studied via both asymptotic and non-asymptotic analysis (Franceschi et al.,

2018; Liu et al., 2020; Li et al., 2020a; Shaban et al., 2019; Ghadimi & Wang, 2018; Ji et al., 2021; Hong et al., 2020). In

particular, (Franceschi et al., 2018) provided the asymptotic convergence of a backpropagation-based approach as one of

ITD-based algorithms by assuming the inner problem is strongly convex. (Shaban et al., 2019) gave a similar analysis for a

truncated backpropagation approach. Non-asymptotic complexity analysis for bilevel optimization has also been explored.

Ghadimi & Wang (2018) provided a finite-time convergence analysis for an AID-based algorithm under three different

loss geometries, where f(·) is either strongly convex, convex or nonconvex, and g(x, ·) is strongly convex. (Ji et al., 2021)

provided an improved non-asymptotic analysis for AID- and ITD-based algorithms under the nonconvex-strongly-convex

geometry. (Ji & Liang, 2021) provided the first-known lower bounds on complexity as well as tighter upper bounds. When

the objective functions can be expressed in an expected or finite-time form, (Ghadimi & Wang, 2018; Ji et al., 2021; Hong

et al., 2020) developed stochastic bilevel algorithms and provided the non-asymptotic analysis. (Chen et al., 2021a) provided

a tighter analysis of SGD for stochastic bilevel problems. (Chen et al., 2021b; Guo et al., 2021; Khanduri et al., 2021; Ji

et al., 2020a; Huang & Huang, 2021; Dagréou et al., 2022) studied accelerated SGD, SAGA, momentum, and adaptive-type

bilevel optimization methods. More results can be found in the recent review paper (Liu et al., 2021) and references therein.
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B.1.1. MINIMAX OPTIMIZATION

Minimax optimization has a long history dating back to (Brown, 1951). Earlier works focused on the deterministic convex-

concave regime (Nemirovski, 2004; NediÂc & Ozdaglar, 2009). Recently, there has emerged a surge of studies of stochastic

minimax problems. The alternating version of the gradient descent ascent (SGDA) has been studied by incorporating the

idea of optimism (Daskalakis & Panageas, 2018; Gidel et al., 2018; Mokhtari et al., 2020; Yoon & Ryu, 2021). (Rafique

et al., 2021; Thekumparampil et al., 2019; Nouiehed et al., 2019; Lin et al., 2020) studied SGDA in the nonconvex-strongly

concave setting. Specifically, the O(ϵ−2) sample complexity has been established in (Lin et al., 2020) under an increasing

batch size O(ϵ−1). Chen et al. (2021a) provided the O(ϵ−2) sample complexity under an O(1) constant batch size. In the

same setting, accelerated GDA algorithms have been developed in (Luo et al., 2020; Yan et al., 2020; Tran Dinh et al.,

2020). Going beyond the one-side concave settings, algorithms and their convergence analysis have been studied for

nonconvex-nonconcave minimax problems with certain benign structure; see e.g., (Gidel et al., 2018; Liu et al., 2019; Yang

et al., 2020; Diakonikolas et al., 2021; Barazandeh et al., 2021b). A comparison of our results with prior work can be found

in Table 1.

B.1.2. COMPOSITIONAL OPTIMIZATION

Stochastic compositional gradient algorithms (Wang et al., 2017; 2016) can be viewed as an alternating SGD for the special

compositional problem. However, to ensure convergence, the algorithms in (Wang et al., 2017; 2016) use two sequences of

variables being updated in two different time scales, and thus the iteration complexity of (Wang et al., 2017) and (Wang

et al., 2016) is worse than O(ϵ−2) of the standard SGD. Our work is closely related to ALSET (Chen et al., 2021a), where

an O(ϵ−2) sample complexity has been established in a non-FL setting.

B.2. Federated Learning

FL involves learning a centralized model from distributed client data. Although this centralized model benefits from all

client data, it raises several types of issues such as generalization, fairness, communication efficiency, and privacy (Mohri

et al., 2019; Stich, 2019; Yu et al., 2019; Wang & Joshi, 2018; Stich & Karimireddy, 2019; Basu et al., 2019; Nazari

et al., 2019; Barazandeh et al., 2021a). FEDAVG (McMahan et al., 2017) can tackle some of these issues such as high

communication costs. Many variants of FEDAVG have been proposed to tackle other emerging issues such as convergence

and client drift. Examples include adding a regularization term in the client objectives towards the broadcast model (Li et al.,

2020b), proximal splitting (Pathak & Wainwright, 2020; Mitra et al., 2021), variance reduction (Karimireddy et al., 2020;

Mitra et al., 2021) and adaptive updates (Reddi et al., 2020). When clients are homogeneous, FEDAVG is closely related to

local SGD (Zinkevich et al., 2010), which has been analyzed by many works (Stich, 2019; Yu et al., 2019; Wang & Joshi,

2018; Stich & Karimireddy, 2019; Basu et al., 2019).

In order to analyze FEDAVG in heterogeneous settings, (Li et al., 2020b; Wang et al., 2019; Khaled et al., 2019; Li et al., 2019)

derive convergence rates depending on the amount of heterogeneity. They showed that the convergence rate of FEDAVG gets

worse with client heterogeneity. By using control variates to reduce client drift, the SCAFFOLD method (Karimireddy

et al., 2020) achieves convergence rates that are independent of the amount of heterogeneity. Relatedly, FEDNOVA (Wang

et al., 2020) and FEDLIN (Mitra et al., 2021) provided the convegence of their methods despite arbitrary local objective and

systems heterogeneity. In particular, (Mitra et al., 2021) showed that FEDLIN guarantees linear convergence to the global

minimum of deterministic objective, despite arbitrary objective and systems heterogeneity. As explained in the main body,

our algorithms critically leverage these ideas after identifying the additional challenges that client drift brings to federated

bilevel settings.

B.2.1. FEDERATED MINIMAX LEARNING

A few recent studies are devoted to federated minimax optimization (Rasouli et al., 2020; Reisizadeh et al., 2020; Deng

et al., 2020; Hou et al., 2021). In particular, (Reisizadeh et al., 2020) consider minimax problem with inner problem

satisfying PL condition and the outer one being either nonconvex or satisfying PL. However, the proposed algorithm

only communicates x to the server. Xie et al. (2021) consider a general class of nonconvex-PL minimax problems in the

cross-device federated learning setting. Their algorithm performs multiple local update steps on a subset of active clients

in each round and leverages global gradient estimates to correct the bias in local update directions. Deng & Mahdavi

(2021) studied federated optimization for a family of smooth nonconvex minimax functions. Shen et al. (2021) proposed a

distributed minimax optimizer called FEDMM, designed specifically for the federated adversary domain adaptation problem.
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Hou et al. (2021) proposed a SCAFFOLD saddle point algorithm (SCAFFOLD-S) for solving strongly convex-concave

minimax problems in the federated setting. To the best of our knowledge, all the aforementioned developments require a

bound on the heterogeneity of the local functions, and do not account for the effects of systems heterogeneity which is also

a key challenge in FL. In addition, our work proposes the first alternating federated SVRG-type algorithm for minimax

problems with iteration complexity that matches to the non-federated setting (see, Table 1).

C. Proof for Federated Bilevel Optimization

Throughout the proof, we will use Fk,t
i,ν to denote the filtration that captures all the randomness up to the ν-th local step

of client i in inner round t and outer round k. With a slight abuse of notation, Fk,t
i,−1 is to be interpreted as Fk,t, ∀i ∈ S.

For simplicity, we remove subscripts k and t from the definition of stepsize and model parameters. For example, x and x+

denote xk and xk+1, respectively. We further set

h̄i(xi,ν ,y
+) := E

[
hi(xi,ν ,y

+)|Fi,ν−1

]
. (15)

Proof of Lemma 2.1

Proof. Given x ∈ R
d1 , the optimality condition of the inner problem in (1) is ∇yg(x,y) = 0. Now, since

∇x (∇yg(x,y)) = 0, we obtain

0 =

m∑

j=1

(
∇2

xy
gj (x,y

∗(x)) +∇y∗(x)∇2
y
gj (x,y

∗(x))
)
,

which implies

∇y∗(x) = −
( m∑

i=1

∇2
xy

gi (x,y
∗(x))

)( m∑

i=1

∇2
y
gj(x,y

∗(x))

)−1

.

The results follows from a simple application of the chain rule to f as follows:

∇f (x,y∗(x)) = ∇xf (x,y∗(x)) +∇y∗(x)∇yf (x,y∗(x)) .

Proof of Lemma 2.2

Proof. By independency of N ′, ζi,n, and Sn, and under Assumption B, we have

EW

[
Ĥy

]
= EW


 N

ℓg,1

N ′∏

n=1


I − 1

ℓg,1|Sn|

|Sn|∑

i=1

∇2
y
gi(x,y; ζi,n)






= EN ′


ES

1:N′


Eζ


 N

ℓg,1

N ′∏

n=1

(
I − 1

ℓg,1|Sn|

|Sn|∑

i=1

∇2
y
gi(x,y; ζi,n)

)







= 1

ℓg,1

N−1∑

n=0

[
I − 1

ℓg,1
∇2

y
g(x,y)

]n
, (16)

where the last equality follows from the uniform distribution of N ′.

Note that since I ⪰ 1

ℓg,1
∇2

y
gi ⪰ µg

ℓg,1
for all i ∈ [m] due to Assumption A, we have

EW

[
∥Ĥy∥

]
≤ N

ℓg,1
EW




N ′∏

n=1

∥∥∥∥∥∥
I − 1

ℓg,1|Sn|

|Sn|∑

i=1

∇2
y
gi(x,y; ζi,n)

∥∥∥∥∥∥




≤ N

ℓg,1
EN ′

[
1− µg

ℓg,1

]N ′

=
1

ℓg,1

N−1∑

n=0

[
1− µg

ℓg,1

]n
≤ 1

µg

.

The reminder of the proof is similar to (Ghadimi & Wang, 2018).
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The following lemma extends (Ghadimi & Wang, 2018, Lemma 2.2) and (Chen et al., 2021a, Lemma 2) to the finite-sum

problem (1). Proofs follow similarly by applying their analysis to the inner & outer functions (fi, gi), ∀i ∈ S .

Lemma C.1. Under Assumptions A and B, for all x1, x2:

∥∇f(x1)−∇f(x2)∥ ≤ Lf∥x1 − x2∥, (17a)

∥y∗(x1)− y∗(x2)∥ ≤ Ly∥x1 − x2∥, (17b)

∥∇y∗(x1)−∇y∗(x2)∥ ≤ Lyx∥x1 − x2∥, (17c)

Also, for all i ∈ S , ν ∈ {0, . . . , τi − 1}, x1, x2, and y, we have:

∥∇̄fi(x1,y)− ∇̄fi(x1,y
∗(x1))∥ ≤Mf∥y∗(x1)− y∥, (17d)

∥∇̄fi(x2,y)− ∇̄fi(x1,y)∥ ≤Mf∥x2 − x1∥, (17e)

E
[
∥h̄i(xi,ν ,y)− hi(xi,ν ,y)∥2

]
≤ σ̃2

f , (17f)

E
[
∥hi(xi,ν ,y

+)∥2|Fi,ν−1

]
≤ D̃2

f . (17g)

Here,

Ly :=
ℓg,1
µg

= O(κg),

Lyx :=
ℓg,2 + ℓg,2Ly

µg

+
ℓg,1
µ2
g

(
ℓg,2 + ℓg,2Ly

)
= O(κ3

g),

Mf := ℓf,1 +
ℓg,1ℓf,1
µg

+
ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
= O(κ2

g),

Lf := ℓf,1 +
ℓg,1(ℓf,1 +Mf )

µg

+
ℓf,0
µg

(
ℓg,2 +

ℓg,1ℓg,2
µg

)
= O(κ3

g),

σ̃2
f := σ2

f +
3

µ2
g

(
(σ2

f + ℓ2f,0)(σ
2
g,2 + 2ℓ2g,1) + σ2

f ℓ
2
g,1

)
,

D̃2
f :=

(
ℓf,0 +

ℓg,1
µg

ℓf,1 + ℓg,1ℓf,1
1

µg

)2

+ σ̃2
f = O(κ2

g),

(18)

where the other constants are provided in Assumptions A and B.

C.1. Descent of Outer Objective

The following lemma characterizes the descent of the outer objective.

Lemma C.2 (Descent Lemma). Suppose Assumptions A and B hold. Further, assume τi ≥ 1 and αi = α/τi, ∀i ∈ S for

some positive constant α. Then, FEDOUT guarantees:

E
[
f(x+)

]
− E [f(x)] ≤− α

2
E
[
∥∇f(x)∥2

]
+

α2Lf

2
σ̃2
f

− α

2
(1− αLf )E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

2



+
3α

2

(
b2 +M2

fE
[
∥y+ − y∗(x)∥2

]
+

M2
f

m

m∑

i=1

1

τi

τi−1∑

ν=0

E
[
∥xi,ν − x∥2

]
)
.

(19)

Proof. It follows from Algorithm 2 that xi,0 = x, ∀i ∈ S , and

x+ = x− 1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν ,y
+). (20)
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Now, using the Lipschitz property of ∇f in Lemma C.1, we have

E
[
f(x+)

]
− E [f(x)] ≤ E

[
⟨x+ − x,∇f(x)⟩

]
+

Lf

2
E
[
∥x+ − x∥2

]

= −E
[〈

1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν ,y
+),∇f(x)

〉]

+
Lf

2
E



∥∥∥∥∥
1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν ,y
+)

∥∥∥∥∥

2

 .

(21)

In the following, we bound each term on the right hand side (RHS) of (21). For the first term, we have

−E
[〈

1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν ,y
+),∇f(x)

〉]
=− E

[
1

m

m∑

i=1

αi

τi−1∑

ν=0

E
[〈
hi(xi,ν ,y

+),∇f(x)
〉
| Fi,ν−1

]
]

=− E

[〈
1

m

m∑

i=1

αi

τi−1∑

ν=0

h̄i(xi,ν ,y
+),∇f(x)

〉]

=− α

2
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

2

− α

2
E

[
∥∇f(x)∥2

]

+
α

2
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)−∇f(x)

∥∥∥∥∥

2

 ,

(22)

where the first equality follows from the law of total expectation; the second equality uses the fact that h̄i(xi,ν ,y
+) =

E [hi(xi,ν ,y
+)|Fi,ν−1]; and the last equality is obtained from our assumption αi = α/τi, ∀i ∈ S .

Next, we bound the last term in (22). Note that

∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)−∇f(x)

∥∥∥∥∥

2

=
∥∥∥ 1

m

m∑

i=1

1

τi

τi−1∑

ν=0

(h̄i(xi,ν ,y
+)− ∇̄fi(x,y+))

+
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

∇̄fi(x,y+)−∇f(x)
∥∥∥
2

≤ 3

∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

(h̄i(xi,ν ,y
+)− ∇̄fi(xi,ν ,y

+))

∥∥∥∥∥

2

+ 3

∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

(∇̄fi(xi,ν ,y
+)− ∇̄fi(x,y+))

∥∥∥∥∥

2

+ 3
∥∥∇̄f(x,y+)−∇f(x)

∥∥2 ,

where the inequality uses Lemma G.1.

Hence,

E

[
∥ 1
m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)−∇f(x)∥2

]

≤ 3b2 +
3M2

f

m

m∑

i=1

1

τi

τi−1∑

ν=0

E
[
∥xi,ν − x∥2

]
+ 3M2

fE
[
∥y+ − y∗(x)∥2

]
,

(23)

where the inequality uses Lemmas 2.2 and C.1.
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Substituting (23) into (22) yields

− E

[〈
1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν ,y
+),∇f(x)

〉]

≤ −α

2
E

[
∥ 1
m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)∥2

]
− α

2
E
[
∥∇f(x)∥2

]

+
3α

2

(
b2 +M2

fE
[
∥y+ − y∗(x)∥2

]
+

M2
f

m

m∑

i=1

1

τi

τi−1∑

ν=0

E
[
∥xi,ν − x∥2

] )
.

(24)

Next, we bound the second term on the RHS of (21). Observe that

E



∥∥∥∥∥
1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν ,y
+)

∥∥∥∥∥

2



= α2
E

[∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

(
hi(xi,ν ,y

+)− h̄i(xi,ν ,y
+) + h̄i(xi,ν ,y

+)
)
∥∥∥∥∥

]

≤ α2
E

[
∥∥ 1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)
∥∥2
]
+ α2σ̃2

f ,

(25)

where the inequality follows from Lemmas G.3 and C.1.

Plugging (25) and (24) into (21) completes the proof.

C.2. Error of FEDINN

The following lemma establishes the progress of FEDINN. It should be mentioned that the assumption on βi, ∀i ∈ S is

identical to the one listed in (Mitra et al., 2021, Theorem 4).

Lemma C.3 (Error of FEDINN). Suppose Assumptions A and B hold. Further, assume

τi ≥ 1, αi =
α

τi
, βi =

β

τi
, ∀i ∈ S,

where 0 < β < min
(
1/(6ℓg,1), 1

)
and α is some positive constant. Then, FEDINN guarantees:

E

[∥∥y+− y⋆(x)
∥∥2
]
≤
(
1− βµg

2

)T

E

[
∥y − y⋆(x)∥2

]
+ 25Tβ2σ2

g,1, and (26a)

E

[∥∥y+ − y⋆(x+)
∥∥2
]
≤ a1(α)E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

2



+ a2(α)E
[∥∥y+− y⋆(x)

∥∥2
]
+ a3(α)σ̃

2
f . (26b)

Here,

a1(α) := L2
y
α2 +

Lyα

4Mf

+
Lyxα

2

2η
,

a2(α) := 1 + 4MfLyα+
ηLyxD̃

2
fα

2

2
,

a3(α) := α2L2
y
+

Lyxα
2

2η
,

(27)

for any η > 0.
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Proof. Note that

E
[
∥y+ − y∗(x+)∥2

]
=E

[
∥y+ − y∗(x)∥2

]
+ E

[
∥y∗(x+)− y∗(x)∥2

]

+2E
[
⟨y+ − y∗(x),y∗(x)− y∗(x+)⟩

]
. (28)

Next, we upper bound each term on the RHS of (28).

Bounding the first term in (28):

From (Mitra et al., 2021, Theorem 4), for all t ∈ {0, . . . , T − 1}, we obtain

E[∥yt+1 − y⋆(x)∥2] ≤
(
1− βµg

2

)
E[∥yt − y⋆(x)∥2] + 25β2σ2

g,1,

which together with our setting y+ = yT implies

E[∥y+ − y∗(x)∥2] ≤
(
1− βµg

2

)T

E[∥y − y(x∗)∥2] + 25Tβ2σ2
g,1. (29)

Bounding the second term in (28):

By similar steps as in (25), we have

E
[
∥y∗(x+)− y∗(x)∥2

]
≤ L2

y
E



∥∥∥∥∥
1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(x,y
+)

∥∥∥∥∥

2



≤ L2
y
E

[∥∥∥∥
1

m

m∑

i=1

αi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥
2
]
+ α2L2

y
σ̃2
f ,

(30)

where the inequalities are obtained from Lemmas C.1 and G.3.

Bounding the third term in (28):

Observe that

E
[
⟨y+ − y∗(x),y∗(x)− y∗(x+)⟩

]
= −E

[
⟨y+− y⋆(x),∇y⋆(x)(x+− x)⟩

]

− E
[
⟨y+− y⋆(x),y⋆(x+)− y⋆(x)−∇y⋆(x)(x+− x)⟩

]
.

(31)

For the first term on the R.H.S. of the above equality, we have

−E[⟨y+− y⋆(x),∇y⋆(x)(x+− x)⟩] =− E

[
⟨y+− y⋆(x),

1

m
∇y⋆(x)

m∑

i=1

αi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)⟩
]

≤E
[
∥∥y+− y⋆(x)

∥∥
∥∥∥∥∥
1

m
∇y⋆(x)

m∑

i=1

αi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

]

≤LyE

[
∥∥y+− y⋆(x)

∥∥
∥∥∥∥∥
1

m

m∑

i=1

αi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

]

≤2γE
[∥∥y+− y⋆(x)

∥∥2
]
+

L2
y
α2

8γ
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

2

 ,

(32)

where the first equality uses the fact that h̄i(xi,ν ,y
+) = E [hi(xi,ν ,y

+)|Fi,ν−1]; the second inequality follows from

Lemma C.1; and the last inequality is obtained from the Young’s inequality such that ab ≤ 2γa2 + b2

8γ
.

Further, using Lemma C.1, we have

−E[⟨y+− y⋆(x),y⋆(x+)− y⋆(x)−∇y⋆(x)(x+− x)⟩]
≤ E

[∥∥y+− y⋆(x)∥∥y⋆(x+)− y⋆(x)−∇y⋆(x)(x+− x)
∥∥]

≤ Lyx

2
E

[∥∥y+− y⋆(x)
∥∥ ∥∥x+− x

∥∥2
]
,

(33)
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where the inequality follows from Lemma C.1.

From Algorithm 2, we have

xi,0 = x, ∀i ∈ S, and x+ = x− 1

m

m∑

i=1

α

τi

τi−1∑

ν=0

hi(xi,ν ,y
+). (34)

Note that F0 = Fi,0 for all i ∈ S . Hence,

E

[∥∥y+− y⋆(x)
∥∥2 ∥∥x+− x

∥∥2
]

≤ 1

m

m∑

i=1

α2

τi

τi−1∑

ν=0

E

[∥∥y+− y⋆(x)
∥∥2 E

[∥∥hi(xi,ν ,y
+)
∥∥2 | Fi,τi−1

]]

≤ α2D̃2
fE

[∥∥y+− y⋆(x)
∥∥2
]
,

(35)

where the last inequality uses Lemma C.1.

Note also that for any η > 0, we have 1 ≤ η
2
+ 1

2η
. Combining this inequality with (33) and using (35) give

−E[⟨y+− y⋆(x),y⋆(x+)− y⋆(x)−∇y⋆(x)(x+− x)⟩]

≤ Lyx

2
E

[∥∥y+− y⋆(x)
∥∥ ∥∥x+− x

∥∥2
]

≤ ηLyx

4
E

[∥∥y+− y⋆(x)
∥∥ ∥∥x+− x

∥∥2
]
+

Lyx

4η
E

[∥∥x+− x
∥∥2
]

≤
ηLyxD̃

2
fα

2

4
E

[∥∥y+− y⋆(x)
∥∥2
]
+

Lyxα
2

4η
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

2

+

Lyxα
2

4η
σ̃2
f ,

(36)

where the last inequality uses (35) and Lemma 2.2.

Let γ = MfLyα. Plugging (36) and (32) into (31), we have

E[⟨y+ − y∗(x),y∗(x)− y∗(x+)⟩] ≤
(
2γ +

ηLyxD̃
2
f

4
α2

)
E

[∥∥y+− y⋆(x)
∥∥2
]

+

(
L2
y
α2

8γ
+

Lyxα
2

4η

)
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

2

+

Lyxα
2

4η
σ̃2
f

=

(
2MfLyα+

ηLyxD̃
2
f

4
α2

)
E

[∥∥y+− y⋆(x)
∥∥2
]

+

(
Lyα

8Mf

+
Lyxα

2

4η

)
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(xi,ν ,y
+)

∥∥∥∥∥

2

+

Lyxα
2

4η
σ̃2
f .

(37)

Substituting (37), (30), and (29) into (28) completes the proof.

C.3. Drifting Errors of FEDOUT

The following lemma provides a bound on the drift of each xi,ν from x for stochastic nonconvex bilevel problems. It should

be mentioned that similar drifting bounds for single-level problems are provided under either strong convexity (Mitra et al.,

2021) and/or bounded dissimilarity assumptions (Wang et al., 2020; Reddi et al., 2020; Li et al., 2020b).

Lemma C.4 (Drifting Error of FEDOUT). Suppose Assumptions A and B hold. Further, assume τi ≥ 1 and αi ≤
1/(5Mfτi), ∀i ∈ S . Then, for each i ∈ S and ∀ν ∈ {0, . . . , τi − 1}, FEDOUT guarantees:

E

[
∥xi,ν − x∥2

]
≤ 36τ2i α

2
i

(
M2

fE
[
∥y+ − y⋆(x)∥2

]
+ E

[
∥∇f(x)∥2

]
+ 3b2

)

+ 27τiα
2
i σ̃

2
f . (38)
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Proof. The result trivially holds for τi = 1. Let τi > 1 and define

vi,ν := h̄i(xi,ν ,y
+)− ∇̄fi(xi,ν ,y

+)− h̄i(x,y
+)

+ ∇̄fi(x,y+) + h̄(x,y+)− ∇̄f(x,y+),

wi,ν := hi(xi,ν ,y
+)− h̄i(xi,ν ,y

+) + h̄i(x,y
+)

− hi(x,y
+) + h(x,y+)− h̄(x,y+),

zi,ν := ∇̄fi(xi,ν ,y
+)− ∇̄fi(x,y+) + ∇̄f(x,y+)−∇f(x) +∇f(x).

(39)

One will notice that

vi,ν +wi,ν + zi,ν = hi(xi,ν ,y
+)− hi(x,y

+) + h(x,y+).

Hence, from Algorithm 2, for each i ∈ S , and ∀ν ∈ {0, . . . , τi − 1}, we have

xi,ν+1 − x = xi,ν − x− αi(vi,ν +wi,ν + zi,ν), (40)

which implies that

E
[
∥xi,ν+1 − x∥2

]
= E

[
∥xi,ν − x− αi(vi,ν + zi,ν)∥2

]
+ α2

iE
[
∥wi,ν∥2

]

− 2E [E [⟨xi,ν − x− αi(vi,ν + zi,ν), αiwi,ν⟩ | Fi,ν−1]]

= E
[
∥xi,ν − x− αi(vi,ν + zi,ν)∥2

]
+ α2

iE
[
∥wi,ν∥2

]
.

(41)

Here, the last equality uses Lemma G.3 since E[wi,ν |Fi,ν−1] = 0, by definition.

From Lemmas G.1, 2.2, and C.1, for vi,ν , wi,ν , and zi,ν defined in (39), we have

E

[
∥vi,ν∥2

]
≤ 3E

[ ∥∥∇̄fi(xi,ν ,y
+)− h̄i(xi,ν ,y

+)
∥∥2

+
∥∥h̄i(x,y

+)− ∇̄fi(x,y+)
∥∥2 +

∥∥∇̄f(x,y+)− h̄(x,y+)
∥∥2
]

≤ 9b2,

(42a)

E
[
∥wi,ν∥2

]
≤ 3E

[
∥hi(xi,ν ,y

+)− h̄i(xi,ν ,y
+)∥2

+ ∥h̄i(x,y
+)− hi(x,y

+)∥2 + ∥h(x,y+)− h̄(x,y+)∥2
]

≤ 9σ̃2
f ,

(42b)

and

E
[
∥zi,ν∥2

]
≤ 3E

[
∥∇̄fi(xi,ν ,y

+)− ∇̄fi(x,y+)∥2

+ ∥∇̄f(x,y+)−∇f(x)∥2 + ∥∇f(x)∥2
]

≤ 3
(
M2

fE
[
∥xi,ν − x∥2

]
+M2

fE
[
∥y+ − y⋆(x)∥2

]
+ E

[
∥∇f(x)∥2

])
.

(42c)

Now, the first term in the RHS of (41) can be bounded as follows:

E
[
∥xi,ν − x− αi(vi,ν + zi,ν)∥2

]
≤
(
1 +

1

2τi − 1

)
E
[
∥xi,ν − x∥2

]
+ 2τiE

[
∥αi(vi,ν + zi,ν)∥2

]

≤
(
1 +

1

2τi − 1

)
E
[
∥xi,ν − x∥2

]
+ 4τiα

2
i

(
E
[
∥zi,ν∥2

]
+ E

[
∥vi,ν∥2

])

≤
(
1 +

1

2τi − 1

)
E
[
∥xi,ν − x∥2

]
+ 4τiα

2
i

(
E
[
∥zi,ν∥2

]
+ 9b2

)

≤
(
1 +

1

2τi − 1
+ 12τiα

2
iM

2
f

)
E
[
∥xi,ν − x∥2

]

+ 12τiα
2
i

(
M2

fE
[
∥y+ − y⋆(x)∥2

]
+ E

[
∥∇f(x)∥2

]
+ 3b2

)
.

(43)
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Here, the first inequality follows from Lemma G.2; the second inequality uses Lemma G.1; and the third and last inequalities

follow from (42a) and (42c).

Substituting (43) into (41) gives

E

[
∥xi,ν+1 − x∥2

]
≤
(
1 +

1

2τi − 1
+ 12τiα

2
iM

2
f

)
E
[
∥xi,ν − x∥2

]

+ 12τiα
2
i

(
M2

fE
[
∥y+ − y⋆(x)∥2

]
+ E

[
∥∇f(x)∥2

]
+ 3b2

)
+ 9α2

i σ̃
2
f

≤
(
1 +

1

τi − 1

)
E
[
∥xi,ν − x∥2

]

+ 12τiα
2
i

(
M2

fE
[
∥y+ − y⋆(x)∥2

]
+ E

[
∥∇f(x)∥2

]
+ 3b2

)
+ 9α2

i σ̃
2
f .

(44)

Here, the first inequality uses (42b) and the last inequality follows by noting αi ≤ 1/(5Mfτi).

For all τi > 1, we have

ν−1∑

j=0

(
1 +

1

τi − 1

)j

=

(
1 + 1

τi−1

)ν
− 1

(
1 + 1

τi−1

)
− 1

≤ τi

(
1 +

1

τi

)ν

≤ τi

(
1 +

1

τi

)τi

≤ exp (1)τi < 3τi.

(45)

Now, iterating equation (44) and using xi,0 = x, ∀i ∈ S , we obtain

E
[
∥xi,ν − x∥2

]
≤
(
12τiα

2
i

(
M2

fE
[
∥y+ − y⋆(x)∥2

]
+ E

[
∥∇f(x)∥2

]
+ 3b2

)
+ 9α2

i σ̃
2
f

) ν−1∑

j=0

(
1 +

1

τi − 1

)j

≤ 3τi
(
12τiα

2
i

(
M2

fE
[
∥y+ − y⋆(x)∥2

]
+ E

[
∥∇f(x)∥2

]
+ 3b2

)
+ 9α2

i σ̃
2
f

)
,

where the second inequality uses (45). This completes the proof.

Remark C.1. Lemma C.4 shows that the bound on the client-drift scales linearly with τi and the inner error ∥y+−y⋆(x)∥2
in general nested FL. We aim to control such a drift by selecting αi = O(1/τi) for all i ∈ S and using the inner error

bound provided in Lemma C.3.

Next, we provide the proof of our main result which can be adapted to general nested problems (bilevel, min-max,

compositional).

C.4. Proof of Theorem 3.1

Proof. We define the following Lyapunov function

W
k := f(xk) +

Mf

Ly

∥yk − y⋆(xk)∥2. (46)

Motivated by (Chen et al., 2021a), we bound the difference between two Lyapunov functions. That is,

W
k+1 −W

k =f(xk+1)− f(xk) +
Mf

Ly

(
∥yk+1 − y∗(xk+1)∥2 − ∥yk − y⋆(xk)∥2

)
. (47)

The first two terms on the RHS of (47) quantifies the descent of outer objective f and the reminding terms measure the

descent of the inner errors.

From our assumption, we have αk
i = αk/τi, β

k
i = βk/τi, ∀i ∈ S . Substituting these stepsizes into the bounds provided in
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Lemmas C.2 and C.3, and using (47), we get

E[Wk+1]− E[Wk] ≤
(
Lfα

2
k

2
+

Mf

Ly

a3(αk)

)
σ̃2
f +

3αk

2
b2,

− αk

2
E
[
∥∇f(xk)∥2

]
+

3M2
fαk

2m

m∑

i=1

1

τi

τi−1∑

ν=0

E
[
∥xk

i,ν − xk∥2
]

(48a)

−
(
αk

2
− Lfα

2
k

2
− Mf

Ly

a1(αk)

)
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

h̄i(x
k
i,ν ,y

k+1)

∥∥∥∥∥

2

 (48b)

+
Mf

Ly

(
3MfLyαk

2
+ a2(αk)

)
E
[
∥yk+1 − y∗(xk)∥2

]
− Mf

Ly

E
[
∥yk − y∗(xk)∥2

]
, (48c)

where a1(α)− a3(α) are defined in (27).

Let

αk
i =

αk

τi
, ∀i ∈ S where αk ≤

1

216M2
f + 5Mf

. (49)

The above choice of αk satisfies the condition of Lemma C.4 and we have 54M2
fα

3
k ≤ α2

k/4. Hence, from Lemma C.4, we

get

(48a) ≤− αk

2
E
[
∥∇f(xk)∥2

]
+

81

2
α3
kM

2
f σ̃

2
f

+ 54M2
fα

3
k

(
M2

fE
[
∥yk+1 − y⋆(xk)∥2

]
+ E

[
∥∇f(xk)∥2

]
+ 3b2

)

≤− αk

4
E
[
∥∇f(xk)∥2

]
+

α2
k

4
σ̃2
f +

α2
k

4

(
M2

fE
[
∥yk+1 − y⋆(xk)∥2

]
+ 3b2

)

≤− αk

4
E
[
∥∇f(xk)∥2

]
+

α2
k

4
σ̃2
f +

3α2
k

4
b2

+
25Mf

Ly

(
MfLy

4
α2
k

)
Tβ2

kσ
2
g,1 +

Mf

Ly

(
MfLy

4
α2
k

)(
1− βkµg

2

)T

,

(50)

where the first inequlaity uses (49) and the last inequality follows from (26a).

To guarantee the descent of Wk, the following constraints need to be satisfied

(48b) ≤ 0,

=⇒ αk

2
− Lfα

2
k

2
− Mf

Ly

(
L2
y
α2
k +

Lyαk

4Mf

+
Lyxα

2
k

2η

)
≥ 0,

=⇒ αk ≤
1

2Lf + 4MfLy +
2MfLyx

Lyη

,

(51)

where the second line uses (27).

Further, substituting (26) in (48c) gives

(48c) ≤ 25Mf

Ly

(
3MfLyαk

2
+ a2(αk)

)
Tβ2

kσ
2
g,1

+
Mf

Ly

((
3MfLyαk

2
+ a2(αk)

)(
1− βkµg

2

)T

− 1

)
E[∥yk − y∗(xk)∥2].

(52)
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Substituting (50)±(52) into (48) gives

E[Wk+1]− E[Wk] ≤− αk

4
E[∥∇f(xk)∥2]

+

(
3

2
αk +

3

4
α2
k

)
b2

+

((
Lf

2
+

1

4

)
α2
k +

Mf

Ly

a3(αk)

)
σ̃2
f

+
25Mf

Ly

(
MfLy

4
α2
k +

3MfLyαk

2
+ a2(αk)

)
Tβ2

kσ
2
g,1

+
Mf

Ly

((
MfLy

4
α2
k +

3MfLyαk

2
+ a2(αk)

)(
1− βkµg

2

)T

− 1

)
E[∥yk − y∗(xk)∥2]. (53a)

Let βk < min
(
1/(6ℓg,1), 1

)
. Then, we have βkµg/2 < 1. This together with (27) implies that for any αk > 0

(53a) ≤ 0,

=⇒
(
1 +

MfLy

4
α2
k +

11MfLyαk

2
+

ηLyxD̃
2
fα

2
k

2

)(
1− βkµg

2

)T

− 1 ≤ 0,

=⇒ exp

(
MfLy

4
α2
k +

11MfLyαk

2
+

ηLyxD̃
2
fα

2
k

2

)
exp

(
−Tβkµg

2

)
− 1 ≤ 0,

=⇒ βk ≥
11MfLy + ηLyxD̃

2
fαk +

MfLyαk

2

µg

· αk

T
.

(54)

From (49), (51) and (54), we select

αk = min{ᾱ1, ᾱ2, ᾱ3,
ᾱ√
K
}, βk =

β̄αk

T
, (55)

where

β̄ :=
1

µg

(
11MfLy + ηLyxD̃

2
f ᾱ1 +

MfLyᾱ1

2

)
,

ᾱ1 :=
1

2Lf + 4MfLy +
2MfLyx

Lyη

, ᾱ2 :=
T

8ℓg,1β̄
, ᾱ3 :=

1

216M2
f + 5Mf

,
(56)

With the above choice of stepsizes, (53) can be simplified as

E[Wk+1]− E[Wk] ≤ −αk

4
E[∥∇f(xk)∥2]

+

(
3

2
αk +

3

4
α2
k

)
b2

+

(
Lf + 1

2

2
α2
k +

Mf

Ly

a3(αk)

)
σ̃2
f

+
25Mf

Ly

(
MfLy

4
α2
k +

3MfLy

2
αk + a2(αk)

)
Tβ2

kσ
2
g,1

≤ −αk

4
E[∥∇f(xk)∥2] + c1α

2
kσ

2
g,1 +

(
3

2
αk +

3

4
α2
k

)
b2 + c2α

2
kσ̃

2
f ,

(57)

where the constants c1 and c2 are defined as

c1 =
25Mf

Ly

(
1 +

11MfLy

2
ᾱ1 +

(
MfLy + 2ηLyxD̃

2
f

4

)
ᾱ2
1

)
β̄2 1

T
,

c2 =
Lf + 1

2

2
+MfLy +

LyxMf

4ηLy

.

(58)
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Then telescoping gives

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] ≤ 4
∑K−1

k=0
αk

(
∆W +

K−1∑

k=0

3

2

(
αk +

α2
k

2

)
b2 + c1α

2
kσ

2
g,1 + c2α

2
kσ̃

2
f

)

≤ 4∆W

min{ᾱ1, ᾱ2, ᾱ3}K
+

4∆W

ᾱ
√
K

+ 6

(
1 +

ᾱ

2
√
K

)
b2 +

4c1ᾱ√
K

σ2
g,1 +

4c2ᾱ√
K

σ̃2
f

= O
(

1

min{ᾱ1, ᾱ2, ᾱ3}K
+

ᾱmax(σ2
g,1, σ

2
g,2, σ

2
f )√

K
+ b2

)
,

(59)

where ∆W := W
0 − E[WK ].

C.5. Proof of Corollary 3.1

Proof. Let η =
Mf

Ly

= O(κg) in (58). It follows from (18), (56), and (58) that

ᾱ1 = O(κ−3
g ), ᾱ2 = O(Tκ−3

g ), ᾱ3 = O(κ−4
g ), c1 = O(κ9

g/T ), c2 = O(κ3
g). (60)

Further, N = O(κg logK) gives b = 1

K1/4 . Now, if we select ᾱ = O(κ−2.5
g ) and T = O(κ4

g), Eq. (59) gives

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] = O
(
κ4
g

K
+

κ2.5
g√
K

)
.

To achieve ε-optimal solution, we need K = O(κ5
gε

−2), and the samples in ξ and ζ are O(κ5
gε

−2) and O(κ9
gε

−2),
respectively.

D. Proof for Federated Minimax Optimization

Note that the minimax optimization problem (2) has the following bilevel form

min
x∈Rd1

f(x) = 1

m

∑m
i=1

fi (x,y
∗(x))

subj. to y∗(x) = argmin
y∈Rd2

− 1

m

∑m
i=1

fi (x,y) .
(61a)

Here,

fi(x,y) = Eξ∼Ci [fi(x,y; ξ)] (61b)

is the loss functions of the ith client.

In this case, the hypergradient of (61) is

∇fi(x) = ∇xfi
(
x,y∗(x)

)
+∇xy

∗(x)⊤∇yfi
(
x,y∗(x)

)
= ∇xfi

(
x,y∗(x)

)
, (62)

where the second equality follows from the optimality condition of the inner problem, i.e.,∇yf(x,y
∗(x)) = 0.

For each i ∈ S, we can approximate ∇fi(x) on a vector y in place of y∗(x), denoted as ∇fi(x,y) := ∇xfi
(
x,y

)
.

We also note that in the minimax case hi is an unbiased estimator of ∇̄fi(x,y). Thus, b = 0. Therefore, we can apply

FEDNEST using

qi,ν = −∇yfi(x,yi,ν ; ξi,ν) +∇yfi(x,y; ξi,ν)−
1

m

m∑

i=1

∇yfi(x,y; ξi),

hi,ν = ∇xfi(xi,ν ,y
+; ξi,ν)−∇xfi(x,y

+; ξi,ν) +
1

m

m∑

i=1

∇xfi(x,y
+; ξi).

(63)
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D.1. Supporting Lemmas

Let z = (x,y) ∈ R
d1+d2 . We make the following assumptions that are counterparts of Assumptions A and B.

Assumption E. For all i ∈ [m]:

(E1) fi(z),∇fi(z),∇2fi(z) are respectively ℓf,0, ℓf,1, ℓf,2-Lipschitz continuous; and

(E2) fi(x,y) is µf -strongly convex in y for any fixed x ∈ R
d1 .

We use κf = ℓf,1/µf to denote the condition number of the inner objective with respect to y.

Assumption F. For all i ∈ [m]:

(F1) ∇fi(z; ξ) is unbiased estimators of ∇fi(z); and

(F2) Its variance is bounded, i.e., Eξ[∥∇fi(z; ξ)−∇fi(z)∥2] ≤ σ2
f , for some σ2

f .

In the following, we re-derive Lemma C.1 for the finite-sum minimax problem (61).

Lemma D.1. Under Assumptions E and F, we have h̄i(x,y) = ∇̄fi(x,y) for all i ∈ S and (17a)±(17g) hold with

Lyx =
ℓf,2 + ℓf,2Ly

µf

+
ℓf,1(ℓf,2 + ℓf,2Ly)

µ2
f

= O(κ3
f ),

Mf = ℓf,1 = O(1), Lf = (ℓf,1 +
ℓ2f,1
µf

) = O(κf ),

Ly =
ℓf,1
µf

= O(κf ), σ̃2
f = σ2

f , D̃2
f = ℓ2l,0 + σ2

f ,

(64)

where ℓf,0, ℓf,1, ℓf,2, µf , and σf are given in Assumptions E and F.

D.2. Proof of Corollary 3.2

Proof. Let η = 1. From (55) and (56), we have

αk = min

{
ᾱ1, ᾱ2, ᾱ3,

ᾱ√
K

}
, βk =

β̄αk

T
, (65a)

where

β̄ =
1

µg

(
11ℓf,1Ly + LyxD̃

2
f ᾱ1 +

ℓf,1Lyᾱ1

2

)
,

ᾱ1 =
1

2Lf + 4ℓf,1Ly +
2ℓf,1Lyx

Ly

, ᾱ2 =
T

8ℓg,1β̄
, ᾱ3 =

1

216ℓ2f,1 + 5ℓf,1
.

(65b)

Using the above choice of stepsizes, (59) reduces to

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] ≤ 4∆W

Kmin{ᾱ1, ᾱ2, ᾱ3}
+

4∆W

ᾱ
√
K

+
4(c1 + c2)ᾱ√

K
σ2
f , (66)

where ∆W = W
0 − E[WK ],

c1 =
25ℓf,1
Ly

(
1 +

11ℓf,1Ly

2
ᾱ1 +

(
ℓf,1Ly + 2LyxD̃

2
f

4

)
ᾱ2
1

)
β̄2 1

T
,

c2 =
Lf + 1

2

2
+ ℓf,1Ly +

Lyxℓf,1
4Ly

.

(67)
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Let ᾱ = O(κ−1

f ). Since by our assumption, T = O(κf ), it follows from (64) and (73) that

ᾱ1 = O(κ−2

f ), ᾱ2 = O(κ−1

f ), ᾱ3 = O(1), c1 = O(κ2
f ), c2 = O(κ2

f ). (68)

Substituting (68) in (66) and (67) gives

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] = O
(
κ2
f

K
+

κf√
K

)
. (69)

To achieve ε-accuracy, we need K = O(κ2
fε

−2).

E. Proof for Federated Compositional Optimization

Note that in the stochastic compositional problem (3), the inner function fi(x,y; ξ) = fi(y; ξ) for all i ∈ S , and the outer

function is gi(x,y; ζ) =
1

2
∥y − ri(x; ζ)∥2, for all i ∈ S . In this case, we have

∇ygi (x,y) = yi − ri(x; ζ), ∇yyg(x,y; ζ) = Id2×d2
, and ∇xyg(x,y; ζ) = −

1

m

m∑

i=1

∇ri(x; ζ)⊤. (70)

Hence, the hypergradient of (3) has the following form

∇fi(x) = ∇xfi (y
∗(x))

−∇2
xy

g(x,y∗(x))[∇2
y
g(x,y∗(x))]−1∇yfi (y

∗(x))

= (
1

m

m∑

i=1

∇ri(x))⊤∇yfi(y
∗(x)). (71)

We can obtain an approximate gradient ∇fi(x) by replacing y⋆(x) with y; that is ∇̄fi(x,y) =
( 1

m

∑m
i=1
∇ri(x))⊤∇yfi(y). It should be mentioned that in the compositional case b = 0. Thus, we can apply FEDNEST

and LFEDNEST using the above gradient approximations.

E.1. Supporting Lemmas

Let z = (x,y) ∈ R
d1+d2 . We make the following assumptions that are counterparts of Assumptions A and B.

Assumption G. For all i ∈ [m], fi(z),∇fi(z), ri(z),∇ri(z) are respectively ℓf,0, ℓf,1, ℓr,0, ℓr,1-Lipschitz continuous.

Assumption H. For all i ∈ [m]:

(H1) ∇fi(z; ξ), ri(x; ζ), ∇ri(x; ζ) are unbiased estimators of ∇fi(z), ri(x), and ∇ri(x).

(H2) Their variances are bounded, i.e., Eξ[∥∇fi(z; ξ) − ∇fi(z)∥2] ≤ σ2
f , Eζ [∥ri(z; ζ) − ri(z)∥2] ≤ σ2

r,0, and

Eζ [∥∇ri(z; ζ)−∇ri(z)∥2] ≤ σ2
r,1 for some σ2

f , σ
2
r,0, and σ2

r,1.

The following lemma is the counterpart of Lemma C.1. The proof is similar to (Chen et al., 2021a, Lemma 7).

Lemma E.1. Under Assumptions G and H, we have h̄i(x,y) = ∇̄fi(x,y) for all i ∈ S , and (17a)±(17g) hold with

Mf = ℓr,0ℓf,1, Ly = ℓr,0, Lf = ℓ2
r,0ℓf,1 + ℓf,0ℓr,1, Lyx = ℓr,1,

σ̃2
f = ℓ2

r,0σ
2
f + (ℓ2f,0 + σ2

f )σ
2
r,1, D̃2

f = (ℓ2f,0 + σ2
f )(ℓ

2
r,0 + σ2

r,1).
(72)

E.2. Proof of Corrollary 3.3

Proof. By our assumption T = 1. Let ᾱ = 1 and η = 1/Lyx. From (55) and (56), we obtain

αk = min

{
ᾱ1, ᾱ2, ᾱ3,

1√
K

}
, βk = β̄αk, (73a)
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where

β̄ =
1

µg

(
11ℓf,1ℓ

2
r,0 + D̃2

f ᾱ1 +
ℓf,1ℓ

2
r,0ᾱ1

2

)
,

ᾱ1 =
1

2ℓf,0ℓr,1 + 6ℓf,1ℓ2r,0 + 2ℓf,1ℓ2r,1
, ᾱ2 =

1

8ℓr,0β̄
, ᾱ3 =

1

216(ℓr,0ℓf,1)2 + 5ℓr,0ℓf,1
.

(73b)

Then, using (59), we obtain

1

K

K−1∑

k=0

E
[
∥∇f(xk)∥2

]
= O

(
1√
K

)
. (74)

This completes the proof.

F. Proof for Federated Single-Level Optimization

Next, we re-derive Lemmas C.2 and C.4 for single-level nonconvex FL under Assumptions C and D.

Lemma F.1 (Counterpart of Lemma C.2). Suppose Assumptions C and D hold. Further, assume τi ≥ 1 and αi = α/τi, ∀i ∈
S for some positive constant α. Then, FEDOUT guarantees:

E
[
f(x+)

]
− E [f(x)] ≤ −α

2
(1− αLf )E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

∇fi(xi,ν)

∥∥∥∥∥

2



− α

2
E
[
∥∇f(x)∥2

]
+

αL2
f

2m

m∑

i=1

1

τi

τi−1∑

ν=0

E
[
∥xi,ν − x∥2

]
+

α2Lf

2
σ2
f .

(75)

Proof. By applying Algorithm 2 to the single-level optimization problem (13), we have

xi,0 = x ∀i ∈ S, x+ = x− 1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν).

where

hi(xi,ν) := ∇xfi(xi,ν ; ξi,ν)−∇xfi(x; ξi,ν) +
1

m

m∑

i=1

∇xfi(x; ξi).

This together with Assumption C implies that

E
[
f(x+)

]
− E [f(x)] ≤E

[
⟨x+ − x,∇f(x)⟩

]
+

Lf

2
E
[
∥x+ − x∥2

]

=− E

[〈
1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν),∇f(x)
〉]

+
Lf

2
E



∥∥∥∥∥
1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν)

∥∥∥∥∥

2

 .

(76)
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For the first term on the RHS of (76), we obtain

−E
[〈

1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν),∇f(x)
〉]

=− E

[
1

m

m∑

i=1

α

τi

τi−1∑

ν=0

E [⟨hi(xi,ν),∇f(x)⟩ | Fi,ν−1]

]

=− α

2
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

∇fi(xi,ν)

∥∥∥∥∥

2

− α

2
E

[
∥∇f(x)∥2

]

+
α

2
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

∇fi(xi,ν)−∇f(x)
∥∥∥∥∥

2

 ,

=− α

2
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

∇fi(xi,ν)

∥∥∥∥∥

2

− α

2
E

[
∥∇f(x)∥2

]

+
αL2

f

2m

m∑

i=1

1

τi

τi−1∑

ν=0

E

[
∥xi,ν − x∥2

]
,

(77)

where the first equality follows from the law of total expectation and the last inequality is obtained from Assumption C.

For the second term on the RHS of (76), Assumption D gives

E



∥∥∥∥∥
1

m

m∑

i=1

αi

τi−1∑

ν=0

hi(xi,ν ,y
+)

∥∥∥∥∥

2

 = α2

E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

(hi(xi,ν)−∇fi(xi,ν) +∇fi(xi,ν))

∥∥∥∥∥

2



≤ α2
E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

∇fi(xi,ν)

∥∥∥∥∥

2

+ α2σ2

f .

(78)

Plugging (78) and (77) into (76) gives the desired result.

Lemma F.2 (Counterpart of Lemma C.4). Suppose Assumptions C and D hold. Further, assume τi ≥ 1 and αi = α/τi, ∀i ∈
S , where α ≤ 1/(3Lf ). Then, for all ν ∈ {0, . . . , τi − 1}, FEDOUT gives

E

[
∥xi,ν − x∥2

]
≤ 12τ2i α

2
iE

[
∥∇f(x)∥2

]
+ 27τiα

2
iσ

2
f . (79)

Proof. The result trivially holds for τi = 1. Similar to what is done in the proof of Lemma C.4, let τi > 1 and define

vi,ν := ∇fi(xi,ν)−∇fi(x) +∇f(x),
wi,ν := hi(xi,ν)−∇fi(xi,ν) +∇fi(x)− hi(x) + h(x)−∇f(x). (80)

where hi(x) = ∇xfi(x; ξi,ν) and h(x) = 1/m
∑m

i=1
∇xfi(x; ξi).

From Algorithm 2, for each i ∈ S , and ∀ν ∈ {0, . . . , τi − 1}, we obtain

xi,ν+1 − x = xi,ν − x− αi (hi(xi,ν)− hi(x) + h(x))

= xi,ν − x− αi (vi,ν +wi,ν) ,

which implies that

E
[
∥xi,ν+1 − x∥2

]
= E

[
∥xi,ν − x− αivi,ν∥2

]
+ α2

iE
[
∥wi,ν∥2

]

− 2E [E [⟨xi,ν − x− αivi,ν , αiwi,ν⟩ | Fi,ν−1]]

= E
[
∥xi,ν − x− αivi,ν∥2

]
+ α2

iE
[
∥wi,ν∥2

]
.

(81)

Here, the last equality uses Lemma G.3 since E[wi,ν |Fi,ν−1] = 0.
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From Assumption D and Lemma G.1, for wi,ν defined in (80), we have

E
[
∥wi,ν∥2

]
≤ 3E

[
∥hi(xi,ν)−∇fi(xi,ν)∥2 + ∥∇fi(x)− hi(x)∥2 + ∥h(x)−∇f(x)∥2

]

≤ 9σ2
f .

(82)

Substituting (82) into (81), we get

E
[
∥xi,ν − x− αivi,ν∥2

]
≤
(
1 +

1

2τi − 1

)
E
[
∥xi,ν − x∥2

]
+ 2τiα

2
iE
[
∥vi,ν∥2

]
+ 9α2

iσ
2
f

≤
(
1 +

1

2τi − 1
+ 4τiα

2
iL

2
f

)
E
[
∥xi,ν − x∥2

]
+ 4τiα

2
iE
[
∥∇f(x)∥2

]
+ 9α2

iσ
2
f

≤
(
1 +

1

τi − 1

)
E
[
∥xi,ν − x∥2

]
+ 4τiα

2
iE
[
∥∇f(x)∥2

]
+ 9α2

iσ
2
f .

(83)

Here, the first inequality follows from Lemma G.2; the second inequality uses Assumption C and Lemma G.1; and the last

inequality follows by noting αi = α/τi, ∀i ∈ S and α ≤ 1/(3Lf ).

Now, iterating equation (83) and using xi,0 = x, ∀i ∈ S , we obtain

E
[
∥xi,ν − x∥2

]
≤
(
4τiα

2
iE
[
∥∇f(x)∥2

]
+ 9α2

iσ
2
f

) ν−1∑

j=0

(
1 +

1

τi − 1

)j

≤ 12τ2i α
2
iE
[
∥∇f(x)∥2

]
+ 27τiα

2
iσ

2
f ,

(84)

where the second inequality uses (45). This completes the proof.

F.1. Proof of Theorem 3.2

Proof. Let ᾱ1 := 1/(3Lf (1 + 8Lf )). Note that by our assumption αk ≤ ᾱ1. Hence, the stepsize αk satisfies the condition

of Lemma F.2, and we have 6L2
fα

3
k ≤ α2

k/4. This together with Lemmas F.1 and F.2 gives

E
[
f(xk+1)

]
− E

[
f(xk)

]
≤ −αk

2
E[∥∇f(xk)∥2] +

L2
fαk

2m

m∑

i=1

1

τi

τi−1∑

ν=0

E

[
∥xk

i,ν − xk∥2
]

− αk

2
(1− αkLf )E



∥∥∥∥∥
1

m

m∑

i=1

1

τi

τi−1∑

ν=0

∇fi(xk
i,ν)

∥∥∥∥∥

2

+

α2
kLf

2
σ2
f

≤ −αk

2
E[∥∇f(xk)∥2] +

L2
fαk

2m

m∑

i=1

1

τi

τi−1∑

ν=0

E

[
∥xk

i,ν − xk∥2
]
+

α2
kLf

2
σ2
f

≤ −αk

2
E[∥∇f(xk)∥2] + 6L2

fα
3
kE[∥∇f(xk)∥2] +

(
27

2
α3
kL

2
f +

α2
kLf

2

)
σ2
f

≤ −αk

4
E[∥∇f(xk)∥2] + (4 + Lf )α

2
kσ

2
f ,

(85)

where the second and last inequalities follow from (14).

Summing (85) over k and using our choice of stepsize in (14), we obtain

1

K

K−1∑

k=0

E[∥∇f(xk)∥2] ≤ 4∆f

K
·min

{
1

ᾱ1

,

√
K

ᾱ

}
+ 4(4 + Lf )σ

2
f ·

ᾱ√
K

≤ 4∆f

ᾱ1K
+

(
4∆f

ᾱ
+ 4(4 + Lf )ᾱσ

2
f

)
1√
K

,

(86)

where ∆f = f(x0)− E[f(xK)].
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G. Other Technical Lemmas

We collect additional technical lemmas in this section.

Lemma G.1. For any set of vectors {xi}mi=1 with xi ∈ R
d, we have

∥∥∥∥
m∑

i=1

xi

∥∥∥∥
2

≤ m

m∑

i=1

∥xi∥2. (87)

Lemma G.2. For any x,y ∈ R
d, the following holds for any c > 0:

∥x+ y∥2 ≤ (1 + c)∥x∥2 +
(
1 +

1

c

)
∥y∥2. (88)

Lemma G.3. For any set of independent, mean zero random variables {xi}mi=1 with xi ∈ R
d, we have

E

[∥∥∥∥
m∑

i=1

xi

∥∥∥∥
2
]
=

m∑

i=1

E

[
∥xi∥2

]
. (89)

H. Additional Experimental Results

In this section, we first provide the detailed parameters in Section 4 and then discuss more experiments. In Section 4, our

federated algorithm implementation is based on (Ji, 2018), both hyper-representation and loss function tuning use batch

size 64 and Neumann series parameter N = 5. We conduct 5 SGD/SVRG epoch of local updates in FEDINN and τ = 1 in

FEDOUT. In FEDNEST, we use T = 1, have 100 clients in total, and 10 clients are selected in each FEDNEST epoch.
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(a) The test accuracy w.r.t to the algorithm epochs.
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(b) The test accuracy w.r.t to the number of communications.

Figure 5: Hyper representation experiment comparing LFEDNEST, LFEDNESTSVRG and LFEDNEST-NONALT on non-i.i.d

dataset. The number in parentheses corresponds to communication rounds shown in Table 2.

H.1. The effect of the alternating between inner and outer global variables

In our addition experiments, we investigate the effect of the alternating between inner and outer global variables x and y.

We use LFEDNEST-NONALT to denote the training where each client updates their local yi and then update local xi w.r.t.

local yi for all i ∈ S . Hence, the nested optimization is performed locally (within the clients) and the joint variable [xi,yi]
is communicated with the server. One can notice that only one communication is conducted when server update global x

and y by aggregating all xi and yi.
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(a) α = 0.0075
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(b) α = 0.005
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(c) α = 0.0025

0 1000 2000 3000 4000 500010
20
30
40
50
60
70
80
90

100

LFedNest (T+1)
LFedNestSVRG (2T+1)
FedNest (2T+N+3)

# of communications

(d) α = 0.001

Figure 6: Learning rate analysis on non-i.i.d. data with respect to # of communications.

As illustrated in Figure 5, the test accuracy of LFEDNEST-NONALT remains around 80%, but both standard LFEDNEST

and LFEDNESTSVRG achieves better performance. Here, the number of inner iterations is set to T = 1. The performance

boost reveals the necessity of both averaging and SVRG in FEDINN, where the extra communication makes clients more

consistent.

H.2. The effect of the learning rate and the global inverse Hessian

Figure 6 shows that on non-i.i.d. dataset, both SVRG and FEDOUT have the effect of stabilizing the training. Here, we set

T = 1 and N = 5. As we observe in (a)-(d), where the learning rate decreases, the algorithms with more communications

are easier to achieve convergence. We note that LFEDNEST successfully converges in (d) with a very small learning rate. In

contrast, in (a), FEDNEST (using the global inverse Hessian) achieves better test accuracy in the same communication round

with a larger learning rate.
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