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Abstract

Standard federated optimization methods success-
fully apply to stochastic problems with single-
level structure. However, many contemporary
ML problems — including adversarial robustness,
hyperparameter tuning, actor-critic — fall under
nested bilevel programming that subsumes min-
imax and compositional optimization. In this
work, we propose FEDNEST: A federated alter-
nating stochastic gradient method to address gen-
eral nested problems. We establish provable con-
vergence rates for FEDNEST in the presence of
heterogeneous data and introduce variations for
bilevel, minimax, and compositional optimization.
FEDNEST introduces multiple innovations includ-
ing federated hypergradient computation and vari-
ance reduction to address inner-level heterogene-
ity. We complement our theory with experiments
on hyperparameter & hyper-representation learn-
ing and minimax optimization that demonstrate
the benefits of our method in practice.

1. Introduction

In the federated learning (FL) paradigm, multiple clients
cooperate to learn a model under the orchestration of a
central server (McMahan et al., 2017) without directly ex-
changing local client data with the server or other clients.
The locality of data distinguishes FL from traditional dis-
tributed optimization and also motivates new methodologies
to address heterogeneous data across clients. Additionally,
cross-device FL across many edge devices presents addi-
tional challenges since only a small fraction of clients partic-
ipate in each round, and clients cannot maintain state across
rounds (Kairouz et al., 2019).

Traditional distributed SGD methods are often unsuitable in

"Email: tarzanaq@umich.edu, University of Michigan
’Emails: {m1i176@ ,oymak@ece. }ucr.edu, University of
California, Riverside *Email: cthrampo@ece.ubc.ca, Uni-
versity of British Columbia. Correspondence to: Davoud Ataee
Tarzanagh <tarzanag@umich.edu>.

Proceedings of the 39" International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

FL and incur high communication costs. To overcome this
issue, popular FL. methods, such as FEDAVG (McMahan
etal., 2017), use local client updates, i.e. clients update their
models multiple times before communicating with the server
(aka, local SGD). Although FEDAVG has seen great success,
recent works have exposed convergence issues in certain
settings (Karimireddy et al., 2020; Hsu et al., 2019). This
is due to a variety of factors, including client drift, where
local models move away from globally optimal models due
to objective and/or systems heterogeneity.

Existing FL. methods, such as FEDAVG, are widely applied
to stochastic problems with single-level structure. Instead,
many machine learning tasks — such as adversarial learning
(Madry et al., 2017), meta learning (Bertinetto et al., 2018),
hyperparameter optimization (Franceschi et al., 2018), rein-
forcement/imitation learning (Wu et al., 2020; Arora et al.,
2020), and neural architecture search (Liu et al., 2018) — ad-
mit nested formulations that go beyond the standard single-
level structure. Towards addressing such nested problems,
bilevel optimization has received significant attention in
the recent literature (Ghadimi & Wang, 2018; Hong et al.,
2020; Ji et al., 2021); albeit in non-FL settings. On the
other hand, federated versions have been elusive perhaps
due to the additional challenges surrounding heterogeneity,
communication, and inverse Hessian approximation.

Contributions: This paper addresses these challenges and
develops FEDNEST: A federated machinery for nested
problems with provable convergence and lightweight com-
munication. FEDNEST is composed of FEDINN: a feder-
ated stochastic variance reduction algorithm (FEDSVRG)
to solve the inner problem while avoiding client drift, and
FEDOUT: a communication-efficient federated hypergra-
dient algorithm for solving the outer problem. Importantly,
we allow both inner & outer objectives to be finite sums over
heterogeneous client functions. FEDNEST runs a variant
of FEDSVRG on inner & outer variables in an alternating
fashion as outlined in Algorithm 1. We make multiple algo-
rithmic and theoretical contributions summarized below.

e The variance reduction of FEDINN enables robustness
in the sense that local models converge to the globally
optimal inner model despite client drift/heterogeneity
unlike FEDAVG. While FEDINN is similar to
FEDSVRG (Konec¢ny et al., 2018) and FEDLIN (Mi-
tra et al., 2021), we make two key contributions: (i) We
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Figure 1: Depiction of federated bilevel nested optimization and high-level summary of FEDNEST (Algorithm 1). At
outer loop, FEDIHGP uses multiple rounds of matrix-vector products to facilitate hypergradient computation while only
communicating vectors. At inner loop, FEDINN uses FEDSVRG to avoid client drift and find the unique global minima.
Both are crucial for establishing provable convergence of FEDNEST.

leverage the global convergence of FEDINN to ensure
accurate hypergradient computation which is crucial for
our bilevel proof. (ii) We establish new convergence guar-
antees for single-level stochastic non-convex FEDSVRG,
which are then integrated within our FEDOUT.

o Communication efficient bilevel optimization: Within
FEDOUT, we develop an efficient federated method for
hypergradient estimation that bypass Hessian compu-
tation. Our approach approximates the global Inverse
Hessian-Gradient-Product (IHGP) via computation of
matrix-vector products over few communication rounds.

e LFEDNEST: To further improve communication effi-
ciency, we additionally propose a Light-FEDNEST algo-
rithm, which computes hypergradients locally and only
needs a single communication round for the outer update.
Experiments reveal that LFEDNEST becomes very com-
petitive as client functions become more homogeneous.

e Unified federated nested theory: We specialize our
bilevel results to minimax and compositional optimiza-
tion with emphasis on the former. For these, FEDNEST
significantly simplifies and leads to faster convergence.
Importantly, our results are on par with the state-of-the-
art non-federated guarantees for nested optimization lit-
erature without additional assumptions (Table 1).

e We provide extensive numerical experiments ! on
bilevel and minimax optimization problems. These
demonstrate the benefits of FEDNEST, efficiency of
LFEDNEST, and shed light on tradeoffs surrounding com-
munication, computation, and heterogeneity.

2. Federated Nested Problems & FEDNEST

We will first provide the background on bilevel nested prob-
lems and then introduce our general federated method.

'FEDNEST code is available at https://github.com/
ucr—optml/FedNest.

Stochastic Bilevel Optimization

\ Non-Federated
FEDNEST [ ALSET | BSA |
batch size o)
samplesin & | O(kie %) | O(k3e2) | O(k8e~2) | O(rbe2?)
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FEDNEST | ALSET SGDA SMD
batch size o(l) o(1) O(e™ D) N.A.
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Stochastic Compositional Optimization
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batch size O(1)
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O ?)

Table 1: Sample complexity of FEDNEST and comparable non-FL
methods to find an e-stationary point of f: kg := £4,1/114 and
Ky :=Ly1/py. k5 denotes a polynomial function of x,. ALSET
(Chen et al., 2021a), BSA (Ghadimi & Wang, 2018), TTSA (Hong
et al., 2020), SGDA (Lin et al., 2020), SMD (Rafique et al., 2021),
SCGD (Wang et al., 2017), and NASA (Ghadimi et al., 2020).

Notation. For a differentiable function h(x,y) : R% x
R?% — R in which y = y(x) : R — R, we denote
Vh € R% the gradient of h as a function of & and V h,
Vyh the partial derivatives of h with respect to « and y,
respectively. We let Viyh and V%h denote the Jacobian
and Hessian of h, respectively. We consider FL optimization
over m clients and we denote S = {1,...,m}. For vectors
v € R? and matrix M € R%*?, we denote ||v|| and || M ||
the respective Euclidean and spectral norms.

2.1. Preliminaries on Federated Nested Optimization

In federated bilevel learning, we consider the following
nested optimization problem as depicted in Figure 1:

min f(x) = % Yo fi(z,y*(x))

zeR91 m (1a)
subj.to  y*(x) € argmin L > g; (z,y).
yER2
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Algorithm 1 FEDNEST

: Inputs: K, T € N; (z2°,y°) € Ru:+42; FEDINN,
: FEDOUT with stepsizes {(a*, %)} 1}
:fork=0,--- ,K—1do

1

2

3

4: Yk = yk

5: fort =0,---, T —1do

6: y**+1 — FEDINN (wk7 Yk, 51@)
7 end for

8 yk+l = T

9: x" ! = FEDOUT (z*, y* T, oF)
10: end for

Recall that m is the number of clients. Here, to model
objective heterogeneity, each client 7 is allowed to have its
own individual outer & inner functions (f;, g;). Moreover,
we consider a general stochastic oracle model, access to
local functions ( f;, g;) is via stochastic sampling as follows:

fi(w7 y*(w)) = EENCi [fz(w,y*(:c), f)] )

gi(x,y) :=Ecup, [gi(x,y; ()], (1b)

where (£,¢) ~ (C;, D;) are outer/inner sampling distribu-
tions for the i client. We emphasize that for i # 75, the
tuples (fi, g:,Ci, D;) and (f;, g;,C;, D;) can be different.

Example 1 (Hyperparameter tuning). Each client has lo-
cal validation and training datasets associated with objec-
tives (fi, g;)™ corresponding to validation and training
losses, respectively. The goal is finding hyper-parameters x
that lead to learning model parameters y that minimize the

(global) validation loss.

The stochastic bilevel problem (1) subsumes two popular
problem classes with the nested structure: Stochastic Mini-
Max & Stochastic Compositional. Therefore, results on the
general nested problem (1) also imply the results in these
special cases. Below, we briefly describe them.

Minimax optimization. If ¢;(x, y; () := — f;(x, y; §) for
all i € S, the stochastic bilevel problem (1) reduces to the
stochastic minimax problem

m

f@) =~ max SCE[fi (@.5:6). @)

m yeRd2
yerRT o

min

EISING
Motivated by applications in fair beamforming, training
generative-adversarial networks (GANs) and robust ma-
chine learning, significant efforts have been made for solv-
ing (2) including (Daskalakis & Panageas, 2018; Gidel et al.,
2018; Mokhtari et al., 2020; Thekumparampil et al., 2019).
Example 2 (GANs). We train a generative model g5 (-) and

an adversarial model a,(-) using client datasets C;. The
local functions may for example take the form f;(x,y) =

Esvc{logay(s)} + Eznp,,, {log[l — ay(g2(2))]}

Compositional optimization. Suppose f;(x,y;&) =
fi(y; &) and g; is quadratic in y given as g;(x,y;() =

lly — 7i(x; ¢)||?. Then, the bilevel problem (1) reduces to
min - f(x) = 5 30, fi (v (@)
xeR: 3
subj.to  y*(z) =argmin LY, g (wy)

yER2

with fi(y*(z)) = Eeoe,[fi(y*(2); )] and gi(z,y) =
E¢p,[gi(x,y; ¢)]. Optimization problems in the form of
(3) occur for example in model agnostic meta-learning and
policy evaluation in reinforcement learning (Finn et al.,
2017; Ji et al., 2020b; Dai et al., 2017; Wang et al., 2017).

Assumptions. Let z = (z,y) € R Throughout, we
make the following assumptions on inner/outer objectives.

Assumption A (Well-behaved objectives). For all i € [m):
(A1) fi(2),Vfi(2),Vygi(2),V3qgi(z) are LlsoLl51,0g1,

Lg4.2-Lipschitz continuous, respectively; and
(A2) gi(z,y) is pg-strongly convex in y for all x € R%.

Throughout, we use x4 = €41 / fig to denote the condition
number of the inner function g.

Assumption B (Stochastic samples). For alli € [m]:

(B1) Vfi(z;€), Vgi(2;C), V2gi(2; () are unbiased estima-
tors of V fi(2), Vgi(z), V2gi(z), respectively; and

(B2) Their variances are bounded, i.e., E¢[||V fi(2;€) —
VR < of E[l[V2i(2:¢) — V2i(2)|IP] <
g1 and Bc[[|V2gi(2:C) — V2gi(2)[%] < of 5 for
some 05,0, 1, and oy 5.

These assumptions are common in the bilevel optimization
literature (Ghadimi & Wang, 2018; Chen et al., 2021a; Ji
etal., 2021). Assumption A requires that the inner and outer
functions are well-behaved. Specifically, strong-convexity
of the inner objective is a recurring assumption in bilevel
optimization theory implying a unique solution to the inner
minimization in (1).

2.2. Proposed Algorithm: FEDNEST

In this section, we develop FEDNEST, which is formally pre-
sented in Algorithm 1. The algorithm operates in two nested
loops. The outer loop operates in rounds k € {1,..., K}.
Within each round, an inner loop operating for 7 iterations
is executed. Given estimates x* and yk, each iteration
t € {1,...,T} of the inner loop produces a new global
model y***+1 of the inner optimization variable y*(z*) as
the output of an optimizer FEDINN. The final estimate
yk*t1 = y#T of the inner variable is then used by an opti-
mizer FEDOUT to update the outer global model =**1.

The subroutines FEDINN and FEDOUT are gradient-based
optimizers. Each subroutine involves a certain number of
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local training steps indexed by v € {0,...,7; — 1} that
are performed at the i client. The local steps of FEDINN
iterate over local models y; , of the inner variable. Ac-
cordingly, FEDOUT iterates over local models x; ,, of the
global variable. A critical component of FEDOUT is a
communication-efficient federated hypergradient estimation
routine, which we call FEDIHGP. The implementation of
FEDINN, FEDOUT and FEDIHGP is critical to circumvent
the algorithmic challenges of federated bilevel optimization.
In the remaining of this section, we detail the challenges and
motivate our proposed implementations. Later, in Section 3,
we provide a formal convergence analysis of FEDNEST.

2.3. Key Challenge: Federated Hypergradient
Estimation

FEDOUT is a gradient-based optimizer for the outer min-
imization in (1); thus each iteration involves computing
Vi) = (1/m)Y i, Vfi(z,y*(x)). Unlike single-
level FL, the fact that the outer objective f depends ex-
plicitly on the inner minimizer y*(x) introduces a new
challenge. A good starting point to understand the challenge
is the following evaluation of V f(x) in terms of partial
derivatives. The result is well-known from properties of
implicit functions.

Lemma 2.1. Under Assumption A, for all i € [m]:
Vii(z,y*(x)) = V7fi(z,y" () + Vi (z,y"(z)),
where the direct and indirect gradient components are:

VP fi(z,y*(x)) :== Vafi (z,y" (x)) (4a)
vai(m’ y*(az)) = _vazcyg(w’ y*(m))
[V2g(z,y*(@)] " Vyfi (,y7(x)). (@b)

We now use the above formula to describe the two core
challenges of bilevel FL optimization.

First, evaluation of any of the terms in (4) requires access
to the minimizer y* () of the inner problem. On the other
hand, one may at best hope for a good approximation to
y*(x) produced by the inner optimization subroutine. Of
course, this challenge is inherent in any bilevel optimization
setting, but is exacerbated in the FL setting because of client
drift. Specifically, when clients optimize their individual
(possibly different) local inner objectives, the global esti-
mate of the inner variable produced by SGD-type methods
may drift far from (a good approximation to) y*(x). We
explain in Section 2.5 how FEDINN solves that issue.

The second challenge comes from the stochastic nature of
the problem. Observe that the indirect component in (4b)
is nonlinear in the Hessian V3 g(x, y*(x)), complicating
an unbiased stochastic approximation of V f;(x, y*(x)).
As we expose here, solutions to this complication devel-
oped in the non-federated bilevel optimization literature, are

not directly applicable in the FL setting. Indeed, existing
stochastic bilevel algorithms, e.g. (Ghadimi & Wang, 2018),
define Vf(z,y) := V°f(z,y) + V' f(x,y) as a surro-
gate of V f(x, y*(x)) by replacing y*(x) in definition (4)
with an approximation y and using the following stochastic
approximations:

f@,y) = Vol (@, y:f), (5a)
V If(wv y) ~ —Viyg(1§7 Y; CN/Jrl)
N/
N 1 .
{T (I - TVZQ(%y;Cn))}Vyf(%y;ﬁ)- (5b)
(2N —— 9,1
Here, N is drawn from {0, . .., N —1} uniformly at random

(UAR) and {5, C1y- -+ Cnrg1 ) are ii.d. samples. Ghadimi
& Wang (2018); Hong et al. (2020) have shown that us-
ing (5), the inverse Hessian estimation bias exponentially
decreases with the number of samples /V.

One might hope to directly leverage the above approach in
a local computation fashion by replacing the global outer
function f with the individual function f;. However, note
from (4b) and (5b) that the proposed stochastic approxima-
tion of the indirect gradient involves in a nonlinear way
the global Hessian, which is not available at the client 2,
Communication efficiency is one of the core objectives of
FL making the idea of communicating Hessians between
clients and server prohibitive. Is it then possible, in a FL
setting, to obtain an accurate stochastic estimate of the in-
direct gradient while retaining communication efficiency?
In Section 2.4, we show how FEDOUT and its subroutine
FEDIHGP, a matrix-vector products-based (thus, communi-
cation efficient) federated hypergradient estimator, answer
this question affirmatively.

2.4. Outer Optimizer: FEDOUT

This section presents the outer optimizer FEDOUT, formally
described in Algorithm 2. As a subroutine of FEDNEST
(see Line 9, Algorithm 1), ateachround k =0,..., K — 1,
FEDOUT takes the most recent global outer model z* to-
gether the updated (by FEDINN) global inner model y*+!
and produces an update "1, To lighten notation, for a
round %, denote the function’s input as (x,y™) (instead
of (¥, y**1)) and the output as =+ (instead of x**1).
For each client i € S, FEDOUT uses stochastic approxi-
mations of V' f;(z,y™) and V° f;(x, y*), which we call
hi(z,y")and h (x,y™), respectively. The specific choice
of these approximations (see Line 5) is critical and is dis-
cussed in detail later in this section. Before that, we explain

2We note that the approximation in (5) is not the only construc-
tion, and bilevel optimization can accommodate other forms of
gradient surrogates (Ji et al., 2021). Yet, all these approximations
require access (in a nonlinear fashion) to the global Hessian; thus,
they suffer from the same challenge in FL setting.



FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization

Algorithm 2 z+ = FEDOUT (z,y™, o) for stochastic
bilevel and minimax problems
Fl() A wai('7y+; )
;0 =xand o; € (0,0]
Choose N > 1 and set p,» = FEDIHGP (z,y ™, N)
for i € S in parallel do
hi = Fi(x; &) — V2,0i(x,y%;¢6)py
6 h; =Fi(z; &)
7: end for
8 h=I[S|"' Y cshi
9: for i € S in parallel do
10: forv=0,...,7, —1do

A T

11: hi, =Fi(x;;&0) —Fi(x;6,,) + h
12: Tyl = T — il

13: end for

14: end for

15: &t = [S|7F Y L i,

how each client uses these proxies to form local updates of
the outer variable. In each round, starting from a common
global model x; o = , each client 7 performs 7; local steps
(in parallel):

Liv+1 = Tipv — Ch‘hi,u, (6)
and then the server aggregates local models via = =
|S|71 Y, cs ®i,r,- Here, a; € (0, is the local stepsize,

hi,u ::h’I(ma y+) + hD(mv y+)
- hiD(wver) + h?(wi,uver) )

and’ h(.’l},y) = ‘S|71 Zies hl(may)
|S‘71 ZiES (h?(w7y+) - hz‘I(wv y+)) .

The key features of updates (6)—(7) are exploiting past gra-
dients (variance reduction) to account for objective het-
erogeneity. Indeed, the ideal update in FEDOUT would
perform the update x; , 11 = T;, — (hI(:cw, yt) +
h”(x;,,y ")) using the global gradient estimates. But this
requires each client ¢ to have access to both direct and indi-
rect gradients of all other clients—which it does not, since
clients do not communicate between rounds. To overcome
this issue, each client ¢ uses global gradient estimates, i.e.,
hi(x,y™) + hP°(x,y™) from the beginning of each round
as a guiding direction in its local update rule. However,
since both h® and h' are computed at a previous (x, y™),
client 7 makes a correction by subtracting off the stale di-
rect gradient estimate h} (x, y 1) and adding its own local
estimate h} (z;,,y"). Our local update rule in Step 11
of Algorithm 2 is precisely of this form, i.e., h; , approx-
imates h*(x; ,,y") + h°(x;,,y") via (7). Note here
that the described local correction of FEDOUT only applies

)

Algorithm 3 py = FEDIHGP (z,y™, N): Federated
approximation of inverse-Hessian-gradient product

Select N’ € {0,...,N — 1} UAR.
Select Sy € S UAR.
for i € Sy in parallel do
pio = Vyfi(z,y";&0)
end for
Po = %VSO\A >ies, Pi0
if N’ = 0 then
Return PN’
end if
Select Sy, ...,Sn € S UAR.
forn=1,...,N'do
for i € S, in parallel do
DPin = (I - gg%v%gz(ma y+; Cz,n)) Pn—-1
end for
Pn = ‘Sn|_1 ZiGSn Pin
. end for

—_ =
Y R RN

_

p—
SANRANE

to the direct gradient component (the indirect component
would require global Hessian information). An alterantive
approach leading to LFEDNEST is discussed in Section 2.6.

FEDOUT applied to special nested problems. Algo-
rithm 2 naturally allows the use of other optimizers for
minimax & compositional optimization. For example,
in the minimax problem (2), the bilevel gradient com-
ponents are VPf;(x,y*(x)) = V.fi(x,y*(x)) and
Vifi(z,y*(x)) = 0 for all i € S. Hence, the hyper-
gradient estimate (7) reduces to

hi,u = hD(maer) - h?(ﬂ?,y+) + th(wi,l/7y+)' (8)

For the compositional problem (3), Hessian becomes the
identity matrix, the direct gradient is the zero vector, and
Vayg(z,y) = —(1/m) >~ Vri(xz)". Hence, h; =
Ly 1Vri(x) " po foralli € S.

More details on these special cases are provided in Appen-
dices D and E.

Indirect gradient estimation & FEDIHGP. Here, we aim
to address one of the key challenges in nested FL: inverse
Hessian gradient product. Note from (5b) that the proposed
stochastic approximation of the indirect gradient involves in
anonlinear way the global Hessian, which is not available at
the client. To get around this, we use a client sampling strat-
egy and recursive reformulation of (5b) so that V' f;(x, y)
can be estimated in an efficient federated manner. In par-
ticular, given N € N, we select N’ € {0..., N — 1} and
So,-..,Snys € SUAR. For all 7 € S, we then define

hi(x,y) = —Va,gi(%,y; G)pN, (%a)

where py: = \So|_1Hy Zieso Vyfz‘(%'!/%fi,O) and H,



FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization

is the approximate inverse Hessian:

N & S
ggi };[1 <I B m ;Vygi(ac, Y; Ci,n)). (9b)

The subroutine FEDIHGP provides a recursive strategy to
compute py- and FEDOUT multiplies py+ with the global
Jacobian to drive an indirect gradient estimate. Importantly,
these approximations require only matrix-vector products
and vector communications.

Lemma 2.2. Under Assumptions A and B, the approximate
inverse Hessian H,, defined in (9b) satisfies the following
for any x and y:

|3ote. o) iy < L (521)

Eyw [H [Vig(z,y)] " - ﬁym < P

(10)
Here, W := {8,,§i,Gi:i,0:Cin |1 € Spy 0<n < N'}L
Further, for all i € S, hi(x,y) defined in (9a) satisfies

|Ew [h](z,y)] = V' fi(z,y)|| < b, (11)

where b := kgls1 (kg — 1)/f<;g)N.

2.5. Inner Optimizer: FEDINN

In FL, each client performs multiple local training steps in
isolation on its own data (using for example SGD) before
communicating with the server. Due to such local steps,
FEDAVG suffers from a client-drift effect under objective
heterogeneity; that is, the local iterates of each client drift-
off towards the minimum of their own local function. In
turn, this can lead to convergence to a point different from
the global optimum y* () of the inner problem; e.g., see
(Mitra et al., 2021). This behavior is particularly undesirable
in a nested optimization setting since it directly affects the
outer optimization; see, e.g. (Liu et al., 2021, Section 7).

In light of this observation, we build on the recently
proposed FEDLIN (Mitra et al.,, 2021) which improves
FEDSVRG (Konecny et al., 2018) to solve the inner prob-
lem; see Algorithm 4. For each i € S, let g;(x,y) de-
note an unbiased estimate of the gradient V,g;(x,y). In
each round, starting from a common global model y, each
client ¢ performs 7; local SVRG-type training steps in par-
allel: Y; 11 = Yip — Biqi, Where g, := qi(T,Yi,) —
gi(z,y) + q(z,y), 8; € (0,0] is the local inner step-
size, and q(x,y) = |S|7' Y, .5 @i(,y). We note that
for the optimization problems (1), (2), and (3), g;(x, y; )
is equal to Vygi(@, Yiv;Gv)s —Vyfi(x, ¥iv; &), and
Y. — Ti(x; (), respectively; see Appendices C-E.

Algorithm 4 y* = FEDINN (z,y, 8)

Gi() + Vygi(=,-) (bilevel) , —V,, fi(x, -) (minimax)
: Y0 =yand §; € (0, 0]
: for i € S in parallel do
a; = Gi(y; ()
end for
cq=18"" Vs @i
: for i € S in parallel do
forv=0,...,7, —1do
i, =Gi(¥i;:Co) —Gi(y;:Giv) + g
Yiv+l = Yiv — 5z’¢1i,u
end for
: end for

syt =187t > ies Yimi

R A A R ol S T

—_ o

2.6. Light-FEDNEST: Communication Efficiency via
Local Hypergradients

Each FEDNEST epoch k requires 27" + N + 3 communica-
tion rounds as follows: 27 rounds for SVRG of FEDINN, N
iterations for inverse Hessian approximation within FEDI-
HGP and 3 additional aggregations. Note that, these are
vector communications and we fully avoid Hessian com-
munication. In Appendix A, we also propose simplified
variants of FEDOUT and FEDIHGP, which are tailored to
homogeneous or high-dimensional FL settings. These algo-
rithms can then either use local Jacobian / inverse Hessian
or their approximation, and can use either SVRG or SGD.

Light-FEDNEST: Specifically, we propose LFEDNEST
where each client runs IHGP locally. This reduces the num-
ber of rounds to 7" + 1, saving 7'+ N + 2 rounds (see
experiments in Section 4 for performance comparison and
Appendix A for further discussion.)

3. Convergence Analysis for FEDNEST

In this section, we present convergence results for FEDNEST.
All proofs are relegated to Appendices C-E.

Theorem 3.1. Suppose Assumptions A and B hold. Further,

assume of = ay/7; and BF = By, /7; forall i € S, where

k=

Bay (. a

s Qp =ming ag, G2, 03, —= (12)
T’ VE

for some positive constants &, &z, 03, &, and (3 indepen-

dent of K. Then, for any T > 1, the iterates {(z*, y*)} x>0
generated by FEDNEST satisfy

Br =

(@max(ag)l, 05 2,07)

VK
1
Inin(&l, Qg, O_lg)K

1KIE viEH|] = o
}é [ll fx )H}*

+b2),
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where b = rgls((kg — 1)//<9)N and N is the input pa-
rameter to FEDIHGP.

Corollary 3.1 (Bilevel). Under the same conditions as in
Theorem 3.1, if N = O(k4log K) and T = O(ky), then

> e fivsehi] -o (5 + 25 )
= T = —+—=.
K — K VK
For e-accurate stationary point, we need K = O(HZE_Q).

Above, we choose N o r, log K to guarantee b* < 1/VK.
In contrast, we use 7' 2> n‘; inner SVRG epochs. From
Section 2.6, this would imply the communication cost is
dominated by SVRG epochs N and O(mg) rounds.

From Corollary 3.1, we remark that FEDNEST matches the
guarantees of centralized alternating SGD methods, such as
ALSET (Chen et al., 2021a) and BSA (Ghadimi & Wang,
2018), despite federated setting, i.e. communication chal-
lenge, heterogeneity in the client objectives, and device
heterogeneity.

3.1. Minimax Federated Learning

We focus on special features of federated minimax prob-
lems and customize the general results to yield improved
convergence results for this special case. Recall from (2)
that g;(x,y) = —fi(x,y) which implies that b = 0 and
following Assumption A, f;(x,y) is ps—strongly concave
in y for all x.

Corollary 3.2 (Minimax). Denote ky = {51/ s. Assume
same conditions as in Theorem 3.1 and T = O(k f). Then,

2
Ky

1 K 2 K
?;E [Hw(mk)u ] -0 <K+\/§{> :

Corrollary 3.2 implies that for the minimax problem, the
convergence rate of FEDNEST to the stationary point of f
is O(1/vK). Again, we note this matches the convergence
rate of non-FL algorithms (see also Table 1) such as SGDA
(Lin et al., 2020) and SMD (Rafique et al., 2021).

3.2. Compositional Federated Learning

Observe that in the compositional problem (3), the outer
function is f;(x,y;&) = fi(y;£) and the inner function
is gi(@,y;¢) = L|ly — ri(w; Q)| forall i € S. Hence,
b=0and K, = 1.

Corollary 3.3 (Compositional). Under the same conditions
as in Theorem 3.1, if we select T' = 1 in (12). Then,

F e lvser] -0 ()

Corrollary 3.3 implies that for the compositional problem
(3), the convergence rate of FEDNEST to the stationary point
of f is O(1/vK). This matches the convergence rate of
non-federated stochastic algorithms such as SCGD (Wang
et al., 2017) and NASA (Ghadimi et al., 2020) (Table 1).

3.3. Single-Level Federated Learning

Building upon the general results for stochastic nonconvex
nested problems, we establish new convergence guaran-
tees for single-level stochastic non-convex federated SVRG
which is integrated within our FEDOUT. Note that in the
single-level setting, the optimization problem (1) reduces to

min
zeR%

1 m
fla) = EZ;J% () (13)
with f;(x) := Eeng, [fi(; €)], where € ~ C; is sampling
distribution for the i client.
We make the following assumptions on (13) that are coun-
terparts of Assumptions A and B.

Assumption C (Lipschitz continuity). For all i € [m),
V fi(x) is L¢-Lipschitz continuous.

Assumption D (Stochastic samples). For all i € [m)],
V fi(x; &) is an unbiased estimator of V f;(x) and its vari-
ance is bounded, i.e., E¢[||V fi(z;€) — V fi(x)]|?] < O'J%.

Theorem 3.2 (Single-Level). Suppose Assumptions C and
D hold. Further, assume of = ay /7 foralli € S, where

S

. . a
o) = min {ozl, —
\/K}

for some &, & > 0. Then,
K Ar 2
i k112 - Af ?4— O'f
K;E[Hw(m )H}_o<dlK+ o= )

where Ay = f(z%) — E[f (X))

(14)

Qi

Theorem 3.2 extends recent results by (Mitra et al., 2021)
from the stochastic strongly convex to the stochastic noncon-
vex setting. The above rate is also consistent with existing
single-level non-FL guarantees (Ghadimi & Lan, 2013).

4. Numerical Experiments

In this section, we numerically investigate the impact of sev-
eral attributes of our algorithms on a hyper-representation
problem (Franceschi et al., 2018), a hyper-parameter opti-
mization problem for loss function tuning (Li et al., 2021),
and a federated minimax optimization problem.

4.1. Hyper-Representation Learning

Modern approaches in meta learning such as MAML (Finn
et al., 2017) and reptile (Nichol & Schulman, 2018) learn
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performance.

Figure 2: Hyper-representation experiments on a 2-layer MLP and MNIST dataset.

representations (that are shared across all tasks) in a bilevel
manner. Similarly, the hyper-representation problem opti-
mizes a classification model in a two-phased process. The
outer objective optimizes the model backbone to obtain
better feature representation on validation data. The inner
problem optimizes a header for downstream classification
tasks on training data. In this experiment, we use a 2-layer
multilayer perceptron (MLP) with 200 hidden units. The
outer problem optimizes the hidden layer with 157,000 pa-
rameters, and the inner problem optimizes the output layer
with 2,010 parameters. We study both i.i.d and non-i.i.d.
ways of partitioning the MNIST data exactly following FE-
DAVG (McMahan et al., 2017), and split each client’s data
evenly to train and validation datasets. Thus, each client has
300 train and 300 validation samples.

Figure 2 demonstrates the impact on test accuracy of several
important components of FEDNEST. Figure 2a compares
FEDNEST and LFEDNEST. Both algorithms perform well
on the i.i.d. setup, while on the non-i.i.d. setup, FEDNEST
achieves i.i.d. performance, significantly outperforming
LFEDNEST. These findings are in line with our discussions
in Section 2.6. LFEDNEST saves on communication rounds
compared to FEDNEST and performs well on homogeneous
clients. However, for heterogeneous clients, the isolation
of local Hessian in LFEDNEST (see Algorithm 5 in Ap-
pendix A) degrades the test performance. Next, Figure 2b
demonstrates the importance of SVRG in FEDINN algo-
rithm for heterogeneous data (as predicted by our theoretical
considerations in Section 2.5). To further clarify the algo-
rithm difference in Figures 2b and 3a, we use FEDNESTsGp
to denote the FEDNEST algorithm where SGD is used in
FEDINN. Finally, Figure 2c elucidates the role of local
epoch 7 in FEDOUT: larger 7 saves on communication and
improves test performance by enabling faster convergence.

4.2. Loss Function Tuning on Imbalanced Dataset

We use bilevel optimization to tune a loss function for learn-
ing an imbalanced MNIST dataset. We aim to maximize
the class-balanced validation accuracy (which helps mi-

100 100
95 95

90
85 7 85
/

80

—— FedNest, non-iid
FedNestsgp, non-iid

—— FedNest, iid

—— FedNestscp, iid

7011 70
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Balanced Test Accuracy
@
3

0 200 400 600 800 1000 805 1000 2000 3000 4000 5000 6000
FEDNEST epochs Communication rounds

(a) FEDNEST achieves simi- (b) SVRG in FEDINN provides

lar performance as centralized better convergence and stabil-

bilevel loss function tuning. ity especially in non-iid setup.

Figure 3: Loss function tuning on a 3-layer MLP and im-
balanced MNIST dataset to maximize class-balanced test
accuracy. The brown dashed line is the accuracy on non-
federated bilevel optimization (Li et al., 2021), and the black
dashed line is the accuracy without tuning the loss function.

nority/tail classes). Following the problem formulation in
(Li et al., 2021) we tune the so-called VS-loss function
(Kini et al., 2021) in a federated setting. In particular, we
first create a long-tail imbalanced MNIST dataset by ex-
ponentially decreasing the number of examples per class
(e.g. class 0 has 6,000 samples, class 1 has 3,597 samples
and finally, class 9 has only 60 samples). We partition the
dataset to 100 clients following again FEDAVG (McMahan
et al.,, 2017) on both i.i.d. and non-i.i.d. setups. Differ-
ent from the hyper-representation experiment, we employ
80%-20% train-validation on each client and use a 3-layer
MLP model with 200, 100 hidden units, respectively. It
is worth noting that, in this problem, the outer objective f
(aka validation cost) only depends on the hyperparameter
@ through the optimal model parameters y*(x); thus, the
direct gradient V® f;(x, y*(x)) is zero for all i € S.

Figure 3 displays test accuracy vs epochs/rounds for our fed-
erated bilevel algorithms. The horizontal dashed lines serve
as centralized baselines: brown depicts accuracy reached by
bilevel optimization in non-FL setting, and, black depicts
accuracy without any loss tuning. Compared to these, Fig-
ure 3a shows that FEDNEST achieves near non-federated
performance. In Figure 3b, we investigate the key role of
SVRG in FEDINN by comparing it with possible alternative
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Figure 4: FEDNEST converges linearly despite heterogene-
ity. LFEDNEST slightly outperforms FEDAVG-S.

implementation that uses SGD-type updates. The figure
confirms our discussion in Section 2.5: SVRG offers sig-
nificant performance gains that are pronounced by client
heterogeneity.

4.3. Federated Minimax Problem

We conduct experiments on the minimax problem (2) with
1 2 T T A 2
fim,y) == |5llyl" —biy +y A| + S|,

to compare standard FEDAVG saddle-point (FEDAVG-
S) method updating (x,y) simultaneously (Hou et al.,
2021) and our alternative approaches (LFEDNEST and
FEDNEST). This is a saddle-point formulation of
minmeRdl %H% ZZZI Ax — szQ We set A\ = 10, b; =
b, — LS b, and A; = t;I, where b} ~ N(0, s*1,),
and ¢; is drawn UAR over (0,0.1). Figure 4 shows that
LFEDNEST and FEDNEST outperform FEDAVG-S thanks
to their alternating nature. FEDNEST significantly improves
the convergence of LFEDNEST due to controlling client-
drift. To our knowledge, FEDNEST is the only alternating
federated SVRG for minimax problems.

5. Related Work

Federated learning. FEDAVG was first introduced by
McMahan et al. (2017), who showed it can dramatically
reduce communication costs. For identical clients, FEDAVG
coincides with local SGD (Zinkevich et al., 2010) which has
been analyzed by many works (Stich, 2019; Yu et al., 2019;
Wang & Joshi, 2018). Recently, many variants of FEDAVG
have been proposed to tackle issues such as convergence and
client drift. Examples include FEDPROX (Li et al., 2020b),
SCAFFOLD (Karimireddy et al., 2020), FEDSPLIT (Pathak
& Wainwright, 2020), FEDNOVA (Wang et al., 2020), and,
the most closely relevant to us FEDLIN (Mitra et al., 2021).
A few recent studies are also devoted to the extension of
FEDAVG to the minimax optimization (Rasouli et al., 2020;
Deng et al., 2020) and compositional optimization (Huang
et al., 2021). In contrast to these methods, FEDNEST makes
alternating SVRG updates between the global variables =
and y, and yields sample complexity bounds and batch size
choices that are on par with the non-FL guarantees (Table 1).
Evaluations in the Appendix H.1 reveal that both alternating

updates and SVRG provides a performance boost over these
prior approaches.

Bilevel optimization. This class of problems was first in-
troduced by (Bracken & McGill, 1973), and since then, dif-
ferent types of approaches have been proposed. See (Sinha
et al., 2017; Liu et al., 2021) for surveys. Earlier works
in (Aiyoshi & Shimizu, 1984; Lv et al., 2007) reduced
the bilevel problem to a single-level optimization prob-
lem. However, the reduced problem is still difficult to
solve due to for example a large number of constraints.
Recently, more efficient gradient-based algorithms have
been proposed by estimating the hypergradient of V f(x)
through iterative updates (Maclaurin et al., 2015; Franceschi
et al., 2017; Domke, 2012; Pedregosa, 2016). The asymp-
totic and non-asymptotic analysis of bilevel optimization
has been provided in (Franceschi et al., 2018; Shaban
etal., 2019; Liu et al., 2020) and (Ghadimi & Wang, 2018;
Hong et al., 2020), respectively. There is also a line of
work focusing on minimax optimization (Nemirovski, 2004;
Daskalakis & Panageas, 2018) and compositional optimiza-
tion (Wang et al., 2017). Closely related to our work are
(Lin et al., 2020; Rafique et al., 2021; Chen et al., 2021a)
and (Ghadimi et al., 2020; Chen et al., 2021a) which provide
non-asymptotic analysis of SGD-type methods for minimax
and compositional problems with outer nonconvex objective,
respectively.

A more in-depth discussion of related work is given in Ap-
pendix B. We summarize the complexities of different meth-
ods for FL/non-FL bilevel optimization in Table 1.

6. Conclusions

We presented a new class of federated algorithms for solv-
ing general nested stochastic optimization spanning bilevel
and minimax problems. FEDNEST runs a variant of fed-
erated SVRG on inner & outer variables in an alternating
fashion. We established provable convergence rates for
FEDNEST under arbitrary client heterogeneity and intro-
duced variations for min-max and compositional problems
and for improved communication efficiency (LFEDNEST).
We showed that, to achieve an e-stationary point of the
nested problem, FEDNEST requires O(e~2) samples in to-
tal, which matches the complexity of the non-federated
nested algorithms in the literature.
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APPENDIX
FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization

The appendix is organized as follows: Section A introduces the LFEDNEST algorithm. Section B discusses the related
work. We provide all details for the proof of the main theorems in Sections C, D, E, and F for federated bilevel, minimax,
compositional, and single-level optimization, respectively. In Section G, we state a few auxiliary technical lemmas. Finally,
in Section H, we provide the detailed parameters of our numerical experiments (Section 4) and then introduce further
experiments.

A. LFEDNEST

Implementing FEDINN and FEDOUT naively by using the global direct and indirect gradients and sending the local
information to the server that would then calculate the global gradients leads to a communication and space complexity of
which can be prohibitive for large-sized d; and d3. One can consider possible local variants of FEDINN and FEDOUT tailore
to such scenarios. Each of the possible algorithms (See Table 2) can then either use the global gradient or only the local
gradient, either use a SVRG or SGD.

Algorithm 5 x© = LFEDOUT (x,y, o) for stochastic bilevel , minimax , and compositional problems

I: @i0=xand oy € (0, foreachi € S.

2: Choose N € {1,2,...} (the number of terms of Neumann series).
3: for i € S in parallel do

4: forv=0,...,7 —1do

5: Select N' € {0,..., N — 1} UAR.
N/
6: hiw = Vafi(®iv, Y;6i0) — %Viygi(wi,wy;(w) l:[1 (I - ﬁvigi(wi,u,y;Ci,n))vmfi(yi,u,y,&,u)
7: hi, =Vafi(®iv,y; &)
8: hiw = Vri(@iv; Gw) ' Vi Yiv; i)
9: Liv+l = iy — aihi,u
10: end for
11: end for

12: &t = S|7' Y, s @im

Algorithm 6 y* = LFEDINN (x, y, 3) for stochastic bilevel , minimax , and compositional problems

: yi0=yand B; € (0,5] foreachi € S.
: for i € S in parallel do
forv =0,...,7, —1do

Qi = Vygi(2, Yiv; Giv) Qi = =V fi(®, Yivi&in) Qv = Yiw — 7i(2; i)
Yiv+l = Yiw — BiGiw
end for
end for

y+ = \Slfl ZiES Yi

PRI kW
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definition properties
outer inner global global global # communication
optimization  optimization outer gradient IHGP inner gradient rounds
Algorithm 2 Algorithm 4
FEDNEST (SVRGonz) (SVRG ony) yes yes yes 2T+ N +3
Algorithm 5 Algorithm 6
LFEDNEST (SGD on @) (SGD on y) no no no T+1
Algorithm 2 Algorithm 6
FEDNESTsGDp (SVgR Gonz) (S éD on y) yes yes no T+N+3
LFEDNESTyRG Algorithm 5 Algorithm 4 o o yes 9T 11

(SGDonz) (SVRGony)

Table 2: Definition of studied algorithms by using inner/outer optimization algorithms and server updates and resulting
properties of these algorithms. 7" and NV denote the number of inner iterations and terms of Neumann series, respectively.

B. Related Work

We provide an overview of the current literature on non-federated nested (bilevel, minmimax, and compositional) optimiza-
tion and federated learning.

B.1. Bilevel Optimization

A broad collection of algorithms have been proposed to solve bilevel nonlinear programming problems. Aiyoshi & Shimizu
(1984); Edmunds & Bard (1991); Al-Khayyal et al. (1992); Hansen et al. (1992); Shi et al. (2005); Lv et al. (2007); Moore
(2010) reduce the bilevel problem to a single-level optimization problem using for example the Karush-Kuhn-Tucker (KKT)
conditions or penalty function methods. A similar idea was also explored in Khodak et al. (2021) where the authors provide
a reformulation of the hyperparameter optimization (bilevel objective) into a single-level objective and develop a federated
online method to solve it. However, the reduced single-level problem is usually difficult to solve (Sinha et al., 2017).

In comparison, alternating gradient-based approaches designed for the bilevel problems are more attractive due to their
simplicity and effectiveness. This type of approaches estimate the hypergradient V f(x) for iterative updates, and are
generally divided to approximate implicit differentiation (AID) and iterative differentiation (ITD) categories. ITD-based
approaches (Maclaurin et al., 2015; Franceschi et al., 2017; Finn et al., 2017; Grazzi et al., 2020) estimate the hypergradient
V f(x) in either a reverse (automatic differentiation) or forward manner. AID-based approaches (Pedregosa, 2016; Grazzi
et al., 2020; Ghadimi & Wang, 2018) estimate the hypergradient via implicit differentiation which involves solving a linear
system. Our algorithms follow the latter approach.

Theoretically, bilevel optimization has been studied via both asymptotic and non-asymptotic analysis (Franceschi et al.,
2018; Liu et al., 2020; Li et al., 2020a; Shaban et al., 2019; Ghadimi & Wang, 2018; Ji et al., 2021; Hong et al., 2020). In
particular, (Franceschi et al., 2018) provided the asymptotic convergence of a backpropagation-based approach as one of
ITD-based algorithms by assuming the inner problem is strongly convex. (Shaban et al., 2019) gave a similar analysis for a
truncated backpropagation approach. Non-asymptotic complexity analysis for bilevel optimization has also been explored.
Ghadimi & Wang (2018) provided a finite-time convergence analysis for an AID-based algorithm under three different
loss geometries, where f(-) is either strongly convex, convex or nonconvex, and g(, -) is strongly convex. (Ji et al., 2021)
provided an improved non-asymptotic analysis for AID- and ITD-based algorithms under the nonconvex-strongly-convex
geometry. (Ji & Liang, 2021) provided the first-known lower bounds on complexity as well as tighter upper bounds. When
the objective functions can be expressed in an expected or finite-time form, (Ghadimi & Wang, 2018; Ji et al., 2021; Hong
et al., 2020) developed stochastic bilevel algorithms and provided the non-asymptotic analysis. (Chen et al., 2021a) provided
a tighter analysis of SGD for stochastic bilevel problems. (Chen et al., 2021b; Guo et al., 2021; Khanduri et al., 2021; Ji
et al., 2020a; Huang & Huang, 2021; Dagréou et al., 2022) studied accelerated SGD, SAGA, momentum, and adaptive-type
bilevel optimization methods. More results can be found in the recent review paper (Liu et al., 2021) and references therein.
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B.1.1. MINIMAX OPTIMIZATION

Minimax optimization has a long history dating back to (Brown, 1951). Earlier works focused on the deterministic convex-
concave regime (Nemirovski, 2004; Nedi¢ & Ozdaglar, 2009). Recently, there has emerged a surge of studies of stochastic
minimax problems. The alternating version of the gradient descent ascent (SGDA) has been studied by incorporating the
idea of optimism (Daskalakis & Panageas, 2018; Gidel et al., 2018; Mokhtari et al., 2020; Yoon & Ryu, 2021). (Rafique
et al., 2021; Thekumparampil et al., 2019; Nouiehed et al., 2019; Lin et al., 2020) studied SGDA in the nonconvex-strongly
concave setting. Specifically, the O(e~2) sample complexity has been established in (Lin et al., 2020) under an increasing
batch size O(e~1). Chen et al. (2021a) provided the O(e~2) sample complexity under an O(1) constant batch size. In the
same setting, accelerated GDA algorithms have been developed in (Luo et al., 2020; Yan et al., 2020; Tran Dinh et al.,
2020). Going beyond the one-side concave settings, algorithms and their convergence analysis have been studied for
nonconvex-nonconcave minimax problems with certain benign structure; see e.g., (Gidel et al., 2018; Liu et al., 2019; Yang
et al., 2020; Diakonikolas et al., 2021; Barazandeh et al., 2021b). A comparison of our results with prior work can be found
in Table 1.

B.1.2. COMPOSITIONAL OPTIMIZATION

Stochastic compositional gradient algorithms (Wang et al., 2017; 2016) can be viewed as an alternating SGD for the special
compositional problem. However, to ensure convergence, the algorithms in (Wang et al., 2017; 2016) use two sequences of
variables being updated in two different time scales, and thus the iteration complexity of (Wang et al., 2017) and (Wang
et al., 2016) is worse than 0(6_2) of the standard SGD. Our work is closely related to ALSET (Chen et al., 2021a), where
an O (e ?2) sample complexity has been established in a non-FL setting.

B.2. Federated Learning

FL involves learning a centralized model from distributed client data. Although this centralized model benefits from all
client data, it raises several types of issues such as generalization, fairness, communication efficiency, and privacy (Mohri
et al., 2019; Stich, 2019; Yu et al., 2019; Wang & Joshi, 2018; Stich & Karimireddy, 2019; Basu et al., 2019; Nazari
et al., 2019; Barazandeh et al., 2021a). FEDAVG (McMahan et al., 2017) can tackle some of these issues such as high
communication costs. Many variants of FEDAVG have been proposed to tackle other emerging issues such as convergence
and client drift. Examples include adding a regularization term in the client objectives towards the broadcast model (Li et al.,
2020b), proximal splitting (Pathak & Wainwright, 2020; Mitra et al., 2021), variance reduction (Karimireddy et al., 2020;
Mitra et al., 2021) and adaptive updates (Reddi et al., 2020). When clients are homogeneous, FEDAVG is closely related to
local SGD (Zinkevich et al., 2010), which has been analyzed by many works (Stich, 2019; Yu et al., 2019; Wang & Joshi,
2018; Stich & Karimireddy, 2019; Basu et al., 2019).

In order to analyze FEDAVG in heterogeneous settings, (Li et al., 2020b; Wang et al., 2019; Khaled et al., 2019; Li et al., 2019)
derive convergence rates depending on the amount of heterogeneity. They showed that the convergence rate of FEDAVG gets
worse with client heterogeneity. By using control variates to reduce client drift, the SCAFFOLD method (Karimireddy
et al., 2020) achieves convergence rates that are independent of the amount of heterogeneity. Relatedly, FEDNOVA (Wang
et al., 2020) and FEDLIN (Mitra et al., 2021) provided the convegence of their methods despite arbitrary local objective and
systems heterogeneity. In particular, (Mitra et al., 2021) showed that FEDLIN guarantees linear convergence to the global
minimum of deterministic objective, despite arbitrary objective and systems heterogeneity. As explained in the main body,
our algorithms critically leverage these ideas after identifying the additional challenges that client drift brings to federated
bilevel settings.

B.2.1. FEDERATED MINIMAX LEARNING

A few recent studies are devoted to federated minimax optimization (Rasouli et al., 2020; Reisizadeh et al., 2020; Deng
et al., 2020; Hou et al., 2021). In particular, (Reisizadeh et al., 2020) consider minimax problem with inner problem
satisfying PL condition and the outer one being either nonconvex or satisfying PL. However, the proposed algorithm
only communicates x to the server. Xie et al. (2021) consider a general class of nonconvex-PL minimax problems in the
cross-device federated learning setting. Their algorithm performs multiple local update steps on a subset of active clients
in each round and leverages global gradient estimates to correct the bias in local update directions. Deng & Mahdavi
(2021) studied federated optimization for a family of smooth nonconvex minimax functions. Shen et al. (2021) proposed a
distributed minimax optimizer called FEDMM, designed specifically for the federated adversary domain adaptation problem.
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Hou et al. (2021) proposed a SCAFFOLD saddle point algorithm (SCAFFOLD-S) for solving strongly convex-concave
minimax problems in the federated setting. To the best of our knowledge, all the aforementioned developments require a
bound on the heterogeneity of the local functions, and do not account for the effects of systems heterogeneity which is also
a key challenge in FL. In addition, our work proposes the first alternating federated SVRG-type algorithm for minimax
problems with iteration complexity that matches to the non-federated setting (see, Table 1).

C. Proof for Federated Bilevel Optimization

Throughout the proof, we will use F;, " to denote the filtration that captures all the randomness up to the v-th local step

of client 7 in inner round ¢ and outer round k. With a slight abuse of notation, Ff fl is to be interpreted as F**, Vi € S.
For simplicity, we remove subscripts k and ¢ from the definition of stepsize and model parameters. For example,  and =™

denote 2* and x**1, respectively. We further set
Ri(@i y*) = B[R,y Fiva (1)
Proof of Lemma 2.1
Proof. Given x € R%, the optimality condition of the inner problem in (1) is Vyg(x,y) = 0. Now, since
Va (Vyg(z,y)) = 0, we obtain
=> (V2,9 (,y" (@) + Vy* (2)Vag; (z.y" (z))),
j=1

which implies
m

(vaygz z,y"( )(ivygﬂcy ))>_1~

The results follows from a simple application of the chain rule to f as follows:

O
Proof of Lemma 2.2
Proof. By independency of N’, Cin» and S,,, and under Assumption B, we have
- N Y =
o 7] =B | T 1 > Patemicn
w |Hy| =Ew fmrg €g71‘8n|; 29i(®,Y; Cin)
N X =
= ]EN’ ]E'SlzN’ ]EC r H (I — ﬁ ZVZgl(:E,y, gzn))
91 n=y 9115l =
N-1 n
=05 D [I— 7 Vy9(, y)} , (16)
n=0

where the last equality follows from the uniform distribution of N'.

Note that since I =7 V2 vYi =7 H for all ¢ € [m] due to Assumption A, we have

N N e /5.
Ew [llHyll] <. | I - o X Vas@wiin)
9.1 ot g,1| £g1]Sn] &
N’ N-1 n
< NE Ng _ 1 p“g 1
Sl Lt Bt s Dl Ll B
9,1 9,1 9.1 12, 9,1 Hg

The reminder of the proof is similar to (Ghadimi & Wang, 2018). O
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The following lemma extends (Ghadimi & Wang, 2018, Lemma 2.2) and (Chen et al., 2021a, Lemma 2) to the finite-sum
problem (1). Proofs follow similarly by applying their analysis to the inner & outer functions ( f;, g;), Vi € S.

Lemma C.1. Under Assumptions A and B, for all x1, x5:

IVf(@1) = Vf(@2)|| < Lyll@r — 22, (17a)
ly*(@1) — " (®2)[| < Lyllzy — 2, (17b)
VY™ (1) = Vy* (@2)[| < Lyz |21 — 22, (17¢)

Also, foralli € S, v € {0,...,7;, — 1}, &1, 2, and y, we have:

IVfi(z1,y) = Vfi(z1,y" (1) < Mylly*(21) —yl, (17d)
IV fi(x2,y) = V fi(x1,y)|| < Myllxe — 2], (17e)
E [||hi(2i.,y) — hi(ziw, y)|?] <67, (176)
E [||hi(2;, y")|1?|Fip-1] < D (17g)

Here,

Ly =21 = 0(x,),

Hg
lyo+ L, /
Lyq = 22T 027y g=21 <€g72 T 6972Ly) = O(k),
Hg Hy
Ly l Lyt
e s B ()
o Hg Hg (18)
by1(ls1+ M { ly1l
Lymtyy s a0 | o (ggg N 9192> — O(?),
Hg Hg Hg
i 3
a]% = OJ% + E ((0,20 + 5?,0)(03,2 + 26;,1) + 0?63’1)’
g

. ¢ 1\*
D} := (ff,o + 2+ fg,lff,1> +57 = 0(k),
Hg Hg
where the other constants are provided in Assumptions A and B.

C.1. Descent of Outer Objective

The following lemma characterizes the descent of the outer objective.

Lemma C.2 (Descent Lemma). Suppose Assumptions A and B hold. Further, assume 7; > 1 and o; = o/ 7;,Vi € S for
some positive constant . Then, FEDOUT guarantees:

Emm_E[f<m)]g—gm[||Vf< 2)?] + = Yo
1 =1
%ZTZ @iy
+3a<b2+Mf lly* — v fZ iE i — 2| ]>

19)

«

Proof. 1t follows from Algorithm 2 that x; o = ¢, V¢ € S, and

m Ti—1
1 i
T=z- o > i Y hi(mi,yh). (20)
i=1 v=0



FEDNEST: Federated Bilevel, Minimax, and Compositional Optimization

Now, using the Lipschitz property of V f in Lemma C.1, we have
L
E[f(z")] ~E[f(@)] <E[" — 2 Vf@)] + B [lz* - x|’

K Z%Zhwmy f<w>>] o

Ti—1 2

LfIE H ZQZZh a:zl,,y

In the following, we bound each term on the right hand side (RHS) of (21). For the first term, we have

Ti—1 Ti—1
< Zalzh iyt W(w)ﬂ [ Z%ZE (@i, yt Vf<m>>|ay_1]]
[< Zaz i h w’L l/?y Vf(:r)>‘|

mooT—l 2 (22)
__%g ;Zl > hwwy)| | - ZE[IV/@I]
9B |32 L3 R ) - VH) 1
2 Mo ’

where the first equality follows from the law of total expectation; the second equality uses the fact that h;(z; ,, y ")
E [hi(x;,,y")|F;—1]; and the last equality is obtained from our assumption o; = a/7;, Vi € S.

Next, we bound the last term in (22). Note that

7'171
LS LS ) - Vi) —H—ZT 5 (hi(oinru®) - Vhlm)
i=1 " v=0 i=1 " v=0
‘rlfl
Z SIS Vf(w)H2

7',—1
Z Z (hi(zip,y") = Vfi(zin,y"))

‘rl—l

Z Z -’131 Y ) vfi(mver))

+3HVf z,y )—Vf(m)\2

where the inequality uses Lemma G.1.

Hence,
7'7,—1
II*Z Zh @i, y" Vf(w)IIQ]
v= - (23)
<30+ fZT Y E [l —2l’] +3MFE [lly* —y* ()],
i=1 " v=0

where the inequality uses Lemmas 2.2 and C.1.
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Substituting (23) into (22) yields

< Zalih (Tiv,y" Vf(:c)>1

7'1—1
H—ZT > hi@iny* ||21 - SE(IVf@)] (24)
i=1 ' v=0
30 7'7—1
+7(b2+M?E[||y+— fz ZE i, — 2] ).
Next, we bound the second term on the RHS of (21). Observe that
m 2
Zaz Z hi(@iy*
Z Z (@i, y") = hi(®in, y") + iz, y+)) 'H (25)
m 7'171
< o’E H—ZT Z hi(zi,,y" H
i=1 * v=0
where the inequality follows from Lemmas G.3 and C.1.
Plugging (25) and (24) into (21) completes the proof. O]

C.2. Error of FEDINN

The following lemma establishes the progress of FEDINN. It should be mentioned that the assumption on 3;,Vi € S is
identical to the one listed in (Mitra et al., 2021, Theorem 4).

Lemma C.3 (Error of FEDINN). Suppose Assumptions A and B hold. Further, assume

« .
Tizlv O‘i:;7 /Bizia VZES,
i

Ti

where 0 < 8 < min (1/(6€g,1), 1) and « is some positive constant. Then, FEDINN guarantees:

T
B[yt v @] < ( —62“9) E[ly -y (@)] +2576%2,, and (262)
7'1—1 2
]E[HW—?J*("EJF)HQ} < aya ZT > hi(zi.yt
i=1 ' v=0
+ az(@)E [H?ﬁ—y )| } + az(o (26b)

Here,

L L 2
ar (@) := ija2 et el L

4Mf 277 ’
L mbgoz2
as(e) =1+ 4M;Lyo + nyff, (27
Lyz0?
272 yz
=a’L —
az(a) == a”Ly, + o

forany n > 0.
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Proof. Note that
Elly" —y* (@D)?] =E [ly" —y*(@)|*] +E[|y*(=T) — y*(x)|?]
+2E [(y" —y*(x),y" (x) —y* (zT))] . (28)

Next, we upper bound each term on the RHS of (28).
Bounding the first term in (28):
From (Mitra et al., 2021, Theorem 4), for all t € {0,...,T — 1}, we obtain

Elly ™ - v @I < (1- 252 ) Blly' - o @)+ 256%07,.

which together with our setting y+ = y” implies

T
Elly v @I < (1~ %5¢) Blly - w(e")l) + 257502, 29)

Bounding the second term in (28):

By similar steps as in (25), we have
Tifl 2

E[lly*(=") —y*(z)|?] < L;E Hnl”L > ai Yy hi(wy")
i=1 v=0

(30)
1 m Ti—1 B 2
<BE || 20 Y Rty |+t
=1 r=0
where the inequalities are obtained from Lemmas C.1 and G.3.
Bounding the third term in (28):
Observe that
E[(y" -y (@),y" (@) —y"(="))] = -E[(y"— y"(z), Vy*(z) (="~ 2))] a1
—E[{y -y (@), y"(=") -y (2) - Vy'(z)(x"-2))].
For the first term on the R.H.S. of the above equality, we have
m Ti—1
* * * 1 * N A
~Elly*- v (@), Vo' (@)@ )] =~ B |y (@), Vo @) Y a3 halai, y+>>]
=1 v=0
1 m T, —1
<E [Hy*— y* ()| HmVy*(w) iy hi(wi,u,yﬂ'H
i=1 v=0
1 m Ti—1 (32)
i=1 =0
9 L2 042 1 m 1 Ti—1 2
< [lyt -y @)°] + “LE || 3 = 3 hi@iny )| |
<HE|[ly*- v @I + = m;ﬁ; (@i0ry")

where the first equality uses the fact that ﬁi(azw, yT) = E[hi(z; ., y")|Fi—1]; the second inequality follows from
Lemma C.1; and the last inequality is obtained from the Young’s inequality such that ab < 2va? + %.

Further, using Lemma C.1, we have
-E[(y"—y*(z),y* (=) — y*(x) — Vy*(z)(z"— x))]
<E[|y"= v (@)|ly* (=) - y*(x) - Vy*(2)(z'— 2] (33)
Lyx «
< Beg [y g @) o 2],
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where the inequality follows from Lemma C.1.

From Algorithm 2, we have

m Ti—

zio=z,Yi€S, and a:+—a:——z Zh (i, y ™). (34)
Ti v=0
Note that o = F; o forall i € S. Hence,
E[[lyt- v @) |l=*~ 2]
1 =« .
< o Z — E [Hy+* Y (m)HQE I:Hh’l(mlv7y+)”2 | ]'—i,n—lﬂ (35)

272
< a?DIE |[|ly*-y* (@)’
where the last inequality uses Lemma C.1.
Note also that for any 1 > 0, we have 1 < 2 + ﬁ Combining this inequality with (33) and using (35) give

~E[(y"—y*(z),y"(z") — y*(z) - Vy*(z) (=" x))]

Lyx N
<beg |yt y @) ot 2]

nL % 2 L 2
< T2E ||lyt-y* @) o7 - 2|| + 22 o7 ] (36)
4 4an
nLymDJ%QQ 2 Lypol® 1 &1 ? Ly
+ * ya; yx 2
where the last inequality uses (35) and Lemma 2.2.
Let v = My Lyca. Plugging (36) and (32) into (31), we have
* * * ’I]L mD2 2
Elly" — ' (@), y" (@) ~ 4" () < (m y4fa2> E[lly*-v* @) }
L2a?  L,.a2 1 o= 175 ’ Ly«
y y = L i_z i yz @ o
LB (37
n x 2
:<M@%a+giff)EM¢;¢@m}
Lyo  Lyp0? 131 ’ L0
y vV (25T 2 ST Bz .yt Lyz@ -2
(e )R || g S Rt |+ P
i=1 v=0
Substituting (37), (30), and (29) into (28) completes the proof. O

C.3. Drifting Errors of FEDOUT

The following lemma provides a bound on the drift of each x; , from x for stochastic nonconvex bilevel problems. It should
be mentioned that similar drifting bounds for single-level problems are provided under either strong convexity (Mitra et al.,
2021) and/or bounded dissimilarity assumptions (Wang et al., 2020; Reddi et al., 2020; Li et al., 2020b).

Lemma C.4 (Drifting Error of FEDOUT). Suppose Assumptions A and B hold. Further, assume 7; > 1 and o; <
1/(5Mym;),Vi € S. Then, for eachi € S and Vv € {0, ..., 7, — 1}, FEDOUT guarantees:

E [z, — 2] < 367202 (MFE [ly* — " @)|°] + E [|Vf ()] +35?)
+ 2770567, (38)
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Proof. The result trivially holds for 7; = 1. Let 7; > 1 and define
Vi = Bi(wi,vvy+) - vfi(mi,w yh) - Ei(%?ﬁ)
+Vfi(z,y") + h(z,y*) - Vi(z,y"),
w; = hi(®i,y") = hi(®i,,y") + hi(z,y") (39)
—hi(z,y") + h(z,y") - h(z,y"),
ziw = Vi@, y") = Viilx,y")+ Vfi(x,y") - Vf(x)+ V().

One will notice that
Vi + Wiy + 2z = hi(@i, Y1) — hi(z,yT) + h(z,y").

Hence, from Algorithm 2, for each i € S, and Vv € {0,...,7; — 1}, we have
Tipvg1 — T =, —T— ;(Viy + Wi + Ziw), (40)
which implies that

E i1 — zl’] = E [[|#in — @ — o5(vi + 2i0) 1] + 7E [w; o |1?]
—2E[E[(x;, — @ — a;(Viy + 2ip), Wi ) | Fip_1]] 41
=E [|@iy — 2 — ai(viy + 2i)|I)] + oGE [Jlwi,|?].

Here, the last equality uses Lemma G.3 since E[w; , | F; ,—1] = 0, by definition.

From Lemmas G.1, 2.2, and C.1, for v; ,,, w; ., and z; ,, defined in (39), we have

E[l[vi,]12] < 3E[ [V fil@i y*) = Bil@insy ™)
b y") - V| + 95t - Ay .
< 9%,
E [l 7] < 3E[ i y) — By
+ i@,y ) = ha(w,y )12 + (@, y™) = B,y )| )
< 957,

and
E {125 1°] < 3E[IV fi(wiy+) = Vfilw,y)?

+VH(@.y*) = Vi@ + |V (@))] (420)
< 3 (MFE [|l2:,, — /2] + MIE [y —y* @] +E[IV/(@)I]).

Now, the first term in the RHS of (41) can be bounded as follows:

E(lzin — & — ai(vip + zi)°] < (1
iy — @ a(v,+z,)|]<+27_i_1

) E @0y — 2|2 + 27E [[las(viy + 2:)]]

1
< (14 527 ) Elless — alP) + 472 (2 [120sl) + £ fos,l)

Ti

(43)

< (14 57 ) Blloss - alP) +4m0? (2 12 P) + 99)

1 2 2 2
< <1 + pv— + 127503 Mf> E [||lzi,, — =]

+12702 (MFE [yt — y*(@)|?] + E [V f(2)]?] + 3b%) .
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Here, the first inequality follows from Lemma G.2; the second inequality uses Lemma G.1; and the third and last inequalities
follow from (42a) and (42c).

Substituting (43) into (41) gives

E [lasn - al] < (14 5

+12mi07 (MFE [[ly* — y*(@)|°] + E[[VF(2)]] +3) + 9ai5]

1
S <1 + 7_1_1) E [Hwi’,, — (II||2]

+ 12707 (MFE [|ly™ — y*(@)|I?] + E[|IVf(2)]?] + 3b%) + 90757

3 + 127’¢0¢?MJ%> E [||z;, — z||?]

(44)

Here, the first inequality uses (42b) and the last inequality follows by noting «v; < 1/(5M ;).

(1+
j=0

For all 7; > 1, we have

[

1) - 1
L) 45)
1 v 1 Ti

<Ti(1+> STi<1+) <exp (1)1 < 37.
T Ti

<

Now, iterating equation (44) and using x; o = x, Vi € S, we obtain

v—1 7
1
E (s, — 2l?] < (1202 (MZE [y — y*(@)[2] + E[IV()[] +30%) +9026%) 3 ( )
=0
< 37 (12707 (MFE [lly* — y* (@)|1?] + E [IVf(@)[]*] +3b) + 90757) ,
where the second inequality uses (45). This completes the proof. O

Remark C.1. Lemma C.4 shows that the bound on the client-drift scales linearly with T; and the inner error |y™ — y*(x)||?

in general nested FL. We aim to control such a drift by selecting o; = O(1/7;) for all i € S and using the inner error
bound provided in Lemma C.3.

Next, we provide the proof of our main result which can be adapted to general nested problems (bilevel, min-max,
compositional).

C.4. Proof of Theorem 3.1

Proof. We define the following Lyapunov function
M *
W= f(@b) + Tyt -y @) (46)
Y
Motivated by (Chen et al., 2021a), we bound the difference between two Lyapunov functions. That is,

W — WP =f (2"t — f(a*) + ]Zf (™ = @D = lly* = y*()]?) - 47)

The first two terms on the RHS of (47) quantifies the descent of outer objective f and the reminding terms measure the
descent of the inner errors.

k

From our assumption, we have o = oy, /7;, 5 , = Bk /7i, Vi € S. Substituting these stepsizes into the bounds provided in
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Lemmas C.2 and C.3, and using (47), we get

Lioi M 3
E[W* 1] — E[W*] < <f0"“ + fag(ak)) 5 + ﬂbz

2 Ly
M Qg ‘f',—l
- SE[IVN) + 5= ZT > Eflzf, - 2*|?] (48a)
i=1 " v=0
(677 Lfak Mf k-‘rl
-|l=-—_L=-= hi( 48b
(2 2 Lyal ak? ;Tzuzo ’Ll/7y ( )

]l\ij (W + a2(0lk)> E [Hyk-l-l *( )” ] i “|y —y ( )”2] . (48¢)

where a1 (o) — as(«) are defined in (27).

Let

o 1
fz—k, VieS where oy <

. 49
o = 216M7 + 5M; 49

The above choice of «y, satisfies the condition of Lemma C.4 and we have 54M?a2 < aﬁ /4. Hence, from Lemma C.4, we
get

(482) < — %E IV £ )] + 2 zM% i

+54Mfak( fE [Ilyk+1 y* (@")?] + E [V F(@")]?] + 3b%)
a?
a
oz2 302
< - *E IV f(")]?] + ’“ 5% Jb?

T
25My ([ MyLy My (MyLy o Britg
ikl T =2y 1 — EFPg

+Ly<4 >ﬂk91+Ly 4 Ok 2 )
where the first inequlaity uses (49) and the last inequality follows from (26a).
To guarantee the descent of W, the following constraints need to be satisfied
(48b) <0,
(677 Lfai Mf ( 9 L (673 Lymai>
= - Lk L2a3 + + =2k >,
2 2 Ly i 4M; m )= (51)
1
= ap <
2Ly + AM Ly + e
where the second line uses (27).
Further, substituting (26) in (48c) gives
25M s (3My¢ Ly,
(48¢) < —7 ( =t az(ak)> T3
y
(52)

n ]ff ((Wff‘*k T a2<ak>) (1 - %‘)T - 1) Ellly* - y*(a*)|2.
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Substituting (50)—(52) into (48) gives
E[W**!] — E[W"] < — Z2E[|V£(@")
3 3

Ly 1Y\ o My =2
+ (< 9 + 4> +L—ya3(ak) O'f
25M; (ML 3M;Lya
+ =7 f( F=¥oq + =00 ’“+a2(ak)> T80y
Yy

M M;L 3M;Lya r
b M (( thugg o B 4 o)) (1- 2] - 1) Elly* - y* (@) 53w
Yy

Let 3, < min (1/(6£4,1),1). Then, we have B;41,/2 < 1. This together with (27) implies that for any ay, > 0

(532) <0,
M;L 1ML LyeD303 T
— 1+ fyaz+ fyak+nycc [k 1,% -1<0,
4 2 2 2
M;L 1ML LyeD303 T (54)
— exp fyozi+ fyOék+77 yz U exp _TBrpg —1<0,
4 2 2 2
VLM Ly + nLysDday, + Mkt
= Bk = C
Hg T
From (49), (51) and (54), we select
o e} «
oy = min{a, s, as, \/7}, Br = %, (55)
where ) VLo
Bi=— (11MfLy +nLyzD}an + fyal) 7
Hg 2
) 1 T 1 (56)
a1 = =

Qg =——, Q3= ——5———,
2Ly + AMyLy + 2ilae’ PT8LaBT T 216M7 + 50
With the above choice of stepsizes, (53) can be simplified as

E[W**!] — E[W] < —ZRE[|V £()|)?

3 3
+ (2ak + 4ak> b?
Li+ 3 M 5
+ (20 + Has(an) ) 63 (57)
2 Ly

25M; (ML 3M;L
+ =7 f( f4ya§+ 5 yak—i—aQ(ak)) TBio;
Y

« 3 3 -
< —ZkE[HVf(wk)Hz] + claiag’l + <2ak + 404%) b + CQQ%U?,

where the constants ¢; and ¢, are defined as

MLy +2nL D2
o = 25Mf 14 11MfLy071 n f Nlya Ly 52 1
Ly 2 4

(58)
Li+ 3 Lya My
5+ MyLy + inl,

Co =
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Then telescoping gives

1 K—1 4 K-1g o?
— T ag — 2 2
k=0 k=0 k=0
4Aw 4 Aw ( a > 2 der e 2 deodn -9
< ——F—— + +6(14+—=)b"+ o, + o (59)
min{a,, @, az}K = avK 2K VK ' VK
1 amax(o? ,02 ,02
=0 — + (9.1 %.2 f)+b2 ,
min{ &y, ag, ag} K VK
where Ay := W0 — E[WX]. O
C.5. Proof of Corollary 3.1
Proof. Letn = M; = O(kg) in (58). It follows from (18), (56), and (58) that
ar=0(k, %), as=0(Tk,?%), as=0(k,"), c1 =O0(K)/T), c2 =0O(x}). (60)
Further, N = O(k,4 log K) gives b = ﬁ Now, if we select & = O(,??) and T = O(kj), Eq. (59) gives
15 1IE v )
1vsEhE =03+ ).
k=0
To achieve e-optimal solution, we need K = O(k}e?), and the samples in £ and ¢ are O(k}e™?) and O(k)e?),
respectively. O
D. Proof for Federated Minimax Optimization
Note that the minimax optimization problem (2) has the following bilevel form
wiy  fe) = F T ()
pert 61a)
subj.to  y*(w) =argmin — L3 f; (z,y). (
yERd2
Here,
is the loss functions of the i client.
In this case, the hypergradient of (61) is

where the second equality follows from the optimality condition of the inner problem, i.e., V,, f(x, y*(x)) = 0.

For each i € S, we can approximate V f;(x) on a vector y in place of y*(z), denoted as Vfi(z,y) := Vafi(z,y).
We also note that in the minimax case h; is an unbiased estimator of V f;(«,y). Thus, b = 0. Therefore, we can apply
FEDNEST using

1 m
qi,v - _vyfi(wa yi,y; gi,u) + vyfz(wa Y, gi,u) - E Z vyfl(wv Y, 52)7

i=1

1 m
hi,y = vwfi(xi,u7y+;§i,u) - v:cfz(ma y+;€i,u) + E Z waz(ma y+;€i)-

i=1

(63)
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D.1. Supporting Lemmas
Let z = (z,y) € RU% We make the following assumptions that are counterparts of Assumptions A and B.

Assumption E. Forall i € [m]:

(E1) fi(2),Vfi(2),V?[i(z) are respectively U5, {1, { s -Lipschitz continuous; and

(E2) fi(x,y) is pg-strongly convex in y for any fixed x € R,

euse kK =Lr1 o denote the condition number of the inner objective with respect to y.
W ¢ ={f1/py to denote the condit ber of th bject th respect to y

Assumption F. Foralli € [m]:

(F1) Vfi(z;&) is unbiased estimators of V f;(z); and

(F2) Its variance is bounded, i.e., Be[||V fi(z; €) — V fi(2)||?] < 03, for some oF.

In the following, we re-derive Lemma C.1 for the finite-sum minimax problem (61).

Lemma D.1. Under Assumptions E and F, we have h;(x,y) = V f;(x,y) for all i € S and (172)—(17g) hold with

1 lioL I lioL
Ly = 2t braly | ra( f,2"2' roly) _ O),
r My
0,
My=1t;1=0(Q1), Ly=(s1+ m ) = O(ky), (64)
f
Ly .
L, = i = O(ky), a]2c 20']2c, Dj% —El20+0f,
Hy
where L¢ o, L51,L52, |1y, and o ¢ are given in Assumptions E and F.
D.2. Proof of Corollary 3.2
Proof. Letn = 1. From (55) and (56), we have
ak:min{ahaQaalﬁ%}u ﬁk: %a (653)
where
_ 1 - 1Ly
= <11€f,1Ly + Ly, D}ay + M an1> :
g
) 1 . T . 1 (65b)
a = , Qg = _ 3= .
2L+ dlg Ly + Hplee 84,113 21607 | + 505,
Using the above choice of stepsizes, (59) reduces to
1 4A ANy A(cr + cp)a
— SRV € ——— + L2052 66)
7 2 VI S e ey v e (
where Ay = W0 — E[WX],
2505, 1651Ly  (LraLly+2LyD3\ L\ 1
g 2 1 2 —_—
@ Ly<+ s T 1 a8
1 (67)
Ly+35 Lyt
Cy = ! 2 —+ EﬁlLy + Zyefl .

AL,
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Leta = (9(/@;1). Since by our assumption, T' = O(ky), it follows from (64) and (73) that

Qi

1 =0(k;?), ag=0(k;1), as=0(1), c1 = O(k}), c2 = O(k}). (68)

Substituting (68) in (66) and (67) gives

K-1 2
1 K K
L E kyi21 — vf f )
7 kZ:jO [IV£(z*)]*) = 0 (K e (69)
To achieve e-accuracy, we need K = O(r7e?). 0O

E. Proof for Federated Compositional Optimization

Note that in the stochastic compositional problem (3), the inner function f;(x,y; &) = fi(y;€) forall i € S, and the outer

function is g;(x, y; ¢) = 3|ly — ri(x; )||? forall i € S. In this case, we have

1 m
Vygi (@,y) = yi = 7i(:0); Vyyg(,450) = Layxay, and Vayg(a,y;¢) = —— > Vri@; )T (70)
i=1

Hence, the hypergradient of (3) has the following form

Vfi(x) =Vafi (y*(x))
— Vo, 9.y (@) [Vig(z, y* ()] ' Vyfi (¥ (z))

= (3" Vni(@) Vyfily’ (). a
i=1

We can obtain an approximate gradient Vfi(z) by replacing y*(x) with y; that is Vfi(z,y) =
(L3 Vri(x)) " Vy fi(y). It should be mentioned that in the compositional case b = 0. Thus, we can apply FEDNEST
and LFEDNEST using the above gradient approximations.

E.1. Supporting Lemmas

Let z = (x,y) € R%+92 We make the following assumptions that are counterparts of Assumptions A and B.
Assumption G. Foralli € [m], fi(2),V fi(z),7:(2), Vri(z) are respectively {¢ o, £t 1, ¢r o, Ly 1-Lipschitz continuous.
Assumption H. Forall i € [m]:

H1) Vfi(z;€), ri(x; (), Vri(x; ) are unbiased estimators of V fi(z), ri(x), and Vr;(x).

(H2) Their variances are bounded, i.e., E¢[||V fi(z;€) — Vfi(2)]]?] < O’J%, Eclllri(z;¢) — mi(2)|I?] < oz, and

Ec[|Vri(z;¢) — Vri(2)|]?] < 072.71 for some UJ%, 072,)0, and 03}1.

The following lemma is the counterpart of Lemma C.1. The proof is similar to (Chen et al., 2021a, Lemma 7).
Lemma E.1. Under Assumptions G and H, we have h;(x,y) = V f;(x,y) for all i € S, and (17a)—(17g) hold with

My =trolsy, Ly=tlro, Ly=130lp1+lrolry, Lya=lr1,

~ ~ (72)
a]% = 6,2“700]% + (f%o + U?)Ug,p D,% = (E?‘,O + 0;)(52,0 + ‘73,1)-

E.2. Proof of Corrollary 3.3

Proof. By our assumption 7' = 1. Let &@ = 1 and ) = 1/L,. From (55) and (56), we obtain

1 —
ag :min{@l,dg,dg,\/}_—{}, ﬁk :Baka (733)
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where

Cia 02 ga
B= . (11€f1€r0+Dfa1+f’1’01>,
g

2
(73b)
_ 1 _ 1 _ 1
Q , g =——=, Q3= .
N 2ol + 6 2+ 205102 T RO oBT T 216(brols1)? + Blrolsa
Then, using (59), we obtain
1K B[V @) = 0( ! ) (74)
= VE)
This completes the proof. O

F. Proof for Federated Single-Level Optimization
Next, we re-derive Lemmas C.2 and C.4 for single-level nonconvex FL under Assumptions C and D.

Lemma F.1 (Counterpart of Lemma C.2). Suppose Assumptions C and D hold. Further, assume 7; > 1 and o;; = o/7;,¥i €
S for some positive constant . Then, FEDOUT guarantees:

2

Tl—l
o
E [f(x)] ~E[f(@)] < —5(1—aLpE ZT > Vi)
=1 v=0 (75)
Tb—l
**E[va fz ZE i, — )] +
Proof. By applying Algorithm 2 to the single-level optimization problem (13), we have
Ti—1
o=z VieS, w*zw——Zalzh ().
where
hi(wi,u) = vwfi(wi,u§§i,u) - mfz 33 51 v Zv fz w é-z
This together with Assumption C implies that
L
E[f(@")] ~E[f(@)] <E[(z* —,Vf(@))] + FE[lz* - =|’]
Ti—1
< Z%Zh Zi), VI >>] 6

Ti—1 2

Zalzh i)
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For the first term on the RHS of (76), we obtain

Ti—1 m Ti—1
< Z%Zh z;,), VI( )>] %Z%ZEKhi(aam,w
_z:l UIOTl?l ,
e PR I
i 7'171
—s—%E —Z llZVfl xi,) — Vf(x)
. 7'7—1 2
=——FE —Z Zsz i)
v=0

“sz ZE[mV ).

(z)) | }'i,,,l]]

IV £(@)I]

2

- SE[IVf@)’]

77

where the first equality follows from the law of total expectation and the last inequality is obtained from Assumption C.

For the second term on the RHS of (76), Assumption D gives

2

Ti—1 1 m 1 Ti—1
Zath Ti, Y =a’E —Z— (hi(x;,) —
[
[ 1 m 1 Ti—l 2
<o®E || 30 > V)| | +ao]
i=1 ' v=0

Plugging (78) and (77) into (76) gives the desired result.

(78)

O

Lemma F.2 (Counterpart of Lemma C.4). Suppose Assumptions C and D hold. Further, assume 7; > 1 and o; = o/, Vi €

S, where a < 1/(3Ly). Then, forallv € {0,...,7; — 1}, FEDOUT gives

E [||wz-,y - m||2] < 1271-2a?IE[\|Vf(w)H2} +27ra20%.

Proof. The result trivially holds for 7; = 1. Similar to what is done in the proof of Lemma C.4, let 7; > 1 and define

v = Vfi(wi,) — Vii(x)+ Vf(z),

w;p = hi(x;,) — Vfi(xi,) + Vii(x) — hi(x) + h(z) — V().

where h;(x) = Vg fi(x;&,,) and h(x) = 1/m > " Vo fi(x;&).

From Algorithm 2, for each i € S, and Vv € {0,...,7; — 1}, we obtain

—x — o (hi(zi,) — hi(x) + h(x))

—x—a; (Vi +w; ),

Lipv+l — L = Tip
=Ty
which implies that
E (|11 — )] = E [[|#:, — & — v, 1] + oFE [[[wi]|]
—2E[E[{x;, —x —

=F [||:c7;7y —x — 041;1;7;7u||2] + afE [||w7;7y||2] .

Q; V41, aiwi,u> | ]:i,l/fl]]

Here, the last equality uses Lemma G.3 since E[w; , | F; ,—1] = 0.

(79)

(80)

(81)
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From Assumption D and Lemma G.1, for w; ,, defined in (80), we have

E [[wi|®] <3E [llhi(zi,) = Vfi(zi)|I” + IV fi(2) = hi(@)[|* + [[h(z) — Vf(2)]]

2 (82)
< 90f.

Substituting (82) into (81), we get

1
2’7’2'—].

E [||a:t,, —x — aivi7,,||2] < (1 + ) E [||a;“, — sr:||2] + QTia?]E [||'U,-J,H2] + 90%20]2«

1
< (14 g + 43} ) Bl - alP) + analE (VS @) + 9020} (8)
Ti —

<

Here, the first inequality follows from Lemma G.2; the second inequality uses Assumption C and Lemma G.1; and the last
inequality follows by noting o; = o/7;,Vi € Sand o < 1/(3Ly).

1_ 1) E [|lz;, — z|?] + 4riaE [|V £ () ||*] + 90[220'?‘.
7

Now, iterating equation (83) and using x; o = x, Vi € S, we obtain

v—1 j
E [, — x|?] < (4r:0?E [|Vf(@)]?] + 9020 Z( )
=0 (84)
<1277 03E |V f (2)|?] + 27miai 0%,
where the second inequality uses (45). This completes the proof. O

F.1. Proof of Theorem 3.2

Proof. Let &y :=1/(3Ls(1+ 8Ly)). Note that by our assumption oy, < &;. Hence, the stepsize o, satisfies the condition
of Lemma F.2, and we have GL?az < a% /4. This together with Lemmas F.1 and F.2 gives

Tl—l

E[f(@"*")] - E[f(@")] < - E[IVF(2")]*) + f "Z ZE[IIwW z*|?|

7'7—1 2
L apLly o
- o |13 S ose)| |+ o
Qe f af X Lf (85)
< =S E[|VF(=")]*) + Z ZE[H%_:E 2] + “E
7 a?L
< — SRRV £ (@")]2) + 6L3aRE|V (")) + ( o}Lf + O f) 2
< —ZER[|V S (@*)|P) + (4 + Ly)ado?,
where the second and last inequalities follow from (14).
Summing (85) over k and using our choice of stepsize in (14), we obtain
K-1
1 4A 1 VK A
E[IVf(z ]§Kf~min{a,\/cj}+4(4+Lf)gf,\/O‘E
= 1 (86)

where Ay = f(z°) — E[f(zX)]. O
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G. Other Technical Lemmas
We collect additional technical lemmas in this section.
Lemma G.1. For any set of vectors {x;}™ | with x; € R, we have

m

>

=1

2 m
<my @’ (87)
i=1
Lemma G.2. For any x,y € R%, the following holds for any ¢ > 0:
2 2 1 2
o+ yl < @+ ollel + (14 2) 1l 59)

Lemma G.3. For any set of independent, mean zero random variables {x;}™ | with x; € R%, we have

TziEWﬁ] (89)
=1

m

S

i=1

E

H. Additional Experimental Results

In this section, we first provide the detailed parameters in Section 4 and then discuss more experiments. In Section 4, our
federated algorithm implementation is based on (Ji, 2018), both hyper-representation and loss function tuning use batch
size 64 and Neumann series parameter /N = 5. We conduct 5 SGD/SVRG epoch of local updates in FEDINN and 7 = 1 in
FEDOUT. In FEDNEST, we use T' = 1, have 100 clients in total, and 10 clients are selected in each FEDNEST epoch.

100 100

95 1 951

901 90 1
oy
S 854 85 1
3
2 80 801
é 751 751

70 —— LFedNest-NonAlt (1) 704 —— LFedNest-NonAlt (1)

- |FedNest (T+1) - |FedNest (T+1)
65 —— LFedNestsyrg (2T+1) 65 —— LFedNestsyrs (2T+1)
60 y y y y T 60— y y y y T
2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Epoch # of communications
(a) The test accuracy w.r.t to the algorithm epochs. (b) The test accuracy w.r.t to the number of communications.

Figure 5: Hyper representation experiment comparing LFEDNEST, LFEDNESTsyrg and LFEDNEST-NONALT on non-i.i.d
dataset. The number in parentheses corresponds to communication rounds shown in Table 2.

H.1. The effect of the alternating between inner and outer global variables

In our addition experiments, we investigate the effect of the alternating between inner and outer global variables  and y.
We use LFEDNEST-NONALT to denote the training where each client updates their local y; and then update local x; w.r.t.
local y; for all i € S. Hence, the nested optimization is performed locally (within the clients) and the joint variable [x;, y;]
is communicated with the server. One can notice that only one communication is conducted when server update global x
and y by aggregating all x; and y;.
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Figure 6: Learning rate analysis on non-i.i.d. data with respect to # of communications.

As illustrated in Figure 5, the test accuracy of LFEDNEST-NONALT remains around 80%, but both standard LFEDNEST
and LFEDNESTsygrg achieves better performance. Here, the number of inner iterations is set to 7' = 1. The performance
boost reveals the necessity of both averaging and SVRG in FEDINN, where the extra communication makes clients more
consistent.

H.2. The effect of the learning rate and the global inverse Hessian

Figure 6 shows that on non-i.i.d. dataset, both SVRG and FEDOUT have the effect of stabilizing the training. Here, we set
T =1and N = 5. As we observe in (a)-(d), where the learning rate decreases, the algorithms with more communications
are easier to achieve convergence. We note that LFEDNEST successfully converges in (d) with a very small learning rate. In
contrast, in (a), FEDNEST (using the global inverse Hessian) achieves better test accuracy in the same communication round
with a larger learning rate.
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