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Abstract

Providing privacy protection has been one of
the primary motivations of Federated Learning
(FL). Recently, there has been a line of work
on incorporating the formal privacy notion of
differential privacy with FL. To guarantee the
client-level differential privacy in FL algorithms,
the clients’ transmitted model updates have
to be clipped before adding privacy noise.
Such clipping operation is substantially different
from its counterpart of gradient clipping in the
centralized differentially private SGD and has
not been well-understood. In this paper, we
first empirically demonstrate that the clipped
FedAvg can perform surprisingly well even
with substantial data heterogeneity when training
neural networks, which is partly because the
clients’ updates become similar for several
popular deep architectures. Based on this key
observation, we provide the convergence analysis
of a differential private (DP) FedAvg algorithm
and highlight the relationship between clipping
bias and the distribution of the clients’ updates.
To the best of our knowledge, this is the first
work that rigorously investigates theoretical and
empirical issues regarding the clipping operation
in FL algorithms.

1. Introduction

First proposed by Konečnỳ et al. (2016), Federated Learning
(FL) is a distributed learning framework that aims to
reduce communication complexity and to provide privacy
protection during training. The popular FedAvg algorithm
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(Konečnỳ et al., 2016) has been proposed to reduce the
communication cost by using periodic averaging and client
sampling. There have been many extensions of this
algorithm, mostly by modifying the local update directions
(Karimireddy et al., 2020; Zhang et al., 2020; Liang et al.,
2019). Even though FL algorithms have the goal of privacy
protection, recent works have shown that they are vulnerable
to inference attacks and leak local information during
training (Zhao et al., 2020; Zhu & Han, 2020; Wei et al.,
2020b). As a result, striking a balance between formal
privacy guarantees and desirable optimization performance
remains one of the fundamental challenges in FL.

Recently, various FL algorithms (Geyer et al., 2017;
Truex et al., 2020; 2019; Wang et al., 2020b; Triastcyn
& Faltings, 2019) have been proposed to provide the
formal guarantees of differential privacy (DP) (Dwork et al.,
2006). In these algorithms, the clients perform multiple
local updates between two communication steps, and then
perturbation mechanisms are applied to aggregate updates
across individual clients. In order for the perturbation
mechanism to have formal privacy guarantees, each client’s
model update needs to have a bounded norm, which is
ensured by applying a clipping operation that shrinks
individual model updates when their norm exceeds a given
threshold. While there has been prior work that studies the
clipping effects on stochastic gradients (Bassily et al., 2014;
Chen et al., 2020; Song et al., 2021) in the differentially
private SGD (Abadi et al., 2016), there has not been any
work on providing understanding how clipping the model
updates affect the optimization performance of FL subject
to DP. Our work provides the first in-depth study on such
clipping effects.

Contributions. In this work, we will conduct rigorous
theoretical analysis and provide extensive empirical
evidence to understand how to best protect client-level DP
for FL algorithms. Specifically, we make the following
contributions:

1) We analyze the existing model and difference clipping
strategies for clipping-enabled FedAvg and prove that
difference clipping outperforms model clipping. Our result
provides theoretical insight into designing FL algorithms
with clipping operation.
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2) We empirically show that the performance of the
clipping-enabled FedAvg depends on the structure of
the neural network being used – when the structure of
the network induces concentrated clients’ updates, the
performance drop becomes negligible.

3) We provide the convergence analysis of the
clipping-enabled FedAvg algorithm and highlight
the relationship between clipping bias and the distribution
of the clients’ updates. Our result leads to a natural
guarantee of client-level DP for FedAvg.

To the best of our knowledge, this is the first work that
rigorously investigates theoretical and empirical issues
regarding the clipping operation in FL algorithms.

1.1. Preliminaries & Related Work

Federated learning typically considers the following
optimization problem:

min
x


f(x) ,

NX

i=1

fi(x)

�
, where fi(x) = E⇠⇠Di F (x; ⇠),

(1)
where N is the number of participating clients; the ith client
optimizes a local model fi, which is the expectation of a loss
function F (x; ⇠), where xi denotes the model parameters
and ⇠ denotes the data sample, and the expectation is taken
over local data distribution Di. At each communication
round t, the server samples a subset of clients Pt and
broadcasts the global model parameters xt. The sampled
clients perform Q steps of SGD updates and compute
the total update differences �xt

i’s, and then the server
aggregates the update differences to update the global model.
In Algorithm 1, we present a slightly generalized FedAvg
algorithm from Karimireddy et al. (2020); Yang et al. (2021),
in which the server uses a stepsize ⌘g to perform its update.
When ⌘g = 1, the algorithm becomes the same as the
original FedAvg.
Algorithm 1 FedAvg Algorithm
1: Initialize: x0

i , x0
, i = 1, . . . , N

2: for t = 0, . . . , T � 1 (stage) do

3: for i 2 Pt ✓ [N ] in parallel do

4: Update agents’ xt,0
i = xt

5: for q = 0, . . . , Q� 1 (iteration) do

6: Compute stochastic gradient g
t,q
i with E[gt,qi ] =

rfi(x
t,q
i )

7: Local update: xt,q+1
i = xt,q

i � ⌘lg
t,q
i

8: end for

9: end for

10: Global averaging: �xt
i = xt,Q

i � xt, xt+1 = xt +
⌘g

1
|Pt|

P
i2Pt

�xt
i

11: end for

In this work, we study FL subject to the rigorous privacy
guarantees of Differential Privacy (DP) (Dwork et al., 2006),
whose formal definition is given below.

Definition 1.1. (Dwork et al., 2006) An algorithm M is
(✏, �)-differentially private if

P (M(D) 2 S)  e
✏
P (M(D0) 2 S) + �, (2)

where D and D0 are neighboring datasets, S is an arbitrary
subset of outputs of M.

The common mechanism used to protect DP in centralized
training is straightforward: 1) clip the stochastic gradient
with the so-called clipping operation (3); 2) add a random
perturbation z ⇠ N (0,�2

I) to the clipped quantity (Abadi
et al., 2016; McMahan et al., 2017; Andrew et al., 2019;
Pichapati et al., 2019). The clipping operation is the key
step to guarantee DP as the noise level �2 is determined by
the clipping threshold c (Dwork & Roth, 2014):

clip(gt, c) = g
t ·min

⇢
1,

c

kgtk

�
. (3)

However, DP is more complex in FL than that in centralized
training. Two key factors distinguishing FL from existing
DP machine learning framework are:

• Data distribution: unlike centralized training, in FL the
data are naturally distributed on the clients, and the clients
can potentially have very different data distributions. In
the centralized setting, the recent work (Chen et al., 2020)
has shown that the distribution of the samples affects
the performance of the DP-SGD, but how heterogeneous
data distribution affects the design and analysis of FL
algorithm that protects DP is unclear.

• Local updates: as described in Algorithm 1, the clients
will perform multiple local update steps before sending
the model to the server, and it is well-known that
when Q > 1, the data heterogeneity will cause
performance degradation in FedAvg even without clipping
and perturbation (Khaled et al., 2019). Although there
are multiple alternatives of how the DP mechanism can
be applied to FL algorithms, none of those mechanisms
has a rigorous theoretical guarantee, and it is not clear
how to properly balance the optimization performance
and privacy guarantees.

These two factors result in different definitions and clipping
operations in FL.

DP definitions in FL: Based on the distribution pattern
of the client and local datasets, two DP definitions
corresponding to the neighboring datasets in Definition 1.1,
are commonly considered in FL algorithm design:

• Sample-level differential privacy (SL-DP): SL-DP directly
follows the centralized DP and protects each local sample
so that the server could not identify one sample from the
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union of all local datasets, i.e., D =
SN

i=1 Di, and D,D0

differ by one sample ⇠. SL-DP fits in the cross-silo FL
scenario that has a relatively small number of clients, each
with a large dataset. E.g., SL-DP is used in medical image
classification application to protect patients’ personal
information (Choudhury et al., 2019). However, in the
Google Keyboard application (Hard et al., 2018) where
each client is an application user, SL-DP that only protects
one sample (i.e., an input record) will not be sufficient to
protect the user’s personal information.

• Client-level differential privacy (CL-DP): CL-DP has
a stricter privacy guarantee compared with SL-DP. It
requires that the server cannot identify the participation
of one client by observing the output of the local updates,
i.e., D = {Di}Ni=1, and D,D0 differ by one dataset Di.
CL-DP is suitable for the cross-device FL scenario such
as the Google Keyboard application, which has a large
number of distributed clients.

Clipping operation in FL: Based on different DP
requirements and the algorithm structures, a number
of FL algorithms have been proposed which protect DP to
some extent.

To protect SL-DP, Truex et al. (2019) proposes to clip and
inject noise to every local update. That is, some Gaussian
noise is added to the stochastic gradients g

t,q
i given in

Algorithm 1. However, as intermediate updates are kept
local and private, the clipping and perturbation to the local
steps appear to be unnecessary, and such operations result
in significant performance degradation. Moreover, it is not
clear how such kind of operation impact other aspects of
the algorithm performance (such as algorithm convergence,
quality of solutions, etc.)

To protect CL-DP, Wei et al. (2020a) proposes to clip the
local models to be transmitted directly. Similarly, Truex
et al. (2020) assumes that the model parameters are upper
and lower bounded by some constant and directly apply
perturbations to the local models. However, this scheme
also significantly reduces the training and test accuracy
empirically and has no theoretical convergence guarantee.
Recently, Geyer et al. (2017); McMahan et al. (2017)
propose to clip the difference between the input model and
the output models of the FedAvg algorithm. In particular,
one can replace the update directions �xt

i’s of line 8 in
Algorithm 1 by their clipped versions as expressed below:

clip(�xt
i, c) = �xt

i ·min

⇢
1,

c

k�xt
ik

�
,

xt+1 = xt + ⌘g
1

|Pt|
X

i2Pt

clip(�xt
i, c).

(4)

It is shown that such a scheme has better numerical
performance than model clipping, but no convergence

proof for the algorithm is given. Reference Triastcyn
& Faltings (2019) also clips the update difference and
proposed Bayesian DP to measure the privacy loss and
only demonstrates the numerical performance of the
proposed algorithm. D2P-Fed (Wang et al., 2020b)
follows the same clipping strategy and further apply
compression and quantization during communication to
improve communication efficiency while having DP
guarantee, but its convergence guarantee only applies to
the non-clipping version.

In summary, despite extensive recent research about
DP-enabled FL, there are still a number of technical
challenges and open research questions in this area. First,
it is not clear how various kinds of clipping operations can
affect the performance of FL algorithms. Second, it is not
clear how to add noise to balance the convergence of FL
algorithms and its CL-DP guarantee.

2. Clipping Issues in FL

As discussed above, clipping is a key operation in
providing DP guarantee for FL algorithms. Therefore,
to design algorithms that protect DP in FL, the first step
is to understand how clipping affects the convergence
performance of a FL algorithm. Towards this end, we start
with analyzing two common clipping strategies, and identify
their theoretical properties. Then we provide a series of
empirical studies to demonstrate how system parameters
such as training models, datasets and data distributions
can affect the performance of clipping-enabled FedAvg
algorithm. These empirical studies will be combined with
our theoretical analysis in the next section to provide
a comprehensive understanding about the optimization
performance and CL-DP guarantees in FL.

2.1. Model clipping versus Difference Clipping

The two major clipping strategies used in protecting CL-DP
for FL algorithms are local model clipping and local update
difference clipping, as we describe below.

1. Model clipping (Wei et al., 2020a): The clients directly
clip the models sent to the server. For FedAvg algorithm,
this means performing clip(xt,Q

i , c). This method
appears to be straightforward, but clipping the model
directly results in relatively large clipping threshold, so
it requires to add larger perturbation.

2. Difference clipping (Geyer et al., 2017): The clients
clip the local update difference between the initial model
and the output model according to (4). This method
needs to record the initial model, the update difference
typically has smaller magnitudes than the model itself,
so the clipping threshold and the perturbation can be
smaller than using model clipping. Note that when Q =
1, the difference clipping is equivalent to the standard
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mini-batch gradient clipping (i.e., the DP-SGD), but in
the general case where Q > 1, their behaviors are very
different.

Below we analyze how they perform on simple quadratic
problems. Our results indicate that the difference clipping
strategy is more preferable, because it is less likely to have
strong impact on the optimization performance. The full
proofs of the claims are given in Appendix A.3.

Claim 2.1. Given any constant clipping threshold c, there
exists a convex quadratic problem, for which FedAvg with
model clipping does not converge to the global optimal
solution with any fixed Q � 1 and ⌘l > 0.

Claim 2.2. For all linear regression problem with fixed
clipping threshold c, there exist ⌘l and local update step
Q � 1 such that FedAvg with difference clipping converges
to the global optimal solution. Furthermore, there exists a
linear regression problem such that under the same c, ⌘l and
Q, FedAvg with difference clipping converges to a better
solution with smaller loss than the original FedAvg.

Remark 1. To prove Claim 2.1, we construct a problem
whose magnitude of the optimal solution is larger than
the clipping threshold. Then FedAvg with model clipping
will converge to a stationary point with magnitude bounded
by the clipping threshold, therefore the algorithm will not
converge to global optimal solution.

The technique to prove the first part of Claim 2.2 is related to
the analysis for centralized gradient clipping algorithms in
Song et al. (2020). The main difference is that our algorithm
consider Q steps of local update before clipping. We show
that by allowing multiple local updates, FedAvg algorithm
with difference clipping optimizes the sum of the Huberzied
re-weighted local loss functions. By properly choosing
the learning rate ⌘l for each local loss function, we can
balance the re-weighting factors so that the optimal solution
to the new loss function matches the solution to the original
problem. ⌅

The above claims indicate that the difference clipping should
outperform the model clipping in terms of convergence
guarantees. Therefore, in the subsequent analysis, we will
focus on understanding the difference clipping enabled FL
algorithms. In particular, we consider the Clipping-Enabled
FedAvg (CE-FedAvg) algorithm described in Algorithm 2,
which combines the difference clipping with the slightly
generalized FedAvg algorithm described in Algorithm 1
(which uses two stepsizes ⌘l, ⌘g, one for local and
one for global updates, respectively). The reason to
consider such a bi-level-stepsize version of FedAvg is
that, it has been proved to have superior performance,
especially when not all clients participate in each round
of communication (Karimireddy et al., 2020; Yang et al.,
2021).

Algorithm 2 Clipping-enabled FedAvg Algorithm
(CE-FedAvg)
1: Initialize: x0

i , x0
, i = 1, . . . , N

2: for t = 0, . . . , T � 1 (stage) do

3: for i 2 Pt ✓ [N ] in parallel do

4: Update agents’ xt,0
i = xt

5: for q = 0, . . . , Q� 1 (iteration) do

6: Compute stochastic gradient g
t,q
i with E[gt,qi ] =

rfi(x
t,q
i )

7: Local update: xt,q+1
i = xt,q

i � ⌘lg
t,q
i

8: end for

9: Compute update difference: �xt
i = xt,Q

i � xt,0
i

10: Clip: �̂xt
i = clip(�xt

i, c), where clip(·) is defined in
(3)

11: end for

12: Global averaging: xt+1 = xt + ⌘g
1

|Pt|
P

i2Pt
�̂xt

i

13: end for

2.2. Empirical Results

Experiment Setting. To have a thorough understanding
about how the difference clipping can impact the FedAvg,
we conduct numerical experiments with different models,
datasets and local data distributions. We compare the test
accuracies between CE-FedAvg and the original FedAvg.
Note that in this set of experiments we do not consider the
privacy issues yet, so we do not add perturbation.

To have a fair comparison, we first fix T , N , |Pt|
and optimize the hyper-parameters Q, ⌘l and ⌘g for
CE-FedAvg and set them to be identical for both FedAvg and
CE-FedAvg, so that the difference between the performance
of CE-FedAvg and FedAvg can only be larger. We first run
the original FedAvg, compute k�xt

ik and average over all
clients i and iterations t to obtain �̄ and choose the clipping
threshold c = 0.5�̄.

We run the algorithm using AlexNet (Krizhevsky
et al., 2012) and ResNet-18 (He et al., 2016) with
EMNIST dataset (Cohen et al., 2017) and Cifar-10
dataset (Krizhevsky et al., 2009) for comparison. We split
the dataset in two different ways: 1) IID Data setting, where
the samples are uniformly distributed to each client; 2)
Non-IID Data setting, where the clients have unbalanced
samples. Details are described below. For EMNIST digit
classification dataset, each client has 500 samples without
overlapping. In the IID case, each client has around 50
samples of each class and in the Non-IID case, there are 8
classes (each has around 5 samples) and 2 classes (each has
230 samples) on each client. For the Cifar-10 dataset, in
the IID case (resp. Non-IID case), each client also has 500
samples (resp. 50 samples); these samples can overlap with
those on the other clients and the samples on each client are
uniformly distributed in 10 classes, i.e., each client has 50
samples (resp. 5 samples) from each class.

We also run the algorithm using the LSTM model used
in (Reddi et al., 2021) on the NLP problem with Shakespeare
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dataset (Caldas et al., 2018) , in addition to the image
classification problem. The dataset is also split in two
different ways: 1) IID Data setting, where samples are
uniformly distributed, each client has 3712 samples; 2)
Non-IID Data setting where samples are split by the clients
according to the way given in (Caldas et al., 2018).

Performance Degradation. In Table 1, we compare
the classification results produced by using AlexNet and
ResNet-18 on the two datasets.

There are three interesting observations: 1) The data
distribution will greatly affect the clipping performance
in FL. When data are IID across the clients, clipping has
far less impact on the final accuracy, otherwise the clipping
will introduce some accuracy drop to the trained models;
2) Clipping has quite different impact on different models
– the best accuracy of the models drops 0.10% and 3.60%
for ResNet-18 and AlexNet on EMNIST, respectively. The
drop is 1.55% for ResNet-18 and 7.30% for AlexNet on
Cifar-10, comparing CE-FedAvg with non-clipped version
on the Non-IID data; 3) Data complexity also affects the
behavior of the CE-FedAvg – the accuracy drop on Cifar-10
dataset is much larger than that on EMNIST dataset.

The empirical experiments show that heterogeneous data
distribution among the clients is one of the main causes of
the different behavior between the clipped and non-clipped
algorithms. And the data heterogeneity issue is unique in
FL where the data cannot be shared.

Update Difference Distribution. To further understand
the clipping procedure, we plot in Fig. 1, Fig. 2 and
Fig. 3 the magnitudes of local updates k�xt

ik and the
cosine angles between the last iteration’s global update and

�xt
i: cos�1

 D
�xt

i,
1

|Pt|
P

i2Pt�1
�xt�1

i

E

k�xt
ik

��� 1
|Pt|

P
i2Pt�1

�xt�1
i

���

!
. Due to page

limitation, we only put the distribution of communication
round T = 16. More detailed results are given in Appendix
A.2. In the plots, we mainly focus on the variance of the
magnitudes of the clients’ update difference (i.e., the blue
dots). Larger variance indicates that the updates made by
different clients are more different from each other.

Comparing Fig. 1 with Fig. 2 we can see that the update
magnitudes on EMNIST dataset are more concentrated
than that on Cifar-10 dataset by having smaller mean and
variance. Similarly, by comparing Fig. 1a with Fig. 1b or
Fig. 1c with Fig. 1d, or Fig. 3a with Fig. 3b, it is clear
that the local update magnitudes are more concentrated on
IID data than on Non-IID data. Moreover, ResNet-18 has a
more concentrated distribution of update magnitudes than
AlexNet. Importantly, comparing Table 1 with Fig. 1 and
Fig. 2, one can observe that the drop in final accuracy of a
model caused by clipping is correlated with the degree of
concentration of update magnitudes, as AlexNet with less

(a) AlexNet, IID (b) AlexNet, Non-IID

(c) ResNet-18, IID (d) ResNet-18, Non-IID

Figure 1: The distribution of local updates for AlexNet and
ResNet-18 on IID and Non-IID data at communication round
16 for EMNIST dataset. Each blue dot corresponds to the local
update from one client. The black dot shows the magnitude and
the cosine angle of averaged local update at iteration t.
concentrated update magnitudes suffers more from clipping,
while ResNet-18 exhibits the opposite behavior.

The above results about the update difference distributions
match the accuracy results in Table 1, in the sense
that clipping performs worse when update differences
distribution has a larger divergence and vise versa. Inspired
by this observation, in the next subsection, we will
characterize the impact of clipping based on the degree of
concentration in local updates and develop the convergence
analysis of CE-FedAvg.

3. Convergence Analysis of Clipping-Enabled

FedAvg

In this section, we analyze the theoretical performance
of CE-FedAvg as well as its randomly perturbed version,
in order to gain a better understanding of our previous
empirical observations and the trade-off between the
convergence performance of FedAvg and its DP guarantees.

Towards this end, we will provide the convergence analysis
and privacy guarantees for the DP-FedAvg algorithm (
Algorithm 3). Compared to CE-FedAvg, this algorithm
further adds a random perturbation zti to the locally clipped
model differences. During the communication, we assume
that the attacker can only observe the aggregated updateP

i2Pt
�̃xt

i, and this can be guaranteed by using secure
aggregation (Bonawitz et al., 2017) or assuming secure
uplinks of the clients.

Despite the similar mechanism used in DPSGD and
DP-FedAvg, let us point their major differences: in
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Table 1: The testing accuracy of a) FedAvg and clipping-enabled FedAvg, on IID and Non-IID data. The 4th and 6th columns display
both the accuracy of clipping-enabled FedAvg, and its difference with FedAvg.

Model dataset IID(%) IID Clipping (diff.)(%) Non-IID (%) Non-IID Clipping (diff.)(%)
AlexNet EMNIST 98.20 98.01 (–0.19) 95.60 92.00 (–3.60)

Cifar-10 66.01 61.18 (–4.83) 57.14 49.84 (–7.30)
ResNet-18 EMNIST 99.61 99.59 (–0.02) 95.43 95.33 (–0.10)

Cifar-10 76.36 75.83 (–0.53) 59.46 57.91 (–1.55)

(a) AlexNet, IID (b) AlexNet, Non-IID

(c) ResNet-18, IID (d) ResNet-18, Non-IID

Figure 2: The distribution of local updates for AlexNet and
ResNet-18 on IID and Non-IID data at communication round
16 for Cifar-10 dataset.

(a) LSTM, IID (b) LSTM, Non-IID

Figure 3: The distribution of local updates for Stacked LSTM on
IID and Non-IID data at communication round 16 for Shakespeare
dataset. Each blue dot corresponds to the local update from one
client. The black dot shows the magnitude and the cosine angle of
averaged local update at iteration t.
DPSGD, the goal is to protect SL-DP, while DP-FedAvg
is to protect CL-DP. The key difference in DP-FedAvg
is that the local dataset size is large enough so that after
performing multiple local update steps, the resulting model
has relatively good performance. By doing so, we can
largely reduce the number of communication and the
corresponding privacy noise added per communication.
Note that DP-FedAvg becomes DPSGD with the following
choices of hyperparameters: 1) enlarge the client number to
be the same as the size of the dataset, 2) decrease the local
dataset size to 1; 3) decrease the number of local update to
1; 4) decrease the privacy noise accordingly.

Algorithm 3 DP-FedAvg Algorithm
1: Initialize: x0

i , x0
, i = 1, . . . , N

2: for t = 0, . . . , T � 1 (stage) do

3: for i 2 Pt ✓ [N ] in parallel do

4: Update agents’ xt,0
i = xt

5: for q = 0, . . . , Q� 1 (iteration) do

6: Compute stochastic gradient g
t,q
i with E[gt,qi ] =

rfi(x
t,q
i )

7: Local update: xt,q+1
i = xt,q

i � ⌘lg
t,q
i

8: end for

9: Compute update difference: �xt
i = xt,Q

i � xt,0
i

10: Clip and perturb: �̃xt
i = clip(�xt

i, c) + zti , where
clip(·) is defined in (3)

11: end for

12: Global averaging: xt+1 = xt + ⌘g
1

|Pt|
P

i2Pt
�̃xt

i

13: end for

3.1. Convergence Analysis

Theorem 3.1 (Convergence of DP-FedAvg). For
Algorithm 3, assume krfi(x) � rfi(y)k  Lkx �
yk, 8 i, x, y, minx f(x) � f

⇤;E[kgt,qi �rfi(x
t,q
i )k2] 

�
2
l , kgt,qi k  G, 8 t, q, i, krfi(x) � rf(x)k2 

�
2
g , 8i, where L is the Lipschitz constant of gradient, �2

l
and �

2
g are intra-client and inter-client gradient variance,

G is the bound on stochastic gradient.

By letting ⌘g⌘l  min{ P
96Q2 ,

P
6QL(P�1)} and ⌘l  1p

60QL
,

we have

1
T

TX

t=1

E[↵tkrf(xt)k2]  FedAvg terms +
2⌘gLd�

2

⌘lPQ| {z }
caused by privacy noise

+G
2 4
T

TX

t=1

E
"
1
N

NX

i=1

(|↵t
i � ↵̃

t
i|+ |↵̃t

i � ↵
t|)

#

| {z }
caused by clipping

+ ⌘g⌘lLQG
2 6
T

TX

t=1

E
"
1
P

NX

i=1

(|↵t
i � ↵̃

t
i|2 + |↵̃t

i � ↵
t|2)

#

| {z }
caused by clipping

where P := |Pt|, ↵
t
i := c

max(c,⌘lk
PQ�1

q=0 gt,q
i k)

, ↵̃
t
i :=

c
max(c,⌘lkE[

PQ�1
q=0 gt,q

i ]k)
, ↵

t := 1
N

PN
i=1 ↵̃

t
i; d is the

dimension of x, �1(T ) = 1
T

PT
t=1 E[↵t]  1, �2(T ) =

1
T

PT
t=1 E[(↵t)2]  1 and FedAvg terms = 4(f(x0)�f⇤)

⌘g⌘lQT +

25
2 ⌘

2
l LQ(�2

l + 6Q�
2
g)�1(T ) +

6⌘g⌘lL�2
l

P �2(T ).

In the bound of Theorem 3.1, the FedAvg terms are inherited
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from standard FedAvg with two-sided learning rates which
can yield a convergence rate of O( 1p

PQT
+ 1

T ) when
setting ⌘g =

p
QP and ⌘l = 1p

TQL
. When there is

no clipping bias and privacy noise, Theorem 3.1 exactly
recovers the standard convergence bounds for FedAvg up to
a constant, see Theorem 1 in (Yang et al., 2021). Aside
from FedAvg terms, we have two types of extra terms
caused by the privacy noise z

t
i and the clipping operation,

respectively. We highlight the terms caused by clipping
which characterize the estimation bias caused by clipping.
The bias can be decomposed into terms caused by |↵t

i � ↵̃
t
i|

and terms caused by |↵̃t
i�↵

t|. Notice that since |↵t
i� ↵̃

t
i| 

⌘l|k
PQ�1

q=0 g
t,q
i k�kE[

PQ�1
q=0 g

t,q
i ]k| , it is clear E[|↵t

i�↵̃
t
i|]

will be small if the stochastic local updates have smaller
variance in norm. This term characterizes the bias caused
by local update variance. In addition, E[|↵̃t

i � ↵
t|] will

be small if the expected local model updates have similar
magnitudes in norm across clients and E[|↵̃t

i � ↵
t|] = 0

if kE[�x
t
i]k = kE[�x

t
j ]k, 8i, j. This term shows the bias

caused by cross-client update variance.

Key insight: In FL, sometimes each client will have
limited amount of data, and the local model updates can
be performed with small �l or even �l = 0 (full batch
update). Thus, the bias caused by |↵t

i � ↵̃
t
i| can be small

and is avoidable. However, the bias caused by |↵̃t
i � ↵

t| is
unavoidable since this term will not diminish even each
client updates its local model with full batch gradient.
In addition, this term might be large with heterogeneous
data distribution since the heterogeneity may induce quite
disparate gradient distributions across clients. Thus, it
is crucial to investigate the bias caused by |↵̃t

i � ↵
t| in

practice. Note that |↵̃t
i�↵

t| is fully controlled by differences
in magnitudes of local model updates when �l = 0 for
fixed c. Going back to Fig. 1, we do see that how
such differences in update magnitudes can be affected by
both the neural network models and data heterogeneity.
From another intuitive perspective, clipping operation is
similar to changing learning rates in a data-dependent
way. Inconsistent learning rate across workers can cause a
problem known as objective inconsistency (Wang et al.,
2020a) in federated learning, which also support that
|↵̃t

i � ↵
t| can affect model performance.

3.2. Differential Privacy Guarantee

The privacy guarantee of DP-FedAvg can be characterized
by standard privacy theorems on Gaussian mechanism. We
rephrase Abadi et al. (2016, Theorem 1 ) for client privacy
in Theorem 3.2.

Theorem 3.2 (Privacy of DP-FedAvg). There exist
constants u and v so that given the number of iterations
T , for any ✏  uq

2
T with q = P

N and |Pt| = P, 8t,
Algorithm 1 is (✏, �)-differentially private for any � > 0 if

�
2 � v

c2PT ln( 1
� )

N2✏2 .

The privacy-utility trade-off of DP-FedAvg can be analyzed
by substituting �

2 from Theorem 3.2 into Theorem 3.1. To
get more insights on how parameters like T, ⌘g, ⌘l and ✏

affect DP-FedAvg, let us consider simplified Theorem 3.1
in Corollary 3.2.1 with c � ⌘lQG and �

2 substituted . If
c
0
< G in Corollary 3.2.1, then there will be extra bias terms

inherited from the bound in Theorem 3.1.
Corollary 3.2.1 (Convergence with privacy guarantee).
Assume all assumptions in Theorem 3.1, for any clipping
threshold c = ⌘lQc

0 with c
0 � G, and set �2 as in Theorem

3.2, for any (✏, �) satisfying the constraints in Theorem 3.2,
we have

1
T

TX

t=1

E[krf(xt)k2] (5)

 O

✓
1

⌘g⌘lQT
+ ⌘

2
l Q

2 +
⌘g⌘l

P

◆

| {z }
standard terms for FedAvg

+O

✓
⌘g⌘lQTd ln( 1� )

N2✏2

◆

| {z }
caused by privacy noise

and the best rate one can get from the above bound is Õ(
p
d

N✏ )
by optimizing ⌘g, ⌘l, Q, T .

A direct implication of Corollary 3.2.1 is that the big-O
convergence rate of DP-FedAvg is the same as differentially
private SGD (DP-SGD) in terms of d, ✏, and N (the number
of samples in DP-SGD).

4. Numerical Experiments

In the experiment, we compare the performance of FedAvg,
CE-FedAvg and DP-FedAvg on two datasets. In both
experiments, we set client number N = 1920, the number
of client participates in each round |Pt| = 80, 8 t, the
number of local iterations Q = 32 and the mini-batch size
64. The clipping threshold is set to 50% of the average
(over clients and iterations) of local update magnitudes
recorded in FedAvg. For DP-FedAvg we set the clipping
threshold the same as in CE-FedAvg, we fix the number
of communication rounds and privacy budget for the
algorithms to obtain the noise variance that needs to
be added. These hyper-parameters are optimized for
DP-FedAvg Among all the experiments, we fix privacy
budget � = 10�5

.

EMNIST dataset. We use the digit part of the EMNIST
dataset, which has 240K training samples and 40K testing
samples. We distribute the data in the Non-IID way
described in Section II and each client has 125 samples.
We conduct experiments on a 2-layer MLP with one hidden
layer, AlexNet, ModelNetV2 (Sandler et al., 2018) and
ResNet-18. The results are listed in Table 3 and Figure 4.

Cifar-10 dataset. The dataset we use is the Cifar-10 dataset,
which has 50K training samples and 10K testing samples.
We distribute the data in the IID way described in Section II
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Table 2: The accuracy difference between a) FedAvg and CE-FedAvg and b) CE-FedAvg and DP-FedAvg on IID Cifar-10 dataset. The
clipping threshold is 0.5 of the average magnitude and privacy budget ✏ = 1.5 for MLP, AlexNet and ResNet-18.

Model # Parameters # Layers Accuracy (%) Clipping (diff.)(%) DP (diff.)(%)
MLP 616K 2 51.90 44.51 (–7.39) 43.60 (–0.90)
AlexNet 3.3M 7 66.01 61.18 (–4.83) 61.36 (+0.18)
ResNet-18 11.1M 18 76.36 75.83 (–0.53) 70.68 (–5.15)

Table 3: The accuracy difference between a) FedAvg and clip-enabled FedAvg and b) clip-enabled FedAvg and DP-FedAvg on Non-IID
EMNIST dataset. The clipping threshold is 0.5 of the average magnitude and privacy budget ✏ = 1.5 for MLP, AlexNet and MobileNetV2
and ✏ = 5 for ResNet-18.

Model # Parameters # Layers Accuracy (%) Clipping (diff.)(%) DP (diff.)(%)
MLP 159K 2 94.0 93.1 (–1.84) 92.8 (–0.29)
AlexNet 3.3M 7 96.4 94.9 (–1.47) 94.7 (–0.16)
MobileNetV2 2.3M 24 97.8 97.4 (–0.35) 95.8 (–1.62)
ResNet-18 11.1M 18 95.2 95.3 (+0.15) 91.5 (–3.76)⇤

(a) MLP, ✏ = 1.5 (b) AlexNet, ✏ = 1.5

(c) MobileNetV2, ✏ = 1.5 (d) ResNet-18, ✏ = 5

Figure 4: The test accuracy of FedAvg, CE-FedAvg and
DP-FedAvg on different models on EMNIST. The privacy budgets
for MLP, AlexNet and MobileNet are ✏ = 1.5 while for ResNet,
we set ✏ = 5.
and each client has 500 samples. We conduct experiments
on a 2-layer MLP with one hidden layer, AlexNet and
ResNet-18. The results are listed in Table 2 and Figure 5.

Discussion. Let us discuss the relation between our
empirical observations and the theoretical results.

1) It appears that when the underlying machine learning
model is structured (e.g., many layers, has convolution
layers, skip connections, etc), the update difference of
FedAvg becomes concentrated, yielding a better clipping
performance (as suggested by the terms related to clipping
in Theorem 3.1);

2) When the model has too many parameters and/or layers,
they are sensitive to privacy noise. This is reasonable
since the error term caused by privacy noise in Theorem
3.1 is linearly dependent on the size of the model d and
the square of the Lipschitz constant L (note, that ⌘` /
1/L). From Herrera et al. (2020, Corollary 3.3), we know
that L increases exponentially with the number of layers.
Therefore, larger and deeper models are potentially more

(a) MLP, ✏ = 1.5

(b) AlexNet, ✏ = 1.5

(c) ResNet-18, ✏ = 1.5

Figure 5: The test accuracy of FedAvg, CE-FedAvg and
DP-FedAvg on different models on Cifar-10. The privacy budgets
for MLP, AlexNet and ResNet are ✏ = 1.5.
sensitive to privacy noise.

3) We conjecture that, to ensure good performance of
DP-FedAvg, we need to pick a neural network that is
structured enough, while not having too many variables
and too many layers.
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McMahan, H. B., Smith, V., and Talwalkar, A. Leaf:
A benchmark for federated settings. arXiv preprint
arXiv:1812.01097, 2018.

Chen, X., Wu, S. Z., and Hong, M. Understanding
gradient clipping in private sgd: A geometric perspective.
Advances in Neural Information Processing Systems, 33,
2020.

Choudhury, O., Gkoulalas-Divanis, A., Salonidis, T.,
Sylla, I., Park, Y., Hsu, G., and Das, A. Differential
privacy-enabled federated learning for sensitive health
data. arXiv preprint arXiv:1910.02578, 2019.

Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
EMNIST: Extending MNIST to handwritten letters. In
2017 International Joint Conference on Neural Networks
(IJCNN), pp. 2921–2926. IEEE, 2017.

Dwork, C. and Roth, A. The algorithmic foundations
of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

Dwork, C., McSherry, F., Nissim, K., and Smith, A.
Calibrating Noise to Sensitivity in Private Data Analysis,
pp. 265–284. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006. ISBN 978-3-540-32732-5. doi:
10.1007/11681878_14. URL http://dx.doi.org/
10.1007/11681878_14.

Geyer, R. C., Klein, T., and Nabi, M. Differentially private
federated learning: A client level perspective. arXiv
preprint arXiv:1712.07557, 2017.

Hard, A., Rao, K., Mathews, R., Ramaswamy, S., Beaufays,
F., Augenstein, S., Eichner, H., Kiddon, C., and Ramage,
D. Federated learning for mobile keyboard prediction.
arXiv preprint arXiv:1811.03604, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

Herrera, C., Krach, F., and Teichmann, J. Estimating
full lipschitz constants of deep neural networks. arXiv
preprint arXiv:2004.13135, 2020.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich,
S., and Suresh, A. T. Scaffold: Stochastic controlled
averaging for federated learning. In International
Conference on Machine Learning, pp. 5132–5143.
PMLR, 2020.

Khaled, A., Mishchenko, K., and Richtárik, P. First
analysis of local gd on heterogeneous data. arXiv preprint
arXiv:1909.04715, 2019.
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A. Appendix

A.1. Proof of Theorem 3.1

By Lipschitz smoothness, we have

f(xt+1)  f(xt) + hrf(xt), xt+1 � xti+
L

2
kxt+1 � xtk2. (6)

Before we proceed, we define following quantities to simplify notation:

↵
t
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P := |Pt| , (7)

where the expectation in ↵̃
t
i is taken over all possible randomness.

By using the above definitions, the model difference between two consecutive iterations can be expressed as:

xt+1 � xt = ⌘g
1

P

X

i2Pt

(�t
i + z

t
i),

with z
t
i ⇠ N (0,�2

I). Using the above expressions, and take an conditional expectation of (6) (conditioned on xt), we
obtain:
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where d in the last expression represents dimension of xt; in the last equation we use the fact that zti is zero mean.

Next, we will analyze the bias caused by clipping, through analyzing the first order term in (8). Towards this end, we have
the following series of relations:
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where (i) we takes expectation on the randomness of the client sampling, i.e., Ei �t
i =

1
N

PN
i=1 �

t
i. The first two terms of

RHS of the above equality can be viewed as bias caused by clipping. The first order predicted descent can be analyzed from
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the last term by completing the square:
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where (i) comes from E�
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2 ka� bk2 holds true for any vector a, b.

We further upper bound A1 as
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where the first inequality comes from Jensen’s inequality, the second inequality comes from L-smoothness and the last
inequality is due to Lemma 3 in (Reddi et al., 2021).

Now we turn to upper bounding the second order term in (8), as follows
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We can bound the expectation in the last term of (12) as follows:
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where the last inequality is because the assumption that E[kgt,qi �rfi(x
t,q
i )k2]  �
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l . Let us further bound the expectation

in the first term of (13) as:
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where in (i) we expand the square and take expectation on the randomness of client sampling, and (ii) is due to independent
sampling the clients with replacement so that Ei,j
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where (i) comes from the definition of �̆t
i; (ii) comes from the fact that ka+ bk2  2(kak2 + kbk2); in (iii) we apply

(11) to the first term and bound the second term by the assumption that krfi(x)�rf(x)k2  �
2
g .
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Combining (8)-(15), we have
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When ⌘g⌘l  min{ P
96Q2 ,

P
6QL(P�1)} and ⌘l  1p
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, the above inequality simplifies to
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Sum over t from 1 to T , divide both sides by T⌘g⌘lQ/4, and rearrange, we have
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Upper-bounding the last four terms using kgt,qi k  G yields the desired result.

A.2. Additional Numerical Experiments

In this section, we provide additional numerical results which cannot be placed in the main paper due to page limitation.
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(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 64

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 64

Figure 6: The distribution of local updates for MLP on IID and Non-IID data at different communication rounds for EMNIST dataset.
Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine angle of global model
update at iteration t.
We run the algorithm using AlexNet (Krizhevsky et al., 2012) and ResNet-18 (He et al., 2016) with EMNIST dataset (Cohen
et al., 2017) and Cifar-10 dataset (Krizhevsky et al., 2009) for comparison. In addition to the image classification problem,
we also run the algorithm using the stacked LSTM model used in (Reddi et al., 2021) with Shakespeare dataset (Caldas
et al., 2018) on the NLP problem.

We plot the change of the distributions of the update differences of different algorithms listed in the main paper. Notice that
in all models and datasets, the distributions of the magnitude in the IID cases are more concentrated than the corresponding
Non-IID cases. Also, the distributions of the same model trained on EMNIST dataset are more concentrated than trained on
Cifar-10 dataset.

A.3. Quadratic Example

A.3.1. PROOF OF CLAIM 2.1

Given a fixed clipping threshold c, consider the following quadratic problem

f(x) =
3X

i=1

1

2
(x� bi)

2
,

where we have N = 3 clients. By applying model clipping to FedAvg, one round update can be expressed as:

x
+ =

1

3

3X

i=1

clip(�x+ (1� �)bi, c),

� = (1� ⌘l)
Q 2 (0, 1),

(19)

where ⌘l is the local stepsize.

Suppose that the algorithm converges, then we will have solution x
+ = x = x

1. This implies that

1

3

3X

i=1

clip(�x1 + (1� �)bi, c) = x
1
. (20)
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(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 64

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 64

Figure 7: The distribution of local updates for AlexNet on IID and Non-IID data at different communication rounds for EMNIST dataset.
Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine angle of global local
model update at iteration t.

(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 32

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 32

Figure 8: The distribution of local updates for MobileNetV2 on IID and Non-IID data at different communication rounds for EMNIST
dataset. Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine angle of global
local model update at iteration t.
Let us set b1 = b2 = �0.5c, b3 = kc, then it is easy to verify that the optimal solution of the problem is given by
x
? = (k�1)c

3 > 0. However, when k > 4, from (20) we can see that x1  c and x
?
> c. Therefore, the only possibility

is that x1 = �
3�2�c  c 6= x

?, and this holds true for any � 2 (0, 1). So the stationary solution of FedAvg with model
clipping to this problem will not converge to the original optimal solution no matter how we choose Q and ⌘l.
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(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 32

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 32

Figure 9: The distribution of local updates for ResNet-18 on IID and Non-IID data at different communication rounds for EMNIST
dataset. Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine angle of global
local model update at iteration t.

(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 64

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 64

Figure 10: The distribution of local updates for MLP on IID and Non-IID data at different communication rounds for Cifar-10 dataset.
Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine angle of global local
model update at iteration t.
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(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 64

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 64

Figure 11: The distribution of local updates for AlexNet on IID and Non-IID data at different communication rounds for Cifar-10 dataset.
Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine angle of global local
model update at iteration t.

(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 32

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 32

Figure 12: The distribution of local updates for ResNet-18 on IID and Non-IID data at different communication rounds for Cifar-10
dataset. Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine angle of global
local model update at iteration t.
A.3.2. PROOF OF CLAIM 2.2

First, we prove that using difference clipping, FedAvg can converge to global optimal by carefully selecting Q and ⌘l.
Consider the following convex quadratic problem

f(x) =
NX

i=1

1

2
(Aix� bi)

2
.
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(a) IID, t = 0 (b) IID, t = 2 (c) IID, t = 8 (d) IID, t = 64

(e) Non-IID, t = 0 (f) Non-IID, t = 2 (g) Non-IID, t = 8 (h) Non-IID, t = 64

Figure 13: The distribution of local updates for Stacked LSTM on IID and Non-IID data at different communication rounds for
Shakespeare dataset. Each blue dot corresponds to the local update from one client. The black dot shows the magnitude and the cosine
angle of global local model update at iteration t.
By applying FedAvg with update difference clipping, one round of update can be expressed as:

x
+ = x� 1

N

NX

i=1

clip(⇤irfi(x), c)

⇤i = (I � (I � ⌘lA
T
i Ai)

Q)(AT
i Ai)

�1
.

(21)

In order for the problem to converge to the original problem, it is easy to verify that the following condition has to hold:

NX

i=1

clip(⇤irfi(x
?), c) = 0.

The above example can be viewed as using gradient descent to optimize a problem with the following gradient

rf
0
i(x) =

(
⇤irfi(x) k⇤irfi(x)k  c,

c⇤irfi(x)
k⇤irfi(x)k otherwise. (22)

Note that in general it is hard to write down the exact local problems f 0
i that satisfies the above condition, but when x 2 R is

a scalar, f 0
i(x) is the Huberized loss of ⇤ifi(x) (Song et al., 2021)

f
0
i(x) =

(
⇤ifi(x) if |⇤iAi(Aix� bi)|  c,

c

���⇤i
Ai

fi(x)
���� 1

2c
2 otherwise.

(23)

In general, the re-weighted problem does not have the same solution as the original problem, but we can select ⌘l and Q

(determined by on x
? and fi’s) so that f 0(x) has the same solution as f(x). For example, one set of parameters that satisfy

the above requirement is Q = 1, ⌘l = 1/maxi{krfi(x?)k}. In this case, ⇤i = I⌘l, and when ⌘l is small enough, the
clipping will not be activate when x = x

? and
PN

i=1 clip(⇤irfi(x?), c) =
PN

i=1 ⌘lrfi(x?) = 0.

Next, we show that Clipping-enabled FedAvg can outperform the non-clipped version. Note that when Q > 1, even when
⌘ is small such that the clipping is not activated, the algorithm will not converge to the original solution. So in general
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Q = 1 Q = 1
c = 1 x

1 = 0 x
1 = 13

9
c = 1 x

1 = 1
2 x

1 = 2
3

Table 4: Stationary points of FedAvg with gradient clipping for (24) under different parameter settings.
one cannot draw the conclusion about whether clipping helps or hurts the performance of FedAvg. Consider the following
problem:

f(x) =
3X

i=1

fi(x),

f1(x) =
1

2
(x� 4)2, f2(x) =

1

2
(2x� 1)2, f3(x) =

1

2
(6x+ 1)2.

(24)

As rf(x) = (x � 4) + (4x � 2) + (36x + 6) = 41x, the optimal solution of this problem is x? = 0. Table 4 show the
stationary points of FedAvg under different choice of parameters. When Q = 1, FedAvg is equivalent to SGD and clipping
hurts the performance of FedAvg. However, when Q is large, clipped FedAvg has a better performance than the non-clipped
version, in the sense that the stationary solution it obtains are closer to the global optimal solution x

⇤ = 0.
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