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Abstract

Data poisoning considers an adversary that distorts the training set of machine
learning algorithms for malicious purposes. In this work, we bring to light one
conjecture regarding the fundamentals of data poisoning, which we call the Lethal
Dose Conjecture. The conjecture states: If n clean training samples are needed for
accurate predictions, then in a size-N training set, only Θ(N/n) poisoned samples
can be tolerated while ensuring accuracy. Theoretically, we verify this conjecture
in multiple cases. We also offer a more general perspective of this conjecture
through distribution discrimination. Deep Partition Aggregation (DPA) and its
extension, Finite Aggregation (FA) are recent approaches for provable defenses
against data poisoning, where they predict through the majority vote of many base
models trained from different subsets of training set using a given learner. The
conjecture implies that both DPA and FA are (asymptotically) optimal—if we
have the most data-efficient learner, they can turn it into one of the most robust
defenses against data poisoning. This outlines a practical approach to developing
stronger defenses against poisoning via finding data-efficient learners. Empirically,
as a proof of concept, we show that by simply using different data augmentations
for base learners, we can respectively double and triple the certified robustness of
DPA on CIFAR-10 and GTSRB without sacrificing accuracy.

1 Introduction

With the increasing popularity of machine learning and especially deep learning, concerns about the
reliability of training data have also increased: typically, because of the availability of data, many
training samples have to be collected from users, internet websites, or other potentially malicious
sources for satisfying utilities. This motivates the development of the data poisoning threat model,
which focuses on the reliability of models trained from adversarially distorted data [13].

Data poisoning is a class of training-time adversarial attacks: The adversary is given the ability to
insert and remove a bounded number of training samples to manipulate the behavior (e.g. predictions
for some target samples) of models trained using the resulted, poisoned dataset. Models trained from
the poisoned dataset are referred to as poisoned models and the allowed number of insertion and
removal is the attack size.

To challenge the reliability of poisoned models, many variants of poisoning attacks have been
proposed, including triggerless attacks [28, 37, 1, 12], which do not modify target samples, and
backdoor attacks [5, 32, 27], which modify them. In addition, in cases where the adversary can
achieve its goal with a non-negligible probability by doing nothing, a theoretical study [23] discovers
a provable attack replacing Õ(

√
N) samples in a size-N training set. Meanwhile, defenses against

data poisoning are also emerging, including detection-based defenses [30, 10, 25, 31, 33], trying
to identify poisoned samples, and training-based defenses [35, 26, 22, 15, 20, 17, 4, 34], aiming at
robustifying models trained from poisoned data.
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In this work, we target the fundamentals of data poisoning and ask:

• What amount of poisoned samples will make a specific task impossible?

The answer we propose is the following conjecture, characterizing the lethal dose for a specific task:

Lethal Dose Conjecture (informal)

For a given task, if the most data-efficient learner takes at least n clean samples for an accurate
prediction, then when a potentially poisoned, size-N training set is given, any defense can tolerate
at most Θ(N/n) poisoned samples while ensuring accuracy.

Notably, the conjecture considers an adversary who 1. knows the underlying distribution of clean data
and 2. can both insert and remove samples when conducting data poisoning. The formal statement
of the conjecture is in Section 4.1. We prove the conjecture in multiple settings including Gaussian
classifications and offer a general perspective through distribution discrimination.

Theoretically, the conjecture relates learning from poisoned data with learning from clean data,
reducing robustness against data poisoning to data efficiency and offering us a much more intuitive
way to estimate the upper bound for robustness: To find out how many poisoned samples are tolerable,
one can now instead search for data-efficient learners.

In addition, the conjecture implies that Deep Partition Aggregation (DPA) [20] and its extension,
Finite Aggregation (FA) [34] are (asymptotically) optimal: DPA and FA are recent approaches
for provable defenses against data poisoning, predicting through the majority vote of many base
models trained from different subsets of training set using a given base learner. If we have the most
data-efficient learner, DPA and FA can turn it into defenses against data poisoning that approach the
upper bound of robustness indicated by Lethal Dose Conjecture within a constant factor.

The optimality of DPA and FA (indicated by the conjecture) outlines a practical approach to developing
stronger defenses by finding more data-efficient learners. As a proof of concept, we show on CIFAR-
10 and GTSRB that by simply using different data augmentations to improve the data efficiency
of base learners, the certified robustness of DPA can be respectively doubled and tripled without
sacrificing accuracy, highlighting the potential of this practical approach.

Another implication from the conjecture is that a stronger defense than DPA (which is asymptotically
optimal assuming the conjecture) implies the existence of a more data-efficient learner. As an example,
we show how to derive a learner from the nearest neighbors defenses [16], which are more robust than
DPA in their evaluation. With the derived learner, DPA offers similar robustness to their defenses.

In summary, our contributions are as follows:

• We propose Lethal Dose Conjecture, characterizing the largest amount of poisoned samples any
defense can tolerate for a specific task;

• We prove the conjecture in multiples cases including Isotropic Gaussian classifications;
• We offer a general perspective supporting the conjecture through distribution discrimination;
• We showcase how more data-efficient learners can be optimally (assuming the conjecture)

transferred into stronger defenses: By simply using different augmentations to get more data-
efficient base learners, we double and triple the certified robustness of DPA respectively on
CIFAR-10 and GTSRB without sacrificing accuracy;

• We illustrate how a learner can be derived from the nearest neighbors defenses [16], which, in
their evaluation, are much more robust than DPA (which is asymptotically optimal assuming the
conjecture)—Given the derived learner, DPA transfers it to a defense with comparable robustness
to the nearest neighbors defenses.

2 Related Work

DPA [20] and FA [34] we discuss in Section 7 are pointwise certified defenses against data poisoning,
where the prediction on every sample is guaranteed unchanged within a certain attack size. Jia et al.
[17] and Chen et al. [4] offer similar but probabilistic pointwise guarantees. Meanwhile, Weber et al.
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[35] and Rosenfeld et al. [26] use randomized smoothing to provably defend against backdoor attacks
[35] and label-flipping attacks [26], Diakonikolas et al. [10] provably approximates clean models
assuming certain clean data distributions, Awasthi et al. [2] and Balcan et al. [3] provably learn linear
separators over isotropic log-concave distributions under data poisoning.

Prior to Lethal Dose Conjecture, Gao et al. [11] use the framework of PAC learning to explore
how the number of poisoned samples and the size of the training set can affect the threat of data
poisoning attacks. Let N be the size of the training set and m be the number of poisoned samples.
Their main results suggest that when the number of poisoned samples m scales sublinearly with
the size of training set N (i.e. m = o(N) or m/N → 0), the poisoning attack will be defendable.
Meanwhile, our Lethal Dose Conjecture offers a more accurate characterization: The threshold for
when poisoning attacks can be too strong to be defended is when m/N ≈ Ω(1/n), where n is the
number of samples needed by the most data-efficient learners to achieve accurate predictions.

3 Background and Notation

Classification Problem: A classification problem (X,Y,Ω, P,F) consists of: X—the space of
inputs; Y—the space of labels; Ω—the space of all labeled samples X × Y ; P—the distribution over
Ω that is unknown to learners; and F—the set of plausible learners.

Learner: For a classification problem (X,Y,Ω, P,F), a learner f ∈ F is a (stochastic) function
f : ΩN → C mapping a (finite) training set to a classifier, where C denotes the set of all classifiers.
A classifier is a (stochastic) function from the input space X to the label set Y , where the outputs are
called predictions. For a learner f , fD denotes the classifier corresponding to a training set D ∈ ΩN

and fD(x) denotes the prediction of the classifier for input x ∈ X .

Clean Learning: In clean learning, given a classification problem (X,Y,Ω, P,F), a learner f ∈ F
and a training set size n, the learner has access to a clean training set containing n i.i.d. samples from
P and thus the resulting classifier can be denoted as fDn where Dn ∼ Pn is the size-n training set.

Poisoned Learning: In poisoned learning, given a classification problem (X,Y,Ω, P,F), a learner
f ∈ F , a training set size N and a transform T : ΩN → ΩN, the learner has access to a poisoned
training set obtained by applying T to the clean training set and thus the resulting classifier can be
denoted as fT (DN ) where DN ∼ PN . The symmetric distance between the clean training set and
the poisoned training set, i.e. |T (DN )−DN | = |(T (DN ) \DN ) ∪ (DN \ T (DN ))|, is called the
attack size, which corresponds to the minimum total number of insertions and removals needed to
change one training set to the other.

Total Variation Distance: The total variation distance between two distributions U and V over the
sample space Ω is δ(U, V ) = maxA⊆Ω |U(A) − V (A)|, which denotes the largest difference of
probabilities on the same event for U and V .

4 Lethal Dose Conjecture

4.1 The Conjecture

Below we present a more formal statement of Lethal Dose Conjecture:

Lethal Dose Conjecture
For a classification problem (X,Y,Ω, P,F), let x0 ∈ X be an input and y0 = arg maxy P (y|x0)
be the maximum likelihood prediction.
• Let n be the smallest training set size such that there exists a learner f ∈ F with
Pr[fDn(x0) = y0] ≥ τ for some constant τ ;

• For any given training set size N , and any learner f ∈ F , there is a mapping T : ΩN → ΩN

with Pr[fT (DN )(x0) = y0] ≤ 1/|Y | while E[|T (DN )−DN |] ≤ Θ(1/n) ·N .
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Informally, if the most data-efficient learner takes at least n clean samples for an accurate prediction,
then when a potentially poisoned, size-N training set is given, any defense can tolerate at most
Θ(N/n) poisoned samples while ensuring accuracy.

Intuitively, if one needs n samples to have a basic understanding of the task, then when Θ(N/n)
samples are poisoned in a size-N training set, sampling n training samples will in expectation
contain some poisoned samples, preventing one from learning the true distribution. Theoretically,
the conjecture offers an intuitive way to think about or estimate the upper bound for robustness for a
given task: To find out how many poisoned samples are tolerable, one now considers data efficiency
instead. Practical implications are included in Section 7.

Notably, this conjecture characterizes the vulnerability to poisoning attacks of every single test sample
x0 rather than a distribution of test samples. While the latter type (i.e. distributional argument) is
more common, a pointwise formulation is in fact more desirable and more powerful.

Firstly, a pointwise argument can be easily converted into a distributional one, but the reverse is
difficult. Given a distribution of x0 and the (pointwise) ‘lethal dose’ for each x0, one can define the
distribution of the ‘lethal dose’ and its statistics as the distributional ‘lethal dose’. However, it is hard
to uncover the ‘lethal dose’ for each x0 from distributional arguments.

Secondly, samples are not equally difficult in most if not all applications of machine learning: To
achieve the same level of accuracy on different test samples, the number of training samples required
can also be very different. For example, on MNIST, which is a task to recognize handwritten digits,
samples of digits ‘1’ are usually easier for models to learn and predict accurately, while those of
digits ‘6’, ‘8’ and ‘9 are harder as they can look more alike. In consequence, we do not expect them
to be equally vulnerable to data poisoning attacks. Compared to a distributional one, the pointwise
argument better incorporates such observations.

4.2 Proving The Conjecture in Examples

In this section we present two examples of classification problems, where we can precisely prove
Lethal Dose Conjecture. For coherence, we defer the proofs to Appendix A, B, C and D.

4.2.1 Bijection Uncovering

Definition 1 (Bijection Uncovering). For any k, Bijection Uncovering is a k-way classification task
(X,Y,Ω, P,F) defined as follows:

• The input space X and the label set Y are both finite sets of size k (i.e. |X| = |Y | = k);

• The true distribution P corresponds to a bijection g from X to Y (note that g is unknown to
learners), and ∀x ∈ X, ∀y ∈ Y, P (x, y) = 1[g(x) = y]/k;

• For y, y′ ∈ Y , let Ty↔y′ : ΩN → ΩN be a transform that exchanges all labels y and y′ in a the
given training set (i.e. if a sample is originally labeled y, its new label will become y′ and vice
versa). The set of plausible learners F contains all learners f such that Pr[fD(x0) = y] =
Pr[fTy↔y′ (D)(x0) = y′] for all y, y′ ∈ Y and D ∈ ΩN.

This is the setting where there is a one-to-one correspondence between inputs and classes. This is
considered the ‘easiest’ classification as it describes the case of solving a k-way classification given
a pre-trained, perfect feature extractor that puts samples from the same class close to each others
and samples from different classes away from each others. In this case, since one knows whether
two samples belong to the same class or not, samples can be divided into k clusters and the task is
essentially uncovering the bijection between clusters and class labels.

Intuitions for The Set of Plausible Learners F . The set of plausible learners F is a task-dependent
set and we introduce it to make sure that the learner indeed depends on and learns from training
data. Here we explain in detail the set F in definition 1: The set of plausible learners F contains
all learners f such that Pr[fD(x0) = y] = Pr[fTy↔y′ (D)(x0) = y′] for all y, y′ ∈ Y and D ∈ ΩN.
Intuitively, it says that if one rearranges the labels in the training set, the output distribution will
change accordingly. For example, say originally we define class 0 to be cat, and class 1 to be dog,
and all dogs in the training set are labeled 0 and cats are labeled 1. In this case, for some cat image
x0, a learner f predicts 0 with a probability of 70% and predicts 1 with a probability of 30%. What
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happens if we instead define class 1 to be cat, and class 0 to be dog? Dogs in the training set will be
labeled 1 and cats will be labeled 0 (i.e. label 0 and label 1 in the training set will be swapped). If f is
a plausible learner, meaning that it learns the association between inputs and outputs from the dataset,
we expect the output distribution to change accordingly, i.e. now f will predict 1 with a probability
of 70% and predict 0 with a probability of 30%. Consequently, an example of a learner that is not
plausible is as follow: A learner that always predicts 0 regardless of the training set, regardless of
whether we associate 0 with dog or with cat.

Lemma 1 (Clean Learning of Bijection Uncovering). In Bijection Uncovering, given a constant
τ ∈ (1/2, 1), for any input x0 ∈ X and the corresponding maximum likelihood prediction y0 =
arg maxy P (y|x0), let n be the smallest training set size such that there exists a learner f ∈ F with
Pr[fDn

(x0) = y0] ≥ τ . Then n ≥ Θ(k), i.e. the most data-efficient learner takes at least Θ(k)
clean samples for an accurate prediction.

Lemma 2 (Poisoned Learning of Bijection Uncovering). In Bijection Uncovering, for any input
x0 ∈ X and the corresponding maximum likelihood prediction y0 = arg maxy P (y|x0), for any
given training set size N , and any learner f ∈ F , there is a mapping T : ΩN → ΩN with
Pr[fT (DN )(x0) = y0] ≤ 1/|Y | while E[|T (DN ) −DN |] ≤ Θ(1/k) ·N , i.e. poisoning Θ(1/k) of
the entire training set is sufficient to break any defense.

From Lemma 1 and Lemma 2, we see for Bijection Uncovering, the most data-efficient learner takes
at least Θ(k) clean samples to predict accurately and any defense can tolerate at most Θ(1/k) of
the training set being poisoned. The two quantities are inversely proportional, just as indicated by
Lethal Dose Conjecture.

4.2.2 Instance Memorization

Definition 2 (Instance Memorization). For any k and m, Instance Memorization is a k-way classifi-
cation task (X,Y,Ω, P,F) defined as follows:

• The input space X and the label set Y are both finite with |X| = m and |Y | = k;

• The true distribution P corresponds to a mapping g from X to Y (note that g is unknown to
learners), and ∀x ∈ X, ∀y ∈ Y, P (x, y) = 1[g(x) = y]/m;

• For y, y′ ∈ Y , let Ty↔y′|x0
: ΩN → ΩN be a transform that exchanges labels y and y′ for all

samples with an input x0 in a given training set (i.e. all (x0, y) will become (x0, y
′) and vice

versa). The set of plausible learners F contains all learners f such that Pr[fD(x0) = y] =
Pr[fTy↔y′|x0

(D)(x0) = y′] for all y, y′ ∈ Y and D ∈ ΩN.

This is the setting where labels for different inputs are independent and learners can only predict
through memorization. This is considered the ‘hardest’ classification problem in a sense that the
inputs are completely uncorrelated and no information is shared by labels of different inputs.

Lemma 3 (Clean Learning of Instance Memorization). In Instance Memorization, given a constant
τ ∈ (1/k, 1), for any input x0 ∈ X and the corresponding maximum likelihood prediction y0 =
arg maxy P (y|x0), let n be the smallest training set size such that there exists a learner f ∈ F with
Pr[fDn

(x0) = y0] ≥ τ . Then n ≥ Θ(m), i.e. the most data-efficient learner takes at least Θ(m)
clean samples for an accurate prediction.

Lemma 4 (Poisoned Learning of Instance Memorization). In Instance Memorization, for any input
x0 ∈ X and the corresponding maximum likelihood prediction y0 = arg maxy P (y|x0), for any
given training set size N , and any learner f ∈ F , there is a mapping T : ΩN → ΩN with
Pr[fT (DN )(x0) = y0] ≤ 1/|Y | while E[|T (DN )−DN |] ≤ Θ(1/m) ·N , i.e. poisoning Θ(1/m) of
the entire training set is sufficient to break any defense.

From Lemma 3 and Lemma 4, we observe that for Instance Memorization, the most data-efficient
learner takes at least Θ(m) clean samples to predict accurately and any defense can tolerate at most
Θ(1/m) of the training set being poisoned. The two quantities are, again, inversely proportional,
which is consistent with Lethal Dose Conjecture. This is likely no coincidence and more supports are
presented in the following Sections 5 and 6.
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5 An Alternative View from Distribution Discrimination

In this section, we offer an alternative view through the scope of Distribution Discrimination. Intu-
itively, if for two plausible distribution U and V over Ω, the corresponding optimal predictions on
some x0 are different (i.e. arg maxy Pr[U(y|x0)] 6= arg maxy Pr[V (y|x0)]), then a learner must
(implicitly) discriminate these two distributions in order to predict correctly. With this in mind, we
present the following theorems. The proofs are respectively included in Appendix E and F.
Theorem 1. Given two distributions U and V over Ω, for any function f : ΩN → {0, 1}, we have

ED∼Un [f(D)]− ED∼V n [f(D)] ≤ n · δ(U, V ),

where δ(U, V ) is the total variation distance between U and V . Thus for a constant τ ,
ED∼Un [f(D)]− ED∼V n [f(D)] ≥ τ implies n ≥ τ/δ(U, V ) = Θ(1/δ(U, V )) .
Theorem 2. Given two distributions U and V over Ω, for any function f : ΩN → {0, 1}, there
is a stochastic transform T : ΩN → ΩN, such that T (UN ) is the same distribution as V N (thus
ED∼UN [f(T (D))]− ED∼V N [f(D)] = 0) and ED∼UN [|T (D)−D|] = δ(U, V ) ·N .

Theorem 1 implies that to discriminate two distributions with certain confidence, the number of
clean samples required is at least Θ(1/δ(U, V )), which is proportional to the inverse of their total
variation distance; Theorem 2 suggests that for a size-N training set, the adversary can make the two
distribution indistinguishable given the ability to poison δ(U, V ) ·N samples in expectation. This is
consistent with the scaling rule suggested by the Lethal Dose Conjecture. We will also see in Section
6 how the theorems help the analysis of classification problems.

6 Verifying Lethal Dose Conjecture in Isotropic Gaussian Classification

In this section, we analyze the case where data from each class follow a multivariate Gaussian
distribution and we will prove the very same scaling rule stated by Lethal Dose Conjecture.
Definition 3 (Isotropic Gaussian Classification). For any k and d, Isotropic Gaussian Classification
is a k-way classification task (X,Y,Ω, P,F) defined as follows:

• The input space X is Rd and the label set Y is a finite set of size k (i.e.|Y | = k);

• For y ∈ Y , µy ∈ Rd denotes the (unknown) center of class y and the true distribution P is:{
(∀y ∈ Y ) P (y) = 1

k Labels are uniformly distributed
(∀x ∈ X)(∀y ∈ Y ) P (x|y) = 1

(2π)d/2
e−||x−µy||2/2 Class y is a Gaussian N (µy, I)

(1)

• The set of plausible learners F contains all unbiased, non-trivial learners, meaning that for any
f ∈ F , given any x0, and any plausible P (i.e. the same form as Equation 1 but with potentially
different µy) where y0 = arg maxy P (y|x0) is unique, we have Pr[fDn

(x0) = y0] > 1
k and

(∀y 6= y0) Pr[fDn(x0) = y] ≤ 1
k for all n ≥ 1.

First we present a claim regarding the optimal prediction y0 corresponding to a given input x0:
Claim 1. In Isotropic Gaussian Classification, for any x0, the corresponding maximum likelihood
prediction y0 = arg maxy P (y|x0) is arg miny ||x0 − µy||.

This follows directly from Equation 1: y0 = arg maxy P (y|x0) = arg maxy
1√
2π
e−||x−µy||2/2 =

arg miny ||x − µy||. Without loss of generality and with a slight abuse of notation, we assume in
the rest of Section 6 that µ1, µ2 are respectively the closest and the second closest class centers to
x0 and therefore y0 = 1 is the optimal prediction. Let d1 = ||x0 − µ1|| and d2 = ||x0 − µ2|| be the
distances of µ0 and µ1 to x0. An illustration is included in Figure 1(a).

First we define a parameter ∆ that will later help us to analyze both clean learning and poisoned
learning of Isotropic Gaussian Classification: ∆ is the total variation distance between two isotropic
Gaussian distribution with centers separated by a distance of d2 − d1, i.e. ∆ = δ(U, V ) for some
U = N (µ, I) and V = N (µ′, I) where ||µ − µ′|| = d2 − d1. We introduce a lemma proved by
Devroye et al. [9].
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(a) Clean (b) Poisoned

Figure 1: Illustrations of Isotropic Gaussian Classification under clean learning and poisoned learning,
where µ1, µ2 are centers for clean training samples with labels 1 (red) and 2(blue); µ′2 is the center
for the poisoned training samples with labels 2 (purple). Note that the illustrations contain only the
two closest classes to x0 and the setting contains k ≥ 2 classes.

Lemma 5 (Total variation distance for Gaussians with the same covariance[9]). For two Gaus-
sian distribution U = N (µ,Σ) and V = N (µ′,Σ), their total variation distance is δ(U, V ) =

Pr[N (0, 1) ∈ [−r, r]] where r =
√

(µ− µ′)TΣ−1(µ− µ′)/2.

Thus ∆ = Pr [|N (0, 1)| ≤ d2 − d1] = erf
(
(d2 − d1)/

√
2
)

where erf(x) = (2/
√
π) ·

∫ x
0
e−t

2

dt is
the Gaussian error function.
Lemma 6 (Clean Learning of Isotropic Gaussian Classification). In Isotropic Gaussian Classification,
given a constant τ ∈ (1/2, 1), for any input x0 ∈ X and the corresponding maximum likelihood
prediction y0 = arg maxy P (y|x0), let n be the smallest training set size such that there exists a
learner f ∈ F with Pr[fDn

(x0) = y0] ≥ τ . Then n ≥ Θ(k/∆), i.e. the most data-efficient learner
takes at least Θ(k/∆) clean samples for an accurate prediction.
Lemma 7 (Poisoned Learning of Isotropic Gaussian Classification). In Isotropic Gaussian Clas-
sification, for any input x0 ∈ X and the corresponding maximum likelihood prediction y0 =
arg maxy P (y|x0), for any given training set size N , and any learner f ∈ F , there is a mapping
T : ΩN → ΩN with Pr[fT (DN )(x0) = y0] ≤ 1/|Y | while E[|T (DN ) − DN |] ≤ Θ(∆/k) · N , i.e.
poisoning Θ(∆/k) of the entire training set is sufficient to break any defense.

The proofs of Lemma 6 and Lemma 7 are included respectively in Appendix G and H. Intuitively,
what we do is to construct a second, perfectly legit distribution that is not far from the original one
(measured with the total variation distance), so that any classifier must either fail on the original one
or fail on the one we construct. If it fails on the original one, the adversary achieves its goal even
without poisoning the training set. If it fails on the one we construct, the adversary can still succeed
by poisoning only a limited fraction of the training set because the distribution we construct is close
to the original one (measured with total variation distance).

Through the lemmas, we show that for Isotropic Gaussian Classification, the most data-efficient
learner takes at least Θ(k/∆) clean samples to predict accurately and any defense can be broken by
poisoning Θ(∆/k) of the training set, once again matching the statement of Lethal Dose Conjecture.

7 Practical Implications

7.1 (Asymptotic) Optimality of DPA and Finite Aggregation

In this section, we highlight an important implication of the conjecture: Deep Partition Aggregation
[20] and its extension, Finite Aggregation [34] are (asymptotically) optimal—Using the most data-
efficient learner, they construct defenses approaching the upper bound of robustness indicated by
Lethal Dose Conjecture within a constant factor.

Deep Partition Aggregation [20]: DPA predicts through the majority votes of base learners trained
from disjoint data. Given the number of partitions k as a hyperparameter, DPA is a learner constructed
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using a deterministic base learner f and a hash function h : X × Y → [k] mapping labeled samples
to integers between 0 and k − 1. The construction is:

DPAD(x0) = arg max
y

DPAD(x0, y) = arg max
y∈Y

1

k

k−1∑
i=0

1 [fPi
(x0) = y] ,

where Pi = {(x, y) ∈ D | h(x, y) = i} is a partition containing all training samples with a hash
value of i and DPAD(x0, y) = 1

k

∑k−1
i=0 1 [fPi(x0) = y] denotes the average votes count for class y.

Ties are broken by returning the smaller class index in arg max.
Theorem 3 (Certified Robustness of DPA against Data Poisoning [20]). Given a training set D and
an input x0, let y0 = DPAD(x0), then for any training set D′ with

|D −D′| ≤ k

2

(
DPAD(x0, y0)−max

y 6=y0

(
DPAD(x0, y) +

1 [y < y0]

k

))
(2)

we have DPAD(x0) = DPAD′(x0), meaning the prediction remains unchanged with data poisoning.

Let n be the average size of partitions, i.e. n =
∑k−1
i=0 |Pi|/k = N/k where N = |D| is the size of

the training set. Assuming the hash function h : X × Y → [k] uniformly distributes samples into
different partitions, we have DPAD(x0, y) ≈ Pr[fDn

(x0) = y] and therefore the right hand side of
Equation 2 approximates

Pr[fDn
(x0) = y0]−maxy 6=y0 Pr[fDn

(x0) = y]

2n
·N = Θ

(
1

n

)
·N

when the base learner f offers a margin ∆ = Pr[fDn
(x0) = y0]−maxy 6=y0 Pr[fDn

(x0) = y] ≥ τ
with n samples for some constant τ . When f is the most data-efficient learner taking n clean samples
with a margin ∆ ≥ τ for an input x0, then given a potentially poisoned, size-N training set is given,
DPA (using f as the base learner) tolerates Θ (N/n) poisoned samples, approaching the upper bound
of robustness indicated by Lethal Dose Conjecture within a constant factor.

The analysis for Finite Aggregation (FA) is exactly the same by substituting Theorem 3 with the
certified robustness of FA. For details, please refer to Theorem 2 by Wang et al. [34].

7.2 Better Learners to Stronger Defenses

Assuming the conjecture is true, we have in our hand the (asymptotically) optimal approaches to
convert data-efficient learners to strong defenses against poisoning. This reduces developing stronger
defenses to finding more data-efficient learners. In this section, as a proof of concept, we show that
simply using different data augmentations can increase the data efficiency of base learners and vastly
improve (double or even triple) the certified robustness of DPA, essentially highlighting the potential
of finding data-efficient learners in defending against data poisoning, which has been a blind spot for
our community.

Setup. Following Levine and Feizi [20], we use Network-In-Network[21] architecture for all base
learners and evaluate on CIFAR-10[18] and GTSRB[29]. For the baseline (DPA_baseline), we follow
exactly their augmentations, learning rates (initially 0.1, decayed by a factor of 1/5 at 30%, 60%, and
80% of the training process), batch size (128) and total epochs (200). For our results (DPA_aug0 and
DPA_aug1 on CIFAR-10; DPA_aug on GTSRB), we use predefined AutoAugment [6] policies for
data augmentations, where DPA_aug0 uses the policy for CIFAR-10, DPA_aug1 uses the policy for
Imagenet and DPA_aug uses the policy for SVHN, all included in torchvision[24]. We use an initial
learning rate of 0.005, a batch size of 16 for 600 epochs on CIFAR-10 and 1000 epochs on GTSRB.

Evaluation. First, we evaluate the test accuracy of base learners with limited data (i.e. using 1/k
of the entire training set of CIFAR-10 and GTSRB where k ranges from 50 to 500). In Figure 2(a),
simply using AutoAugment greatly improves the accuracy of base learners with limited data: On
CIFAR-10, with both augmentation policies, the augmented learners achieve similar accuracy as the
baseline using only 1/2 of data (i.e. with k that is twice as large); On GTSRB, the augmented learner
achieves similar accuracy as the baseline using only 1/4 ∼ 1/3 of data.

Now we use more data-efficient learners in DPA to construct stronger defenses. For baselines, we
use DPA with k = 50, 100, 250 on CIFAR-10 and k = 50, 100 on GTSRB, defining essentially 5
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(a) Test accuracy of learners using
1/k of the entire training set

(b) CIFAR-10 (setting 1) (c) CIFAR-10 (setting 2)

(d) CIFAR-10 (setting 3) (e) GTSRB (setting 1) (f) GTSRB (setting 2)

Figure 2: Experiments that construct stronger defenses against data poisoning by using more data-
efficient base learners for DPA. By simply using different data augmentations to improve the data
efficiency of base learners, the certified robustness can be respectively doubled and tripled on
CIFAR-10 and GTSRB without sacrificing accuracy.
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achieves a similar level of robustness to near-
est neighbors defenses [16].

Figure 3: Comparing the certified robustness of DPA with the nearest neighbor defenses[16] on
CIFAR-10, suggesting kNN and rNN are no stronger defense than DPA but are using a more data-
efficient learner given the accuracy requirements.

settings. When using augmented learners in DPA, we increase k accordingly so that the accuracy of
base learners remains at the same level as the baselines, as indicated by Figure 2(a). On CIFAR-10, in
Figure 2(b), 2(c) and 2(d), the attack size tolerated by DPA is roughly doubled using both augmented
learners for similar certified accuracy. On GTSRB, in Figure 2(e) and 2(f), the attack size tolerated
by DPA is more than tripled using the augmented learner for similar certified accuracy.

The improvements are quite significant, corroborating the potential of this practical approach—
developing stronger defenses against poisoning through finding more data-efficient learners.

7.3 Better Learners from Stronger Defenses

Assuming the conjecture is true, when some defense against data poisoning is clearly more robust
than DPA (even in restricted cases), there should be a more data-efficient learner. Jia et al. [16]
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propose to use nearest neighbors, i.e. kNN and rNN, to certifiably defend against data poisoning.
Interestingly, in their evaluations, kNN and rNN tolerate much more poisoned samples than DPA
when the required clean accuracy is low, as shown in Figure 3(a). Here we showcase how a learner is
derived from their defense, which, when being used as base learners, boosts the certified robustness
of DPA to a similar level to the nearest neighbors defenses.

In [16], histogram of oriented gradients (HOG) [7] is used as the predefined feature space to estimate
the distance between samples. Consequently, we use radius nearest neighbors over HOG features
as the base learner of DPA. Given a threshold r, radius nearest neighbors find the majority votes of
training samples within an `1 distance of r to the test sample. When there is no training sample with
a distance of r, we let the base learner output a token ⊥ denoting outliers so that it will not affect the
aggregation. The results are included in Figure 3(b), where DPA offers similar robustness curves as
kNN and rNN in Figure 3(a) by using the aforementioned base learner and hence the same prior.

8 Conclusion

In this work, we propose Lethal Dose Conjecture, which characterizes the largest amount of
poisoned samples any defense can tolerate for a specific task. We prove the conjecture for multiple
cases and offer general theoretical insights through distribution discrimination. The conjecture
implies the (asymptotic) optimality of DPA [20] and FA [34] in a sense that they can transfer the
most data-efficient learners to one of the most robust defenses, revealing a practical approach to
obtaining stronger defenses via improving data efficiency of (non-robust) learners. Empirically, as
a proof of concepts, we show that simply using different data augmentations can increase the data
efficiency of base learners, and therefore respectively double and triple the certified robustness of
DPA on CIFAR-10 and GTSRB. This highlights both the importance of Lethal Dose Conjecture and
the potential of the practical approach in searching for stronger defenses.
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A Proof of Lemma 1

Proof. Given the number of clean samples n, for any learner f ∈ F , the accuracy of f on x0 is:

Pr[fDn(x0) = y0] =Pr[(x0, y0) ∈ Dn] · Pr[fDn(x0) = y0 | (x0, y0) ∈ Dn]

+ Pr[(x0, y0) /∈ Dn] · Pr[fDn
(x0) = y0 | (x0, y0) /∈ Dn], (3)

where Pr[(x0, y0) ∈ Dn] = 1− (1− 1/k)n and Pr[(x0, y0) /∈ Dn] = (1− 1/k)n.

Since the bijection g is unknown to the learner f , when (x0, y0) /∈ Dn, by symmetry the optimal
prediction is predicting an arbitrary label that is not in Dn, thus

Pr[fDn
(x0) = y0 | (x0, y0) /∈ Dn]

≤Pr[E | (x0, y0) /∈ Dn] · 1 + Pr[¬E | (x0, y0) /∈ Dn] · 1
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(
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2

where E denotes the event that all other k − 1 labels appear in the training set Dn. Above, what
we do is to divide the probability into two cases and bound them separately. Case 1 is when
E happens, where we simply upper bound the probability that fDn

(x0) = y0 by 1. Case 2 is
when E does not happen, meaning that there is some y1 6= y0 that does not appear in Dn. By

14



Definition 1, we have Pr[fDn(x0) = y0] = Pr[fTy0↔y1
(Dn)(x0) = y1] = Pr[fDn(x0) = y1] thus

Pr[fDn
(x0) = y0] ≤ 1

2 .

With Equation 3, we have

Pr[fDn(x0) = y0] ≤Pr[(x0, y0) ∈ Dn] · 1 + Pr[(x0, y0) /∈ Dn] ·
(

1−
(

1− 1

k − 1

)n
· 1

2

)
=1− Pr[(x0, y0) /∈ Dn] ·

(
1− 1

k − 1

)n
· 1

2

=1−
(

1− 1

k

)n
·
(

1− 1

k − 1

)n
· 1

2
.

Thus Pr[fDn(x0) = y0] ≥ τ ⇒
(
1− 1

k

)n · (1− 1
k−1

)n
≤ 2− 2τ ⇒ n ≥ log(2−2τ)

log(1−2/k) = Θ(k).

The intuition behind the proof: If the training set contains (x0, y0), the learner can obviously predict
correctly; Otherwise, the best it can do is to guess a label that is not in the training set.

B Proof of Lemma 2

Proof. Given x0, for any N and any learner f , one of following two cases must be true:

Case 1: If Pr[fDN
(x0) = y0] ≤ 1

|Y | , using the identity transform T (D) = D for all D ∈ ΩN, we
have Pr[fT (DN )(x0) = y0] ≤ 1

|Y | and E[|T (DN )−DN |] = 0.

Case 2: If Pr[fDN
(x0) = y0] > 1

|Y | , since
∑
y∈Y Pr[fDN

(x0) = y] = 1, there exists y1 6= y0

such that Pr[fDN
(x0) = y1] ≤ 1

|Y | . Let T = Ty0↔y1 be a transform swapping labels y0 and y1,
i.e. T (D) is the same as D except that every (x, y0) ∈ D will becomes (x, y1) ∈ T (D) and every
(x, y1) ∈ D will becomes (x, y0) ∈ T (D). Since T = Ty0↔y1 is a transform swapping labels y0

and y1 in the training set, E[|T (DN )−DN |] is in fact the expected number of samples with a label
of y0 or y1, which is 2N

k . Thus we have Pr[fT (DN )(x0) = y0] = Pr[fDN
(x0) = y1] ≤ 1

|Y | and
E[|T (DN )−DN |] = 2N

k = Θ( 1
k ) ·N .

In both cases, we have a transform T that minimize the accuracy of f while in expectation altering
no more than Θ(1/k) of the training set and therefore the proof completes. Note the underlying
assumption used in case 2 is that the Bijection g is unknown to learners in a sense that the output
distributions of f change accordingly when labels are permuted.

C Proof of Lemma 3

Proof. Given the number of clean samples n, for any learner f ∈ F , the accuracy of f on x0 is:
Pr[fDn(x0) = y0] =Pr[(x0, y0) ∈ Dn] · Pr[fDn(x0) = y0 | (x0, y0) ∈ Dn]

+ Pr[(x0, y0) /∈ Dn] · Pr[fDn(x0) = y0 | (x0, y0) /∈ Dn], (4)
where Pr[(x0, y0) ∈ Dn] = 1− (1− 1/m)n and Pr[(x0, y0) /∈ Dn] = (1− 1/m)n.

Since g is a mapping that assigns labels independently to different inputs and it is unknown to learners,
we have Pr[fDn

(x0) = y0 | (x0, y0) /∈ Dn] ≤ 1
k and therefore with Equation 4, we have

Pr[fDn
(x0) = y0] ≤Pr[(x0, y0) ∈ Dn] · 1 + Pr[(x0, y0) /∈ Dn] · 1

k

=1− Pr[(x0, y0) /∈ Dn] · (1− 1

k
)

=1−
(

1− 1

m

)n
·
(

1− 1

k

)
.

Thus Pr[fDn
(x0) = y0] ≥ τ ⇒

(
1− 1

m

)n ≤ k(1−τ)
k−1 ⇒ n ≥ log(1−τ)+log(1+1/(k−1))

log(1−1/m) = Θ(m).

The intuition behind the proof: If the training set contains (x0, y0), the most data-efficient learner
will memorize it to predict correctly; Otherwise it can do nothing but guess an arbitrary label.
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D Proof of Lemma 4

Proof. Given x0, for any N and any learner f , we let T be a transform that obtain the poisoned
training set T (D) by removing all (x0, y0) from the clean training set D. By definition of Instance
Memorization, there is no information regarding y0 contained in T (DN ) and therefore we have
Pr[fT (DN )(x0) = y0] =≤ 1

|Y | given that the mapping g is unknown to learners. Meanwhile, we
have E[|T (DN )−DN |] = N

m = Θ( 1
m ) ·N .

E Proof of Theorem 1

Proof. First we introduce Coupling Lemma as a tool.

Coupling Lemma [19]: For two distributions U and V over Ω, a coupling W is a distribution over
Ω× Ω such that the marginal distributions are the same as U and V, i.e. U(u) =

∫
v∈Ω

W (u, v)dv

and V (v) =
∫
u∈Ω

W (u, v)du. The lemma states that for two distributions U and V , there exists a
coupling W such that Pr(u,v)∼W [u 6= v] = δ(U, V ).

Intuitively, Coupling Lemma suggests there is a correspondence between the two distributions U and
V , such that only the mass within their difference δ(U, V ) will correspond to different elements.

Through coupling lemma, there is a coupling W with Pr(u,v)∼W [u 6= v] = δ(U, V ).

ED∼Un [f(D)]− ED∼V n [f(D)] =E(∀1≤i≤n) (ui,vi)∼W [f({ui}ni=1)− f({vi}ni=1)]

≤Pr(∀1≤i≤n) (ui,vi)∼W [(∃i) ui 6= vi]

≤
n∑
i=1

Pr(ui,vi)∼W [ui 6= vi]

=n · δ(U, V ).

The second line in the above inequalities is derived as follows: When ui = vi for all i, we have
f({ui}ni=1) − f({vi}ni=1) = 0; When there exists ui 6= vi for some i, we have f({ui}ni=1) −
f({vi}ni=1) ≤ 1 because the output of f is {0, 1}.
For the third line, we use the union bound. The probability that for at least one i we have ui 6= vi is
upper bounded by the sum of probability that ui 6= vi for all i.

F Proof of Theorem 2

Proof. Through coupling lemma, there is a coupling W with Pr(u,v)∼W [u 6= v] = δ(U, V ). We
define the mapping T as follows: For anyD = (u1, . . . , uN ) ∈ ΩN , the output T (D) = (v1, . . . , vN )
is obtained by drawing vi from W (v | u) independently for i = 1 . . . N .

For i = 1 . . . N , we have P (vi) =
∫
ui∈Ω

W (vi | ui)U(ui)dui =
∫
ui∈Ω

W (vi | ui)W (ui) = V (vi)

and T (UN ) is the same distribution as V N , meaning that ED∼UN [f(T (D))] − ED∼V N [f(D)] =
0; Meanwhile, given Pr(u,v)∼W [u 6= v] = δ(U, V ), we have ED∼UN [|T (D) − D|] =∑N
i=1 Pru∼U,v∼W (v|u)[u 6= v] =

∑N
i=1 Pr(u,v)∼W [u 6= v] = δ(U, V ) ·N .

G Proof of Lemma 6

Proof. We will use Theorem 1. In order to have Pr[fDn(x0) = y0] ≥ τ , there must be some
g : ΩN → {0, 1} discriminating U = N (µ1, I) and V = N (µ′1, I) with confidence larger than a
constant τ ′ using in expectation n/k samples, where µ′1 = µ1 + (d2 − d1)/d1 · (1 + ε)(µ1 − x0) for
some ε > 0. Note that ||µ′1 − µ1|| = (1 + ε)(d2 − d1) and ||µ′1 − x0|| > d2. Taking ε→ 0, we have
n/k ≥ Θ(1/δ(U, V )) = Θ(1/∆)⇒ n ≥ Θ(k/∆) using Theorem 1.
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H Proof of Lemma 7

Proof. We will use Theorem 2. Given x0, for any N and any learner f , let µ′2 = µ2− (d2− d1)/d2 ·
(1 + ε)(µ2 − x0) for some ε > 0, as shown in Figure 1(b). With Theorem 2, there is a transform T ′

making U = N(µ2, I) and V = N(µ′2, I) indistinguishable. We define a transform T by applying T ′
to the inputs of all samples from class 2 while others remain unchanged.

Note that f ∈ F and T (P ) is also a plausible distribution (in a sense that it can be expressed in
the same form as Equation 1). Since ||µ′2 − x0|| < d1, we have Pr[fT (DN )(x0) = y0] ≤ 1/k. In
addition, since ||µ2 − µ′2|| = (1 + ε)(d2 − d1) and there are in expectation N/k samples from class
2, we have E[|T (DN )−DN |] ≤ δ(U, V )/k = Θ(∆/k) by taking ε→ 0.

Intuition for taking ε→ 0: When ε is actually 0, the distributions we construct for different classes
will be ‘symmetric’ to x0, meaning that there will be a tie in defining the maximum likelihood
prediction. For any ε > 0, the tie will be broken. By letting ε→ 0, we find the tightest bound of the
number of poisoned samples needed from our construction.
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