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Abstract

Several existing works study either adversarial or natural distributional robustness
of deep neural networks separately. In practice, however, models need to enjoy both
types of robustness to ensure reliability. In this work, we bridge this gap and show
that in fact, explicit tradeoffs exist between adversarial and natural distributional
robustness. We first consider a simple linear regression setting on Gaussian data
with disjoint sets of core and spurious features. In this setting, through theoretical
and empirical analysis, we show that (i) adversarial training with `1 and `2 norms
increases the model reliance on spurious features; (ii) For `∞ adversarial training,
spurious reliance only occurs when the scale of the spurious features is larger
than that of the core features; (iii) adversarial training can have an unintended
consequence in reducing distributional robustness, specifically when spurious
correlations are changed in the new test domain. Next, we present extensive
empirical evidence, using a test suite of twenty adversarially trained models
evaluated on five benchmark datasets (ObjectNet, RIVAL10, Salient ImageNet-1M,
ImageNet-9, Waterbirds), that adversarially trained classifiers rely on backgrounds
more than their standardly trained counterparts, validating our theoretical results.
We also show that spurious correlations in training data (when preserved in the
test domain) can improve adversarial robustness, revealing that previous claims
that adversarial vulnerability is rooted in spurious correlations are incomplete.

1 Introduction

Despite continuously improving upon state of the art accuracy on various benchmarks, deep image
classifiers remain brittle to distribution shifts, suffering massive performance drops when evaluated
on non-i.i.d. data. For example, the accuracy of object detectors trained on ImageNet [12] reduces
by 40-45% on ObjectNet [5], where images are taken within households at various viewpoints and
rotations. The reliance of deep models on spurious features, which correlate with class labels but are
irrelevant to the true labeling function [29], is one cause of poor model robustness, as performance
degrades when spurious correlations are broken. Indeed, model reliance on spurious features like
texture [17] and background [68, 6] is well documented. Of greater concern, deep models in safety
critical applications such as detection of pneumonia [71] and COVID-19 [11] have been observed to
rely on hospital specific spurious markers, causing poor generalization to new hospitals.

Adversarial examples [62, 18] pose another troubling distribution shift, where imperceptible input
perturbations can cause model accuracy to drop to zero. Many works have been proposed to improve
the adversarial robustness of deep models [35, 73, 51, 58, 36, 10, 65, 54], including the widely
popular adversarial training, where inputs are augmented via adversarial attack during training
[39]. While spurious correlation robustness has also attracted lots of attention [2, 29, 38, 49], the
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Figure 1: Snapshot of empirical evidence using RIVAL10, Salient ImageNet-1M, ImageNet-9, Wa-
terbirds, and ObjectNet benchmarks. Results averaged over ResNet18 and ResNet50. Adversarial
training, especially under `2 norm, reduces (increases) sensitivity to core (spurious) features.
The increased reliance on spurious features leads to worse distributional robustness.

two problems are most often considered independently, despite both being essential to the safe and
reliable deployment of deep models in the wild.

In the few works that do consider adversarial and spurious correlation robustness in tandem, the
prevailing argument is that the origin of adversarial vulnerability is that the model focuses on spurious
correlations that can be manipulated [76, 72, 25]. However, recently, noise-based analyses on
RIVAL10 [41] and Salient ImageNet-1M [60] datasets suggest adversarial training may actually
increase model sensitivity to spurious features; a result that is both counter-intuitive and in direct
contrast to existing ideology.

To better understand this observation, we first appeal to a simple linear regression problem on
Gaussian data with disentangled core and spurious features. In this setting, we theoretically show

• Adversarial training under `2 and `1 norms increase model reliance on spurious features,
as using spurious features forces an attacker to spread its budget over additional features.

• For `∞ adversarial training, increased spurious feature reliance only occurs when the scale of
the spurious feature is larger than that of the core features. That is, spurious features are used
when perturbations that corrupt core features are too small to disrupt spurious correlations.

• Due to increased spurious feature reliance, there is an explicit tradeoff between adversarial
and distributional robustness. Specifically, we show that adversarial training decreases model
robustness to distribution shifts in the test domain where spurious correlations are broken.

To validate our theory, we evaluate twenty models adversarially trained using `2 and `∞ projected gra-
dient descent [50]. Specifically, we inspect performance on multiple spurious robustness benchmarks
over synthetic (ImageNet-9 [68], Waterbirds [49]) and real (RIVAL10 [41], Salient ImageNet-1M
[60], ObjectNet [5]) datasets. Figure 1 summarizes our experiments, where we find that adversarially
trained models consistently show greater sensitivity to spurious features compared to standardly
trained baselines, with the effect more dramatic for `2 adversarial training than `∞1. Finally, we show
that the presence of spurious correlations in training data (when preserved in test domain) can improve
adversarial robustness, with stronger spurious correlations leading to greater accuracy under attack.

Our work combines two prevalent but often separately considered notions of robustness, yielding
surprising theoretically-derived and empirically-supported results. We hope our contributions grant
insight to both adversarial and distributional robustness communities, and emphasize the need for
holisitic evaluations of model robustness.

2 Review of Literature

Adversarial Robustness. Since adversarial examples were first observed in deep models [62, 18], the
phenomenon has been extensively studied. New attacks [8, 34, 42, 15] and defenses [35, 43, 40, 37]

1High RCS for `∞ AT models is due to reduced scale of contextual bias in Salient ImageNet since the data
diversity weakens background correlations. In `1 and `2 adversarial training, models rely on spurious features
regardless of their scale. See details in Section 3.
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are introduced frequently, in a game of cat and mouse where the attacker generally has the upper
hand [3]. Certified defenses seek to break this cycle by offering provable robustness guarantees
[58, 36, 51, 10]. Arguably the most popular defense is adversarial training [39] where images are
augmented with adversarial perturbations during training, amounting to a min max optimization.

Natural Distributional Robustness. In contrast to synthetic adversarial perturbations, many works
seek to characterize the robustness of deep models to naturally occurring distribution shifts, for
instance due to common corruptions (noise, blur, etc) [22] or changes in rendition [21, 63]. [30]
compiles ten benchmarks of realistic distribution shifts over diverse applications (medical, economic,
etc). Many algorithms have been proposed to improve out-of-distribution robustness [38, 49, 2, 33],
though in comprehensive evaluations, their gains over empirical risk minimization are marginal,
as they often only hold for certain distribution shifts [70, 21]. [70] identifies diversity and correlation
shifts as two key dimensions to OOD robustness; our work focuses on the latter.

Spurious Correlations. Solely optimizing for accuracy leads deep models to rely on any patterns pre-
dictive of class in the training domain. This includes spurious features, which are irrelevant to the true
labeling function. Natural image datasets are riddled with spurious features [31, 59]. Spurious feature
reliance becomes problematic under distribution shifts that break their correlation to class labels:
sidewalk segmentation struggles in the absence of cars [56], familiar objects cannot be recognized in
unfamiliar poses [1] or uncommon settings [27, 5], etc. A natural and ubiquitous spurious correlation
in vision is image backgrounds, observed in numerous prior works to be leveraged by models for
classification [68, 41] and object detection [47]. Spurious correlations also relate to algorithmic
biases [13, 17], with implications for fairness [19, 7, 9, 28], reflecting the importance of this issue.

Accordingly, many works seek to improve spurious correlation robustness. Families of approaches
include optimizing for worst group accuracy [49, 23, 48, 74, 38], learning invariant latent spaces
[46, 2], appealing to meta-learning [45] or causality [44, 4]. Our work does not focus on mitigation
methods, but instead sheds insight on how optimizing for a different notion of robustness (i.e. adver-
sarial) affects spurious feature reliance, and consequently, natural distributional robustness. Generally,
models trained under ERM are believed to have a propensity to use spurious features, especially
when they are easy to learn, due to bias of learners (algorithmic and human) to absorb simple features
first [55] and take shortcuts [16]. However, recent work suggests that core features are still learned
under ERM even when spurious features are favored, and simple finetuning on data without the
spurious feature can efficiently reduce spurious feature reliance without full model retraining [29].

Unintended Outcomes of Adversarial Training. Adversarial training achieves improved accuracy
under attack, but comes at the cost of standard accuracy, with multiple works provably demonstrating
this tradeoff [73, 14]. Notably, [26] inspires our theoretical analysis, though we focus on the effect
of adversarial training on out-of-distribution (OOD) robustness to spurious correlation shifts, rather
than its effect on standard accuracy. A more positive outcome is that adversarial training leads
to perceptually aligned gradients [53], with applications to model debugging [61, 66], and further,
transfer learning on adversarially robust features yields better accuracy on downstream tasks compared
to features learned from standard training [50], despite having lower accuracy on the original task.

To our knowledge, robustness to adversarial and natural distribution shifts have not been studied
in tandem. However, spurious correlations are at times mentioned with adversarial robustness,
usually in claims that the origin of adversarial vulnerability is in model’s focus on (imperceptible)
spurious features [76, 72, 25]. Our results create tension with the contrapositive of their argument,
as we show that mitigating adversarial vulnerability (via adversarial training) results in increased
spurious feature reliance. We do this analytically in a simple linear regression setting (Section
3), and empirically on multiple benchmarks, with an emphasis on natural spurious features (i.e.,
backgrounds) in our experiments (Section 3). Further, we even demonstrate a case where the presence
of a spurious feature leads to improved adversarial robustness (Section 4.3)). We note that the spurious
features we observe to be positively associated with adversarial robustness may be distinct from
those that prior works claim contribute to adversarial vulnerability. However, our result of adversarial
training leading to increased spurious feature reliance (of any kind) is novel and contrary to common
understanding. Given the critical nature of adversarial and spurious correlation robustness for model
security, reliability, and fairness, the significance of our result in revealing potential misconceptions
on the interplay of these two crucial modes of robustness should not be understated.

[41] and [60] recently observed decreased core sensitivity on a handful of `2 adversarially trained
models, in spirit with our findings, but with no explanation. We offer the first rigorous analysis
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of this counterintuitive phenomenon, evaluating 5 to 10 times as many models in 5 times as many
settings. More importantly, we theoretically prove that adversarial training increases spurious feature
reliance, contributing novel fundamental insight as to how optimizing for adversarial robustness can
lead to reduced robustness to natural distribution shits, uncovering important effects like the norm of
adversarial training and the scale of spurious features at play.

3 Theoretical Analysis on Linear models

We begin by analysing the effects of adversarial training on a simple linear regression model.
Consider the model Y = 〈X, θopt〉 + W where X ∈ Rm is the input variable, θopt ∈ Rm is the
optimal parameter, 〈., .〉 represents the inner product and W ∈ R is a noise variable. We assume
that the input variables follow a multivariate Gaussian distribution N(0,Σ) where Σ ∈ Rm×m is the
covariance matrix and further assume that W is sampled from the Gaussian distribution N(0, σ2

w).
We assume that the set of features [m] consists of two groups, the core features C and the spurious
features S. Without loss of generality, we assume that C = {1, . . . , p} and S = {p+ 1, . . . ,m}. We
assume that the optimal parameter θopt has non-zero entries on the set C only. This implies that the
output depends on the input only through the core features and conditioned on the core features, it is
independent of the spurious ones. More formally, we assume that Y ⊥ XS |XC where XS and XC

represent the core and spurious subsets of the input, respectively.

For loss functions, we define the standard loss function as L(θ) = E
[
(y − 〈X, θ〉)2

]
,, and the

adversarial loss function as

Lp,ε(θ) = E

[
max
‖δ‖p≤ε

(Y − 〈X + δ, θ〉)2
]
, (1)

where p is the attack norm and ε represents the norm budget.

We first show an equivalent form of (1) that is more amenable to analysis.
Theorem 1. Assume that Y = 〈X, θopt〉 + W where W ∼ N(0, σ2

w) is independent of X and
θopt ∈ Rm is a fixed parameter. Assume further that X follows the distribution N(0,Σ) and define
σ2
θ as (θ − θopt)TΣ(θ − θopt) + σ2

w. The loss function (1) is equivalent to

Lp,ε(θ) = c2 · σ2
θ + (c1σθ + ε · ‖θ‖q)

2 (2)

where c1 =
√

2
π < 1, c2 = 1− c21 and ‖.‖q is the dual norm of ‖.‖p, i.e, 1

p + 1
q = 1. Furthermore,

the above formulation is convex in θ.

The above result is similar to Proposition 3.2 in [26] which provides characterization results for the
`2 norm. The key distinction of our results is providing a simple convex formulation of the robust
minimization problem, allowing the results to be easily generalized for an arbitrary `p norm. The
theorem shows that the optimal value θ̂ minimizing the adversarial losss Lp,ε(θ) is not θopt and in
general, may be non-zero on the set of spurious features S. This means that adversarial training
directs the model towards using the spurious correlations in order to increase robustness.

The proof of the theorem is provided in the Appendix. The main structure of the proof is similar to
that of [26]. We first show that the inner maximization problem of (1) can be rewritten as

max
‖δ‖≤ε

(Y − 〈X + δ, θ〉)2 =
(
|Y − 〈X, θ〉|+ ε · ‖θ‖q

)2
. (3)

This allows us to rewrite (1) as

Lp,ε = E
[(
|Y − 〈X, θ〉|+ ε · ‖θ‖q

)2]
= E

[
(Y − 〈X, θ〉)2

]
+ ε2 · ‖θ‖2q + 2 · ε · ‖θ‖q · E [|Y − 〈X, θ〉|]

(a)
= E

[(〈
X, θ − θopt〉+W

)2]
+ ε2 · ‖θ‖2q + 2 · ε · ‖θ‖q · E

[∣∣〈X, θ − θopt〉+W
∣∣] ,

where for (a) we have used the fact that Y = 〈X, θ〉+W . Using the fact that X and W are Gaussian,
we show that this is equal to σ2

θ + ε2 · ‖θ‖2q + 2 · c1 · ε · ‖θ‖q · σθ which we can further simplify to
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(2) with some algebraic manipulation. Next, using standard techniques for analysing composition of
convex functions, we show that σ2

θ and (c1σθ + ε · ‖θ‖q)2 are both convex in θ, implying that Lp,ε(θ)
is convex in θ as well.

Using the convex formulation in Theorem 1, we evaluate the linear model for different values of
parameters to better understand the reliance of the model on spurious features. In our experiments,
we consider a simple model with 5 features, the first two of which are core features.
We let η be a parameter controlling the correlation degree between the core and spurious features,
with larger values corresponding to higher correlation. For the distribution of the data, define the
matrix Q̃ and Q matrices as

Q̃ =


1 1

2 0 0 0
1
2 1 0 0 0
η η 1 0 0
η η 0 1 0
η η 0 0 1

 , Qi,j =
Q̃i,j√∑
i,j′ Q̃

2
i,j′

(4)

Note that Q is obtained by normalizing the rows of Q̃. Each row of the Q matrix corresponds to an
input feautre. We let Σ take the value QQT . This is equivalent to sampling X from the distribution
QN (0, I). Throughout our experiments, we set σw = 0.1.

For an arbitrary vector θ, we define its Norm Fraction over Spurious feaures NFS(θ) as

NFS(θ) =

∑
i∈S θ

2
i∑

j θ
2
j

(5)

Intuitively, NFS measures the degree to which a model relies on spurious features. For our first
experiment, we perform adversarial training with varying parameter ε to obtain a predictor θ̂ and
evaluate its NFS. We consider different choices of the `p norm as well as the correlation parameter η
The results can be seen in Figure 2.

(a) `1 norm (b) `2 norm (c) `∞ norm

Figure 2: Reliance of the adversarially trained model on spurious features as measured by NFS
(see Equation (5)) for different choices of `p norm and different values of adversarial budget ε and
spurious correlation parameter η.

As seen in Figure 2, for the `1 and `2 norms, increasing the adversary’s budget causes the model
to rely more on the spurious features. To understand why this happens, it is helpful to consider a
game theoretic perspective: If the model only looks at the core features, then the adversary will only
need to perturb these features. Thus, even though the spurious features are normally less suitable for
prediction, they now have the advantage of being less perturbed. Assuming ε is large enough, the
model will be better off looking at these features in forming its prediction. Of course, if the model
only looks at the spurious features, core features will become even more informative as they would
be unperturbed as well. In the game’s equilibrium, the model would use both the core and spurious
features, relying more on the spurious features with increased values of ε.

Interestingly, this reasoning does not always apply for the `∞ norm. Indeed, if the model were to
only look at the core features, the adversary may still perturb the spurious features with no extra cost.
This is because the `∞ norm only measures the maximum perturbation in each feature and as long as
the perturbations on the spurious features are not larger than the perturbations on the core features,
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the norm would not change. The results of Figure 2c support this as the adversary does not rely on
the spurious features for its predictions.

Importantly, however, in some cases the adversary may require a larger budget to perturb the spu-
rious features compared to core features. Indeed, if we were to scale a feature by multiplication
with a large number, then the adversary would require a larger budget to perturb that feature as
the budget for that feature has effectively decreased. We can therefore expect that for the `∞
norm, scaling up the spurious features would cause the model to rely on them for prediction.

Figure 3: Norm fraction over spuri-
ous features (NFS) with an `∞ con-
strained adversary as a function of
the scale of the spurious features
and perturbation budget ε.

Figure 3 shows that this is indeed the case. The figure shows
the norm fraction over spurious (NFS) after scaling the spurious
features for different values of ε. The scaling is done by mul-
tiplying the rows of Q corresponding to the spurious features
by a scaling parameter. As seen in Figure 3, larger values of
the scaling parameter, as well as larger values of ε, cause the
model to become more reliant on the spurious features.

Next, we measure the effect of using spurious features on the
model’s distributional robustness. To do this, we train two
adversarial models. The first model, which we denote by “core”,
uses only the core features while the second model, denoted by
“total”, uses all of the features. We then simulate a distribution
shift that breaks the spurious correlations by adding random
Gaussian noise to the spurious rows of matrix Q defined in (4).
Specifically, for each entry of Q in a spurious row, we add a
noise sampled from N(0, σ2

Q) where σQ is a noise parameter.
We use a fixed value of η = 0.25 and vary the parameter ε, the
norm p used in adversarial training as well as the variance of the Gaussian noise. The results are
shown in Figure 4.

(a) `1 norm (b) `2 norm (c) `∞ norm

Figure 4: Effect of reliance on spurious features on distributional robustness. Each figures compares
two models, one using only the core features, and another using all of the features (denoted by “core”
and “total” respectively). For the `1 and `2 norms, the scale of the spurious features is 1 while for the
`∞ norm, the scale is set to 3.

We observe that the clean (i.e. in distribution; σQ = 0) loss of the “core" model may be higher or
lower than that of the “total" model, but in both cases, the total model is consistently more vulnerable
to distributional shifts resulted from breaking spurious correlations.

4 Empirical Evidence

We now demonstrate increased spurious feature reliance in adversarially trained models over multiple
benchmarks. We evaluate models on two backbones (ResNet18, ResNet50) adversarially trained on
ImageNet [12] using two norms (`2, `∞) under five attack budgets (denoted ε) per norm, resulting in
a 2× 2× 5 = 20 model test suite, as well as standardly trained baselines. See appendix for details.
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Figure 5: OOD accuracy vs standard ImageNet accuracy for adversarially trained ResNets. ImageNet-
C accuracy is closely tied to standard accuracy, but for ObjectNet, where spurious correlations are
broken, performance drop is more severe than a linear relation with standard accuracy would entail.

4.1 AT hurts Natural Distributional Robustness only when Spurious Correlations are
broken

We first show reduced distributional robustness of adversarial models occurs specifically in cases
where natural spurious correlations are broken. We appeal to the ImageNet-C [22] and ObjectNet
[5] OOD benchmarks. ImageNet-C augments ImageNet samples with common corruptions like noise
or blurring, distorting both core and spurious features equally. Crucially, these corruptions do not
break spurious correlations. On the other hand, ObjectNet is formed by having workers capture
images of common household objects (including samples from 113 classes of ImageNet) in their
homes. Thus, only spurious features are affected. Namely, ObjectNet introduces distribution shifts in
background, rotation, and viewpoint. We plot accuracies on these benchmarks in figure 5.

Recall that adversarially trained models have lower standard accuracy, which can confound our
analysis, so we compare the drop in OOD accuracy to the drop in ImageNet accuracy across our
model suite. Observe that the ratio of ImageNet-C accuracy to ImageNet accuracy is roughly
constant across models. However, the ratio of ObjectNet accuracy to ImageNet accuracy is lower
for adversarially trained models. Therefore, even after controlling for reduced standard accuracy,
the distributional robustness of adversarially trained models is worse than that of standard models.
Importantly, this effect does not hold for distribution shifts that maintain spurious correlations,
indicating that the reduced distributional robustness is due to increased spurious feature reliance.

4.2 Reduced Core Sensitivity, and Difference in the Effect of `2 & `∞ Adversarial Training

Figure 6: Noise-based evaluation of model sensitivity to foreground (RFS on RIVAL10) or core
(RCS on Salient ImageNet-1M) regions. Lower values entail greater sensitivity to spurious regions.
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We now directly quantify sensitivity to core features via RIVAL10 and Salient ImageNet-1M
datasets [41, 60]. The premise of this analysis is that model sensitivity to an input region can be
quantified by the drop in accuracy due to corrupting that region [59]. [41] introduced the noise-
based metric relative foreground sensitivity (RFS), which is the gap between accuracy drops due to
background and foreground noise, normalized so to allow for comparisons across models with varying
general noise robustness. RIVAL10 object segmentations allow for RFS computation. Analogously,
relative core sensitivity (RCS) is computed using Salient ImageNet-1M’s soft segmentations of
core input regions. A key distinction between the two metrics is that RCS is computed directly on
pretrained models performing the original 1000-way ImageNet classification task, while RFS first
requires models to be finetuned on the much coarser 10-way classification task of RIVAL10. Also,
Salient ImageNet-1M includes all ImageNet images, while RIVAL10 only consists of 20 ImageNet
classes.

Figure 6 shows a decrease in RFS and RCS as the attack budget ε seen during `2 adversarial
training rises. Thus, adversarial training reduces core feature sensitivity relative to spurious
feature sensitivity. Notably, this effect does not hold for models adversarially trained with attacks
under the `∞ norm for RCS, though it does for RFS. Alluding to our theoretical result, we
conjecture that in Salient ImageNet-1M, the scales of the spurious features are much smaller than in
RIVAL10, due to the diversity of images and finer grain of classes. That is, a smaller perturbation
is needed to alter a spurious feature so that it correlates with an incorrect class when there are 1000
classes than when there are only 10 classes with generally disparate backgrounds.

4.3 Adversarial Training Increases Background Reliance in Synthetic Datasets

Now, we take a closer look at the reliance of adversarially trained models on the contextual spurious
feature of backgrounds via the synthetic datasets ImageNet-9 [68] and Waterbirds [49]. Both
datasets use segmentations to superimpose objects over varying backgrounds, detailed below.

Figure 7: Background Gap (difference in accuracies on ImageNet-9 subsets MIXED-SAME and
MIXED-RAND). The drop in accuracy due to background cross-class swapping (MIXED-RAND)
causes larger drops in accuracy for robust models, especially `2 adversarially trained models.

ImageNet-9 (IN-9) organizes a subset of ImageNet into nine superclasses. Multiple validation sets ex-
ist for IN-9, where backgrounds or foregrounds are altered; we use MIXED-SAME and MIXED-RAND.
In both sets, original backgrounds are swapped out for new ones. Crucially, in MIXED-SAME, the new
backgrounds are taken from other instances within the same class, while MIXED-RAND uses random
backgrounds. The metric, Background Gap, is the difference in model accuracy on MIXED-SAME
and MIXED-RAND (i.e. drop due to breaking spurious background correlation).

Figure 7 shows that the background gap for our test suite of twenty robust ResNets and two standardly
trained baselines. Nine out of the ten `2 adversarially trained models have larger background gaps
than the standard baselines, while the same is true for five out of the ten `∞ adversarially trained
models. When considering relative gaps (i.e. as a percent of the accuracy on MIXED-SAME), the
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Figure 8: Accuracies on Waterbirds subsets where spurious correlation is intact (majority group; e.g.
land birds on land backgrounds) and where it is broken (minority group; e.g. land birds on water
backgrounds). The drop in performance due to breaking the background correlation grows larger for
robust models, especially `2 adversarially trained models.

increase in gap becomes even more dramatic, with the `2 adversarially trained ResNet50 for ε = 5
having a 18.9% relative drop, compared to the 9.7% relative drop for the standardly trained ResNet50.

Waterbirds combines foregrounds from Caltech Birds [64] and backgrounds from SUN Places [67].
The task is binary classification of landbirds and waterbirds. The majority group (95% of training
samples) consists of landbirds over land backgrounds and waterbirds over water backgrounds. The
minority group breaks this spurious correlation, placing landbirds over water backgrounds, and vice
versa. The test set is evenly split between these groups. We train only a final linear layer atop the
frozen feature extractors (so that models remain adversarially robust) for each of our models on the
Waterbirds training set for ten epochs, saving the model with highest validation accuracy.

Figure 8 shows majority and minority group accuracies, and the gap between them, for our test suite
of models. Again, we see increased gaps for robust models, with 100% of `2 and 60% of `∞ models
respectively having larger gaps than the standardly trained baseline on the corresponding backbone.

In both benchmarks, breaking the background spurious correlation causes a more significant drop
in performance for adversarially trained models than standardly trained models, indicating that
adversarial training led to increased reliance on backgrounds. The observed affect is stronger for `2
adversarially trained models than `∞ ones. Further, the gaps grow near monotonically with ε.

4.4 Reverse Effect: Presence of Spurious Correlations Can Improve Adversarial Robustness

Figure 9: Injecting spurious feature
improves adversarial robustness.

Finally, we show evidence that is directly at odds with the
claim that spurious features lead to adversarial vulnerability.
We train ResNet18s on CIFAR10 [32] with a spurious feature
injected. Namely, images have all values in one color channel
slightly increased. The majority group consists of red-shifted
images from classes 0−4 and green shifted images from classes
5− 9, while the minority group has reverse color-shifts. The
parameter ρ is the ratio between majority and minority group
size, controlling the strength of the spurious correlation (higher
ρ means stronger spurious correlation; ρ = 1 : 1 means the
spurious feature has no predictive power). We then evaluate the
accuracy of the trained model under adversarial attack on an
i.i.d. test set (spurious feature retained, no distribution shift).

Figure 9 visualizes the results. Not surprisingly, the clean accu-
racy is higher for models trained on data with higher ρ, as the spurious feature is more predictive for
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higher ρ. In fact, the added predictive influence the spurious feature leads to better accuracy under
attack, with the gap between highest and lowest ρ values growing up to four fold compared to the base-
line gap in clean accuracy. Thus, using a spurious feature can improve adversarial robustness. Despite
being on a contrived example, this experiment shows that, while some spurious correlations may cause
adversarial vulnerability, others do the opposite: the picture is more nuanced than previously assumed.
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A Limitations of Theorem 1

While Theorem 1 provides an understanding of the tradeoff between adversarial and natural distribu-
tional robustness, there are some limitations. Firstly, the results consider a setting where the core and
spurious features are completely disentangled, i.e, they each represent different parts of the input. In
practice, spurious features may be entangled with the core features (e.g., the color of an image may
represent a spurious feature.) In addition, our results mainly consider the goal of adversarial training
as we focus on the expected loss Lp,ε(θ), rather than its finite-sample variant. This is because even
for an `2 adversary, characterizing the finite-sample behaviour of adversarial training is difficult and
requires careful assumptions on the asymptotic behaviour of the parameters (e.g., see Theorem 3.3 in
[26]). We leave exploring these directions to future work. Even so, we believe our theoretical results
are of interest to the community since disjoint features already capture a wide variety of spurious
correlations, e.g., background correlations, as well as examples where a spurious object is present in
the image. The main goal of our theoretical analysis is to show the existence of explicit tradeoffs
between adversarial and distributional robustness and build practical insights using those results.

B Societal Impact

Our work touches on two important notions of robustness for the safe and fair deployment of deep
models in the wild. We hope our results lead to careful analysis of all modes of robustness, and the
interplay between them, before deep models are used in sensitive applications. While our results
create tension with some previous works [72, 76, 25], we stress that we do not wish to diminish their
work; instead, we hope our work reveals the vast nuance associated with spurious correlations, which
can help and hurt models in various ways. Lastly, we release all code to encourage future work.

C Varying the Number of Core and Spurious Features

In this section, we further analyze the plateauing behaviour of the performance of the linear model
observed in Figure 2 for different values of core and spurious features with the `1 and `2 adversarial
training.

We first focus on the `1 case. We consider different values for the number of core features c and total
features m and measure NFS for different values of adversarial budget ε as in Figure 2. The matrix Σ
is constructed using Equation (4) as before, with modified number of rows and columns based on
the values of c, p. Similarly, θopt is constructed as before, with the core coordinates set to 1 and the
spurious coordinates set to 0. The value of η is fixed at 0.5. The results are shown in Figure 10.

As shown in the Figure, when using m total features and c core features, NFS plateaus at m−cm for
large values of ε. Intuitively, this is because of the structure of the optimization problem (2). Recall
that when using the `1 norm, the value of q in (2) equals∞. As such, adversarial training tries to find
a parameter θ that has a low `∞ norm and is “close” (as measured by σθ) to θopt. The `∞ penalty
encourages values of θ that are uniform across the coordinates. Since there are m − c spurious
features and m total features, this leads to models that have an NFS value of m−cm .

We further repeat the above experiment with `2 norm. The results are shown in Figure 11. As seen
in the figure, we see the same qualitative results as in Figure 2, with higher values of NFS when
increasing numbers of spurious features.

D Proof of Theorem 1

Proof. We first claim that

max
‖δ‖≤ε

(Y − 〈X + δ, θ〉)2 =
(
|Y − 〈X, θ〉|+ ε · ‖θ‖q

)2
To see why this holds, note that for all δ satisfying ‖δ‖p ≤ ε,

|Y − 〈X + δ, θ〉|
(a)

≤ |Y − 〈X, θ〉|+ |〈δ, θ〉|
(b)

≤ |Y − 〈X, θ〉|+ ε · ‖θ‖q,
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(a) 4 core feautres (b) 10 core feautres

Figure 10: Analysis of NFS for the linear model when using the `1 norm in adversarial training. Each
figure measures the reliance of the model on spurious features (measured by NFS) while varying the
adversarial training budget ε, using different number of total features m. The number of core features
is kept constant and set to 4 in Figure (a) and to 10 in Figure (b).

(a) 4 core feautres (b) 10 core feautres

Figure 11: Analysis of NFS for the linear model when using the `2 norm in adversarial training. Each
figure measures the reliance of the model on spurious features (measured by NFS) while varying the
adversarial training budget ε, using different number of total features m. The number of core features
is kept constant and set to 4 in Figure (a) and to 10 in Figure (b).

where (a) follows from the triangle inequality and (b) follows from Hölder’s inequality. With a
suitable choice of δ, we can achieve equality for (b). As ‖θ‖q = ‖−θ‖q, at least one of {δ,−δ}
would further achieve equality for (a). As maximizing |.| is equivalent to maximizing (.)

2, (3) is
proved.

Given (3), we can rewrite (1) as

Lp,ε = E
[(
|Y − 〈X, θ〉|+ ε · ‖θ‖q

)2]
= E

[
(Y − 〈X, θ〉)2

]
+ ε2 · ‖θ‖2q + 2 · ε · ‖θ‖q · E [|Y − 〈X, θ〉|]

(a)
= E

[(〈
X, θ − θopt〉+W

)2]
+ ε2 · ‖θ‖2q + 2 · ε · ‖θ‖q · E

[∣∣〈X, θ − θopt〉+W
∣∣] ,

Where for (a) we have used the fact that Y = 〈X, θ〉+W .
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Figure 12: Color Shift, ρ = 19 : 1 Figure 13: Lighting Shift, ρ = 19 : 1

Define vθ as 〈X, θ − θopt〉+W . As X was assumed to be sampled from N(0,Σ), vθ is distributed
as N(0, σ2

θ). It follows that

Lp,ε = E
[(〈

X, θ − θopt〉+W
)2]

+ ε2 · ‖θ‖2q + 2 · ε · ‖θ‖q · E
[∣∣〈X, θ − θopt〉+W

∣∣] ,
= E

[
v2θ
]

+ ε2 · ‖θ‖2q + 2 · ε · ‖θ‖q · E [|vθ|]
(a)
= σ2

θ + ε2 · ‖θ‖2q + 2 · c1 · ε · ‖θ‖q · σθ
= (c21 + c2) · σ2

θ + ε2 · ‖θ‖2q + 2 · c1 · ε · ‖θ‖q · σθ
= c2 · σ2

θ + (c1σθ + ε · ‖θ‖q)
2

where for (a) we have used the fact that E
[∣∣N(0, σ2

∣∣] = c1 · σ. This proves (2) as claimed.

As for convexity, σθ is convex in θ since it can be written as
∥∥∥[Σ

1
2 (θ − θopt), σw]

∥∥∥
2

where [., .]

denotes the vector stacking operation. As c1σθ + ε · ‖θ‖q is always positive and x→ x2 is convex
and increasing for x ≥ 0, this implies that (c1σθ + ε · ‖θ‖q)2 is convex as well. Finally c2σ2

θ is
convex as c2 > 0 and therefore (1) is convex in θ.

E Additional Details on Reverse Effect (Section 4.3)

Our final empirical observation is that the presence of a spurious feature (in both training and test
distributions) can lead to increased adversarial robustness. This more directly creates tension with
claims that adversarial vulnerability is born out of spurious feature reliance. We refer to this as the
‘reverse effect’, in relation to our primary empirical and theoretical finding that adversarial training
increases spurious feature reliance. We now elaborate on the experimental setup discussed in Section
4.3, reproduce the results with a different spurious feature, and finally appeal to ImageNet-9 to
demonstrate this effect using a more realistic spurious feature (i.e. backgrounds).

E.1 Experimental Setup

Overview. We inject spurious correlations to the CIFAR10 dataset. Based on the class label,
we adjust half the images (i.e. with class label from 5 to 9) to shift in one direction with high
probability. For example, a dog image is made greener with probability 0.95, corresponding to
a majority-to-minority group ratio of ρ = 19 : 1. With probability 0.05, we shift in the other
direction (e.g. make redder). We then standardly train a ResNet18 from scratch on the dataset
with the spurious feature injected for the 10-way CIFAR classification task. Importantly, we
evaluate robust accuracy with the spurious feature retained, and then compare adversarial robust-
ness of models trained under data with different strengths of the injected spurious correlation.
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Figure 15: Background Gap (difference in accuracy on MIXED-SAME and MIXED-RAND) for
clean and adversarially attacked images. Across models, background gap is larger when considering
accuracy under attack, suggesting that the presence of a spurious correlation in training data makes
the model more adversarially robust over the same distribution.

Figure 14: Reverse effect using spu-
rious feature of lighting. Main text
figure uses color as spurious feature.

Figure 9 and 14 show that for two distinct spurious features
(color and lighting), robust accuracy is higher when the spuri-
ous correlation is stronger. Notably, the gain is larger than the
gain in standard accuracy. Intuitively, we see that relying on
the predictive power of the spurious feature is helpful for stan-
dard accuracy, and especially for acccuracy under adversarial
attack. Despite being irrelevant to the true labeling function,
the spurious feature can improve model performance, and
indeed even lead to better adversarial robustness.

Details. Color shift is achieved by increasing all pixel inten-
sities along one channel by 0.25. Lighting shift is achieved
by simply scaling an input by 1.25 to make brighter or 0.75
to make darker. All images are clamped to remain in the
[0, 1] pixel range after spurious feature injection. Models
are trained for 20 epochs using an Adam optimizer with a
learning rate of 0.001 and weight decay of 1e− 4.

E.2 Leveraging ImageNet-9

We now demonstrate the observed reverse effect on the higher resolution ImageNet-9 dataset, lever-
aging the natural and ubiquitous spurious feature of backgrounds. We finetune pretrained models
on MIXED-SAME and MIXED-RAND separately, and evaluate each model’s accuracy under attack
on the same split that they were trained over. Further, we leverage the adversarially trained models
from test suite in this experiment. This way, accuracy under attack is more informative, as the models
are trained to expect attacks (i.e. we are not imposing any distribution shifts that would lead to
unexpected model behavior). Along this vain, we attack each backbone with the same norm and ε
that it was pretrained over.

Figure 15 shows the gain in accuracy for the models trained and evaluated on MIXED-SAME compared
to those using MIXED-RAND. We see that the presence of background correlations increases both
standard and robust accuracy for all models (i.e. gains are positive). Further, gains in accuracy
under attack are larger than gains in standard accuracy in nearly all cases. Thus, it seems like the
added predictive power of the spurious background feature has a significantly nontrivial impact
on improving adversarial robustness, contradicting many existing arguments on the link between
spurious correlations and adversarial vulnerability.
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AT Norm ε ResNet18 ResNet50 Wide ResNet50 (2x)

No Adv Training 69.79 75.80 76.97

`2 0.25 67.43 74.14 76.21
`∞ 0.5/255 66.13 73.73 75.82
`2 0.5 65.49 73.16 75.11
`∞ 1/255 63.46 72.05 74.65
`2 1 62.32 70.43 73.41
`∞ 2/255 59.63 69.10 72.35
`2 3 53.12 62.83 66.90
`∞ 4/255 52.49 63.86 68.41
`2 5 45.59 56.13 60.94
`∞ 8/255 42.11 54.53 60.82

Table 1: Clean ImageNet accuracy for test suite of `2 and `∞ adversarially trained ResNets over
varying ε. Observe that the ith `2 AT model has similar clean accuracy to the ith `∞ AT model.

ShuffleNet MobileNet VGG DenseNet ResNeXt

No AT 64.25 65.26 73.66 77.37 77.38
`2 AT, ε = 3 43.32 50.40 57.19 66.98 66.25

Table 2: Clean ImageNet accuracy for five additional architectures considered.

F Adversarially Robust Model Test Suite (Section 3)

F.1 Model Details

We utilize the treasure trove of open-source adversarially trained models, contributed by [50],
accessible at https://github.com/Microsoft/robust-models-transfer. For completeness,
we now provide details on the models we use, though we refer readers to Appendix A.1 of the original
text, where the information we share now is sourced.

Training All models were trained on ImageNet in batches of 512 samples, using SGD optimizer with
momentum of 0.9 and weight decay of 1e− 4, for a total of 90 epochs, with learning rate dropping
by a factor of 10 every 30 epochs. The standard procedure of [39] was performed to adversarially
train models, using 3 projected gradient descent steps with a step size 2

3ε for the attack budget ε.

Selected Models We focus our empirical study on the ResNet architecture [20] because of
its wide spread popularity. Specifically, we study ResNet18s and ResNet50s that are ad-
versarially trained under the `2 norm, for ε ∈ {0.25, 0.5, 1, 3, 5}, and `∞ norm, for ε ∈
{0.5/255, 1/255, 2/255, 4/255, 8/255}, as well as standardly trained baselines.

Table 1 shows the standard accuracies for these models. Note that we at times compare between the
`2 and `∞ adversarially trained models (e.g. figure 6). We acknowledge that direct comparisons are
challenging because the threat model under which adversarial robustness is optimized for are different.
However, we note that standard accuracies of the ith `2 AT model is roughly the same as that of the ith
`∞ AT model, suggesting that those models lie in similar points of the accuracy-robustness tradeoff.

Additional Models. We extend our analysis to other architectures. We replicate all pretrained-model
experiments on the Wide ResNet50 (2x) backbones, for which we have checkpoints for each of
the five ε values for both `2 and `∞ norms. We also inspect MobileNetv2 [52], DenseNet161 [24],
ResNeXt5050_32x4d [69], ShuffleNet [75], and VGG16_bn [57]. For each of these five architectures,
we compare an `2 adversarially trained model with ε = 3 to a standardly trained baseline.

F.2 Experimental Details

ObjectNet and ImageNet-C [5, 22]. We report raw accuracies under noise, blur, and digital
corruption types for ImageNet-C, as opposed to relative corruption error. For ObjectNet, we map
ImageNet predictions to the set of 113 overlapping classes in ObjectNet. RIVAL10 (RFS) and
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Figure 17: RFS and RCS for WideResNet50s. Sensitivity to core and foreground regions are
reduced for higher ε, especially for `2 AT models and for RFS, computed over the RIVAL10 dataset,
where background correlations are stronger.

Salient ImageNet-1M (RCS) [41, 60]. RFS computation requires finetuning a final linear layer
over fixed features for the coarse-grained ten way RIVAL10 classification. RCS operates on models
off the shelf, directly inspecting accuracies over ImageNet classes (and samples, with region-based
noise corruption). ImageNet-9 and Waterbirds [68, 49]. ImageNet-9 accuracies are obtained by
mapping off-the-shelf model predictions to the nine coarse labels deterministically. Waterbirds
requires finetuning, which we do over fixed features. For RIVAL10 and Waterbirds finetuning, we
use Adam with learning rate of 1e− 4 and weight decay of 1e− 5 for 20 and 15 epochs respectively.

F.3 Results on Extended Model Test Suite

We now corroborate all our empirical findings on new backbones, expanding our analysis to 21 new
models (including 10 AT WideResNet50s over both `2 and `∞ norms) over six architectures.

Figure 16: ObjectNet, ImageNet-C, and
ImageNet accuracies for WideResNet50s.

WideResNets. We corroborate all our empirical findings
on ResNet18s and ResNet50s on the WideResNet50 (2x)
architecture. Figure 16 shows that accuracy drop in AT
models is more severe on distribution shifts that break
spurious correlations (ObjectNet), unlike the accuracy
drop due to corruption of both core and spurious fea-
tures (ImageNet-C), which can likely be explained by
the reduced standard accuracy of AT models.

Figure 17 shows reduced sensitivity to core and
foreground regions for AT models. Again, the effect is
more pronounced for `2 adversarially training and for
larger ε. Also, we again see that decrease in RCS is less
consistent than the drop in RFS. We conjecture that
the diversity and fine-grain Salient ImageNet classification task reduces the strength of spurious
correlations present in the data, thus diluting our observed effects of adversarial training on spurious
feature reliance.

Lastly, figure 18 shows the drop in accuracy due to breaking spurious background correlations is
larger for AT models. Indeed, the absolute background gap (IN-9) for the WideResNet50 under
`2 AT with ε = 5 is 50% larger than the gap for the standardly trained baseline. We note that the
absolute gaps are smaller in some cases. We believe the lower standard accuracy of AT models may
contribute to this, as there is less accuracy to drop from. Nonetheless, it is intriguing that in some
cases, `∞ adversarial training seems to reduce spurious feature reliance; while our theory explains
how a spurious feature can be completely ignored under `∞ training, it does not explain cases where
spurious feature reliance is reduced compared to standard training. We believe this is an interesting
direction for future work.
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Figure 18: Background Gap (IN-9) and Waterbirds gap for WideResNet50s. AT models, especially
under `2 norm, see larger accuracy drops when spurious correlations are broken.

Other backbones. We now show results for ten other models, half of which are `2 adversarially
trained with ε = 3, while the others are standardly trained. Figure 19 summarizes our results,
corroborating each of our empirical findings.
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(a) Legend. We compare `2 adversarially trained models to standardly trained baselines for five new backbones.

(b) Lower RFS (RCS) entails Lower Foreground (Core Feature) Sensitivity

(c) Higher Gap entails Greater Background/Spurious Sensitivity

(d) Lower Ratio entails Lower Natural Distributional Robustness

Figure 19: Corroborating findings on additional backbones.
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