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Abstract

Deep classifiers are known to rely on spurious features, leading to reduced gener-
alization. The severity of this problem varies significantly by class. We identify
15 classes in ImageNet with very strong spurious cues, and collect segmentation
masks for these challenging objects to form Hard ImageNet. Leveraging noise,
saliency, and ablation based metrics, we demonstrate that models rely on spurious
features in Hard ImageNet far more than in RIVAL10, an ImageNet analog to
CIFAR10. We observe Hard ImageNet objects are less centered and occupy much
less space in their images than RIVAL10 objects, leading to greater spurious feature
reliance. Further, we use robust neural features to automatically rank our images
based on the degree of spurious cues present. Comparing images with high and
low rankings within a class naturally reveals the exact spurious features models
rely upon, and shows classifiers suffer reduced accuracy when spurious features
are absent. With Hard ImageNet’s annotations and evaluation suite, the community
can begin to address the problem of learning to detect challenging objects for the
right reasons, despite the presence of strong spurious cues.

1 Introduction

Deep learning based image classifiers are effective but brittle to distribution shift, leading to serious
issues when models are deployed to sensitive applications like medicine [7, 42]]. The reliance of
models on spurious features, which are predictive of class labels in training data but are irrelevant to
the true labeling function, contributes to reduced distributional robustness. The lack of interpretability
of deep models is a bottleneck to understanding causes and degree to which models rely on spurious
features, especially on real data. Some datasets have been proposed where spurious features are
manually annotated or injected into synthetic [1,30] or application-specific [25} 21]] datasets, though
insights from these benchmarks may have limited transferability to more general domains.

Recently, [34] apply a mostly automated procedure for neural network interpretability [36] to discover
and annotate core (i.e. essential to the class label) and spurious features at scale. [35] expand this
analysis to softly segment core input regions in nearly all of the ubiquitous benchmark dataset, Ima-
geNet [8]]. Their method leverages the activation maps of neural features that highly contribute to the
activation of a given class logit and detect core features for that class. However, for 15 classes, all of
the inspected features were spurious, making the core-feature-based segmentation scheme infeasible,
while suggesting the presence of uniquely strong spurious cues within this subset of ImageNet.

In this paper, we first gather object segmentations for these 15 classes, forming the Hard ImageNet
dataset. We then curate an evaluation suite of ablation, noise, and saliency based analyses that
leverage object segmentations to assess the degree to which models rely on spurious features. With
this benchmark, we show that models rely on spurious features much more for Hard ImageNet objects
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Figure 1: Hard ImageNet classes. Object segmentation masks are overlaid in purple.

than more typical objects, as represented by the RIVAL10 dataset [26], who’s classes appear in
multiple standard benchmark datasets (ImageNet, CIFAR10 and STL10 [22} [5]). We then investigate
properties of Hard ImageNet objects, observing that they are significantly smaller and less centered,
likely leading to models favoring spurious features. Further, we complement our instance-wise object
segmentations by ranking each image within a class based on the strength of spurious cues present,
leading to clearer visualizations of the specific spurious features involved. The image rankings also
open the door to last-layer retraining of models on data where the presence and absence of spurious
features is balanced, an efficient new technique for reducing spurious feature reliance [20]].

With Hard ImageNet, we go beyond single-label annotations to shed new insights on the data and
model conditions that lead to increased spurious feature reliance in deep image classifiers. We hope
our evaluation suite and challenging dataset can inspire new and improved training procedures that
result in models that classify for the right reasons, towards more reliable and trustworthy Al.

2 Related work

The tendency of models to rely on spurious features due to simplicity bias [32] or short-cut learning
[11]] has garnered much attention, due to its consequences on fairness and generalization, leading to
the proposal of many algorithms to mitigate spurious dependencies [30] 27)]. However,
in comprehensive evaluations, the gains of these methods over empirical risk minimization are often
marginal or inconsistent [T3]). Recently, a simpler approach for reducing spurious feature reliance
has been proposed, where only a final linear layer is retrained over data that balances the presence of
spurious cues, thus encouraging models to downweight spurious features, which are less predictive
of class labels in the balanced set [20]. A bottleneck to this approach, along with many of the other
mentioned algorithms, is that they require knowledge of the degree to which spurious cues are present
in each sample; the image rankings of our dataset may address this need.

Several datasets have been created to aid in studying spurious feature use, including many with
synthetically-injected spurious correlations [30, [1,[12]. A noteworthy example is ImageNet-9, which
swaps backgrounds across classes to assess background sensitivity, using analyses similar to our
ablation studies [40]. While insightful, the use of simple classification tasks and unnatural data in
these synthetic sets may limit their impact in practice. A number of real-world datasets have also been
proposed 23], though they are usually very specific to the domain of their application.



Recent work appeals to additional annotations to assess model sensitivity to various input regions via
noise-based analyses [26]137]. Notably, [35] annotate core and spurious input regions for nearly all
of ImageNet in a mostly automated procedure, leveraging neural feature visualizations [36] and the
improved interpretability of an adversarially robust network [39], resulting in Salient ImageNet-1M,
a large-scale, natural, and general dataset for evaluating and improving model reliance on spurious
features. Namely, they used activation maps of robust neural features corresponding to core features
as soft segmentations of core regions (see Appendix[C). However, for 15 classes, all neural features
inspected were spurious, making their segmentation framework inapplicable. Arguably, these classes
are the most interesting, as the underlying robust network used for segmentation relied on spurious
features the most for these classes, indicating that this subset of data contains the strongest spurious
cues. We manually collect object segmentations for these 15 classes, design a suite of evaluation
metrics, and study the properties of this data that leads to heightened spurious feature reliance.

3 Hard ImageNet Dataset

3.1 Overview

Our dataset, Hard ImageNet, consists of images from 15 ImageNet [8] synsets. These classes are
Dog Sled, Howler Monkey, Seat Belt, Ski, Sunglasses, Swimming Cap, Balance Beam, Gymnastic
Horizontal Bar, Patio, Hockey Puck, Miniskirt, Keyboard Space Bar, Volleyball, Baseball Player, and
Snorkel, selected because for each class, all features annotated in [35] were spurious with respect to
the class. Specifically, [35] inspect the five neural features (i.e. nodes in the penultimate layer) of an
{5 adversarially trained ResNet50 per class that contribute most to the activation of the corresponding
logit. Each class-feature pair is annotated as core or spurious, based on if the detected feature is
essential to the class label. Over all classes, the vast majority of class-feature pairs inspected were
deemed core. Thus, having all five most important features serving spurious roles suggests that each
Hard ImageNet class uniquely has very strong spurious cues that models favor over core features.

We collect object segmentation masks for these 15 classes, resulting in a dataset with 19, 097 training
samples and 750 validation samples. We maintain the same train/validation split as ImageNet. Figure
[T] visualizes an example and its object segmentation for each Hard ImageNet class. Additionally, we
provide class-wise rankings for each image in the Hard ImageNet training set based on the strength
of spurious cues present in the image. We base these rankings on the activations of the annotated
neural features for each class (see Section[6]for more details).

Impact First, Hard ImageNet segmentations complete the Salient ImageNet dataset, which allows
for the exploration of going beyond single-label supervision in training ImageNet models to predict
for the right reasons. That is, with object segmentations available during training, models can be
guided to rely more on core features than spurious ones, leading to improved generalization to
domains where spurious correlations are broken. Moreover, Hard ImageNet annotations shed insight
on the conditions for models and data under which spurious features are favored: through our suite
of evaluation metrics (see Section[d), the effect of training procedures and model architectures on
spurious feature reliance can be compared, while analysis of segmentation masks reveal how the
shape, size, and location of objects in images affects model sensitivity to the object (see Section ).

3.2 Collection Procedure

We collect Hard ImageNet object segmentations over Amazon Mechanical Turk. To ensure quality,
annotations are collected in many phases. First, workers must pass a qualification exam, consisting
of segmenting one sample from each class. All workers take the same qualification exam, and only
workers who achieve an intersection-over-union (IoU) score of at least 0.65 pass. For reference,
any IoU greater than 0.5 is considered successful in the Pascal VOC object detection evaluation
[9]. Workers meeting this bar demonstrate proficiency with the Mechanical Turk platform and
sufficient understanding of the relevant objects to be segmented. Then, workers sign a informative
consent form, in which we explain the nature of and purpose for their work, and also share answers
to the qualification exam and tips for improved segmentations so to correct for common errors.
Finally, qualified and consenting workers move on to the full data collection stage, where we release
batches in rounds, monitoring quality with attention checks (randomly inserted images with ground
truth segmentations) and updating class-specific tips based on errors observed on attention checks.
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highly agreed upon, with a small minority having near zero  Figure 2: Agreement of individual seg-
agreement, indicating that the extra rounds of annotation mentations with final averaged segmenta-
had a meaningful corrective impact. tion for Hard ImageNet validation split.

Throughout our data collection, we strive to create a transparent and collaborative working environ-
ment. In the consent/information stage, we invite feedback and explicitly encourage our workers to
directly contact us with questions. Moreover, we reward workers with fair salaries (estimated to be
$12 to $16 an hour depending on annotation speed) and bonuses (between 5% and 7% depending
on number of annotations) for continued work. We also invite workers who previously partook
in RIVAL10 [26] annotation, as their experience from a similar task leads to improved annotation
quality, and rewarding loyalty improves worker well being.

4 Benchmarking Spurious Feature Reliance

We compile a suite of evaluation metrics that use object segmentations for assessing image classifier
reliance on spurious features. We focus this section on demonstrating the significantly higher degree
of spurious feature reliance for models on Hard ImageNet compared to other more typical data.
As a baseline, we use RIVAL10 [26], which is comprised of images from 20 ImageNet synsets,
selected so that each synset corresponds to a class from CIFAR10 [22] (i.e. two synsets per CIFAR10
class). Importantly, RIVAL10 includes an object segmentation per image, collected in a similar
fashion to Hard ImageNet’s annotations. We consider RIVAL10 data to be more typical of what is
commonly studied in image classification, as many or all of the classes also appear in the standard
benchmark datasets CIFAR10 and STL10. We note that we use samples in RIVAL10 that were
originally in ImageNet’s validation split, as opposed to using RIVAL10’s own train/test split, which
leaks ImageNet training samples to their test split. For Hard ImageNet, we also evaluate over images
originally in ImageNet’s validation split, which corresponds to Hard ImageNet’s validation split.

Across our evaluations, we use a convolutional neural network (ResNet50 [[13]) and a vision trans-
former (small DeiT [38]]) of roughly equal size, both pretrained on ImageNet. To evaluate these
models ‘off the shelf’, we map samples from Hard ImageNet and RIVAL10 to their original ImageNet
class indices. Thus, for RIVAL10 evaluation off the shelf, we actually consider 20 target classes,
and so we refer to this as RIVAL20. We also include finetuned versions where a final linear layer
is trained for each model atop representations from the corresponding fixed feature encoder. For
RIVALI10, we finetune for both 10-way and 20-way classification. While the emphasis of this section
is data, in practice our evaluation metrics are intended for comparison of models of diverse types.

4.1 Ablation

Object segmentation masks allow for removal of the object corresponding to the class label for any
sample. Classifying an ablated image to its original class indicates that the model uses background
information as it does not require the object’s presence to predict its class. While these ablated images
are out of distribution, accuracy drop due to ablation can still inform the degree to which the model
relies on spurious background features. We consider three types of ablation. First, we replace all
object pixels with 0.5, graying out the object. Second, we replace all pixels in the bounding box of
the object with gray, thus also removing object shape information. Finally, we replace the bounding
box of the object with a tile adjacent to the object in the image. In cases where a tile is smaller than
the bounding box, we repeat the tile to fill the region, as in [40]. Note that all ablations replace each
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Figure 3: Accuracy under ablation. Accuracy drops much less when Hard ImageNet objects are
ablated than when RIVAL10 objects are ablated. Example ablations for class sunglasses shown left.

instance of an object in an image separately (i.e. we consider multiple boxes bounding each instance
as opposed to one box containing all instances) so to retain as much background as possible.

Figure[3|shows that ablation leads to a much smaller accuracy drop for Hard ImageNet objects than for
RIVALI10 objects, in both the finetuned and off the shelf case, and for all types of ablation. In fact, for
an off the shelf DeiT (i.e. performing 1000-way classification), Hard ImageNet images are predicted to
their class over 50% of the time under all ablations, despite the fact that the object essential to the class
label is actually missing, rendering the predictions inaccurate (see Appendix [D). This is several times
larger than the rate for RIVAL20. In finetuned models, accuracy under ablation is still significantly
larger for Hard ImageNet, though this gap is smaller. We note that random guessing yields much
higher accuracy in these cases because the number of classes is multiple orders of magnitude smaller.
Because number of classes varies across the three datasets considered, direct comparison is more
challenging, but Hard ImageNet accuracy is still substantially larger than RIVAL10 ablated accuracy,
where random guessing achieves 5% higher accuracy than on Hard ImageNet.

4.2 Relative Foreground Sensitivity

We now turn to the noise-based metric relative foreground sensitivity (RF'S), introduced with
RIVALI10 [26]]. To compute RF'S, equal amounts of Gaussian noise is added to foreground and
background regions. Then, the gap in accuracy drops (i.e. how much more accuracy drops due to
foreground noise than background noise) is normalized to allow for comparison across models with
varying noise robustness, as derived extensively in and [33]). Higher RF'S scores entail greater
sensitivity to noise in foregrounds relative to backgrounds. We consider adding both ¢, and /5 noise,
where in the latter case, we fix the ¢ norm of noise added in both backgrounds and foregrounds.
These types of noise have opposite size biases, as /5 noise results in a higher £, norm of noise is
smaller regions, while ¢, noise results in a higher /5 norm of noise in larger regions.

In figure [, we see that for all models and across noise levels, RF'S is substantially lower when
evaluated on Hard ImageNet than on RIVAL10 or RIVAL20. In fact, RF'S is negative in many
cases, indicating that noise in the background reduces accuracy more than noise in the foreground.
For finetuned models at low levels of /5 normalized noise, RF'S is comparable across datasets, but
otherwise, models appear to be significantly more sensitive to noise in backgrounds than they are
to the actual object in Hard ImageNet, suggesting that models use object information far less than
surrounding context. Arguably, despite achieving high accuracy, this result suggests that models are
not actually learning to detect Hard ImageNet objects, instead relying on spurious background cues.
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Figure 5: GradCAMs of Hard ImageNet instances with poor saliency alignment for finetuned
ResNet50 (left three) and finetuned DeiT (right two). Spurious features of gymnast, dogs, hockey
stick and ice, legs and keys for each class respectively are highlighted.

4.3 Saliency Alignment

Our third metric makes use of the interpretability method GradCAM [31]], which assigns a saliency
score to each input pixel, proxying its importance to the prediction. While GradCAMs are qualitative,
we perform a quantitative analysis by computing the alignment of GradCAMs to objects. Specifically,
we compute IoU of object segmentations and GradCAMs (binarized with a threshold of 0.5) as in
[26]]. Figure[6 shows IoU scores across models are significantly lower for Hard ImageNet objects
than RIVAL10 objects, indicating that backgrounds are more salient to Hard ImageNet classification.

With saliency alignment, we can also automatically extract instances with low IoU scores to reveal
specific spurious background cues. Some examples are visualized in figure[5] Here, we see that other
features present in the image but non-essential to the class label are arguably more prominent and
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is placed in the background. Across all models, saliency alignment is lowest for Hard ImageNet.
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Figure 7: Average object position for Hard ImageNet and RIVAL10. Hard ImageNet objects occupy
less space and are often not centered, unlike RIVAL10 (and most other ImageNet) objects.

easier to recognize than the actual object. For example, the keys on a keyboard are more noticeable
than the spacebar below, as they take up more of the image and contain more detail than the uniformly
colored spacebar. Further, the location of the objects in these examples makes them appear as though
they are in the background, as they reside along the edges of the image, as opposed to the center. We
investigate the size and location of Hard ImageNet objects in more detail in the following section.

5 Hard ImageNet Objects are Smaller and Less Centered

Figure [8] shows that compared to RIVAL10, Hard ImageNet objects occupy substantially less space
both in their original images and after the standard ImageNet test time augmentation (consisting of
resizing and center cropping). Some reasons for this are that Hard ImageNet objects are i. simply
smaller (hockey puck, swimming cap), ii. oddly shaped so that square crops include lots of background
(spacebar; ski), iii. often co-occurring with much larger spurious features (snorkel, balance beam).

Interestingly, the standard test time augmentation only slightly increases the percent of the image the
object occupies, unlike for RIVAL10 objects, which see a larger increase. The lack of a center bias in
object locations likely contributes to the reduced benefit of augmentation, as a center crop would not
amplify non-centered objects. In fact, we find that this augmentation often removes large portions of
Hard ImageNet objects, as shown in Figure E While in the worst case at most 25% of a RIVAL10
object is lost due to the standard augmentation, much more of the object is lost in Hard ImageNet,
including cases where standard augmentation completely removes Hard ImageNet objects.

We visualize the class-wise average of object segmentations after standard augmentation in figure
[7. Indeed, Hard ImageNet objects are smaller and less centered than RIVAL10 objects. For howler
monkey and baseball player, which are relatively larger and more centered, we conjecture that the
increased spurious feature reliance is due to easily recognizable spurious cues. Namely, howler mon-
keys are usually photographed in dense foliage with many leaves and branches. For baseball players,
the uniform green grass and brown dirt of the baseball field is likely very easy for a deep network to
detect. While patios are not centered, they do take up lots of space, but they often co-occur with patio
furniture, which models may rely on more so than the patio itself. Finally, we note the smaller size
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of the finches in RIVAL10; RIVAL10’s original analysis observed greater spurious feature reliance
in the bird class, further suggesting that small object size leads to greater model use of backgrounds.

6 Ranking Images by Spurious Feature Presence

To complement Hard ImageNet segmentation masks, we annotate each image in the training set with a
class-wise rank corresponding to the strength of spurious features present in the image. We determine
these ranks by appealing to neural features (nodes in the penultimate layer) of the {5 adversarially
trained ResNet50 used to construct the Salient ImageNet dataset [34}135]. Per class, we first rank
all images by feature value on each of the five annotated features (which are all spurious for Hard
ImageNet classes). We then sort the average of these ranks to obtain our final image rankings.

Figure[I0 shows the highest and lowest ranked images for classes ski, snorkel, and howler monkey.
Samples with low spurious rank are classified with significantly lower accuracy. Also, viewing the
high and low ranked images reveals the strong spurious cues present in Hard ImageNet. For example,
models appear to rely on snow and skiers to classify skis. Similarly, the absence of people and
water for snorkels and trees for howler monkey reduces spurious ranking and classification accuracy.
Viewpoint may also be a spurious feature for howler monkey, as highly ranked images are all taken
from below, with the sky and trees as the backdrop. Viewpoint, along with backgrounds, was observed
to be a spurious correlation that contributes to large accuracy drop when broken in ObjectNet [2].

While image ranking facilitates the interpretation of spurious features naturally (i.e. without using
visualizations that make artificial changes to the image, which were observed to be less effective in
[4]), they can also be used to reduce spurious feature reliance. Namely, retraining a linear layer atop
fixed encoders on data that balances the presence and absence of spurious features has been found
to greatly improve performance on instances where spurious correlations are broken [20]]. Spurious
image ranking allows for the construction of these balanced datasets, explored in the following section.

7 Improving Models with Hard ImageNet Annotations

We now explore baseline methods to harness Hard ImageNet’s annotations for improved model
classification (i.e. with reduced reliance on spurious features). We focus our study on finetuned
models pretrained on ImageNet, using ResNet50 and DeiT (Small) as in Section |4} We keep features
fixed during finetuning, only optimizing the parameters of a new final layer for the 15-way Hard
ImageNet classification.

We employ two approaches for mitigating spurious feature reliance. [35] propose Core Risk
Minimization (CoRM) as an alternative to ERM when segmentations of core (i.e. not spurious)
regions are available; Hard ImageNet’s object segmentations fulfill this prerequisite. Specifically,
the objective of CoRM is to minimize classification error over the distribution of images with noise
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Figure 10: Examples of high (left) and low (right) spurious feature presence, based on Hard ImageNet
rankings. Accuracies shown are for a standardly trained ResNet50.

applied to non-core regions, so that the optimal classifier predicts correctly even when spurious
features are corrupted. In that work, random noising, where small amounts of Gaussian noise are
added to non-core regions with probability p = 0.5, and saliency regularization, where the {5 norm of
the gradient on non-core pixels is added to the classification loss, were applied in tandem to improve
relative core sensitivity (an analagous metric to RF'S). [20] propose Deep Feature Reweighting
(DFR), in which retraining a final linear layer using a balanced dataset reduces spurious feature
reliance. The balanced dataset consists of a subset of the training data containing an equal portion of
samples with and samples without spurious features, essentially breaking spurious correlations that
impede generalization to minority groups. Using Hard ImageNet’s image rankings, we extract the
top and bottom 100 images for each class to form the spurious-balanced subset.

Table[T] shows that these two methods can considerably reduce model reliance on spurious features,
improving numbers across all metrics in our benchmark. Between the two approaches, CoRM appears
to lead to more improvement in saliency alignment and RF'S, while DFR yields beter results for
ablation. Combining CoRM and DFR leads to even better performance with respect to accuracies
under ablation. While improvements are at times small, we note that in these experiments, the vast
majority of model parameters are left unchanged, as we only train a new final layer. We leave the



Method \ Ablation Accuracies ({) RFS (1) Saliency (1)

CoRM DFR | None (1) Gray GrayBBox Tile | 0 =025 o=0.5 | IoU
Finetuned DeiT (Small)
X X | 96.79 84.22 80.48 81.15 | —0.19 —0.35 | 20.90
v X 96.39 81.02 78.74 80.75 0.02 -0.19 21.57
X v 96.66 81.28 77.01 77.94 —0.20 -0.33 21.63
v v 96.52 82.35 77.01 77.81 —0.10 —0.29 21.99
Finetuned ResNet50
X X | 94.25 75.94 69.39 67.38 | —0.18 -0.27 | 18.44
v X 92.91 76.20 69.12 68.32 —0.08 —-0.27 20.43
X v 94.39 73.53 67.51 66.71 —0.27 —0.35 18.39
v v 91.31 72.59 63.64 63.90 -0.23 —0.31 20.35

Table 1: Final layer retraining improves faithful learning on Hard ImageNet. Results shown for
entire benchmark under two different training approaches: i) Core Risk Minimization (CoRM) via
random background noising and saliency regularization, and ii) deep feature reweighting (DFR)
using a spurious-balanced training subset. We also report results for the combination of the two
approaches and ordinary finetuning (as a baseline) under two architectures. Relative Foreground
Sensitivity (RFS) is evaluated under two £, noise levels, indicated by o. Saliency refers to saliency
alignment as measured by intersection over union (IoU).

door open to new approaches for improving the faithful learning of Hard ImageNet objects, including
training models from scratch.

8 Discussion

Our benchmark brings a new perspective to classification, as we not only seek models that predict
accurately, but also predict for the right reasons. Assessing model performance using accuracy alone
can obscure key misconceptions held by models, which may only become apparent when models
are deployed to new domains at test time. Moreover, design decisions such as training strategy and
architecture may affect the degree to which spurious features are relied upon, as observed in [26];
this dataset and accompanying benchmark can reveal these model differences. Finally, we emphasize
the need to understand model behavior under “bad” data; that is, images where the object of interest
is not centered or large, unlike most cases. With models becoming increasingly data hungry, it is
inevitable that some portion of the data will not capture objects in ideal conditions. Further, certain
objects simply are not well suited to be captured prominently (i.e. large and centered) in square
photos. Figuring out how to learn to recognize objects from these suboptimal data conditions will
be an important challenge to extend the impressive performance of deep classifiers from standard
datasets to many more realistic settings.

With Hard ImageNet, the community can evaluate the capacity of any ImageNet trained model to
faithfully learn challenging objects, and also explore how going beyond single class label annotations
can lead to improved image classifiers. While segmentation masks are expensive to collect, procedures
that are much more automated already exist [35], and we envision newer ones are likely to emerge
with time. Also, the procedure with which we ranked images was largely automated, indicating that
these types of annotations are by no means prohibitively expensive. We hope Hard ImageNet can
lead to new perspectives on both training and evaluation paradigms for image classification.
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