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Abstract

Data poisoning attacks aim at manipulating model
behaviors through distorting training data. Pre-
viously, an aggregation-based certified defense,
Deep Partition Aggregation (DPA), was proposed
to mitigate this threat. DPA predicts through an
aggregation of base classifiers trained on disjoint
subsets of data, thus restricting its sensitivity to
dataset distortions. In this work, we propose an
improved certified defense against general poi-
soning attacks, namely Finite Aggregation. In
contrast to DPA, which directly splits the training
set into disjoint subsets, our method first splits the
training set into smaller disjoint subsets and then
combines duplicates of them to build larger (but
not disjoint) subsets for training base classifiers.
This reduces the worst-case impacts of poison
samples and thus improves certified robustness
bounds. In addition, we offer an alternative view
of our method, bridging the designs of determin-
istic and stochastic aggregation-based certified
defenses. Empirically, our proposed Finite Ag-
gregation consistently improves certificates on
MNIST, CIFAR-10, and GTSRB, boosting certi-
fied fractions by up to 3.05%, 3.87% and 4.77%,
respectively, while keeping the same clean ac-
curacies as DPA’s, effectively establishing a new
state of the art in (pointwise) certified robustness
against data poisoning.

1. Introduction
Over the past years, we have witnessed the increasing pop-
ularity of deep learning in a variety of domains including
computer vision (He et al., 2016), natural language process-
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ing (Devlin et al., 2019), and speech recognition (Xiong
et al., 2016). In many cases, such rapid developments de-
pend heavily on the increased availability of data collected
from diverse sources, which can be different users or sim-
ply websites from all over the Internet. While the richness
of data sources greatly facilitates the advancement of deep
learning techniques and their applications, it also raises con-
cerns about their reliability. This makes the data poisoning
threat model, which concerns the reliability of models under
adversarially corrupted training samples, more important
than ever (Goldblum et al., 2020).

In this work, we use a general formulation of data poisoning
attacks as follows: The adversary is given the ability to
insert/remove a bounded number of training samples in
order to manipulate the predictions (on some target samples)
of the model trained from the corresponding training set.
Here, the number of samples that the adversary is allowed
to insert/remove is referred to as the attack size.

Many variants of empirical poisoning attacks targeting deep
neural networks have been proposed, including Feature Col-
lision (Shafahi et al., 2018), Convex Polytope (Zhu et al.,
2019), Bullseye Polytope (Aghakhani et al., 2021) and
Witches’ Brew (Geiping et al., 2021). These attacks are
also referred to as triggerless attacks since no modification
to the targets is required. Unlike triggerless attacks, back-
door attacks are poisoning attacks that allow modifications
of the target samples, for which a variety of approaches have
been developed including backdoor poisoning (Chen et al.,
2017), label-consistent backdooring (Turner et al., 2019)
and hidden-trigger backdooring (Saha et al., 2020). While it
is shown in (Schwarzschild et al., 2021) that the evaluation
settings can greatly affect the success rate of many data
poisoning attacks to deep models, the vulnerability issues
against poisoning attacks remain because (i) the current at-
tacks can still succeed in many scenarios, and (ii) stronger
adaptive poisoning attacks can potentially be developed in
the future, posing practical threats.

In this work, we focus on developing provably robust de-
fenses against general poisoning attacks. In particular,
aggregation-based techniques, including a deterministic one
(Levine & Feizi, 2021) and stochastic ones (Jia et al., 2021;
Chen et al., 2020), have been adopted to offer (pointwise)
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Figure 1. An overview of Finite Aggregation with k = 3 and d = 3. Finite Aggregation consists of three parts: split, where the training
set is split into kd partitions P0, . . . , Pkd−1 using a hashing function hsplit; spread, where each partition is spread, according to a hash
function hspread, to d different destinations from a total of kd subsets S0, . . . , Skd−1; and aggregation, where one classifier is trained
from every subset and the majority vote of all kd classifiers will be the prediction at inference time.

Figure 2. A toy example illustrating how our proposed Finite Ag-
gregation improves provable robustness through a strategic reusing
of every sample. For simplicity, we assume that every partition
in this example contributes to two consecutive base classifiers in
Finite Aggregation. Notably, with no poison, the distribution of
predictions from base classifiers are identical for DPA and our
method. However, since the subset of base classifiers correspond-
ing to every sample may predict differently, a poisoned sample can
be less effective in our method compared to in DPA, leading to
improved robustness.

certified robustness against poisoning attacks, where the pre-
diction on every sample is guaranteed to remain unchanged
within a certain attack size. Notably, to date, they are
state-of-the-art in providing (pointwise) certified robustness
against general poisoning attacks. We have other certified
defenses against poisoning attacks discussed in Section 2.

In this work, we present Finite Aggregation, an advanced
aggregation-based defense extended from Deep Partition
Aggregation (DPA) (Levine & Feizi, 2021). DPA predicts
through an aggregation of base classifiers trained on dis-
joint subsets of data, thus restricting its sensitivity to dataset
distortions. While DPA simply splits the training set into
disjoint subsets for training base classifiers, we introduce a
novel ‘split&spread’ protocol to obtain more overlapping
subsets without changing the average subset size, as illus-
trated in Figure 1: We first split the training set into smaller
disjoint subsets and then combine duplicates of them in a
structured fashion to build larger (but not disjoint) subsets.

The key idea of our proposed Finite Aggregation is based
on a strategic reusing of every sample to improve robust-
ness. To certify a prediction against data poisoning, an
implicit or explicit characterization of the worst-case impact
of poisoned samples is inevitable, which can be made more
fine-grained by reusing samples strategically to better assess
the effectiveness of potentially poisoned samples. In partic-
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ular, in our proposed Finite Aggregation method (Figure 1),
since the subset of base classifiers corresponding to every
sample may predict differently, a poisoned sample can be
less effective compared to that of DPA, leading to improved
robustness. We further illustrate this using a toy example in
Figure 2. In this example, having even one poison sample in
DPA can create a tie between prediction probabilities of the
correct class (‘cat’) and an incorrect class (‘dog’). However,
in Finite Aggregation, with the same clean distribution, even
the most effective poison is not able to mislead the model
(detailed in Appendix A).

One should note that in the Finite Aggregation method, the
total number of base classifiers increases with the reusing
of samples, which is why allowing every sample to be used
by more base classifiers can actually reduce the impact of
poisoned samples. Notably, as d controls the sample reusing
in Finite Aggregation, our method essentially degenerates
to DPA when d = 1 (i.e. no sample reusing).

In summary, our contributions in this work are as follows:

• We propose Finite Aggregation, an advanced
aggregation-based provable defense against general
data poisoning that obtains improved (pointwise) ro-
bustness bounds through strategic reusing of samples.

• We offer a novel, alternative view of our design, to
bridge the gap between deterministic defenses (e.g.
(Levine & Feizi, 2021)) and stochastic aggregation-
based defenses (e.g. (Jia et al., 2021; Chen et al.,
2020)).

• Empirically, our method effectively improves certified
fractions by up to 3.05%, 3.87% and 4.77% respec-
tively on MNIST, CIFAR-10, and GTSRB, while keep-
ing the same clean accuracies as DPA’s, establishing a
new state of the art in (pointwise) certified robustness
against general data poisoning.

2. Related Work
Certified Robustness against Data Poisoning. While in
this work we consider pointwise certified robustness, some
prior works provide distributional robustness against data
poisoning. To name a few, (Steinhardt et al., 2017) derives
a high-probability lower bound for test accuracy under poi-
soning attacks, assuming the distribution of the testing set is
the same as the one for the clean training set; (Diakonikolas
et al., 2016; Lai et al., 2016) provides distributional robust-
ness guarantees for certain types of unsupervised learning;
(Diakonikolas et al., 2019) offers provable approximations
of the clean model with additional assumptions regarding
the distribution of the clean training data. In addition, (Gao
et al., 2021) studies conditions for learnability and certifi-
cation on predictions under poisoning attacks through the

scope of PAC learning; (Wang et al., 2020; Weber et al.,
2020) study certified robustness against backdoor attacks;
(Rosenfeld et al., 2020) studies certified robustness against
label-flipping attacks.

Privacy Attacks. Privacy attacks and data poisoning at-
tacks are actually related. While data poisoning attacks
focus on the interests of the consumers of data (e.g. model
trainers), privacy attacks focus on the interests of the
providers of data (e.g. users). Intuitively, the idea of defend-
ing both attacks can be to have models that are not sensitive
to the change of a single sample. An active field in privacy-
preserving machine learning is to combine deep learning
with differential privacy (Abadi et al., 2016; Papernot et al.,
2017; 2018; Wang et al., 2021). Some existing works have
related differential privacy with poisoning attacks: For ex-
ample, (Du et al., 2020) proposes an approach of backdoor
attack detection via differential privacy and (Ma et al., 2019)
investigate the empirical effectiveness of differential privacy
in defending against poisoning attacks.

3. (Deterministic) Finite Aggregation
3.1. Notation and Background

Our design, Finite Aggregation, is extended from the
framework of Deep Partition Aggregation (i.e., DPA)
(Levine & Feizi, 2021). In this section, we will go through
the notations and the main results of DPA.

Notation: Let X be the space of unlabeled samples (e.g.
the space of images), C be the set of class indices [nc] =
{0, 1, . . . , nc − 1}, and XL be the space of labeled samples
{(x, c)|x ∈ X , c ∈ C}. A training set D of size n can be
viewed as a multiset {(xi, ci)}ni=1 where (xi, ci) ∈ XL. We
use D to denote the space of training sets.

For a deterministic classification algorithm f : D×X → C,
f(D,x) ∈ C denotes the predicted class index for input
x ∈ X when the training set is D ∈ D.

For two training sets D and D′, we measure their differ-
ence with symmetric distance (the cardinality of symmetric
difference):

dsym(D,D′) = |(D \D′) ∪ (D′ \D)|,

which is exactly the minimum number of samples one needs
to insert/remove to change one training set to another (i.e.
change D to D′ or change D′ to D).

DPA (Levine & Feizi, 2021): DPA is a deterministic clas-
sification method DPA : D × X → C constructed using a
deterministic base classifier fbase : D ×X → C and a hash
function h : XL → [k] that maps labeled samples to integers
between 0 and k − 1 (k is a hyperparameter denoting the



Improved Certified Defenses against Data Poisoning with (Deterministic) Finite Aggregation

number of partitions). The construction is:

DPA(D,x) = arg max
c∈C

k−1∑
i=0

1 [fbase(Pi, x) = c] ,

where Pi = {(x, c) ∈ D|h((x, c)) = i} is a partition con-
taining all training samples with a hash value of i. Ties
are broken by returning the smaller class index in arg max.
For convenience, we use DPA(D,x)c to denote the average
votes count 1

k

∑k−1
i=0 1 [fbase(Pi, x) = c].

Theorem 1 (Robustness of DPA against Data Poisoning)
Given a training set D and an input x, let c = DPA(D,x),
then for any training set D′, if

2

k
· dsym(D,D′) ≤ DPA(D,x)c − DPA(D,x)c′ −

1 [c′ < c]

k

holds for all c′ 6= c, we have DPA(D,x) = DPA(D′, x).

Theorem 11 (Levine & Feizi, 2021) shows how DPA offers
certified robustness against data poisoning attacks. Intu-
itively, since every sample will be contained in only one
partition, one poisoned sample can change at most one vote
and therefore reduce normalized margins (the gap between
average vote counts) by 2

k at most. Thus, the adversary
can never change the prediction as long as the number of
samples inserted/removed is limited (i.e. dsym is small).

3.2. Proposed Design

In this section, we will present the design of our method,
Finite Aggregation. Finite Aggregation constructs a new,
deterministic classifier using the followings:

• a deterministic base classifier fbase : D ×X → C;

• a hash function hsplit : XL → [kd] mapping labeled
samples to partition indices between 0 and kd − 1,
which is used to split the training set into kd partitions;

• a balanced hash function hspread : [kd] → [kd]d map-
ping every partition index to a set of d different integers
of the same range, which is used to spread training sam-
ples, allowing them to be utilized by d different base
classifiers.

Here, k and d are two hyperparameters where k corresponds
to the inverse of sensitivity and the spreading degree d con-
trols the number of base classifiers that every sample can be
utilized by.

By a balanced hash function, we mean that the inverse of
the hash function h−1spread(i) = {j ∈ [kd]|i ∈ hspread(j)} has

1For coherence, Theorem 1 is presented in a slightly different
form from the original one by (Levine & Feizi, 2021).

the same size (i.e., d elements) for all i ∈ [kd], which means
h−1spread is also a hash function from [kd] to [kd]d. Our choice
of hspread will be discussed in Section 3.4.

Definition 1 (Classification with Finite Aggregation)
The construction of Finite Aggregation FA : D ×X → C is
as follows:

FA(D,x) = arg max
c∈C

kd−1∑
i=0

1 [fbase(Si, x) = c] ,

where Si =
⋃

j∈h−1
spread(i)

Pj , Pj = {(x, c) ∈
D|hsplit((x, c)) = j} and ties are broken by returning the
smaller class index in arg max.

Similarly, we use FA(D,x)c to denote the the average votes
count 1

kd

∑kd−1
i=0 1 [fbase(Si, x) = c]. We use FA(D,x)c|j

to denote 1
d

∑
i∈hspread(j)

1 [fbase(Si, x) = c], which is the av-
erage votes count over base classifiers that utilize Pj .

An overview of Finite Aggregation is in Figure 1. Finite
Aggregation can be decomposed into three stages:

• Split, where the training set is split into kd partitions
P0, . . . , Pkd−1;

• Spread, where each partition is spread to d different
destinations in S0, . . . , Skd−1;

• Aggregation, where one classifier is trained from ev-
ery subset Si, i ∈ [kd] and the majority vote of all kd
classifiers will be the prediction at inference time.

In both DPA (Levine & Feizi, 2021) and our design (with
the same hyperparameter k), every base classifier will, on
average, have access to 1/k of the entire training, and every
sample will be utilized by exactly 1/k of the base classifiers.
However, unlike DPA, which forms disjoint subsets, we
let every sample be utilized by d base classifiers in a way
that enables better certifications against data poisoning at-
tacks. Notably, when d = 1, Finite Aggregation essentially
reduces to DPA with the same hyperparameter k.

3.3. Certified Robustness to Data Poisoning

In this section, we will see how Finite Aggregation provably
defends against data poisoning attacks and discuss why it
offers a stronger defense than DPA.

Theorem 2 (Finite Aggregation against Data Poisoning)
Given a training set D and an input x, let c = FA(D,x),
then for any training set D′, it is guaranteed that
FA(D′, x) = FA(D,x) when

1

k
·∆dsym(D,D′)

D,x ≤ FA(D,x)c − FA(D,x)c′ −
1 [c′ < c]

kd
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holds for all c′ 6= c, where ∆D,x is a multiset defined as{
1 + FA(D,x)c|j − FA(D,x)c′|j

}
j∈[kd]

and ∆
dsym(D,D′)
D,x denotes the sum of the largest dsym(D,D′)

elements in the multiset ∆D,x.

Theorem 2 is how Finite Aggregation offers certified ro-
bustness against data poisoning. The detailed proof is in
Appendix B and we include a sketch here.

When one sample x′ is inserted or removed, only a spe-
cific set of d base classifiers may be affected, depending
on where this sample is assigned to in the split stage (i.e.
the value of hsplit(x

′)). If the goal is to change the predic-
tion from c to c′, then the worst case is simply that all of
those d classifiers will predict c′ after the insertion/removal,
meaning that the contribution to the margin between class
c and c′ will reduce by 2

kd for every base classifier (among
those d) that originally predicts c, by 0 for every that pre-
dicts c′ and by 1

kd for every base classifier that predicts
other classes. Thus, the margin will be reduced by at most
1
k

(
1 + FA(D,x)c|j − FA(D,x)c′|j

)
given hsplit(x

′) = j
and therefore with dsym(D,D′) samples inserted/removed,

the margin will be reduced by 1
k∆

dsym(D,D′)
D,x at most, which

means the prediction will not be turned from c to c′ as long
as the margin is larger than this.

Comparing Theorem 2 with the certified robustness of DPA
in Theorem 1, we can directly see why FA offers stronger
defenses. A hypothesis here is that with the same k, the
accuracies of base classifiers in Finite Aggregation will not
change much from those in DPA, since they have access to
the same amount of training data on average and the subsets
are constructed in a similar fashion. We have this verified
empirically in Section 5.2.

With this hypothesis, we can focus on the left hand side of
Theorem 2 and Theorem 1 to compare the robustness of ours
with DPA. By definition 1 + FA(D,x)c|j − FA(D,x)c′|j ≤
2 holds for any j ∈ [kd], which means we always have
1
k ·∆

dsym(D,D′)
D,x ≤ 2

k · dsym(D,D′); thus Finite Aggregation
offers better certificates than DPA. The intuition behind this
is that when we let a sample be utilized by more than one
base classifier, we can use the correlation among them to
better characterize the capability of the adversary. We will
later elaborate more about this insight in Section 4.1.

3.4. Practical Details

The choice of fbase. The only requirement to fbase is that
it should be deterministic which is hardly an issue since
most, if not all, classification algorithms can be made de-
terministic. Following (Levine & Feizi, 2021), here we
use deep neural networks for the base classifiers, where the
labeled training samples are sorted in lexicographic order

to remove the dependence on the order of the training set
and random seeds are set explicitly. More details including
model architectures can be found in Section 5.1.

The choice of hsplit. Here we use the same hash function as
(Levine & Feizi, 2021) for evaluation, where it simply maps
each sample to [kd] according to the remainder when you
divide the sum of pixel values by kd.

The choice of hspread. Here we want hspread to be a balanced
hash function mapping every integer in [kd] to a set of d
different targets in [kd], where every candidate in the target
space will has a preimage of the same size (i.e. d). The
construction of hspread used in this paper is as follows:

hspread(j) = {(j + rt) mod kd|t ∈ [d]},

where R = {r0, . . . , rd−1} is a size-d subset of [kd] gener-
ated using a pseudo-random generator with a fixed random
seed. One can easily verify that this is a balanced hash
function when R is any size-d subset of [kd].

4. Analysis and Extension
4.1. Relating to Infinite Aggregation

Previously in Section 3, we present Finite Aggregation as
an extension of DPA (Levine & Feizi, 2021). In this section,
we offer an alternative view that relates Finite Aggrega-
tion to Infinite Aggregation, which suggests the advantages
of Finite Aggregation (that reduces to DPA when d = 1)
over Randomized Selection (Jia et al., 2021; Chen et al.,
2020), a branch of stochastic certified defenses against data
poisoning attacks.

This insight is consistent with the observations that DPA
(and therefore Finite Aggregation) typically works better
than Randomized Selection empirically. For instance, on
CIFAR-10, DPA (Levine & Feizi, 2021) can certify, with no
error rate, more than 46% of the testing samples correctly
when allowing 10 poisons and about 34% when allowing
20 poisons, while the fractions from Randomized Selection
(Jia et al., 2021; Chen et al., 2020) are less than 40% and
25% with an error rate of 0.1% respectively for 10 and
20 poisons. Despite the varying details (e.g. (Jia et al.,
2021; Chen et al., 2020) refer to a somewhat more general
threat model than (Levine & Feizi, 2021)), all three variants
are capable of dealing with supposedly the most practical
threat model (i.e. poison insertions) and the gaps between
DPA and the stochastic variants are fairly significant. In
addition, since the error rate from Randomized Selection is
only bounded for a test set of finite size, the total error rate
inevitably accumulates in deployments, where the number
of test samples may increase unboundedly through time.
These are also why in Section 5.2, we benchmark Finite
Aggregation against DPA to show that ours is indeed a
better certified defense.
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Let us take another look at the design of Finite Aggregation
in Definition 1: What will happen if we let d→∞? Assum-
ing the hash functions are random, we will have an infinite
amount of subsets Si, where every training sample will be
spread to exactly 1

k of them independently. This is exactly
Infinite Aggregation, described as follows:

Definition 2 (Classification with Infinite Aggregation)
Given a base classifier fbase : D × X → C, the Infinite
Aggregation classifier IA : D × X → C is defined as
follows:

IA(D,x) = arg max
c∈C

PrS∼Bernoulli(D, 1k ) [fbase(S, x) = c] ,

where Bernoulli(D, 1k ) denotes Bernoulli sampling from D
with sampling rate 1

k , meaning that every sample in D will
be picked independently with a probability of 1

k . Ties are
broken by returning the smaller class index in arg max.

For simplicity, we use IA(D,x)c to denote the expected
votes count PrS∼Bernoulli(D, 1k ) [fbase(S, x) = c]. We use
IA(D,x)c|(xL) to denote the expected votes count given
that sample xL ∈ D is utilized, which can be expressed for-
mally as PrS∼Bernoulli(D\{xL}, 1k ) [fbase(S ∪ {xL}, x) = c].

Infinite Aggregation in fact is the same classifier as Binomial
selection from (Chen et al., 2020). However, when we adapt
the certificate from Finite Aggregation, it is quite different
from theirs:

Theorem 3 (Infinite Aggregation against Data Poisoning)
Given a training set D and an input x, let c = IA(D,x),
for any training set D′, it is guaranteed that
IA(D′, x) = IA(D,x) when for any δ > 0,

1

k
·∆dsym(D,D′)

D,x ≤ IA(D,x)c − IA(D,x)c′ − 1 [c′ < c] · δ

holds for all c′ 6= c, where ∆D,x is a multiset defined as

{1 + IA(D,x)c|xL
− IA(D,x)c′|xL

}xL∈D

+{1 + IA(D,x)c − IA(D,x)c′} ×∞

and ∆
dsym(D,D′)

D,x denotes the sum of the largest dsym(D,D′)

elements in the multiset ∆D,x. Here + denotes the sum
of two multisets and {1 + IA(D,x)c − IA(D,x)c′} × ∞
denotes the multiplication of a multiset and a scalar, which
is in this case a multiset containing an infinite amount of a
single value, i.e. 1 + IA(D,x)c − IA(D,x)c′ .

The detailed proof is presented in Appendix C. Note that the
purpose for Theorem 3 is not to propose another defense but
to connect and unify different aggregation-based defenses
to date. For (Jia et al., 2021; Chen et al., 2020), their certifi-
cates involve only the margin (e.g. IA(D,x)c− IA(D,x)c′ )

but nothing else that depends on the behavior of the base
classifiers, while ours takes the advantage of fine-grained
statistics through ∆D,x, allowing a closer estimation of the
adversary’s capability.

Besides, since the number of terms in Definition 2 is ex-
ponential to the training set size, Infinite Aggregation is
impractical to compute exactly that an approximation of
some sort will be unavoidable. (Jia et al., 2021; Chen et al.,
2020) do their approximations by numerically estimating
the margin with Monte-Carlo methods, which introduces a
probability of estimation errors that inevitably accumulates
with the number of testing samples. This is not very effi-
cient and as mentioned previously can be an issue for online
services where the number of testing samples is potentially
unbounded.

Finite Aggregation, however, approximates the entire
scheme of Infinite Aggregation in a deterministic fashion,
enabling utilizing fine-grained statistics with no error rate.
This is not only a theoretical advantage of Finite Aggrega-
tion but may also partially explain why DPA (i.e. Finite
Aggregation with d = 1) typically works better than Ran-
domized Selection.

5. Evaluation
5.1. Evaluation Setup

We follow exactly the setup of (Levine & Feizi, 2021) in
the experiments and use the same hyperparameters as theirs.
As mentioned in Section 4.1, we compare our method with
DPA since it is empirically the state of the art in certified
defenses against general poisoning attacks.

Datasets. We evaluate our method on MNIST (LeCun et al.,
1998), CIFAR-10 (Krizhevsky, 2009) and GTSRB (Stal-
lkamp et al., 2012) datasets, which are respectively 10-way
classification of handwritten digits, 10-way object classifi-
cation and 43-way classification of traffic signs.

Training hyperparameters. We use the Network-In-
Network (Lin et al., 2014) architecture, trained with the
hyperparameters from (Gidaris et al., 2018). On MNIST
and GTSRB, we also exclude horizontal flips in data aug-
mentations as in (Levine & Feizi, 2021).

5.2. Certified Predictions

We use certified fraction as our performance metric, which
refers to the fraction of samples in the testing set that are not
only correctly classified but also certified to be robust given
a certain attack size. This is the same metric as ‘certified
accuracy’ in (Levine & Feizi, 2021) but we choose to refer
to it differently. Our motivation is discussed in Section 5.4.

Improved certified robustness. We report the certified
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Table 1. Certified fraction of Finite Aggregation with various hyperparameters with respect to different attack sizes dsim. The improvements
compared to the DPA baseline are highlighted in blue if they are positive and red otherwise. Note that there is no direct correspondence
between base classifiers with different k and d, resulting in artifacts in the visualizations: See Figure 4 for the improvements using the
same set of base classifiers.

dataset k d certified fraction

MNIST 1200

dsim ≤ 50 dsim ≤ 100 dsim ≤ 200 dsim ≤ 300 dsim ≤ 400

1 (DPA) 94.12% 92.11% 86.45% 77.12% 61.78%

8 94.38%(+0.26%) 92.45%(+0.34%) 86.97%(+0.52%) 77.31%(+0.19%) 61.81%(+0.03%)

16 94.54%(+0.42%) 92.75%(+0.64%) 87.89%(+1.44%) 78.91%(+1.79%) 62.42%(+0.64%)

32 94.63%(+0.51%) 92.97%(+0.86%) 88.49%(+2.04%) 80.17%(+3.05%) 64.34%(+2.56%)

CIFAR-10

50

dsim ≤ 3 dsim ≤ 5 dsim ≤ 10 dsim ≤ 15 dsim ≤ 20

1 (DPA) 63.15% 58.07% 46.44% 33.46% 19.36%

5 63.55%(+0.40%) 59.01%(+0.94%) 46.62%(+0.18%) 33.56%(+0.10%) 19.63%(+0.27%)

8 64.07%(+0.92%) 59.80%(+1.73%) 47.40%(+0.96%) 33.76%(+0.30%) 19.72%(+0.36%)

16 64.80%(+1.65%) 60.55%(+2.48%) 48.85%(+2.41%) 34.61%(+1.15%) 19.90%(+0.54%)

32 65.40%(+2.25%) 61.31%(+3.24%) 50.31%(+3.87%) 36.03%(+2.57%) 19.93%(+0.57%)

250

dsim ≤ 10 dsim ≤ 20 dsim ≤ 30 dsim ≤ 40 dsim ≤ 50

1 (DPA) 44.31% 34.01% 25.81% 18.99% 13.55%

3 44.26%(−0.05%) 34.08%(+0.07%) 25.51%(−0.30%) 18.89%(−0.10%) 13.76%(+0.21%)

5 44.83%(+0.52%) 34.92%(+0.91%) 26.31%(+0.50%) 19.42%(+0.43%) 13.92%(+0.37%)

8 45.38%(+1.07%) 36.05%(+2.04%) 27.10%(+1.29%) 20.08%(+1.09%) 14.39%(+0.84%)

16 46.52%(+2.21%) 37.56%(+3.55%) 29.00%(+3.19%) 22.00%(+3.01%) 15.79%(+2.24%)

GTSRB

50

dsim ≤ 3 dsim ≤ 5 dsim ≤ 10 dsim ≤ 15 dsim ≤ 24

1 (DPA) 85.09% 82.32% 74.15% 64.14% 14.27%

8 85.00%(−0.09%) 82.30%(−0.02%) 74.24%(+0.09%) 63.33%(−0.81%) 16.83%(+2.56%)

16 85.25%(+0.16%) 82.71%(+0.39%) 74.66%(+0.51%) 63.77%(−0.37%) 15.42%(+1.15%)

32 85.95%(+0.86%) 83.52%(+1.20%) 76.26%(+2.11%) 66.32%(+2.18%) 17.61%(+3.34%)

100

dsim ≤ 5 dsim ≤ 10 dsim ≤ 15 dsim ≤ 20 dsim ≤ 25

1 (DPA) 46.16% 38.24% 30.19% 22.84% 17.16%

8 47.62%(+1.46%) 40.25%(+2.01%) 32.36%(+2.17%) 24.34%(+1.50%) 17.32%(+0.16%)

16 48.19%(+2.03%) 41.62%(+3.38%) 33.95%(+3.76%) 25.96%(+3.12%) 18.92%(+1.76%)

32 48.39%(+2.23%) 42.01%(+3.77%) 34.96%(+4.77%) 27.05%(+4.21%) 19.93%(+2.77%)

fractions of Finite Aggregation in Table 1 and Figure 3.
Overall, it is evident that Finite Aggregation can offer strong
certified defenses than DPA, where the improvements of
certified fractions can be up to 3% or 4% compared to DPA
using the same hyperparameters.

Now we examine the effectiveness of our certificates
through the scope of certified radius. Given a test sam-
ple x, the certified radius is simply the maximum attack size
dsym allowed while we can still certify the correct prediction
on x. The certified radius is considered to be −1 if the
prediction on a test sample does not match the true label.

In Table 2, we include two statistics relating to certified
radii: Pr[r ↑], which denotes the fraction of samples in
the testing set that obtain a larger certified radius when
using our certificates from Theorem 2 instead of the ones

from DPA (i.e. replacing ∆
dsym(D,D′)
D,x in Theorem 2 with

2·dsym(D,D′)), and ∆r, which denotes the average increase

of the certified radius among those getting a larger radius.
See Figure 4 for the corresponding certified fraction. The
values of Pr[r ↑] and ∆r in Table 2 are strong supports to
the effectiveness of our certificates.

We also report in Table 2 respectively the accuracy of Finite
Aggregation accclean and the average accuracy of base clas-
sifiers accbase, which supports our hypothesis in Section 3.3
that the accuracies of base classifiers will not change much.

5.3. Hyperparameters for Finite Aggregation

In this section, we discuss how the hyperparameters k and
d affect the behaviors of Finite Aggregation in practice.

The effect of k: accuracy vs. robustness. Similar to DPA,
k corresponds to a trade-off between accuracy and robust-
ness. Since every base classifier will on average have access
to 1/k of the training set, using a larger k will reduce the ac-
curacies of base classifiers and therefore restrict the accuracy
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(a) MNIST (k = 1200)

(b) CIFAR-10 (k = 50)

(c) CIFAR-10 (k = 250)

(d) GTSRB (k = 50)

(e) GTSRB (k = 100)

Figure 3. The curves of certified fraction on different datasets.
Left: Certified fraction of Finite Aggregation with different hy-
perparameters. Right: The improvements of certified fraction
from DPA (i.e. Finite Aggregation with d = 1) to Finite Aggre-
gation with the same k and various d. Note that there is no direct
correspondence between base classifiers with different k and d,
resulting in artifacts in the visualizations: See Figure 4 for the
improvements using the same set of base classifiers.

Table 2. Some statistics of Finite Aggregation, where accclean de-
notes the test accuracy with a clean training set; accbase denotes the
average accuracy of base classifiers; Pr[r ↑] denotes the fraction
of samples in the testing set that obtain a larger certified radius
when using our certificates from Theorem 2 instead of the ones
from DPA; and ∆r denotes the average increase of the certified
radius among those getting a larger radius.

dataset k d accclean accbase Pr[r ↑] ∆r

MNIST 1200

1 (DPA) 95.75% 76.92% 0% 0

8 95.95% 76.92% 15.72% 6.96

16 95.90% 76.83% 35.24% 12.69

32 95.94% 76.54% 58.01% 17.91

CIFAR-10

50

1 (DPA) 70.15% 56.15% 0% 0

5 70.32% 56.14% 1.49% 1.00

8 70.59% 56.33% 6.67% 1.00

16 70.57% 56.32% 22.68% 1.02

32 70.44% 56.27% 37.92% 1.18

250

1 (DPA) 55.84% 35.21% 0% 0

3 56.11% 35.15% 0.33% 1.03

5 56.06% 35.24% 15.32% 1.30

8 55.88% 35.18% 36.07% 1.75

16 55.90% 35.24% 50.40% 3.21

GTSRB

50

1 (DPA) 88.80% 74.47% 0% 0

8 88.58% 73.71% 6.50% 1.00

16 88.40% 73.09% 18.58% 1.03

32 88.64% 73.92% 29.66% 1.20

100

1 (DPA) 55.56% 34.71% 0% 0

8 55.58% 34.55% 29.39% 1.16

16 55.72% 34.58% 41.50% 1.74

32 55.35% 34.20% 46.71% 2.41

Table 3. Certified fraction (fraccertified) and certified accuracy
(acccertified) of Finite Aggregation corresponding to an attack size
of 1. Their differences are highlighted in blue.

dataset k d accclean fraccertified acccertified

MNIST 1200

1 (DPA) 95.75% 95.71% 95.71%(+0%)

8 95.95% 95.91% 95.91%(+0%)

16 95.90% 95.86% 95.86%(+0%)

32 95.94% 95.91% 95.91%(+0%)

CIFAR-10

50

1 (DPA) 70.15% 67.85% 68.79%(+0.94%)

5 70.32% 68.11% 69.07%(+0.96%)

8 70.59% 68.47% 69.22%(+0.75%)

16 70.57% 68.79% 69.38%(+0.59%)

32 70.44% 68.92% 69.34%(+0.42%)

250

1 (DPA) 55.84% 54.82% 55.19%(+0.37%)

3 56.11% 54.86% 55.37%(+0.51%)

5 56.06% 54.91% 55.34%(+0.43%)

8 55.88% 54.75% 55.13%(+0.38%)

16 55.90% 55.04% 55.35%(+0.29%)

GTSRB

50

1 (DPA) 88.80% 87.61% 87.99%(+0.38%)

8 88.58% 87.52% 87.88%(+0.36%)

16 88.40% 87.48% 87.74%(+0.26%)

32 88.64% 87.81% 87.97%(+0.16%)

100

1 (DPA) 55.56% 53.26% 53.96%(+0.70%)

8 55.58% 53.80% 54.39%(+0.59%)

16 55.72% 54.01% 54.49%(+0.48%)

32 55.35% 53.97% 54.25%(+0.28%)
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(a) MNIST (k=1200) (b) CIFAR-10 (k=50)

(c) CIFAR-10 (k=250) (d) GTSRB (k=50)

(e) GTSRB (k=100)

Figure 4. The improvements of certified fraction when applying
our certificates (Theorem 2) instead of DPA certificates to the same
set of k · d base classifiers.

of the aggregation. However, in Theorem 2, the sensitivity
of the normalized margin to every poisoned sample is also
proportional to 1/k, suggesting that a larger k can reduce
the sensitivity and favor robustness. This is confirmed in
Table 1 and Table 2, where a larger k typically corresponds
to worse accuracy accclean but may offer a higher certified
fraction when the attack sizes are relatively large.

The effect of d: efficiency vs. robustness. The spreading
degree d controls how many base classifiers will have ac-
cess to the same training sample. From Table 1, we can see
that increasing d tends to improve the robustness of Finite
Aggregation, indicated by the increase of certified fractions.
However, unlike k, increasing d will not degrade the accu-
racy of Finite Aggregation, as observed in Table 2. The
major cost of using a larger d is the increase of computation,
because the number of base classifiers is proportional to d
while the average number of training samples for every base
classifier does not depend on d. Thus d actually allows us
to obtain stronger robustness at a cost of extra computation.

Another effect of d is that using a larger d tends to avoid

ties in the aggregation, as indicated by the term
1[c′<c]

kd in

Theorem 2. This can be quite beneficial depending on tasks.
For instance, in Figure 3(d) and in Table 1, one can notice
extra improvements of certified fraction from DPA for an
attack size of 24 on GTSRB with k = 50, which exactly
attributes to the reduction of ties when d increases.

5.4. Pointwise Robustness vs Distributional Robustness

In this section, we explore a metric corresponding to distri-
butional robustness, namely certified accuracy, that is the
lower bound on accuracy in the test set under poisoning
attacks. This is different from certified fraction in Section
5.2, which denotes the fraction of samples in the testing set
that are certified to be correct under poisoning attacks: By
definition, certified fraction is smaller than certified accu-
racy. For instance, when there are only two test samples, the
adversarial attack budget (i.e., the number of poisons) may
be enough to flip the prediction on either sample, but not
enough to flip both predictions simultaneously, resulting in
a certified fraction of 0% and a certified accuracy of 50%.

While our method is designed for pointwise robustness (i.e.
corresponding to certified fraction), it naturally offers a
well-defined but computationally inefficient way to estimate
certified accuracy (Appendix D). Taking advantage of this,
we directly compare certified accuracy and certified fraction
under an attack strength dsym = 1 in Table 3 to estimate
their gaps. The differences in Table 3 corroborate the in-
tuition that different poisons may be needed for different
targets. Notably, to our best knowledge, this is one of the
first direct empirical comparisons between pointwise and
distributional certified robustness resulting from a single
method. A concurrent work (Chen et al., 2022) highlights
the distributional robustness of aggregation-based defenses.

6. Conclusion
In this work, we propose Finite Aggregation, a novel prov-
able defense against general data poisoning extended from
DPA to further improve robustness. Compared to DPA, our
method effectively boosts certified fractions by up to 3.05%,
3.87% and 4.77% on MNIST, CIFAR-10, and GTSRB, re-
spectively, achieving a new state of the art in pointwise
certified robustness against general data poisoning. We also
provide an alternative view to aggregation-based defenses
against poisoning attacks that bridges the gap between the
deterministic and the stochastic variants, unifying the de-
signs of aggregation-based defenses to date.
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A. Detailed Explanation of Figure 2
Figure 2 is a toy example illustrating how our proposed
Finite Aggregation improves provable robustness through
a strategic reusing of every sample. The correct prediction
is ‘cat’ in this example. When there is no poison, both DPA
and our method predict correctly with the same distribution
of predictions from base classifiers (i.e. 50% cat, 16.7%
dog, 16.7% deer, and 16.7% bird). In DPA, with one poi-
son contributes to a base classifier that originally predicts
correctly (i.e. ‘cat’), it may reduce the margin between ‘cat’
and ‘dog’ by 2/6 = 33.3% and create a tie, as shown in
Figure 2.

However, with Finite Aggregation, even the most effective
poison cannot be as effective. In the example, every par-
tition contributes to two consecutive base classifiers and
the predictions of them happen to be different. This means
that one poison will never remove two correct predictions

(i.e. ‘cat’) from base classifiers and therefore can at most
remove 1 ‘cat’ and add 2 ‘dog’ (or other classes) to reduce
the margin by 3/12 = 25%, which is still too small to affect
our final prediction.

B. Proof of Theorem 2
Proof: Given a training set D and an input x, for an arbi-
trary training set D′ such that

1

k
·∆dsym(D,D′)

D,x ≤ FA(D,x)c − FA(D,x)c′ −
1 [c′ < c]

kd

holds for all c′ 6= c, we want to show that FA(D′, x) =
FA(D,x) = c.

Let D 	D′ = (D \D′) ∪ (D′ \D) to denote symmetric
difference between D and D′, which corresponds to the
minimum set of samples to be inserted/removed if one wants
change from D to D′ (or D′ to D).

Since the base classification algorithm fbase is determin-
istic, by definition, the prediction from a base classifier
will not change if its corresponding training set Si (S′i) re-
mains unchanged from D to D′, which is equivalent to
i /∈
⋃

x∈D	D′ hspread(hsplit(x)). Let

hD	D′ =
⋃

x∈D	D′
hspread(hsplit(x)).

Thus for any c′ 6= c, we have

FA(D′, x)c − FA(D′, x)c′

=
1

kd

∑
i∈[kd]

(
1 [fbase(S

′
i, x) = c]− 1 [fbase(S

′
i, x) = c′]

)
= FA(D,x)c − FA(D,x)c′

+
1

kd

∑
i∈hD	D′

(
1 [fbase(S

′
i, x) = c]− 1 [fbase(S

′
i, x) = c′]

)
− 1

kd

∑
i∈hD	D′

(
1 [fbase(Si, x) = c]− 1 [fbase(Si, x) = c′]

)
≥ FA(D,x)c − FA(D,x)c′

+
1

kd

∑
i∈hD	D′

(
0− 1

)
− 1

kd

∑
i∈hD	D′

(
1 [fbase(Si, x) = c]− 1 [fbase(Si, x) = c′]

)
= FA(D,x)c − FA(D,x)c′−
1

kd

∑
i∈hD	D′

(
1 + 1 [fbase(Si, x) = c]− 1 [fbase(Si, x) = c′]

)
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We can rewrite hD	D′ as follows:

hD	D′ =
⋃

x∈D	D′
hspread(hsplit(x)) =

⋃
j∈hsplit(D	D′)

hspread(j),

where hsplit(D 	D′) = {hsplit(x)|x ∈ D 	D′}.

Since 1+1 [fbase(Si, x) = c]−1 [fbase(Si, x) = c′] ≥ 0, we
can further bound the above formula as follows:

FA(D′, x)c − FA(D′, x)c′

≥ FA(D,x)c − FA(D,x)c′

− 1

kd

∑
j∈hsplit(D	D′)

( ∑
i∈hspread(j)

1 + 1 [fbase(Si, x) = c]

− 1 [fbase(Si, x) = c′]
)

= FA(D,x)c − FA(D,x)c′

− 1

k

∑
j∈hsplit(D	D′)

(
1 + FA(D,x)c|j − FA(D,x)c′|j

)

Since dsym(D,D′) = |D	D′| ≥ |hsplit(D	D′)|, we have

FA(D′, x)c − FA(D′, x)c′

≥ FA(D,x)c − FA(D,x)c′

− 1

k
max
H⊆[kd]

|H|≤dsym(D,D′)

∑
j∈H

(
1 + FA(D,x)c|j − FA(D,x)c′|j

)
= FA(D,x)c − FA(D,x)c′ −

1

k
·∆dsym(D,D′)

D,x

Reorganizing this and subtract
1[c′<c]

kd from both side, we
have

FA(D′, x)c − FA(D′, x)c′ −
1 [c′ < c]

kd

≥ FA(D,x)c − FA(D,x)c′ −
1

k
·∆dsym(D,D′)

D,x − 1 [c′ < c]

kd
≥ 0,

where the last inequality is from the condition that

1

k
·∆dsym(D,D′)

D,x ≤ FA(D,x)c − FA(D,x)c′ −
1 [c′ < c]

kd

holds for all c′ 6= c.

Since FA(D′, x)c − FA(D′, x)c′ −
1[c′<c]

kd ≥ 0, we know
FA(D′, x) 6= c′. Since this holds for any c′ 6= c, we have
FA(D′, x) = c = FA(D,x), which completes the proof.

�

C. Proof of Theorem 3
Proof: The ideas for this proof are very similar to the ones
in proving Theorem 2.

Given a training set D and an input x, for an arbitrary
training set D′ such that

1

k
·∆dsym(D,D′)

D,x ≤ IA(D,x)c − IA(D,x)c′ − 1 [c′ < c] · δ

holds for all c′ 6= c and for some δ > 0, we want to show
that IA(D′, x) = IA(D,x) = c.

Let D 	D′ = (D \D′) ∪ (D′ \D) to denote symmetric
difference between D and D′, which corresponds to the
minimum set of samples to be inserted/removed if one wants
change from D to D′ (or D′ to D).

We can reorganize Infinite Aggregation as follows:

IA(D,X) = arg max
c∈C

PrS∼Bernoulli(D, 1k ) [fbase(S, x) = c]

= arg max
c∈C

ES∼Bernoulli(D, 1k )1 [fbase(S, x) = c]

= arg max
c∈C

ES∼Bernoulli(D, 1k )g(S, x)c,

where g(S, x)c = Pr[fbase(S, x) = c] is the distribution of
the predictions and is therefore deterministic.

Since g(S, x) is deterministic, by definition, the contribution
from a base classifier will not change if its corresponding
training set S remains unchanged from D to D′, which is
equivalent to S ⊆ D ∩D′.

Thus for any c′ 6= c, we have

IA(D′, x)c − IA(D′, x)c′

= ES∼Bernoulli(D′, 1k )

(
g(S, x)c − g(S, x)c′

)
= ES∼Bernoulli(D∪D′, 1k )

(
g(S ∩D′, x)c − g(S ∩D′, x)c′

)
= IA(D,x)c − IA(D,x)c′

+ ES∼Bernoulli(D∪D′, 1k )1 [S 6⊆ D ∩D′]×
(
g(S ∩D′, x)c

− g(S ∩D′, x)c′ − g(S ∩D,x)c + g(S ∩D,x)c′
)

≥ IA(D,x)c − IA(D,x)c′ − ES∼Bernoulli(D∪D′, 1k )

[
1 [S 6⊆ D ∩D′]×

(
1 + g(S ∩D,x)c − g(S ∩D,x)c′

)]

Since 1 [S 6⊆ D ∩D′] ≤
∑

xL∈D	D′ 1 [xL ∈ S] , we can
further bound the above formula as follows:

IA(D′, x)c − IA(D′, x)c′

≥ IA(D,x)c − IA(D,x)c′ − ES∼Bernoulli(D∪D′, 1k )

[
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xL∈D	D′

1 [xL ∈ S]×
(

1 + g(S ∩D,x)c − g(S ∩D,x)c′
)]

= IA(D,x)c − IA(D,x)c′

−
∑

xL∈D	D′
ES∼Bernoulli(D∪D′, 1k )

[
1 [xL ∈ S]×

(
1 + g(S ∩D,x)c − g(S ∩D,x)c′

)]
= IA(D,x)c − IA(D,x)c′

−
∑

xL∈D\D′

1

k

(
1 + IA(D,x)c|xL

− IA(D,x)c′|xL

)
−

∑
xL∈D′\D

1

k

(
1 + IA(D,x)c − IA(D,x)c′

)
≥ IA(D,x)c − IA(D,x)c′ −

1

k
∆

dsym(D,D′)

D,x

Subtracting both sides with 1 [c′ < c] · δ, we have

IA(D′, x)c − IA(D′, x)c′ − 1 [c′ < c] · δ

≥ IA(D,x)c − IA(D,x)c′ − 1 [c′ < c] · δ − 1

k
∆

dsym(D,D′)

D,x

≥ 0

for some δ > 0, where the last inequality is from the condi-
tion that

1

k
·∆dsym(D,D′)

D,x ≤ IA(D,x)c − IA(D,x)c′ − 1 [c′ < c] · δ

holds for all c′ 6= c and for some δ > 0.

This means that IA(D′, x) 6= c′. Since this is true for
any c′ 6= c, we have IA(D′, x) = c = IA(D,x), which
completes the proof.

�

D. Certified Accuracy from Finite
Aggregation

In this section, we show how certified accuracy can be com-
puted for Finite Aggregation (i.e. how to derive a lower
bound of accuracy on a given test set under poisoning at-
tacks). The key in this derivation is to realize that using
same poisons for multiple targets meaning a more restricted
subset of partitions affected compared to different poisons.

We introduce a variant of Theorem 2 as follows, certifying a
prediction under conditional poisoning attacks, where only
a given subset of partitions (i.e. Q ⊆ [kd]) may be affected
by poisons.

Theorem 4 (Certificates under Conditional Poisoning)
Given a training set D, a subset of partition indices
Q ⊆ [kd], and an input x, let c = FA(D,x), then for any

training set D′ such that hsplit ((D \D′) ∪ (D′ \D)) ⊆ Q,
it is guaranteed that FA(D′, x) = FA(D,x) when

1

k
·∆dsym(D,D′)

D,Q,x ≤ FA(D,x)c − FA(D,x)c′ −
1 [c′ < c]

kd

holds for all c′ 6= c, where ∆D,Q,x is a multiset defined as{
1 + FA(D,x)c|j − FA(D,x)c′|j

}
j∈Q

and ∆
dsym(D,D′)
D,Q,x denotes the sum of the largest dsym(D,D′)

elements in the multiset ∆D,Q,x.

The proof is in Appendix E. Theorem 4 provides a sufficient
condition for when the prediction on this sample from Finite
Aggregation is certifiably correct under poisoning attacks.
Given a training set D, a subset of partitions Q ⊆ [kd], an
attack budget dsym (i.e. number of poisons allowed), for any
test sample with input x and ground truth label c, we define
Ox,c,Q,dsym to be 1 when the prediction is certifiably correct
under poisoning attacks and 0 otherwise.

Consequently, the certified accuracy on the test set Dtest
with an attack budget dsym can be expressed as follows by
definition:

min
Q⊆[kd]
|Q|≤dsym

1

|Dtest|
∑

(x,c)∈Dtest

Ox,c,Q,dsym .

E. Proof of Theorem 4
Proof: Given a training setD, a subset of partition indices
Q ⊆ [kd], and an input x, for an arbitrary training set D′

such that hsplit ((D \D′) ∪ (D′ \D)) ⊆ Q and

1

k
·∆dsym(D,D′)

D,Q,x ≤ FA(D,x)c − FA(D,x)c′ −
1 [c′ < c]

kd

holds for all c′ 6= c, we want to show that FA(D′, x) =
FA(D,x) = c.

Let D 	D′ = (D \D′) ∪ (D′ \D) to denote symmetric
difference between D and D′, which corresponds to the
minimum set of samples to be inserted/removed if one wants
change from D to D′ (or D′ to D).

Since the base classification algorithm fbase is determin-
istic, by definition, the prediction from a base classifier
will not change if its corresponding training set Si (S′i) re-
mains unchanged from D to D′, which is equivalent to
i /∈
⋃

x∈D	D′ hspread(hsplit(x)). Let

hD	D′ =
⋃

x∈D	D′
hspread(hsplit(x)).

Thus for any c′ 6= c, we have

FA(D′, x)c − FA(D′, x)c′
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=
1

kd

∑
i∈[kd]

(
1 [fbase(S

′
i, x) = c]− 1 [fbase(S

′
i, x) = c′]

)
= FA(D,x)c − FA(D,x)c′

+
1

kd

∑
i∈hD	D′

(
1 [fbase(S

′
i, x) = c]− 1 [fbase(S

′
i, x) = c′]

)
− 1

kd

∑
i∈hD	D′

(
1 [fbase(Si, x) = c]− 1 [fbase(Si, x) = c′]

)
≥ FA(D,x)c − FA(D,x)c′

+
1

kd

∑
i∈hD	D′

(
0− 1

)
− 1

kd

∑
i∈hD	D′

(
1 [fbase(Si, x) = c]− 1 [fbase(Si, x) = c′]

)
= FA(D,x)c − FA(D,x)c′−
1

kd

∑
i∈hD	D′

(
1 + 1 [fbase(Si, x) = c]− 1 [fbase(Si, x) = c′]

)

We can rewrite hD	D′ as follows:

hD	D′ =
⋃

x∈D	D′
hspread(hsplit(x)) =

⋃
j∈hsplit(D	D′)

hspread(j),

where hsplit(D 	D′) = {hsplit(x)|x ∈ D 	D′}.

Since 1+1 [fbase(Si, x) = c]−1 [fbase(Si, x) = c′] ≥ 0, we
can further bound the above formula as follows:

FA(D′, x)c − FA(D′, x)c′

≥ FA(D,x)c − FA(D,x)c′

− 1

kd

∑
j∈hsplit(D	D′)

( ∑
i∈hspread(j)

1 + 1 [fbase(Si, x) = c]

− 1 [fbase(Si, x) = c′]
)

= FA(D,x)c − FA(D,x)c′

− 1

k

∑
j∈hsplit(D	D′)

(
1 + FA(D,x)c|j − FA(D,x)c′|j

)

Since dsym(D,D′) = |D 	 D′| ≥ |hsplit(D 	 D′)| and
hsplit(D 	D′) ⊆ Q, we have

FA(D′, x)c − FA(D′, x)c′

≥ FA(D,x)c − FA(D,x)c′

− 1

k
max
H⊆Q

|H|≤dsym(D,D′)

∑
j∈H

(
1 + FA(D,x)c|j − FA(D,x)c′|j

)

= FA(D,x)c − FA(D,x)c′ −
1

k
·∆dsym(D,D′)

D,Q,x

Reorganizing this and subtract
1[c′<c]

kd from both side, we
have

FA(D′, x)c − FA(D′, x)c′ −
1 [c′ < c]

kd

≥ FA(D,x)c − FA(D,x)c′ −
1

k
·∆dsym(D,D′)

D,Q,x − 1 [c′ < c]

kd
≥ 0,

where the last inequality is from the condition that

1

k
·∆dsym(D,D′)

D,Q,x ≤ FA(D,x)c − FA(D,x)c′ −
1 [c′ < c]

kd

holds for all c′ 6= c.

Since FA(D′, x)c − FA(D′, x)c′ −
1[c′<c]

kd ≥ 0, we know
FA(D′, x) 6= c′. Since this holds for any c′ 6= c, we have
FA(D′, x) = c = FA(D,x), which completes the proof.
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