Smart Tattoo Patch for Long-term Monitoring and Drug Delivery

[Characterized for Detection of Temperature and Relative Humidity on Live Plants]

Tanzila Noushin, and Dr. Shawana Tabassum Department of Electrical Engineering, University of Texas at Tyler

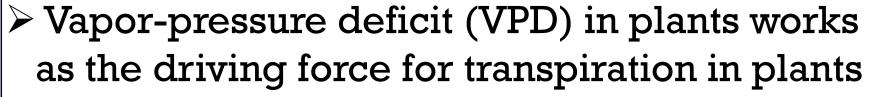
Award No. 2138701

Motivation

215 Million Americans are Infected with

Chronic Disease

Cardiovascular Disease


Infectious Disease

- >All these diseases are associated with inflammatory biomarkers
- >Therefore, by detecting the level of the biomarkers, we can detect the severity of these inflammatory conditions
- >Along with detection, real-time monitoring of the inflammatory biomarkers can open the scope of continuous treatment with ondemand drug delivery
- >Transdermal delivery drug provides non-invasive therapeutics [1]
- CANCER NEUROLOGICAL **ALZHEIMER'S** INFLAMMATION DISEASES DISEASE PULMONARY AUTOIMMUNE DISEASES DISEASES
 - > We need fully skin conformal tattoo like sensor
 - Srain-insensitive response requires functionalization with strain-insensitive active materials

Tattoo Sensor

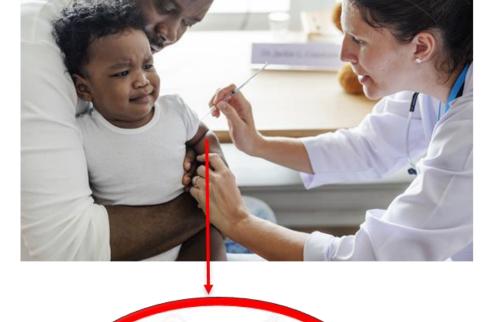
- > VPD measurement requires on-leaf temperature (T) and relative humidity (RH) values
- Higher VPD indicates water stress in plants
- Therefore, by continuous monitoring of VPD will aid in managing plant growth environment and the farmers can take actions earlier to ensure optimum water and nutrient supply, apply disease control measures and reduce yield decline from stress.

 $VPD = VP_{sat} - VP_{air}$

VP_{sat} = saturated vapor pressure in plant leaf

vapor pressure $VP_{sat} = 0.6107 \times 10^{7.5 \, \text{T}_1 / (273.3 + \text{T}_1)}$

 T_1 = temperature on the leaf in Celsius, $VP_{air} = 0.6107 \times 10^{7.5 \, \text{T}} \, \text{a}^{/(273.3 + T_a)} \times$


Ta = air temperature in Celsius

RH = relative humidity on the leaf surface [2]

Limitations

- ➤ Invasive sample collection
- ➤ Not suitable for children
- Large volume of sample required
- >2-3 Days to get test result
- >Advanced laboratory setting and trained personnel
- ➤ Not an affordable solution for rural areas
- > Difficult to differentiate among diseases similar presentations such as COVID-19 and Flu
- ➤ Not fully skin conformal
- >Drug delivery method is invasive, oral, and intravenous

Better Be Prepared, Not Regret Later

Real-time Measurements on Live Plant Leaves

RH/100

Measured Data

- On-leaf Plant Temperature (T)
- ➤ On-leaf Plant Relative Humidity

Future Body Parameters To Be Measured

- Multiplexed Inflammatory Biomarkers
- Sweat pH

Delivery

- Skin Temperature
- > Transdermal Electricallycontrolled Drug

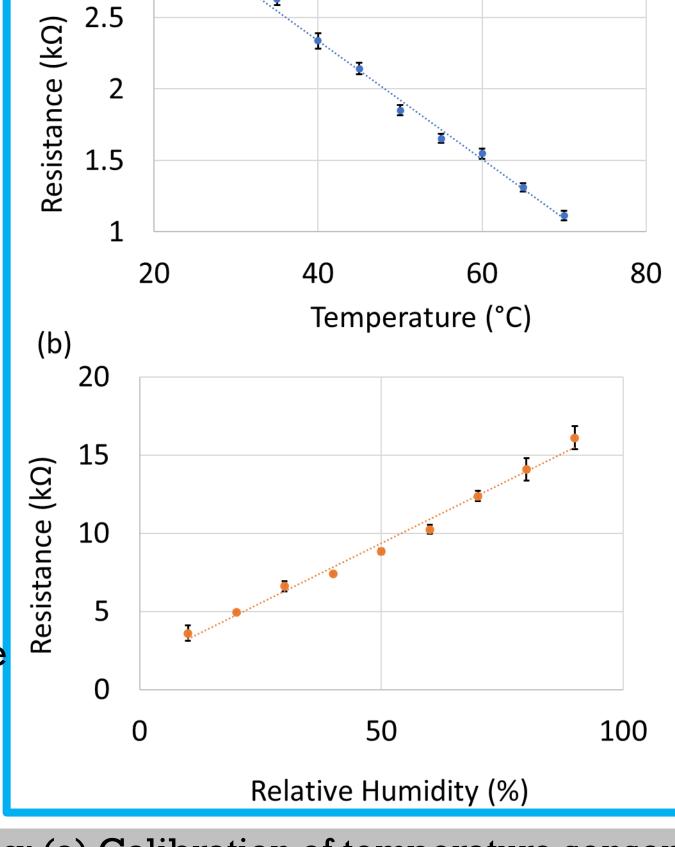


Fig: (a) Calibration of temperature sensor (b) Calibration of humidity sensor

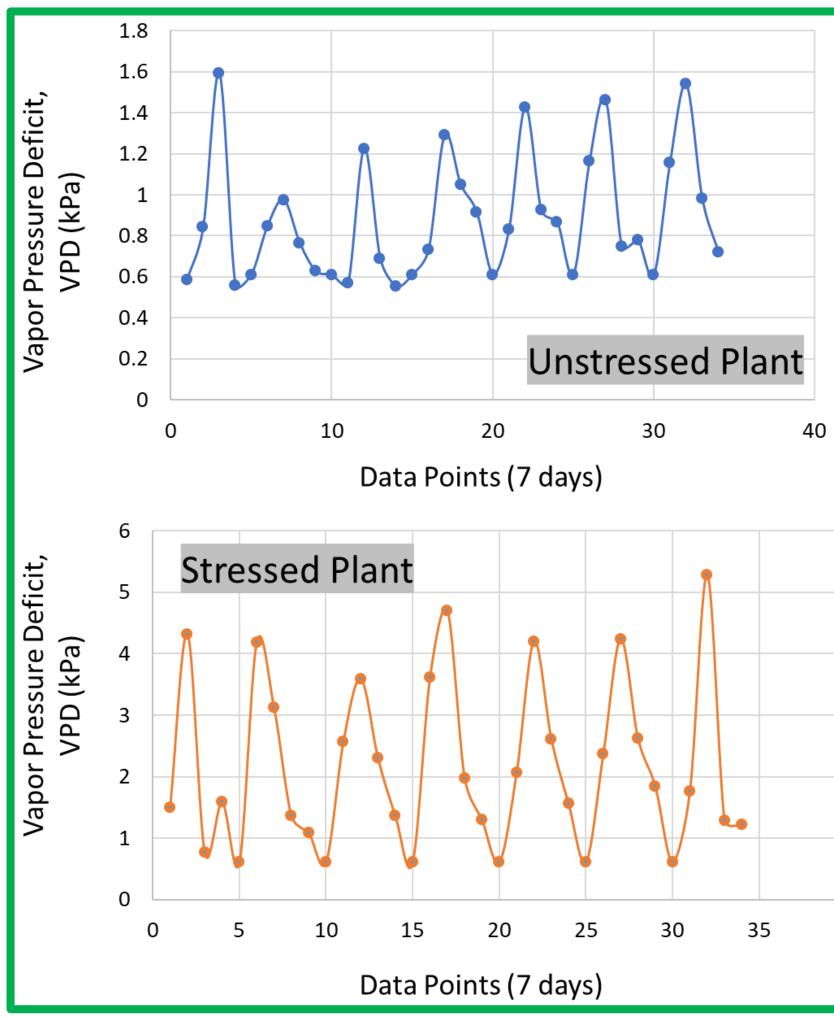


Fig: Vapor Pressure deficit (VPD) in (a) unstressed and (b) stressed plants over 7 days (Data was recorded 4 times a day)

Value Proposition of Our Device

- >Multiplexed, Strain-insensitive Detection and Real-time Monitoring of Inflammation-related diseases
- Fully Skin Conformal like Tattoo
- ➤ Non-invasive, rapid, and user-friendly process
- ➤ Cost-effective, cleanroom-free, and roll-to-roll production on flexible substrates
- >Personalized healthcare with accurate data, high sensitivity and selectivity
- ➤ Non-invasive transdermal drug delivery
- Ensure Healthcare for All

Let's Be Prepared to Fight the Next Pandemic

References

[1] Chansai P, Sirivat A, Niamlang S, Chotpattananont D, Viravaidya-Pasuwat K. Controlled transdermal iontophoresis of sulfosalicylic acid from polypyrrole/poly(acrylic acid) hydrogel. Int J Pharm. 2009 Oct 20;381(1):25-33. doi: 10.1016/j.ijpharm.2009.07.019. Epub 2009 Jul 28. PMID: 19643172 [2] Shihao Yin, Hussam Ibrahim, Patrick S. Schnable, Michael J. Castellano, and Liang Dong, "A Field-

Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor-Pressure Deficit," Advanced Materials Technologies, vol. 6, no. 6, 2021