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Abstract

The indexing algorithms for the high-dimensional
nearest neighbor search (NNS) with the best
worst-case guarantees are based on the random-
ized Locality Sensitive Hashing (LSH), and its
derivatives. In practice, many heuristic ap-
proaches exist to "learn" the best indexing method
in order to speed-up NNS, crucially adapting to
the structure of the given dataset. Oftentimes,
these heuristics outperform the LSH-based al-
gorithms on real datasets, but, almost always,
come at the cost of losing the guarantees of either
correctness or robust performance on adversar-
ial queries, or apply to datasets with an assumed
extra structure/model. In this paper, we design
an NNS algorithm for the Hamming space that
has worst-case guarantees essentially matching
that of theoretical algorithms, while optimizing
the hashing to the structure of the dataset (think
instance-optimal algorithms) for performance on
the minimum-performing query. We evaluate the
algorithm’s ability to optimize for a given dataset
both theoretically and practically. On the theo-
retical side, we exhibit a natural setting (dataset
model) where our algorithm is much better than
the standard theoretical one. On the practical side,
we run experiments that show that our algorithm
has a 1.8x and 2.1x better recall on the worst-
performing queries to the MNIST and ImageNet
datasets.

1. Introduction

In the nearest neighbor search (NNS) problem, we are to
preprocess a dataset of points P so that later, given a new
query point ¢, we can efficiently report the closest point
p* € P to q. The problem is fundamental to many high-
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dimensional geometric tasks, and consequently to modern
data analysis, with applications from computer vision to in-
formation retrieval and others (Shakhnarovich et al., 2006).
See surveys (Wang et al., 2015; Andoni et al., 2018).

Depending on whether the algorithm has worst-case theoret-
ical guarantees, the indexing solutions for the NNS problem
are essentially split into two categories. The first category
of algorithms, with theoretical guarantees, are usually based
on randomized space partitions, namely Locality-Sensitive
Hashing (LSH), and its derivatives—conceptually similar to
the random dimension reduction (Johnson & Lindenstrauss,
1984). In order to provide a worst-case guarantee, one fo-
cuses on the c-approximate version, for some approximation
c > 1, where one has to report a point p € P at distance at
most ¢r as long as ||¢—p*|| < r. For example, in the case of
the d-dimensional Hamming space H¢ = {0, 1}, the origi-
nal LSH paper (Har-Peled ez al., 2012) gives an algorithm
with O(n?d) query time and O(n'*” + nd) space where
p = 1/c, which is optimal for LSH algorithms (O’Donnell
et al., 2014). Crucially, the algorithm guarantees that, if
there exists a point p* at distance at most r, then the data
structure returns a point at distance at most cr with probabil-
ity at least, say, 90% over the randomness of the algorithm
(termed success probability).

Algorithms from the second category are based on the idea
of finding (learning) the best possible space partition (hash-
ing) for the given dataset, which, in practice, is usually
"nicer" than a worst-case one. For example, PCA trees use
partitions based on the Principal Component Analysis of the
dataset (Sproull, 1991; McNames, 2001; Verma et al., 2009;
Abdullah et al., 2014; Keivani & Sinha, 2018), although
many more methods exist; see survey (Wang et al., 2015)
for some of them as well as more recent (Dong et al., 2020).
While usually more efficient in practice, such algorithms
come at the cost of losing the worst-case guarantees. Most
often, the correctness is not guaranteed per query: there
are (adversarial) queries on which the data structure will
fail. Alternatively, the runtime may devolve into a (naive)
linear scan. To address such issues, one approach has been
to prove guarantees assuming the dataset has extra structural
properties: e.g., that it has low doubling dimension, or that
it is generated according to a random model.

Bridging the gap between these two categories of algorithms
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has been recognized as a big open question in Massive Data
Analysis, see e.g. the National Research Council report
[Section 5] (NRC13, 2013) in the closely-related setting of
random dimension reduction. We summarize this challenge
as the following "instance optimality" question:

Challenge 1.1. Develop NNS algorithms that adapt opti-
mally to the input dataset, while retaining provable guaran-
tees for all, including adversarial, queries.

We address the above challenge in this paper. Before delving
into our specific results, we comment on two non-answers.
First, a recent line of research led to data-dependent hash-
ing algorithms that similarly have worst-case guarantees
(Andoni et al., 2014; Andoni & Razenshteyn, 2015; Andoni
et al., 2015), improving, for example, the original exponent
p of (Har-Peled et al., 2012) to p = 52~ + o(1). While
this line of work shows that adapting to the dataset can im-
prove the performance for a worst-case dataset, it does not
seek to improve the performance further if the dataset is
"nice". Second, a straight-forward solution to the challenge
could be to run both a practical heuristic and a theoretically-
guaranteed algorithm (timing out the latter one if needed).
Such a solution however still does not seek to improve the
performance for all, especially adversarial, queries.'

We also note that it generally seems hard to adapt the heuris-
tic algorithms to have theoretical guarantees for all queries.
Most such algorithms learn the best partition, yielding a
deterministic index?—i.e., building a few indexes does not
help failed queries (in contrast to the LSH-based randomized
indexes). At the same time, it is known that the determin-
istic algorithms are unlikely to yield worst-case guarantees
(Panigrahy et al., 2010). In particular, it is usually possible
(and easy) to construct an adversarial query, by planting
it "on the other side" of the part containing its near neigh-
bor - guaranteeing failure. Hence, a solution for the above
challenge should involve randomized partitions (as LSH
does).

1.1. Our Results

We address Challenge 1.1 in the case of (approximate) NNS
problem under the Hamming space?, for which we design
an algorithm that adapts to the dataset’s potential struc-
ture, while maintaining the performance guarantees for all
queries. Our algorithm should be seen from the perspective
of instance optimal algorithms: an algorithm that is the best

'In particular, that would merely split the queries into two
classes: those on which the heuristic is successful with improved
performance, and those on which it is not and hence the perfor-
mance is that of a worst-case theoretical algorithm.

2While some use randomization, it is usually used to find the
optimal partition (e.g., via SGD), but not to randomize the partition
itself.

3See discussion of the Euclidean space in Appendix A.

possible, within a class of algorithms, for the given dataset.

Our algorithm directly optimizes the performance for all
possible queries, for the given fixed dataset. We obtain the
following properties (see Theorem 3.1 in Section 3):

1. Correctness: For any query ¢, the algorithm is guar-
anteed to return the c-approximate near neighbor with
success probability at least 2(n~*) for some p < 1/¢,
the exponent obtained by the optimal LSH (Har-Peled
et al., 2012; O’Donnell et al., 2014). (Probability is
over the randomness of the algorithm only.)

2. Performance: The query time is O(d?) and the space
is O(n), and the preprocessing time is O(n - poly(d)).
Note that, as is standard for LSH algorithms, we can
boost the success probability to, say, 90% by repeating
the algorithm for O(n”) times, obtaining the usual
tradeoff of O(n” - poly(d)) query time and O(n'** +
nd) space overall (but for smaller p).

3. Data-adaptive: The algorithm adapts to the input
dataset, and can obtain better success probability for
"nicer" datasets. In fact, under certain conditions,
the algorithm is "instance optimally" adaptive to the
dataset.

We now discuss the last claim of data-adaptivity. The ideal
goal would be to obtain an instance-optimal algorithm. Our
algorithm becomes instance-optimal (in a precise sense de-
scribed in the next section), if we are given optimal values
for certain parameters p during the construction. Alas, we
do not know how to compute these parameters efficiently
(and thus do not achieve instance optimality).

Instead, we evaluate the last claim by showing that our
algorithm achieves theoretical and practical improvements
over the only other NNS algorithms with similarly strong
guarantees for Hamming space (standard LSH indexes) for
a range of parameters. On the theoretical side, we formulate
a concrete model for the dataset, for which our algorithm
improves on the success probability for all queries. We
specifically consider the case where the dataset is a mixture
model: it is composed of several clusters, where each point
is generated iid. We note that our algorithm is not designed
specifically for this model; instead it is a natural theoretical
model for "nicer" datasets to evaluate improvement of an
algorithm. See Section 4 and Section D in supplemental
material.

On the practical side, we run experiments that show that our
algorithm has a 1.8x better recall on the worst-performing
queries to the MNIST dataset, and a 2.1x better recall on
the bottom tenth of queries to the ImageNet dataset. See
Section 5.
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1.2. Technical Description of our Algorithm

We now give an overview of our main algorithm and the
tools involved. Our algorithm is based on the LSH Forest
method (Bawa et al., 2005) for Hamming space, in which
the dataset is iteratively partitioned according to the value in
a coordinate, thereby progressing down the constructed tree.
In particular, beginning with the entire dataset in the root of
an LSH tree, in each node, we pick a random hash function
and use it to partition the dataset. The partitioning stops
once the dataset becomes of size < C for some constant C',
termed stopping condition. Otherwise, we recurse on each
new part (child of the current node in the tree).

The key new component of our algorithm is that, in each
node, we optimize for the best possible distribution over
hash functions, for the given dataset. In particular, in each
node, we solve an optimization to produce a distribution
m, over coordinates [d], that maximizes the probability of
success over all (worst) possible queries. Following this
optimization, we draw a coordinate from the optimized
distribution 7, hash the dataset on the resulting coordinate
(to produce two children corresponding to bits 0 and 1 at
that coordinate). We then recurse on each of the hashed
datasets (children) until the current dataset is less than a
fixed constant (stopping condition). The formal algorithm,
BUILDTREE, is described in Alg. 1.

The main technical challenge is to compute the optimal dis-
tribution 7, for which we use a two-player game to solve a
min-max problem. Note that this is a question of efficiency—
it is easy to compute the optimal 7 in exponential time (and
an instance optimal algorithm in general)—and hence our
goal is to do so in polynomial time. Specifically, our method
directly optimizes for robustness by computing solutions to
a min-max optimization. In particular, we seek the distri-
bution over hashes that maximizes the recall on the mini-
mum performing queries. What are the exact quantities we
want to optimize at a given node? Consider a distribution
m € Ald] over hash functions, and a query/near neighbor
pair p, ¢ € HY. The true instance optimal, min-max, objec-
tive function at each node is the following:

Pr[success] =
Alg
E e Er [success | hash coordinate 7, bit ¢;] - 1{p; = ¢; }
g
i€[d]

which is a function of the success probability on the remain-
der of the dataset, Pr[success | hash coord. i, bit ¢;]. How-
ever, exactly computing the probability of success on the
remainder of the tree appears computationally intractable,
as one would need to have considered all possible subsets
of hashes (exponential in dimension). Instead, we approx-
imate the recursive probabilities by using a lower bound
on the probability of success in the remainder of the tree.

In fact, there’s already a natural candidate for such a lower
bound: the success probability of the standard LSH, which
hashes on uniformly-random coordinate(s). Hence, our op-
timization becomes as follows, where the maximum is over
distributions € A[d], n; p, is the size of the dataset after
hashing on coordinate 1, bit p;, and for a chosen parameter
p € (0, 1), the optimization program we solve is:

d
> ming f 1{pi = ¢} )

max min
neAld] peb L
gllp—qll<r *=

Notably, if we set p = p;(q) for each i € [d], where
”i_,;:z(Q) = Pr[success | hash coordinate i, bit p;], we ob-
tain exactly the instance optimal objective. We don’t know
the values of p;’s but can use an upper bound instead:
pi < 1/c. (In fact, one can compute directly an upper bound
using any data-independent distribution 7—e.g., even uni-
form distribution 7 sometimes yields better estimates than

1/c)

We solve the min-max program from Eqn. (1) by finding
a Nash equilibrium in an equivalent two-player zero sum
game, in which the worst-performing queries are iteratively
presented to a "player" who learns hash functions to max-
imize the success probability on those queries. The main
question is under what circumstances can we find such a
Nash equilibrium efficiently? In the case of our hash/query
game, although there are exactly d hash functions available
to hash player, there are n(f) —potentially exponential in
d—many query/NN pairs available to the query player.
Nonetheless, it turns out we can approximately solve this
game efficiently, in n - poly(d) time! We use a repeated-
play dynamic from (Freund & Schapire, 1999) in which
the hash player performs the multiplicative weights update
and the query player chooses the query that minimizes their
loss on the hash distribution most recently played by the
hash player. Indeed, while the complexity of the game
is polynomial in the number of hash player strategies, it is
essentially independent of the number of possible queries, as
we have reduced the query player’s complexity contribution
to that of a single minimization (see details in Sec 3.1 and
Sec. B, Supplemental Material).

1.3. Other Related Work

This paper focuses on indexing NNS algorithms, which
can be contrasted to the sketching algorithms; see (Wang
et al., 2015). In the latter, the goal is to produce the small-
est possible sketch for each point in order to speed-up a
linear scan over the dataset (of sketches). Such solutions
have a query time (at least) linear in n, in contrast to the
indexing algorithms, which are sublinear, typically n” for
p < 1. Furthermore, one can often combine the two: use
the indexing NNS algorithm to filter out all but a smaller
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set of candidate points and then use (preprocessed) sketches
for faster distance evaluations on them (Wu et al., 2017,
Johnson et al., 2019).

We also note that there exist other practical NNS algorithm,
which do not directly fit into the "learning to hash" paradigm
alluded to before. For example, the algorithm from (Malkov
& Yashunin, 2018) builds a graph on the dataset, such that
a future query will perform a graph exploration to reach
the nearest neighbor. While very competitive in practice, it
again provides no guarantees. It remains a formidable chal-
lenge to derive theoretical guarantees for such algorithms.

2. Preliminaries

We label the dataset as P C {0,1}¢ = H? where |P| =
n. Formally, we solve the c-approximate near neighbor
problem, where, given a threshold » > 0, and approximation
c > 1, we need to build a data structure on P so that, given
a query ¢, we return a point p € P with ||¢ — pl||1 < cr, as
long as there exists a point p* with ||¢ — p*||1 < r. In that
case, for the given g, we call such a point p* a near neighbor
of g, and p an approximate near neighbor.

Definition 2.1. For a given query q and a near neighbor
p*, we consider an LSH tree to be successful on that pair if
when the query algorithm halts on a node v, q and p* are
both in the bucket at node v. The probability with which it
happens (over the randomness of the algorithm) is referred
fo as success probability, denoted Pr[success].

Our algorithm builds a tree top-down, from a node to its
children partitioning the dataset according to the chosen
hash function. For a node v, we use PY C P to denote
the set of dataset points that reached the node v (have been
hashed to v according to the hash function of the ancestors of
v). We also call P? as the "bucket" at v, and let n,, = |P"|.
Each (internal) node v has an associated hash function used
to partition P?, which is described by the coordinate i € [d]
by which we partition P. In particular, P, indicates the
subset of datapoints in PV that have bit b at coordinate i. The

node v splits P* into P/ and P/;. We let n; ,, := |P?,,

Definition 2.2. A coordinate i € [d] is called e-balanced
for the dataset P¥ and 0 < € < 0.5 if:

max(|Plol, |[P{1]) = (1 — e)|P°|.

For the analysis that follows, we make the trivial assump-
tion that hashing is done without replacement (i.e. once a
coordinate ¢ is used to hash, it is never used again in a tree
descendant).

Notation. For two vectors =,y € R?, we denote their
element-wise product by z ® y € R%. We denote the trans-
pose of a vector x by z’. For a vector z, we denote its i-th

coordinate by x(%) or x;. Let e; be the i-th standard basis
vector.

3. Main Algorithm

We now present and analyze our LSH forest algorithm with
hash functions adapting to the given dataset. We then show
that our algorithm (1) is correct, and (2) has worst-case per-
formance guarantees. We show our algorithm has improved
performance in experiments in Section 5 and Section F, and
on "nice" datasets in Section 4 and Section D (Supplemental
Material).

We present our pre-processing algorithm in Alg. 1. The
algorithm is an LSH forest algorithm, where, beginning
with the entire dataset at the root, we construct the tree by
performing a min-max optimization at the current node to
compute the best distribution over hashes, picking a random
hash function from this optimized distribution, and recursing
on the hashed datasets until the datasets are of constant size.

The main component of the algorithm is to compute the
optimal distribution for the given node, described in Alg. 3.
Specifically, for this goal, we setup a min-max optimization,
Eqn. (1), which we solve efficiently by iterating a two-player
zero sum game (see Section 3.1).

Our main correctness and worst-case performance guaran-
tee is in the following theorem. We remark that the main
algorithm requires an input parameter p, which we discuss,
along with an interpretation of the probability guarantee, in
Section 3.2.

Theorem 3.1 (Correctness and Runtime). Fix stopping
condition C > 1 to be a constant, and query algorithm
parameter m > 1. Suppose there exists a p € (0,1),
such that for any node v, there is a distribution m, over
hash functions such that for any query/near neighbor pair
q,p* € HY both hashing into node v, such that fewer
than % fraction of the bucket P are approximate near
neighbors of q, Bior, [1{p; = qi} - £, ] > 1 where

ok
,Pi v
v
c e = | P!
fz,p,i U | i,p;

/|P?|. Then, using p as the exponent pa-
rameter, Algorithm 1 constructs a tree that satisfies:

Pr[success on q,p*] > n™" — 2ed,
Alg

where € > 0 is the input parameter. Furthermore, p < v/c
fory = 1k

The pre-processing time to construct a single tree as in
Algorithm 1 is O (}zndQ In? d), and the resulting query
time by Algorithm 2 is O (mdQ).

3.1. Min-Max Optimization Analysis

To solve the min-max optimization, Eqn. (1), efficiently,
we iterate a two-player zero-sum game (Def. 3.8). In this
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Algorithm 1 Build Tree

1: Input: dataset PY, exponent parameter p, stopping
condition C, approximation e
create an empty node v
set v.dataset = P?
if |P?| > C then
set T, = MinMaxOpt(P?, p,€) { m, € A[d] }
draw ¢ ~ 7,
set v.coordinate = ¢
set v.left_child = BuildTree(P;jO, p,C, €)
set v.right_child = BuildTree(F;;, p,C, €)
end if
Return v

_.
TeYR RN E R

Ju—

Algorithm 2 QueryTree

1: Input: query ¢ € H? node v, query algorithm parame-
ter m, stopping condition C'

2: PY = v.dataset

3: Select m uniform random points from the current
bucket.

4: If one of these points is an approximate near neighbor,
then return it.

5: Otherwise,

6: if |[PY| > C then

7: if ¢(v.coordinate) = 0 then

8: Return QueryTree(q,v.left_child, m, C)

9

. else
10: Return QueryTree(q,v.right_child, m, C')
11:  endif
12: else
13:  if approximate near neighbor is in dataset then
14: Return approximate near neighbor
15:  else
16: Return @
17:  endif
18: end if

Algorithm 3 Min-Max Optimization

1: Input: node v, query parameter p, query parameter m,
approximation €

2: initialize weights/distribution 7y = wg = 14 - é
3. T — 10Ind
T =3
- Ind
4 B=1—/7
5:fort=1,..,T do
6: Yy =argmin, (ﬂ'{tflAg:lD {query player minimiza-
tion}
70 wipq = wy © Blev(T=1:94) (hash player update}
8 m= T th @ {normalize weights}
9: end for

10: Return wp

game, the "hash" player selects a distribution over coordi-
nates to hash the dataset on, and the "query" player selects a
query/nearest neighbor pair adversarially for the least proba-
bility of success at the end of the tree. Using this method, we
can find an approximate solution to the min-max program
in the following runtime.

Theorem 3.2 (Solving the Min Max Optimization). For any
desired € > 0, there exists an algorithm (Algorithm 3) that
solves the min-max optimization in Eqn. (1) for the node v,
up to an additive approximation € > 0 in O(E%nvdth d)
time.

The algorithm we describe for this problem exploits results
for two-player games. To understand the theorem, we intro-
duce some relevant notions from game theory.

Definition 3.3. A (simultaneous) two-player game is when
two actors (players) are each able to play a weighted mix-
ture of actions (as in Definition 3.4), without knowledge of
the other players mixture, where each action incurs a re-
ward that is a function of the mixtures of both players. The
game is characterized by two reward matrices R, C (one for
each player) whose entries are indexed by pairs of single
actions. The reward for each player is a function of these
matrices (as in Definition 3.5). This game is called iterated
if the game is repeated in sequential rounds.

Definition 3.4. Suppose a player in a two-player game has
N actions available to them. One such action is called a
pure strategy, and is represented by a standard basis vector
e; for i € [N]. Further, a mixed strategy s € [0,1]" is a
convex combination of these pure strategies.

Definition 3.5. Suppose the first player plays a mixed strat-
egy x € [0,1]N, and the second player plays a mixed strat-
egy y € [0,1)™. The reward or payoff for the first player
(whose reward matrix is R) is ¥’ Ry, and for the second
player (whose reward matrix is C) it is ¥'Cy. We call the
first player, whose strategy left-multiplies their reward ma-
trix, the row player, while the second player, whose strategy
right-multiplies their reward matrix, is the column player.

Definition 3.6. (Daskalakis, 2011) Consider a two player
game where the row player has N possible pure strategies,
and the column player has M possible pure strategies. Sup-
pose that the row player has reward matrix R € RN*M,
and the column player has reward matrix C € RV*M (A
two player game is called zero-sum when R = —C). Then,
a pair of mixed strategies (o, yo) for vo € RN yo € RM
is considered an e-approximate Nash equilibrium if and
only if the following two conditions hold:

1. z{Ryo > max, 2’ Ry — €,

2. z5Cyo > max, z(Cy — ¢,

where x,y are taken from the convex hull of available strate-
gies to each player.
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Definition 3.7. Suppose we are performing min-max op-
timization at node v in an LSH tree with a given expo-
nent p. We define the matrix Af, to be the payoff ma-
trix for that node. The entries of this matrix Af; , cor-
respond to a query/near-neighbor pair (q, p*) (indexed j)
and dimension i. These entries in particular are: Al i =
|PY,.|7?-1{q; = p} }. Note that this matrix is exponentially
large, and so is never written explicitly.

Definition 3.8. The hash/query zero sum game is a two-
player zero sum game at a given node v with exponent p.
In this game, the hash player has reward matrix R = A?,
and the query player has reward matrix C = —AL. In this
case, the hash player has N = d possible pure strategies
(coordinates to hash on), while the query player has M =
n(f) many pure strategies, as this is the number of possible
query/near-neighbor pairs.

For our problem, the hash and query players iterate the
above two-player zero-sum game. By the celebrated min-
max theorem of Nash, there exists a pair of mixed strategies
for the hash and query players (i.e. distributions over pure
strategies) in the aforementioned game for which no player
can improve their reward by deviating from them (a Nash
equilibrium) (Nash, 1950) . To reach this equilibrium, the
hash player selects strategies according to the multiplica-
tive weights update rule with the subsequently defined loss
function.

Definition 3.9. Suppose a player in some game has avail-
able to them N pure strategies. Fix some parameter
B € (0,1). The multiplicative weights update (MWU)
method is a method for choosing a mixed strategy over
these N possible actions so as to minimize one’s loss on a
sequence of loss vectors. In particular, suppose a player
suffers a sequence of losses Us(x) for s = 1,...,T. Let
T be their distribution over strategies at round s. For the
MWU update rule, the player initializes a set of weights
to wiy = + forall i € [N] at round 1. In subsequent
rounds t > 1, the player updates these weights accord-
ing to w41 = Wiz © BM_Rt(i). Ultimately, the proba-
bility of sampling the strategy with index i at round t is
Ws(i) — > Wi, ¢

jelN) Wit
Definition 3.10. For node v in the LSH tree, p € (0,1),
distribution w € A[d), query/NN pair y = (q,p*) indexed
by j, and i € [d], the loss vector for the hash player in a
round of game 3.8, {, ,(m,y) € [0,1]% has entries:
ép,v(ﬂ-ay)i =1- Ap

15,0

Recall that the query player selects the single query/NN
pair with the least probability of success on the most recent
hash distribution. This can be thought of as an example of
the so-called "Follow-the-Leader" (FTL) strategy selection
(see (Kalai & Vempala, 2005)). Notably, although FTL

strategies on their own do not guarantee convergence to a
Nash equilibrium, the query player may implement FTL (as
in Definition 3.11) to achieve convergence, exactly because
the hash player uses MWU.

Definition 3.11. Let the payoff matrix be AL, Q) the set of
possible query/near-neighbor pairs y, and 03 (y) the loss
functions at round t of the game. The following equation
is defined as the query player minimization (which is an
instance of a best-response oracle):

arg max /{ (y) = arg min m; A%y
Yy Yy
Theorem 3.12 ((Freund & Schapire, 1999)). Consider the
the hash/query zero sum game (3.8). Suppose the hash
player uses MWU to select strategies with losses as in
Definition 3.10. Suppose the query player plays its best-
response as in the query player minimization (Definition
3.11). Let M = n(f) be the total number of possible
query/NN pairs to the given dataset (recall this is super-
polynomial in dimension). Suppose T’ rounds of this iter-
ated game have been executed, and let x1, ..., x7 € [0, l]d
and yy, ...,yr € {e;}}, be the mixed row (hash) and pure
column (query) player strategies from these rounds, respec-
tively. Then, for a universal constant K > 0, the pair of

strategies (% ZZ;I T4, & Zthl yt) for the hash and query

K+lInd
VT
max, min, 7' APy (and Nash equilibrium in game 3.8).

players, respectively, is a -approximate solution to

Theorem 3.2 follows from this theorem, and that the query
player minimization can be solved in time O(n,dInd)
(Alg. 4, Supplemental Material).

3.2. Discussion of the Success Probability Guarantee

For any query/near neighbor pair ¢,p* € HY,
Theorem 3.1 requires a parameter p that satisfies:
Einr, [I{p; = ¢:} - f; ) ,] > 1 for all nodes v in the tree
that contain ¢, p* (with fewer than % approximate near
neighbors of ¢), in which case we can lower bound their
success probability by n~°. The second inequality in the
theorem states that this p can always upper bounded by
v/¢ =~ 1/c (the upper bound for theoretical LSH). A prac-
ticioner may interpret this exponent in the following way:
provided that your parameter choice p is an upper bound
for the least possible p such that this condition (3.2) holds,
then you are guaranteed n~” performance. Further, as the
practicioner also may choose c¢ (as in the (¢, 7)-ANN prob-
lem), they may tune this p aggressively to achieve maximal
improvement, and then set ¢ = % to obtain worst-case guar-
antees.

We highlight an important note regarding the dimensions
dependence of the algorithm that appears in Section A of
the Supplement. Crucially, although in the worst-case we
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require Q(lz—zd) rounds to solve the main min-max game, we

can halt the optimization with a data-dependent approxima-
tion guarantee.

4. Improvement on Datasets Generated from
a Mixture Model

We now describe a data model in which our algorithm prov-
ably performs much better than the standard, optimal LSH
(Har-Peled et al., 2012; O’Donnell et al., 2014). Note this
is the only other implementable algorithm for NNS in Ham-
ming space with worst-case guarantees. In particular, recall
that the LSH from (Har-Peled ef al., 2012) simply sam-
ples coordinates at random (which would correspond to the
LSH Forest with a uniform distribution 7 in each node). To
simplify the analysis, we assume the data are in the high-
dimensional limit — specifically where d > In(n), with
n > d (e.g. n = poly(d)), and d — cc.

We consider a mixture model, where each component has
independently chosen (heterogeneous) coordinates. Specif-
ically, consider a dataset P where each point z € P is
generated randomly such that each coordinate i € [d] is
drawn independently according to x; ~ Bernoulli(e;), for
some fixed €; € (0,1). This model has been studied before,
e.g., in (Dubiner, 2012) (but, for random queries, not worst-
case like we do here). There are settings of the €;’s where
the uniform distribution is still optimal for the independent
Bernoulli above (e.g. ¢; = 1/2 for all ¢ € [d]).

To maximally simplify the model, we consider the case
where the coordinates [d] can be partitioned into two sets
S1, 82 C [d] that are ¢;-balanced, for 0 < €; < €3 < %
respectively. In particular, p; ~ Bernoulli(e;), if j € S;,
for each p € P. Further, we assume the cardinalities of
these sets satisfy |\S;| > k, where k is the number of hashes
chosen by the algorithm (tree depth). Note that although we
analyze the case of two such sets, the argument generalizes
to many sets (at least a constant number of sets with respect
to dimension). The sizes of these sets change as hashing is
performed, so we denote these sets relative to a node v in
the LSH tree by S7.

Finally, our model is defined simply as a mixture of two
clusters each from (essentially) a heterogeneous-coordinates
distribution as above. In particular, the second cluster is ob-
tained by planting a point p, = 0% and V/d points next
to the point p,. These points are generated i.i.d. at dis-
tance r + 1 from p,, where the coordinates on which they
each differ from p, are all in S;. Note that in the high-
dimensional limit, these additional points will not affect
the balances of the coordinates for subsets larger than d
(as these planted points compose at most O(1/v/d) — 0
fraction of the bucket).

We show that, in such a model, our algorithm obtains im-

proved performance over uniform hashing: see informal
Theorem 4.1 below. The formal statements/proofs for stan-
dard LSH (Indyk & Motwani, 1998) in Theorem D.1 and for
LSH Forests (Bawa et al., 2005) in Theorem D.2. We note
that, interestingly, in the simpler setting of just one cluster,
uniform hashing remains essentially optimal (Theorem E.1).

Theorem 4.1 (Informal). In the above mixture model, trees
constructed and queried with Algorithms 1 and 2 obtains a

Sactor of (exp(Q(\/ In d))) improvement on the minimum

query over LSH forests (Bawa et al., 2005) and standard
LSH (Indyk & Motwani, 1998) with exponent parameters
p € (0.1,1) and p € (0.2,0.8), respectively, and query
parameter m = (.

Our algorithm obtains improvement over uniform hashing
because the optimized distributions in this setting place
more weight on the more balanced coordinates (where the
Bernoulli parameter is closer to 1/2). By design, the worst-
case query in this data model is the query with bits flipped
on only the coordinates that differentiate the planted p,, from
its approximate near neighbors. Therefore, placing more
weight on the balanced coordinates quickly separates points
in the "hard" cluster from the "easy" cluster, as compared to
uniform hashing.

5. Experiments

We demonstrate the practicality and performance of our al-
gorithm on the canonical ImageNet and MNIST datasets.
In this section, we display results for the first 750 images
of MNIST’s training dataset (Chris Burges, 2021), and on
the first 624 images of ImageNet’s 3x8x8 validation subset
(Deng et al., 2009). We performed additional experiments
on the entire MNIST dataset and a 100,000-point subset of
ImageNet’s training set, which can be found in section F. We
note that we expect the improvement to be more substantial
with larger datasets with a scaled-up algorithm. This is be-
cause LSH-type algorithms have success probability/query
time of the form n”, and our experiments already show that
our algorithm obtains an improved exponent p. More specif-
ically, small experiments allowed for the minimum success
probability to be greater than —i-. In this case, only roughly

100"
100 trees were needed to resolve this minimum.

For both MNIST and ImageNet, the dataset was binarized
using a threshold. In particular, all pixel values below a
threshold pixel value were set to 0, and the complement is
set to 1 (a threshold of 16 for ImageNet, and 1 for MNIST).
The implementation details can be found in Section G, Sup-
plemental Material. For the small subsets, we ran our al-
gorithm with radius = 5 for ImageNet and MNIST. Two
additional parameters are listed for the experiments - the
number of rounds 7' the game was executed for, and the
base 8 € (0,1) used for MWU.
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We compare trees generated by our algorithm to LSH forests
(uniformly sampling coordinates). The algorithms with best
(average-case) empirical performance on specific datasets
for nearest neighbor search have no guarantees (correctness,
or performance). Due to this, when measured with respect to
our property of interest — minimal success probability over
all queries — all such algorithms without theoretical guaran-
tees collapse, i.e., achieve 0 success probability on the worst
query. Our goal is different: we want the best algorithm
among those guaranteed to do well on all possible datasets
and queries. Therefore, we compare our algorithm only to
those that are both implementable and have guarantees for
the worst query. This is just uniform LSH.

To assess the performance of our algorithm in these settings,
for MNIST, we sample 100 points uniformly at distance
r = 10 from each point in the dataset. For ImageNet, we
sampled 2 points at distance » = 5 from each point, and
computed success probability similarly. We sample 110
trees for a range of parameters, and estimate the probability
of success for each query/NN pair by computing the fraction
of trees which co-locate the pair in their final bucket. In
these experiments, we do not sample pivots as in Algorithm
2 to more directly compare the quality of the optimized hash
functions to uniform ones.

The experiments show that our algorithm with certain param-
eters produces trees with a 1.8 improvement over uniform
hash trees in the success probability for the minimum query
for MNIST (Table 2 and Figure 2), and 2.1 X improvement
for the bottom tenth percentile of queries to ImageNet (Table
1). These success probability improvements are accompa-
nied by large query time improvements for both datasets
(Table 3).

One might ask - what kinds of distributions will our opti-
mization produce in practice to obtain this improvement? To
answer this question, we show the distributions produced by
the min-max optimization in Algorithm 3 at the root of the
MNIST dataset for two settings of the exponent parameter p
(see Figure 1). For MNIST, the distributions that produced
the greatest improvement over uniform hashing placed more
weight on pixels towards the center of the image (and signif-
icantly less weight in the corners). A factor that contributes
to this phenomenon is that coordinates closer to the center
of the image are much more balanced, and hence are favored
by the optimization.

Table 1. Success Probability on Random Queries to a subset of
ImageNet.

Parameters Bottom 10%  Average
Uniform 0.275 0.621
p=11T=23000,38=0.68 0.576 0.772

Table 2. Success Probability on Random Queries to a subset of
MNIST.

Parameters Minimum  Average
Uniform 0.35 0.737
p=1,T7 = 3000, 5 =0.68 0.6 0.877
p=0.83,T = 3000, 5=0.68 0.63 0.878
p=0.25,T = 1600, 6 =0.88 0.42 0.834
p=0.1,T=1600,3=0.88 0.36 0.785
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Figure 1. Scaled and centered distributions produced by Algorithm
3 for the MNIST dataset (optimized for the entire dataset)
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Figure 2. Histogram of Recall for 75,000 Random Queries to
MNIST. Algorithm parameter settings p = %, T = 3000,
B =0.68.

6. Discussion

Challenges for designing instance optimal NNS algo-
rithms. An ideal goal for data-aware NNS would be an
instance-optimal algorithm: one that achieves the best pos-
sible performance among all possible algorithms. To avoid
hard computational complexity issues, it is only reasonable
to ask for all possible algorithms from a restricted class of
algorithms C, for as large class C as possible.

We considered the class C of, essentially, (random) decisions
trees, where each node is a coordinate cut (in the Hamming
space). Our algorithms is instance optimal as long as the
algorithm knows the correct parameters p at each node.

It would be natural to try to extend the class C to include
other possible hashes (node decision functions), most no-
tably hyperplane cuts for the Euclidean space, and ball cuts
(for both Hamming and Euclidean spaces). Such hashes are
popular for practical and theoretical LSH algorithms.

There are some challenges in extending our algorithm to
the above settings. Specifically, while one can efficiently
extend the algorithm in this paper to other hash functions
and metrics, the runtime must depend polynomially either
on the number of possible hash functions or the number of
possible queries. Indeed, one can solve the two-player game
by implementing MWU strategy selection for the player
with polynomially many strategies (in the dataset size), and
FTL for the other player. Alas, both for hyperplane and ball
cuts the number of hash functions and queries are essentially
exponential in d. It may be possible to reduce the number
of hash functions/queries by making an assumption: e.g.,
consider ball cuts with centers at dataset points, or assume
queries come from a distribution.

Euclidean distance case. While we focus on Hamming
distance in this work, it is possible to extend our algorithm
to Euclidean space. In particular, it is a classic result that
one can embed Euclidean space /5 into ¢; and hence Ham-
ming space, up to appoximation arbitrarily close to 1 (Figiel

et al., 1977). In particular, one can observe that the result-
ing algorithm would correspond to picking ©(d) random
hyperplanes and then optimizing only with respect to them.
This can be seen as another approach to optimize over large
classes of hash functions: not optimize with respect all
hashes, but with respect to only ©(d) (or perhaps poly(d))
randomly-chosen hashes. We leave this direction of explo-
ration for future research.

Pre-processing. Recall that the runtime for pre-
processing of our algorithm is n - poly(d) - %, where
€ is the approximation factor in the min-max game. To
closely approximate the optimum success probability,
we need to set € to be on the order of (ideally less
than) the optimum. Therefore, an equivalent runtime is
n - poly(d) - (Pr[success])~2 = n'TO®) . poly(d).

We also note that, for our algorithm, one can tradeoff query
time improvement for faster pre-processing, without sacrific-
ing the worst-case guarantee. In particular, one can optimize
on any subset of nodes and hash uniformly otherwise (e.g.
only optimize on the final levels of the trees), while retaining
the lower bound in Theorem 3.1. We obtained improvement
over uniform hashing with this approach for datasets with
~ 10° points (see Section F).
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Supplement to ''Learning to Hash Robustly,
with Guarantees"

Preface

We briefly outline the structure of the supplement. We high-
light the Further Discussion in Section A, which includes,
among other discussion points, the important note which
describes how to obtain an approximation guarantee for the
main min-max game that is specific to the given dataset.
In particular, a practitioner can halt the game in orders of
magnitude fewer iterations than the worst-case and retain
this optimization guarantee.

In Section B, we describe an algorithm for efficiently im-
plementing the query player minimization. In Section C,
we derive the main correctness and performance theorem.
In Section D, we describe a data model and prove for that
model that our algorithm can perform much better than uni-
form hash functions on the worst-case queries. In Section
E, we demonstrate that for LSH forests and a reasonable
LSH variant, the uniform distribution is optimal for a sin-
gle cluster with independent coordinates. In Section F, we
demonstrate the practicality and performance of our algo-
rithm with a variety of additional experiments. In Section
G, we include hardware details for our experiments and the
link to the code used to generate our empirical results.
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A. Further Discussion

Convergence of the min-max game. The number of
steps to convergence depends as 1/¢2 on the error € to suc-
cess probability. As noted above, ¢ must be of the order
Pr[success] hence quite small, and it is normal to wonder
whether this step can be sped-up. As we discuss below, the
game can be stopped much earlier, in a data-aware way,
while retaining the theoretical guarantees.

Indeed, in our experiments, we used far fewer iterations than
are required by Theorem 3.2. We used 3000 iterations, while
the theoretical bound requires at least %&784) > 42,000
iterations to achieve a 0.1-approximation to the optimum.
How can we show that the distributions are converged with
much fewer iterations than the worst-case bound? In general,
how might a practitioner improve our algorithm’s polyno-
mial dependence on the dimension? In the proof of Theorem
3.12 from (Freund & Schapire, 1999), the proximity to a
Nash equilibrium is bounded by the regret of hash player
(where regret is defined below).

Definition A.1. Suppose a player in a two-player zero-sum
game has played a sequence of mixed strategies x1, ...,
up to time T, each of which has experienced some loss
according to the functions {s(x) for s € 1,...,T. Then, that
player’s regret is defined as follows.

T
= Zﬁs(xs)

Regret(xy,...,xT)

T
~ min > li(x) @
s=1

Therefore, a practitioner can simply halt the game when the
regret of the hash player is less than their desired approxi-
mation threshold.

We demonstrate this data-dependent bound for our exper-
imental setup. Consider the distribution at the root of a
700-point ImageNet subset for an experiment with p = 1,
T = 3000, and 8 = 0.4. For the hash player, we compute
the best distribution in hindsight by solving the following
linear program:

T
HllIl Z (1- Pr [success on (p*, ¢")]) 3)

T d
L= mlfpi=a}-nf| @

t=1 i=1
f) (5)

—lrname< ]l{pﬁ:q,-}ni_)
Where 7 is constrained to A[d

Solving this program gives that the best distribution in hind-
sight had loss 0.99795, meaning that the optimal hash strat-
egy had success probability 0.00205. Meanwhile, the loss

incurred by the hash player is 0.99812. Therefore, the
query/hash strategies are within 0.000169 of the game’s
value, which in this case is within 10% of the optimal strat-
egy in 14 x fewer iterations than required in the worst-case!

Instance optimal algorithms with many queries and
hashes. It is still conceivable to design an efficient al-
gorithm for instance optimal hashing even when there are
exponentially many queries and hash functions. Intuitively,
say, from the perspective of the hash function distribution,
we do not actually need the optimal distribution—merely a
sample from it. In fact, if Karlin’s weak conjecture holds
(Karlin, 1962), namely that both players can use FTL to
achieve sublinear regret, then neither player must explicitly
consider all of their exponentially many strategies! There is
some hope that this conjecture is true (see (Abernethy et al.,
2021)).

Effect of the parameter p to the algorithm. Depending
on the exponent p chosen for the optimizations in the exper-
iments, the distributions returned by the min-max optimiza-
tion in Algorithm 3 could be qualitatively quite different. In
the experiment with exponent p = g (Figure 1), the distribu-
tion at the root placed a large amount of weight on the most
balanced bits However, when the exponent was decreased
top = 10 , the optimal distribution (roughly) uniformly
weighted many balanced and unbalanced bits.

We illustrate why the optimal distributions might be very
different depending on input p with the following exam-
ples. Suppose there are two groups of bits with balances
0.1,0.5, respectively, and with sizes 5r,r for queries at ra-
dius r. Then, the optimal distribution will have less weight
on the more balanced group, as the worst-case query with
have all r of the more balanced bits flipped. Suppose in-
stead that the two groups have balances 0,0.5, with sizes
r,100r, respectively. Then, the optimal distribution will
place no weight on the first, unbalanced group, as these bits
make no progress on hashing the dataset, while the second
group is sufficiently large that you can increase the weight
on that group without increasing the probability of failure
substantially.

Theorems D.1 and D.2 show large improvement over uni-
form hashing by exploiting the nice structure of the dataset
to isolate the cluster later down the tree. There we make an
assumption that the coordinates differentiating the cluster all
appear in the less-balanced group. We expect that, in prac-
tice, with sufficiently "diverse" data, a given dataset might
consist of many clusters whose differentiating coordinates
are spread across balances. (Note we still see theoretical
improvement in this case.) The function of these clusters
is really to introduce adversarial quality to the dataset so
that the current balances at the root (or a nearby descendant)
do not indicate the true difficulty of hashing on a particular
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coordinate. In this case, the worst-case queries are not those
with the most balanced coordinates flipped, but rather those
embedded in these adversarial clusters. In effect, the worst-
case analysis of the LSH tree is reduced to average-case
analysis (as the differentiating coordinates are likely spread
across a large spectrum of balances).

Recall that with the "correct” objective values our algorithm
is exactly instance-optimal. Given the discussion above, this
suggests that there might be a different choice of objective
values in our min-max game that more closely approximates
instance-optimality. In particular, rather than setting a single
exponent p for the entire algorithm, this parameter should
vary for each possible bucket, and should be tuned reflect
the difficulty of hashing uniformly on that bucket. In other
words, while our algorithm optimizes for the snapshot of a
dataset at a given node, an instance optimal algorithm must
be able to look ahead and use information about what the
buckets will look like in future nodes.

As we showed in section E, if the coordinate balances remain
constant throughout the hash tree (in which case the bucket
looks identical to the optimizer at every node), it may not be
possible to improve over uniform at all! Therefore, to guar-
antee improvement over uniform sampling, we need that the
balance profiles of the coordinates change throughout the
hash tree. This is likely what occurred in our experiments -
namely, which coordinates were balanced early in the tree
were distinct from (or independent of) which coordinates
were balanced later down the tree. To exploit this feature of
a dataset in practice, one may try to obtain a better lower
bound on the probability of success than merely n~", for
p from the uniform LSH—e.g., by setting up a convex pro-
gram and relaxing it. This is an interesting route for future
work.

B. Implementing Query Player Minimization

The implementation of the MWU strategy selection is fairly
self-explanatory, but how should we efficiently perform the
query player minimization? We now show that the query
player minimization is efficiently implementable and prove
the runtime of the entire pre-processing procedure.

Proof of Theorem 3.1 (Pre-processing Time). The query
player minimization (step 6 of Algorithm 3) can be
implemented exactly using Algorithm 4.

Suppose the current node is v, and the current bucket is of
size n,. By theorem 3.2, a single min-max optimization can
be solved in time O(%n,dIn*d). In a given layer of the
tree, each node contains a bucket that is disjoint from all
other buckets in that layer. Therefore, the total runtime for
the algorithm on a single layer of the tree is O(4nd In® d).
Further, there are at most d layers in the tree, as we hash

Algorithm 4 Query Player Minimization

—_

Input: m,, v, p
QOutput: (min query)
{m,, - distribution over coordinates for node v}

compute objective values n; /' fori € [d] and b € {0, 1}
(min probability) = co
(min query) = None
forj=1,...,n, do
set u; € RY to the objective values for the given
datapoint.
9: compute s; = u; © T,
10:  sort s;, while tracking the positions of the original
coordinates
11:  Set the top r values in the sorted list to 0 and sum the
remaining values (call this sum z;)
12:  if z; < (min probability) then

® RN E

13: set (min probability) = z;

14: set (min query) to the current datapoint j with the
top 7 coordinates flipped.

15:  end if

16: end for

without replacement when we progress to the next layer.
This gives the pre-processing time in the theorem. O

C. Proof of Theorem 3.1 (Success Probability)

We now prove the success probability guarantee as in Theo-
rem 3.1. Let 6 = i for chosen tradeoff parameter m > 0.
In particular, suppose we are given a dataset with a datapoint
p* and a query ¢ with ||p* — ¢||1 < r. Recall that we want
to guarantee that when the querying procedure terminates
(Algorithm 2), the probability that the pair of points collide
on the final bucket is at least n = > n~ <, for p satisfying
Einr, [I{p; = @i} - f; - ,] > 1 onall nodes v in the LSH
tree (Where f; p+ o = [Py, |/|PY)).

Proof. The proof is by induction over the size of the dataset.
Fix any query/NN pair ¢, p* € H. For the base case assume
the size of the dataset is | P| = 1. Then, by assumption that
there is a near neighbor in the dataset, and as the stopping
condition is reached (1 < C for all choices of C), the
probability of success is exactly 1.

We now prove the induction step of the claim. Consider the
tree of possible hashes from the given dataset, with each
child corresponding to a hash event. Note this is a d-ary tree.
Consider a dataset of size n,, at some node v in the tree, with
some children that have additional optimizations performed
and perhaps some children that don’t. Suppose all children
have size n; , < n,. If not, we re-direct this argument to
the child with n; , = n,. If this child also has children
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of size n,, then we again focus on the grandchild node,
repeating this recursion until we reach a descendant node
with children all of size strictly less than n,,. We can then
"unpeel" the argument to prove the inductive hypothesis for
the original node using the same calculation as below.

Assume for induction that the optimizations in the children
(one child for each ¢ € [d]) produce a distribution that
has minimum probability of success greater than n, ? for
all queries with n; ,, < m,. The current node optimizes
assuming the children have probability of success {n;’f i
We follow a similar approach to (Andoni et al., 2017) to
prove lower bounds with uniform hashing.

For the first inequality, recall by the theorem assump-
tion, there exists a distribution over hashes 7, such that
Eir, [1{p; = ai} - f; ;- ,] = 1. Then, we have the follow-
ing by the induction hypothesis:

Prlsuccess] = Zﬂv,iﬂ{pf = q;} - Pr[success | P]

(6)
>N mal{pl = ) nif )

=N

o Bin, WP} = i} fige ] ®)

This completes the proof for the first guarantee of the
success probability.

To ensure the second inequality in the theorem holds
(namely p < 1), we follow the strategy suggested in (An-
doni et al., 2017) to handle datasets with many approximate
near neighbors. In particular, we select points uniformly
at random at each node and compare these to our query,
halting the query procedure if an approximate near neighbor
is found. Suppose then for the node v in the LSH tree, the
current bucket P¥ has > dn,, points at distance less than cr
from the query. Then, with constant probability, selecting
m = @(%) (as the algorithm parameter) random points in
the dataset will include one such near point. Note that this
is why the query time in Theorem 3.1 is md?, as a single
query comparison takes d time and there are at most O(md)
comparisons at query time. Now suppose to the contrary
that fewer than (1 — §)n,, points are at distance less than cr
from all queries.

For the second inequality in the theorem (p < 1), we note
for randomized hash function h with distribution 7 € A[d],

where we let pg = L:

Prlsuccess] = EEF [success on P, | (10)
> ifigr[success on P/, and p; = ¢;] (11)
= Pr[successon P/, | p; = qi] - P;rr[pf = ¢

(12)
> E[n; ] - Prip} = a, (13)

where the fourth step follows by the induction assumption.
If we choose h to be distributed uniformly, then applying
Jensen’s inequality we get:

Pr[success] > (1 — Z) -Eln; ] (14
—Po
> (1-5) [ 3 peb = (15)
pePv

r\ (6n, (1 —08)n, er\
> - — ~ 7 - - . PO
G Cr e D

(16)

The third line is because we assume at most  fraction of
points are at distance at most cr, and at least 1 — § fraction
are at distance at least cr. To complete the proof, we now
show the last formula is lower bounded by n.,, 7 .

(1- 2) (5n” + m(l - ”))po >1

nt) n’u d -
a7
dn, (1 —=38)n, er \ 1
<:(nv Ny (ld)) T 1-3
(18)
1 1
=k <6+(1—6)(1—“;)>
19)
= po > In( )ln~! !
o= T g

(20)

Note that (17716)13 > ln(ﬁ) In! (W), and so we

can set pg > ﬁ. As the true probabilities of success are
greater than the "lower bound" objective by the induction as-
sumption in both inequalities, the true probability of success
is greater still than n # (or n, ”° in the second inequality),
proving the theorem.

O
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D. Formal Treatment of Mixture Model

In the theorems that follow, we consider the mixture model
where there are two disjoint sets of coordinates of equal
size with homogenous balances. While we assign specific
attributes to these sets, the proof method can apply to general
instances of this mixture model with many sets of different
balances and sizes - naively, by taking weighted averages
of these quantities. Thus, we do not require these specific
parameter settings to show improvement.

We first define the uniform LSH algorithm (Indyk & Mot-
wani, 1998) for the general ANN problem. In this algorithm,
for a chosen approximation factor ¢, a fixed number of hash
functions are chosen such that the probability of success

for the algorithm, for any query at distance 7 from its near
In(1-%)

neighbor, is exactly n~” where p = (1=

Theorem D.1. Suppose we are given a dataset drawn ac-
cording to the above data model, withr = d/ Vind, n = dS,
€1 = 0.3,e2 = 0.5, |S1] = |92] = g. Then with prob-
ability 0.99 over the data distribution, trees constructed
and queried with Algorithms 1 and 2 with algorithm query
parameter m, exponent parameter p € (0.1,1) until the
bucket size is d, and after that p = 0 until stopping
condition C = 1, where k, = In(2)In""(1/€1) and
A In(1—3 _ _In(1-3%)

T ln(l-(1-)5F)  In(1-ZH)’

at least d"%(1— L)~k =0 (d_gexp(Q(\/lnd)))
times greater than uniform LSH on the minimum query

for ANN with approximation factor ¢ = 1 + %

€

has success probability

Proof of Theorem D.1. We must first understand what it
means for a query to be "worst-case" for the standard uni-
form LSH. In particular, this algorithm in its original for-
mulation uses a fixed number of uniform hash functions,
and so the probability of success is the same for all queries
at a fixed distance from their near neighbor. To define the
probability of success for uniform LSH as applied to our
data model, we divide the potential queries to this dataset
into two classes. In the first class, we consider queries to
any arbitrary point (not equal to p, and its cluster), which
all require an equal number of hashes to reach expected
bucket size 1. In the second, we consider queries to p, with
bits flipped on the coordinates that differentiate p,, from its
planted approximate near neighbors. For the second class
to be "worst-case" we need that the probability of success
for queries in this class are less than the first.

The probability of success for the second class is exactly
Vd ™" where p, = n(1—g)

-y We can lower bound this
S
success probability by v/d 't > W.

The probability of success for the first class is lower bounded
by n~0-5/¢0 where ¢(r is the average distance between two

points (chosen iid from the model). We can compute this
distance as cor = 4 - 2(1 —€)er + 4 - 2(1 — e2)es =
d(1—e1)er +d(1 — €z)ea. As we have set n = d, we have
that the probability of success for this first class is,

.D
In Pr[success | for phase 1] > —657-=Ind  (21)
T "
> 77& Ind (22)

= —7VInd (23)
<= Pr[success | for phase 1] > exp(—7VInd) (24)
> exp(—0.51nd) (25)

1
=— 26
Vi 2
~ Pr[success | for phase 2] 27

proving that the second class queries are indeed worst-case
in the high-dimensional limit.

Because the distribution for the optimized hash functions are
maximal for their objective (by definition), we can choose
any distribution we’d like and derive a lower bound for the
performance of a single optimized hash distribution. We
consider distributions that are marginally uniform on each
group S;, as the planted point has a 0 on each coordinate
(and so the coordinates are symmetric across groups). Sup-
pose the optimized distribution is = = (0, 1). This is the
distribution that would be returned by our algorithm for
almost all p, but certainly including e.g. p € (0.1,1). To
see this, we first note that the objective function (the lower
bound for the probability of success for 7 = (71, 72)) is:

d d
Objective = 5771(1 —€) P+ 5772(1 —e€2) " (28)

Then, as,

2r 1 1 2r
1——)1—-€)">=-(1—-¢€¢)P+=(1——)1—-€)""
(1=)-e)? > (1—a)?+5(1-T)1-e)

(29)

we conclude m = (0, 1) is the distribution returned by our
algorithm.

Suppose we choose k,, hash functions to reach d/n fraction
of points remaining in the original dataset. The probability
of success for the uniform distribution on the worst-case
query on reaching this fraction is (1 — %)*.

As a uniform hash function reduces the dataset to at least ¢;
fraction of the original dataset size, k,, > In(%) In~(1/e).

Meanwhile, for the worst-case query, as we have assumed
all of the coordinates that differentiate the cluster center p,
from its approximate near neighbors are in S, and therefore
all the flipped coordinates of the worst-case query are in Sy,
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the probability of success for this query in hashing to size d
from the root is exactly 1. In the remaining hashing from

the size d subset, the optimized algorithm has probability
In(1-%)
1n(1—(1—£)TT+1)’

(20) in the proof of theorem 3.1.

at least d— "¢, where p, = from equation

Once the dataset is of size d, according to the uniform
(theoretical) LSH algorithm (Indyk & Motwani, 1998), the
probability of success is exactly equal to d—*+, where p,, =
In(1—%)
In(1— % )’
case query in uniform LSH is then,

The total probability of success for this worst-

Pr[success | uniform] < d=7*(1 — g)m(%)hrl(l/el)

(30)

The final advantage of our algorithm over uniform LSH
follows from these formulae.

One fact that remains to show is that in the high-dimensional
limit, the balances of the coordinates remain concentrated
ate.

Consider a node v in the tree that was generated by hashing
on k, coordinates. Consider an unhashed dimension i €
[d]. Let f;, be the balance of coordinate 7 at this node.
As the dataset has independently drawn coordinates, the
distribution of balances for ¢ is independent of the previous
hashes, and so f; , = ni - Binomial(n,, €;). Then, we can
apply the standard Chernoff bound:

1
Pr(|fiw — €] > ] < 2exp (—3emU62) 31
1 2
< 2exp —§€2d(5 (32)
1
~ 100451 &9

Note there are a total of at most d* nodes and d coordinates
we must consider for < k possible hashes. Thus, we set the
failure probability to 57 so that the probability of suc-
cess on all nodes is at least (1 — m)dk+l ~ e 001 =
0.99. Solving the previous equation for d gives the require-
ment that d > 3FHDI+30200 ~goy fyaq § ¢, and

6262
k< 1nl(nl(i)1) , the left-hand-side grows faster with dimen-

sion than the right. Therefore, in the high-dimensional limit
we can drive § — 0 while maintaining a 0.99 probability of
success.

O

We also show improvement over the LSH forest algorithm.
Recall that in this algorithm, for a given query, a coordinate

is chosen uniformly at random, one at a time, until the
current bucket has size less than or equal to 1.

Theorem D.2. Suppose we have a dataset drawn according
to the aforementioned data model, with d = 100r, n = ds,
€1 =03,e0=05 a1 =y = %, but only one planted ap-
proximate near neighbor to p,. Then with probability 0.99
over the data distribution, trees constructed and queried
with Algorithms 1 and 2 with query parameter m = 0,
exponent parameter p € (0.2,0.8) until the bucket is of
size d, and then p = 0 for the remainder of the tree until
stopping condition C' = 1, where k, = In(%) In"'(1/e1),
has (1 — 5)_’““ times greater success probability than uni-
form LSH trees for all queries (over the randomness of the
algorithm and data model).

Proof. We first prove that the minimum-performing query
to this dataset (for uniform LSH trees) is one with all co-
ordinates flipped in S (on the bits differentiating an ap-
proximate near neighbor from p,). As there are r 4 1 co-
ordinates for which p, differs from all other near neigh-
bors, we must hash until the single coordinate that is not
flipped in the worst-query, is flipped. The probability of
this is 71~ ~ 1, where k < d is the number of hashes

chosen to get the dataset to size d, and increases to dis
for s additional hashes. Then, we will need at least %
additional hashes to get O(1) probability of getting to

a single point, using uniformdhashing. (This is because
(I-g) - (1-3)<0=3=0Q).

The probability of success for this query doing this is (1 —
5)% ~ e~"/2, which is clearly vanishing with r, and is
greater than for all queries which are not designed to have r
of the r + 1 differing coordinates flipped. Suppose we only
flip r—£+1 of these r+1 bits, for ¢ > 2, then the probability
of eventually hashing on one of the unflipped bits is (1 —
) 5t ox e/, Suppose pessimistically the probability of
success for other queries is é (as good as randomly sampling
points) times the probability of selecting one of the differing
coordinates e~"/2¢. Suppose optimistically it is e~" for
designed queries with r of the r + 1 bits flipped. Then we
just require 2e~"/2¢(1 — ) (L= 5) ke > e~"/? for the
designed query to be the true minimum, where k,, is the
number of hash functions needed to get to bucket size d for
optimized hashing. This inequality is true for large r and
d = 100r, proving the worst-case query is as claimed.

Consider the first phase, where we hash the dataset until it
is of size d. The probability of success for the optimized
distribution on the worst-case query is exactly 1, while
for the uniform hash tree it is at most (1 — %)%, where
ky = ln(%) In"'(e1) (as we proved in the previous theo-
rem). With very high probability, we will not have chosen
the necessary differentiating bit to separate the approximate
near neighbor from p,. Therefore, the probability for the
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remainder of the tree for uniform is (with high probabil-
ity) equal to that of our algorithm (as the datasets of size d
should be the same in expectation for both algorithms, given
the independent coordinates assumption, the probability of
success over the randomness in both the algorithm and the
data model is equal for both algorithms). O

E. Uniform Distribution is Optimal for
Independent Coordinates

Suppose the data are drawn from the data model in section
D without an additional planted cluster. Suppose further
that instead of two groups, there are M groups S; with
M < d, balances ¢; € (0, 3], and cardinalities d/M. We
also consider the limit where » < d. For simplicity of
analysis, suppose we plant the point 0¢ in the dataset.

We consider a variant of the LSH tree where a fixed number
of hash functions are selected from a chosen distribution 7
until the dataset of size ng, where d < ng. In a standard
LSH tree, where w; is the fraction of points remaining in
the dataset after hashing for the i-th time, we select hashes
(k, in total) such that:

ko
[Jw =" (34)
- n
i=1
ko
n
= Y Inw :1n;° (35)
=1

As k, is a random variable, we instead consider the number
of hash functions k, needed in expectation to reach the
stopping size. In other words, we compute k; such that:

—m (36)
n

kg
E Z In w;
i=1

In the LSH variant we propose here, we use this fixed £
number of hashes.

Theorem E.1. When the data are sampled according to the
above data model, the uniform distribution is optimal for
the worst-case query to the above LSH variant.

Proof. We derive the exact value of the number of hash
functions k). By assuming the coordinates are drawn inde-
pendently, we use the linearity of expectation to derive:

K
n
E Y w| = 1n;° (37)
=1
= k' =1n2E~! Inw,] (38)
n
-1
M
=m0 Y mn(l ) (39)
n i=1

The last step follows from two facts. First, we only need to
consider distributions over coordinates that are marginally
uniform across coordinates in a single group. This is be-
cause the worst queries to the dataset will be to the planted
point 04, whose balances are uniform across coordinates
of a single group. Second, because we are in the high-
dimensional limit (as in the previous section), when we
hash on a single coordinate i, the fraction of points in the
dataset that remains in the bucket is exactly 1 — ¢;, as this is
the fraction of points that have a 1 at coordinate 1.

Consider a query at distance 7 from 0¢ with its » coordi-
nates flipped in an arbitrary group j € [M]. To begin with,
suppose M = 2. The probability of success over the entire
tree for this query is, using & total hashes:

o
2 o
Pr[success] = (1 - wj;) (40)
2
<= InPr[success] = ln(%) In <1 — ;) E~! [Inw;]
(4D
n . 2mor 4
~ln(—)—E" " [lnw; 42
0B ] @)
2
43
7r11nw1 +7r21nw2 ( )
- 2 (44)

(1 — 7o) Inwy + mo Inws

As the logarithm is increasing, we can compute the deriva-
tive of the RHS to understand the optimal setting of

w9 = 1 — m;. Doing so, we find that the derivative is
d _ 1
d—m(RHS) = ((1*71'2)1112111‘17@ o < 0. Therefore, the

probability of success increases by decreasing m». Further,
if the query has its bits flipped on group .S; instead, the
probability of success is also decreasing in ;. Therefore,
the optimal distribution decreases 75 until the probability
of success for both types of queries are equal. Setting these
two query probabilities to be equal:

2 1

(1 — 7o) Inwy + w3 Inws
(45)

(1 — 7o) Inwy + my Inws B
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we derive that m; = mo, i.e. the uniform distribution is
optimal.

Generalizing to many groups (for increasing, non-positive
functions F};(;)):

M
In Pr[success| ~ ln(ﬁ)wjirﬂﬂ_1 [In w;) (46)
no
Ty
N B @7)
Zi]\il iy In W;
_ UE; (48)

Fy(mj) + mjInw;

As the logarithm is increasing, we can compute the deriva-
tive of the RHS to understand the optimal setting of ;.
Doing so, we find that the derivative is #j(RHS) =

(WFfrEZ):;J(i’(Z)))Q < 0. Again, the probability of suc-
g W =L T

cess is decreasing in ;. Further, the denominator is the
same regardless of where the query’s bits are flipped (i.e.
which group is chosen to flip). So, for a fixed distribution,
the log of the probability of success is proportional to the
probability of choosing the group with bits flipped for that
query. In this independent case, there are essentially M pos-
sible types of queries - one with bits flipped entirely in each
one of the groups. Suppose that for a chosen distribution,
the probability of success is higher for queries in one group
versus another. Then, by the derivative argument above, we
can increase the success probability for the worse query by
moving weight from that group to the other. Therefore, any
distribution that has this inequity is not optimal. Therefore,
the optimal distribution is such that for all j, k € [M]:

Tk 4
7 = =37 J (49)
Doy milnw, YT mlnw;
Hence, the uniform distribution is again optimal. O

F. Additional Experiments

We performed a variety of additional experiments to demon-
strate our algorithm’s effectiveness. (1) We performed a set
of experiments on the entire MNIST dataset and a 100,000-
point subset of the ImageNet dataset, (2) we measured the
query times of our algorithm on all subsets. All experiments
show our algorithm can perform much better than uniform
LSH forests.

For both large datasets, we set the stopping bucket size to
10 and c=1, while MNIST used radius » = 3 and ImageNet
used » = 2. For ImageNet, we performed experiments
on the first 100k images of the 8x8 training subset of the
dataset. The images were binarized with pixel threshold
value of 70, while MNIST was binarized with threshold
1. The MWU parameter beta was set to 0.4 in all experi-
ments on these datasets, and an aggressive update method

was used where the optimization returned the most recent
hash strategy rather than the average. We also note that for
the small subsets, the query strategies were chosen against
the average response of the hash players and were played
simultaneously, although this does not affect the solution of
the game, and may only slow down convergence.

For experiments in both large datasets, measurements were
collected from 8 trees formed by our optimized algorithm
and compared to uniform LSH trees. We sampled hash
functions uniformly until the buckets were of size 700 for
MNIST and of size 1000 for ImageNet, then we ran the
game with exponent p = 1 for 500 and 2000 rounds on
MNIST and ImageNet, respectively. Two queries were gen-
erated at random for each point of the datasets, meaning
120,000 queries were measured for MNIST and 200,000
queries were measured for ImageNet in total. It is straight-
forward to obtain additional improvement in recall/query-
times by performing the optimizations for more rounds and
by optimizing at all nodes in the tree (rather than at just
those with fewer than 700 points).

On querying, we measured the time until the near neighbor
was returned for a given query/NN pair using the “time”
library for Python. We measured the average and bottom
tenth percentile of success probabilities, which is the aver-
age recall over the bottom tenth of success probabilities for
random queries. This is a proxy for the minimum success
probability, as for some trees the success probability was too
small to be measured. This occurs because we are not using
pivots in our experiments. Our algorithms has far shorter
query times for both datasets and all subsets, particularly
for the queries with the largest query times (Table 3, 4).
Improvements in query times are consistent with improve-
ments in the recall of our algorithm over uniform hashing
(Table 5).

In Figure 1, we extracted the hash distributions over coordi-
nates produced by our optimization at the root of the LSH
trees on the MNIST subset. After scaling the distribution by
the inverse of the mean and centering the scaled distribution
to have mean 0, we constructed heatmaps for two sets of
optimization parameters. The heatmaps show that the opti-
mized distributions place more weight on the coordinates
in the center of the image (where there is more variation
among images).
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Table 3. Query Times on Random Queries to Small Subsets.

Dataset  Parameters Maximum (s)  Average (s x 107?)
IN Uniform 0.0013 1.32

IN p=1,T = 3000, 5 =0.68 0.00046 0.737

MNIST  Uniform 0.0012 4.03

MNIST p=1,T = 3000, 8 =0.68 0.00048 1.10

MNIST p=0.83,T = 3000, 58=0.68 0.0011 1.29

MNIST p=0.25,7T7 = 1600, 3 = 0.88 0.0033 2.15

MNIST p=0.1,7 =1600, 8 = 0.88 0.0027 3.06

Table 4. Query Times on Random Queries to Large Datasets.

Dataset  Hash Distribution ~ 90th Percentile (s x 10™%)  Average (s x 107%)
IN Uniform 491 2.43

IN Alg. 3.65 2.02

MNIST  Uniform 13.27 7.84

MNIST Alg. 8.66 5.24

Table 5. Success Probability on Random Queries to Large Datasets.

Dataset Hash Distribution ~ Average Bottom 10%  Average

IN Uniform 0.117 0.68
IN Alg. 0.127 0.73
MNIST Uniform 0.51 0.830

MNIST Alg. 0.66 0.893
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G. Implementation Details

A link to the experiment code repository can be found at (https://anonymous.4open.science/r/instance-optimal-Ish-
51DF/README.md). The experiments were implemented in C++, and compiled with g++-5 using the -march=native and
-O3 flags for improved runtime. In addition, our implementation was highly parallelized using OpenMP pre-proccessor
directives. Efficient matrix/vector computation was done with the Eigen library for C++ (Guennebaud et al., 2010). The
experiments were performed on an Intel(R) Xeon(R) W-2155 CPU @ 3.30GHz with 65 GB of RAM (all 20 physical cores
were used for the experiment). Query times for the small subsets were measured on a 2.3 GHz Dual-Core Intel Core i5 with
8GB of RAM. The runtime to generate 110 trees with 3000 game rounds varied, but took on average 40 hours to complete
with these hardware specs.



