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Abstract
We consider the problem of learning a nonlinear dynamical system governed by a nonlinear
state equation ht+1 = φ(ht,ut;θ) +wt. Here θ is the unknown system dynamics, ht is the
state, ut is the input and wt is the additive noise vector. We study gradient based algorithms
to learn the system dynamics θ from samples obtained from a single finite trajectory. If the
system is run by a stabilizing input policy, then using a mixing-time argument we show
that temporally-dependent samples can be approximated by i.i.d. samples. We then develop
new guarantees for the uniform convergence of the gradient of the empirical loss induced by
these i.i.d. samples. Unlike existing works, our bounds are noise sensitive which allows for
learning the ground-truth dynamics with high accuracy and small sample complexity. When
combined, our results facilitate efficient learning of a broader class of nonlinear dynamical
systems as compared to the prior works. We specialize our guarantees to entrywise nonlinear
activations and verify our theory in various numerical experiments.
Keywords: nonlinear dynamical systems, stability, uniform convergence, learning from
single trajectory

1. Introduction

Dynamical systems are fundamental for modeling a wide range of problems appearing in
complex physical processes, cyber-physical systems and machine learning. Contemporary
neural network models for processing sequential data, such as recurrent networks and LSTMs,
can be interpreted as nonlinear dynamical systems and establish state-of-the-art performance
in machine translation and speech recognition (Bahdanau et al., 2015; Graves et al., 2013;
Li et al., 2013; Mikolov et al., 2010; Sak et al., 2014). Classical optimal control literature
heavily relies on modeling the underlying system as a linear dynamical system (LDS) to
synthesize control policies leading to elegant solutions such as PID controller and Kalman
filter (Åström and Hägglund, 1995; Ho and Kálmán, 1966; Welch and Bishop, 1995). In
many of these problems, we have to estimate or approximate the system dynamics from
data, either because the system is initially unknown or because it is time-varying. This is
alternatively known as the system identification problem which is the task of learning an
unknown system from the time series of its trajectories (Åström and Eykhoff, 1971; Chen
et al., 1990; Hochreiter and Schmidhuber, 1997; Ljung, 1998; Pintelon and Schoukens, 2012).
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In this paper, we aim to learn the dynamics of nonlinear systems which are governed by
following state equation,

ht+1 = φ(ht,ut;θ⋆) +wt, (1.1)

where θ⋆ ∈ Rd is the system dynamics, ht ∈ Rn is the state vector, ut ∈ Rp is the input
and wt ∈ Rn is the additive noise at time t. Our goal is understanding the statistical and
computational efficiency of gradient based algorithms for learning the system dynamics from
a single finite trajectory.

Contributions: Although system identification is classically well-studied, obtaining non-
asymptotic sample complexity bounds is challenging especially when it comes to nonlinear
systems. We address this challenge by connecting the system identification problem (which
has temporally dependent samples) to classical statistical learning setup where data is
independent and identically distributed (see Figure 1). We leverage this connection to show
that gradient descent achieves stellar computational and statistical guarantees for nonlinear
system identification. We establish this under a novel one-point convexity and smoothness
(OPCS) condition (see Assumption 3) which allows for non-convex optimization landscape.
Thus, our central contribution is providing an analysis framework for system identification
through first-order methods with finite sample estimation guarantees. Specifically, we make
the following contributions.

● Learning nonlinear systems via gradient descent: We work with (properly
defined) stable nonlinear systems and use stability in conjunction with mixing-time arguments
to address the problem of learning the system dynamics from a single finite trajectory. Under
proper and intuitive assumptions, this leads to sample complexity and convergence guarantees
for learning nonlinear dynamical systems (1.1) via gradient descent. Unlike the related
results on nonlinear systems by Bahmani and Romberg (2020); Oymak (2019), our analysis
accounts for the noise, achieves optimal statistical error rates in terms of the dimension d
and the sample size N , and applies to a broader class of nonlinear systems.

● Accurate statistical learning: Of independent interest, we develop new statistical
guarantees for the uniform convergence of the gradients of the empirical loss. Improving
over earlier works of Foster et al. (2018); Mei et al. (2018), our bounds properly capture the
noise dependence and allow for learning the ground-truth dynamics with high accuracy and
small sample complexity (see §3 for further discussion).

● Applications: We specialize our results by establishing theoretical guarantees for
learning linear (ht+1 = A⋆ht +B⋆ut +wt) as well as nonlinear (ht+1 = φ(Θ⋆ht) + zt +wt)
dynamical systems via gradient descent which highlight the optimality of our guarantees.
We verify our theoretical results through various numerical experiments with nonlinear
activations.

● Broader implications: Finally, while we focus on nonlinear state equations, our
technical ideas (e.g., combining mixing-time and optimization landscape arguments, see
Assumptions 1 and 3) have implications for richer class of systems. For instance, nonlinear
ARX form ht = φ(A1ht−1 + A2ht−2 + ⋯ + Amht−m) + wt−1 is a powerful generalization
of the state equations that we investigate. Koopman lifting provides another class of
nonlinear problems. We anticipate that our framework (i.e., merging one-point convexity
and smoothness with mixing-time arguments to enable success of gradient descent) will also
find applications for these systems.
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Organization: We introduce the problem under consideration in §2 and provide uniform
convergence guarantees for empirical gradients in §3. We relate the gradients of single
trajectory loss and multiple trajectory loss in §4. Our main results on learning nonlinear
systems are presented in §5 and applied to two special cases in §6. §7 provides numerical
experiments to corroborate our theoretical results. §8 discusses the related works and §9
concludes the paper. Lastly, §10 presents the proofs of our main results.

Notations: We use boldface uppercase (lowercase) letters to denote matrices (vectors).
For a vector v, we denote its Euclidean norm by ∥v∥`2 . For a matrix M , ρ(M), ∥M∥

and ∥M∥F denote the spectral radius, spectral norm and Frobenius norm respectively.
c, c0, c1, . . . ,C,C0 denote positive absolute constants. Sd−1 denotes the unit sphere while
Bd(a, r) denotes the Euclidean ball of radius r, centered at a, in Rd. The normal distribution
is denoted by N(µ,σ2). For a random vector v, we denote its covariance matrix by Σ[v].
We use ≳ and ≲ for inequalities that hold up to a constant factor. We denote by a ∨ b, the
maximum of two scalars a and b. Similarly, a ∧ b denotes the minimum of the two scalars.
Given a number a, ⌊a⌋ denotes the largest integer less than or equal to a, whereas, ⌈a⌉
denotes the smallest integer greater than or equal to a.

2. Problem Setup

We assume the system is driven by inputs ut = π(ht) + zt, where π(⋅) is a fixed control
policy and zt is excitation for exploration. For statistical analysis, we assume the excitation
and noise are random, that is, (zt)t≥0

i.i.d.
∼ Dz and (wt)t≥0

i.i.d.
∼ Dw for some distributions Dz

and Dw. With our choice of inputs, the state equation (1.1) becomes,

ht+1 = φ(ht,π(ht) + zt;θ⋆) +wt ∶= φ̃(ht,zt;θ⋆) +wt, (2.1)

where φ̃ denotes the closed-loop nonlinear system. Throughout, we assume the nonlinear
functions φ(⋅, ⋅;θ) and φ̃(⋅, ⋅;θ) are differentiable in θ. For clarity of exposition, we will
not explicitly state this assumption when it is clear from the context. To estimate θ⋆ in a
non-asymptotic setting, we assume access to a finite trajectory (ht,zt)

T−1
t=0 generated by the

nonlinear system (2.1). We also assume access to a stabilizing control policy π(⋅). A special
case of (2.1) is a linear state equation with θ⋆ = [A⋆ B⋆], π(ht) = −Kht and

ht+1 = (A⋆ −B⋆K)ht +B⋆zt +wt, (2.2)

Towards estimating θ⋆, we formulate an empirical risk minimization (ERM) problem over
single finite trajectory as follows,

θ̂ = arg min
θ∈Rd

L̂(θ), subject to L̂(θ) ∶=
1

2(T −L)

T−1
∑
t=L

∥ht+1 − φ̃(ht,zt;θ)∥2
`2 , (2.3)

where L ≥ 1 is a churn period which is useful for simplifying the notation later on, as L will
also stand for the approximate mixing-time of the system. To solve (2.3), we investigate the
properties of the gradient descent algorithm, given by the following iterate

θτ+1 = θτ − η∇L̂(θτ), (2.4)
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where η > 0 is the fixed learning rate. ERM with i.i.d. samples is a fairly well-understood
topic in classical machine learning. However, samples obtained from a single trajectory of
a dynamical system are temporally dependent. For stable systems (see Def. 1), it can be
shown that this dependence decays exponentially over the time. Capitalizing on this, we
show that one can obtain almost i.i.d. samples from a given trajectory (ht,zt)

T−1
t=0 . This

will in turn allow us to leverage techniques developed for i.i.d. data to solve problems with
sequential data.

2.1 Assumptions on the System and the Inputs

We assume that the closed-loop system φ̃ is stable. Stability in linear dynamical systems is
connected to the spectral radius of the closed-loop system (Krauth et al., 2019; Simchowitz
et al., 2018). The definition below provides a natural generalization of stability to nonlinear
systems.

Definition 1 ((Cρ, ρ)-stability) Given excitation (zt)t≥0 and noise (wt)t≥0, denote the
state sequence (2.1) resulting from initial state h0 = α, (zτ)

t−1
τ=0 and (wτ)

t−1
τ=0 by ht(α). Let

Cρ ≥ 1 and ρ ∈ (0,1) be system related constants. We say that the closed loop system φ̃ is
(Cρ, ρ)-stable if, for all α, (zt)t≥0 and (wt)t≥0 triplets, we have

∥ht(α) −ht(0)∥`2 ≤ Cρρt∥α∥`2 . (2.5)

Note that, for a stable LDS (ρ(A⋆) < 1), as a consequence of Gelfand’s formula, there
exists Cρ ≥ 1 and ρ ∈ (ρ(A⋆),1) such that (Cρ, ρ)-stability holds. A concrete example of
nonlinear stable system is a contractive system where φ̃ is ρ-Lipschitz function of ht for
some ρ < 1. We remark that, our interest in this work is not verifying the stability of a
nonlinear system, but using stability of the closed-loop nonlinear system as an ingredient of
the learning process. Verifying stability of the nonlinear systems can be very challenging,
however, system analysis frameworks such as integral quadratic constraints (Megretski and
Rantzer, 1997) and sum-of-squares (Prajna et al., 2002) may provide informative bounds.

Assumption 1 (Stability) The closed-loop system φ̃ is (Cρ, ρ)-stable for some ρ < 1.

Assumption 1 implies that the closed-loop system forgets a past state exponentially fast.
This is different from the usual notion of “exponential Lyapunov stability” which requires
the exponential convergence to a point in the state space. On the other hand, in the case
of (Cρ, ρ)-stability, the trajectories ht(α) and ht(0) do not have to converge, rather their
difference ∥ht(α) −ht(0)∥`2 exponentially converges to zero (assuming ∥α∥`2 is bounded).
To keep the exposition simple, we will also assume h0 = 0 throughout. For data driven
guarantees, we will make use of the following independence and boundedness assumptions
on excitation and noise.

Assumption 2 (Boundedness) There exist scalars B, cw, σ > 0, such that (zt)t≥0
i.i.d.
∼ Dz

and (wt)t≥0
i.i.d.
∼ Dw obey ∥φ̃(0,zt;θ⋆)∥`2 ≤ B

√
n and ∥wt∥`∞ ≤ cwσ for 0 ≤ t ≤ T − 1 with

probability at least 1 − p0 over the generation of data.
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2.2 Optimization Machinery

To concretely show how stability helps, we define the following loss function, obtained from
i.i.d. samples at time L − 1 and can be used as a proxy for E[L̂].

Definition 2 (Auxiliary Loss) Suppose h0 = 0. Let (zt)t≥0
i.i.d.
∼ Dz and (wt)t≥0

i.i.d.
∼ Dw.

The auxiliary loss is defined as the expected loss at timestamp L − 1, that is,

LD(θ) = E[L(θ, (hL,hL−1,zL−1))],

where L(θ, (hL,hL−1,zL−1)) ∶=
1
2
∥hL − φ̃(hL−1,zL−1;θ)∥2

`2 .
(2.6)

Our generic system identification results via gradient descent will utilize the one-point
convexity hypothesis. This is a special case of Polyak-Łojasiewicz inequality and provides a
generalization of strong convexity to nonconvex functions.

Assumption 3 (One-point convexity & smoothness (OPCS)) There exist scalars β ≥

α > 0, r > 0 such that, for all θ ∈ Bd(θ⋆, r), the auxiliary loss LD(θ) of Definition 2 satisfies

⟨θ − θ⋆,∇LD(θ)⟩ ≥ α∥θ − θ⋆∥2
`2 , (2.7)

∥∇LD(θ)∥`2 ≤ β∥θ − θ⋆∥`2 . (2.8)

We emphasize that, as opposed to traditional strong convexity and smoothness assump-
tions (Nesterov, 2003), Assumption 3 is fairly mild, as it only assumes strong convexity
and smoothness with respect to θ⋆. One-point convexity (OPC) is also known as restricted
secant inequality and implies Polyak-Lojasiewicz condition (Karimi et al., 2016). To our
knowledge, ours is the first work that use OPC with one-point smoothness (rather than global
smoothness). A concrete example of a nonlinear system satisfying OPCS is the nonlinear
state equation ht+1 = φ(Θ⋆ht)+zt+wt, with γ-increasing activation (i.e. φ′(x) ≥ γ > 0 for all
x ∈ R) and Gaussian excitation/noise (see Lemma 30). We expect many activations including
ReLU to work as well. The main challenge is verifying OPCS of the population loss. For
ReLU, Lemma 6.1 of Kalan et al. (2019) shows this property for i.i.d. Gaussian features.
Extending this to subgaussian features would yield the ReLU result. The OPCS assumption
can also be verified for nonlinear ARX ht = φ(A1ht−1 +A2ht−2 + ⋯ +Amht−m) +wt−1 when
the joint feature vector [h⊺L−1 h

⊺
L−2 ⋯ h⊺L−m]⊺ has favorable covariance properties (e.g.,

positive definiteness) and φ is γ-increasing.
To proceed, if the gradient of L̂(θ) is close to that of LD(θ) and Assumption 3 holds,

gradient descent converges to the population minimum up to a statistical error governed by
the noise level. The following statement summarizes our main results in Theorems 12 and
13. Below ≲ subsumes the logarithmic factors involving the problem variables.

Theorem 3 (Main result – informal) Suppose we run gradient descent algorithm (2.4)
to solve the ERM problem (2.3). Suppose Assumptions 1 - 5 hold. Suppose r ≳ σ

α

√
d

T (1−ρ)
and T ≳ d

α2(1−ρ) . The following statements hold with high probability over the trajectory.

• Uniform convergence of gradient: For all θ ∈ Bd(θ⋆, r), ∇L̂(θ) satisfies

∥∇L̂(θ) − ∇LD(θ)∥`2 ≲ (σ + ∥θ − θ⋆∥`2)
√

d

T (1 − ρ)
(2.9)
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Figure 1: We learn nonlinear dynamical systems from a single trajectory by minimizing the empirical
loss L̂(θ). The idea is to split L̂(θ) as an average of L sub-trajectory losses as L̂(θ) =
1
L ∑

L−1
τ=0

ˆ̀
τ(θ), through shifting and sub-sampling. Observing that each sub-trajectory has

weakly dependent samples because of stability, we use a mixing time argument to show
that ∥∇ˆ̀

τ(θ) − ∇ˆ̀tr
τ (θ)∥`2 ≲ (σ + ∥θ − θ⋆∥`2)Cρρ

L−1, where ˆ̀tr
τ (θ) is the loss constructed

with finite i.i.d. samples (§4). Next, we show the uniform convergence of the empirical
gradient as ∥∇ˆ̀tr

τ (θ) − ∇LD(θ)∥`2 ≲ (σ + ∥θ − θ⋆∥`2)
√
d/N , where LD(θ) = E[ˆ̀tr

τ (θ)] is
the population loss (§3). Finally, we combine these with the local one-point convexity of
the population loss to get our main results (§5).

• Convergence of gradient descent: Set the learning rate η = α/(16β2) and fix
θ0 ∈ B

d(θ⋆, r). All gradient descent iterates θτ on L̂(θ) satisfy

∥θτ − θ⋆∥`2 ≲ (1 −
α2

128β2 )
τ
∥θ0 − θ⋆∥`2 +

σ

α

√
d

T (1 − ρ)
. (2.10)

Observe that, our bounds exhibit optimal scaling in terms of the dimension d, the noise
level σ and the trajectory length T . However, they degrade when stability parameter
ρ approaches to one. Also note that this behavior is common in stability/mixing-based
learning of dynamical systems (Boffi et al., 2021; Foster et al., 2020; Oymak, 2018). We
remark that finite time identification of nonlinear dynamical systems without using stability
arguments or establishing milder ρ-dependence is an exciting direction. Finally, observe that
the computational convergence rate of (2.10) is 1 − α2

128β2 . This rate can be strenghtened to
1 −O(α/β) if one assumes the stronger condition of global β-smoothness of LD(θ) through
existing arguments (Karimi et al., 2016). In contrast, we enforce weaker local one-point
smoothness at the expense of β/α (condition number) times more computation.

In the following sections, we provide our formal results on the uniform convergence of
gradient of the empirical loss L̂(θ) and the identification of nonlinear dynamical systems (2.1).

3. Accurate Statistical Learning with Gradient Descent

To provide finite sample guarantees, we need to characterize the properties of the empirical
loss and its gradients. Towards this goal, this section establishes new gradient based statistical
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learning guarantees. Let S = (xi)
N
i=1 be N i.i.d. samples from a distribution D and L(⋅,x) be

a loss function that admits a sample x and outputs the corresponding loss. When learning
the nonlinear system (2.1), the sample x corresponds to the variables (hL,hL−1,zL−1) triple
and the loss function L(θ,x) is given by (2.6). Define the empirical and population losses,

L̂S(θ) =
1
N

N

∑
i=1
L(θ,xi) and LD(θ) = E[L(θ,x)]. (3.1)

Let θ⋆ denotes the population minimizer which we wish to estimate via gradient descent.
Recent works by Foster et al. (2018); Mei et al. (2018) provide finite sample learning
guarantees via uniform convergence of the empirical gradient over a local ball Bd(θ⋆, r).
However these works suffer from two drawbacks which we address here. To contrast the
results, let us consider the following toy regression problem which is a simplification of our
original task (2.3).

Generalized linear model: Suppose labels yi are generated as, yi = φ(z⊺i θ⋆) +wi for
some activation φ ∶ R → R where zi ∈ Rd is the input, wi is the noise and i = 1, . . . ,N .
Assume N ≳ d, zi is zero-mean subgaussian vector with identity covariance and wi has
variance σ2. Consider the quadratic loss

L̂Q(θ) =
1

2N
N

∑
i=1

(yi − φ(z⊺i θ))
2. (3.2)

• The role of noise: Suppose φ is identity and the problem is purely linear regression.
Then, gradient descent estimator will achieve statistical accuracy ∥θ̂ − θ⋆∥`2 ≲ σ

√
d/N .

Foster et al. (2018); Mei et al. (2018) yield the coarser bound ∥θ̂ − θ⋆∥`2 ≲ (σ+rC)
√
d/N

for some scalars r,C > 0 coming from the uniform convergence of the empirical gradient
over a local ball B(θ⋆, r).

• Activation φ: Both Foster et al. (2018); Mei et al. (2018) can only handle bounded
activation φ. Foster et al. (2018) uses boundedness to control Rademacher complexity,
whereas, Mei et al. (2018) requires bounded activation to make sure that the gradient
of the loss is subgaussian. On the other hand, even for pure linear regression, gradients
are subexponential rather than subgaussian (as it involves ziz⊺i ).

Below we address both of these issues. We restrict our attention to low-dimensional setup,
however we expect the results to extend to sparsity/`1 constraints in a straightforward
fashion by adjusting covering numbers. In a similar spirit to Mei et al. (2018), we study the
loss landscape over a local ball Bd(θ⋆, r). We first determine the conditions under which
empirical and population gradients are close.

Assumption 4 (Lipschitz gradients) There exist numbers LD, p0 > 0 such that with
probability at least 1 − p0 over the generation of data, for all pairs θ,θ′ ∈ Bd(θ⋆, r), the
gradients of empirical and population losses in (3.1) satisfy

max(∥∇LD(θ) − ∇LD(θ′)∥`2 , ∥∇L̂S(θ) − ∇L̂S(θ′)∥`2) ≤ LD∥θ − θ′∥`2 . (3.3)

Observe that, by definition, the Lipschitz constant obeys LD ≥ β where β is the one-point
smoothness parameter in Assumption 3. However, LD is allowed be much larger than β.
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Specifically, LD will only appear logarithmically in our bounds, hence, we can tolerate very
large values of LD. On the other hand β controls the convergence rate of gradient descent,
hence, it must not be very large, compared to α, to guarantee fast linear convergence.

Assumption 5 (Subexponential gradient noise) There exist scalars K,σ0 > 0 such
that, given x ∼ D, at any point θ, the subexponential norm of the gradient of single sample
loss L in (3.1) is upper bounded as a function of the noise level σ0 and distance to the
population minimizer via

∥∇L(θ,x) − E[∇L(θ,x)]∥ψ1 ≤ σ0 +K∥θ − θ⋆∥`2 , (3.4)

where the subexponential norm of a random variable X is defined as ∥X∥ψ1 ∶= supk≥1
(E[∣X ∣k])1/k

k
and that of a random vector x ∈ Rn is defined as ∥x∥ψ1 ∶= supv∈Sn−1∥v⊺x∥ψ1

.

This assumption is an improvement over the work of Mei et al. (2018) and will help us
distinguish the gradient noise due to optimization (K∥θ − θ⋆∥`2) and due to noise σ0 at the
population minima.

As an example, consider the quadratic loss in (3.2). In the case of linear regression (φ(x) =
x), it is easy to show that Assumption 4 holds with LD = 2 and p0 = 2 exp(−100d), whereas,
Assumption 5 holds with K = c and σ0 = c0σ for some scalars c, c0 > 0. Moreover, in
Appendix A.2, we show that in the case of nonlinear state equations ht+1 = φ(Θ⋆ht) +

zt +wt, Assumptions 4 and 5 hold as long as φ has bounded first and second derivatives,
that is, ∣φ′(x)∣, ∣φ′′(x)∣ ≤ 1 for all x ∈ R. Specifically, using zt i.i.d.

∼ N(0,Ip) and wt
i.i.d.
∼

N(0, σ2In), if we bound the state covariance as Σ[ht] ⪯ β
2+In (see the proof of Lemma 33),

then Assumption 4 holds with LD = c((1 + σ)β2+n + ∥Θ⋆∥Fβ3+n3/2 log3/2(2T )) and p0 =

4T exp(−100n), whereas, Assumption 5 holds with K = cβ2+ and σ0 = cσβ+.
The next theorem establishes uniform concentration of the gradient as a function of the

noise level and the distance from the population minima. To keep the exposition clean, from
here on we set Clog = log(3(LDN/K + 1)).

Theorem 4 (Uniform convergence of gradient) Suppose the gradients of LD and L̂S
obey Assumptions 4 and 5. Then, there exists c0 > 0 such that, with probability at least
1 − p0 − log(Krσ0

) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇L̂S(θ) − ∇LD(θ)∥`2 ≤ c0(σ0 +K∥θ − θ⋆∥`2)Clog

√
d

N
. (3.5)

Proof sketch: Our proof technique uses peeling argument (Geer et al., 2000) to split
the Euclidean ball Bd(θ⋆, r) into P + 1 sets {Si}

P
i=0. Given a set Si ⊂ Bd(θ⋆, r) and the

associated radius ri, we pick an εi-covering of the set Si. We then apply Lemma D.7 of
Oymak (2018) (by specializing it to unit ball) together with a union bound over the elements
of P + 1 covers, to guarantee uniform convergence of the empirical gradient over the elements
of P + 1 covers. Combining this with Assumption 4, we guarantee a uniform convergence of
the empirical gradient to its population counterpart over all θ ∈ Bd(θ⋆, r).
Theorem 4 provides a refined control over the gradient quality in terms of the distance
∥θ − θ⋆∥`2 . The reason why Foster et al. (2018); Mei et al. (2018) are getting coarser
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dependence on the noise level as compared to ours is their assumption that the gradient
of the loss is subgaussian over all θ ∈ Bd(θ⋆, r) with subgaussian norm bounded by σ + rC,
that is, there is a universal upper bound on the subgaussian norm of the gradient of the loss
function over all θ ∈ Bd(θ⋆, r).

To show the uniform convergence of the empirical gradient, Mei et al. (2018) requires
the following assumptions on the gradient and the Hessian of the loss over all θ ∈ Bd(θ⋆, r):
(i) the gradient of the loss is subgaussian, (ii) the Hessian of the loss, evaluated on a unit
vector, is subexponential, and (iii) the Hessian of the population loss is bounded at one point.
Comparing (i) with Assumption 5, we observe that Assumption 5 is milder and is satisfied
by a broader class of loss functions as compared to (i). For example, even for pure linear
regression, the gradients are subexponential rather than subgaussian (as it involves ziz⊺i ).
On the other hand, our uniform convergence result requires Assumption 4 which might look
restrictive. However, observe that the Lipschitz constant only appears logarithmically in our
bounds, hence, Assumption 4 is fairly mild.

Going back to the original problem (2.3), observe that Theorem 4 bounds the impact
of finite samples. In the next section, we provide bounds on the impact of learning from a
single trajectory. Combining them relates the gradients of the auxiliary loss LD and the
finite trajectory loss L̂ which will help learning θ⋆ from finite data obtained from a single
trajectory.

4. Learning from a Single Trajectory

In this section we bound the impact of dependence in the data obtained from a single
trajectory. For this purpose we use perturbation-based techniques to relate the gradients of
the single trajectory loss L̂ and the multiple trajectory loss L̂tr (defined below). Before that,
we introduce a few more concepts and definitions.

Definition 5 (Truncated state vector (Oymak, 2019)) Consider the state equation
(2.1). Suppose φ̃(0,0;θ) = 0, h0 = 0. Given, t ≥ L > 0, for each state ht, we define its
fictional proxy ht,L by resetting ht−L = 0 but preserving the excitation zτ and noise wτ from
t − L to t − 1. Alternately, ht,L is obtained by driving the system with excitations z′τ and
additive noise w′τ until time t − 1, where

z′τ =
⎧⎪⎪
⎨
⎪⎪⎩

0 if τ < t −L

zτ else
, and w′τ =

⎧⎪⎪
⎨
⎪⎪⎩

0 if τ < t −L

wτ else
. (4.1)

We call the obtained state ht,L as the L-truncated (or simply truncated) state at time t.

The L-truncated state vector ht,L is identically distributed as hL. Hence, using truncation
argument we can obtain i.i.d. samples from a single trajectory which will be used to bound
the impact of dependence in the data. At its core our analysis uses a mixing time argument
based on contraction and is used in related works by Bahmani and Romberg (2020); Oymak
(2019). The difference between L-truncated and non-truncated state vectors is guaranteed
to be bounded as

∥ht −ht,L∥`2 ≤ Cρρ
L
∥ht−L∥`2 . (4.2)

9
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This directly follows from Definition 1 and asserts that the effect of past states decreases
exponentially with truncation length L. To tightly capture the effect of truncation, we also
bound the Euclidean norm of states ht as follows.

Lemma 6 (Bounded states) Suppose Assumptions 1 and 2 hold. Then, with probability
at least 1 − p0, we have ∥ht∥`2 ≤ β+

√
n for all 0 ≤ t ≤ T , where β+ ∶= Cρ(cwσ +B)/(1 − ρ).

Following this and (4.2), we can obtain weakly dependent sub-trajectories by properly
sub-sampling a single trajectory (ht,zt)

T−1
t=0 . For this purpose, we first define a sub-trajectory

and its truncation as follows.

Definition 7 (Truncated sub-trajectories (Oymak, 2019)) Let sampling period L ≥ 1
be an integer. Set the sub-trajectory length N = ⌊T−LL ⌋. We sub-sample the trajectory
(ht,zt)

T−1
t=0 at points τ +L, τ + 2L, . . . , τ +NL and truncate the states by L − 1 to get the τth

truncated sub-trajectory (h̄(i),z(i))Ni=1, defined as

(h̄(i),z(i)
) ∶= (hτ+iL,L−1,zτ+iL) for i = 1, . . . ,N (4.3)

where 0 ≤ τ ≤ L − 1 is a fixed offset.

For notational convenience, we also denote the noise at time τ + iL by w(i). The following
lemma states that the τth truncated sub-trajectory (h̄(i),z(i))Ni=1 has independent samples.

Lemma 8 (Independence) Suppose (zt)
∞
t=0

i.i.d.
∼ Dz and (wt)

∞
t=0

i.i.d.
∼ Dw. Then, the

τth truncated states (h̄(i))Ni=1 are all independent and are identically distributed as hL−1.
Moreover, (h̄(i))Ni=1, (z

(i))Ni=1, (w
(i))Ni=1 are all independent of each other.

For the purpose of analysis, we will define the loss restricted to a sub-trajectory and show
that each sub-trajectory can have favorable properties that facilitate learning.

Definition 9 (Truncated sub-trajectory loss) We define the truncated loss in terms of
truncated (sub-sampled) triplets (ȳ(i), h̄(i),z(i))Ni=1 ∶= (hτ+iL+1,L,hτ+iL,L−1,zτ+iL)Ni=1 as

ˆ̀tr
τ (θ) ∶=

1
2N

N

∑
i=1

∥ȳ(i)
− φ̃(h̄(i),z(i);θ)∥2

`2 . (4.4)

Observe that the triplets (ȳ(i), h̄(i),z(i))Ni=1 are independent and identically distributed
as (hL,hL−1,zL−1). Therefore, we have LD(θ) = E[ˆ̀tr

τ (θ)], that is, ˆ̀tr
τ is a finite sample

approximation of LD and we will use results from Section 3 to bound the Euclidean distance
between them. Before, stating our results on uniform convergence of empirical losses, we
want to demonstrate the core idea regarding stability. For this purpose, we define the
truncated loss which is truncated version of the empirical loss (2.3).

Definition 10 (Truncated loss) Let ht+1,L = φ̃(ht,L−1,zt;θ⋆) +wt. We define the trun-
cated (empirical) risk as

L̂
tr
(θ) ∶=

1
2(T −L)

T−1
∑
t=L

∥ht+1,L − φ̃(ht,L−1,zt;θ)∥2
`2 =

1
L

L−1
∑
τ=0

ˆ̀tr
τ (θ). (4.5)

10
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Let H be the convex hull of all states ht and Z be the convex hull of all the inputs zt such
that Assumptions 1 and 2 are valid. As a regularity condition, we require the problem to
behave nicely over state-excitation pairs (h,z) ⊂ H ×Z. Throughout, φ̃k denotes the scalar
function associated to the kth entry of φ̃.

The following theorem states that, in the neighborhood of θ⋆, the empirical risk L̂ behaves
like the truncated risk L̂tr, when the approximate mixing-time L is chosen sufficiently large.

Theorem 11 (Small impact of truncation) Consider the state equation (2.1). Suppose
Assumptions 1 and 2 hold. Suppose there exists r > 0 such that, for all θ ∈ Bd(θ⋆, r)
and for all (h,z) ⊂ H × Z, we have that ∥∇hφ̃(h,z;θ)∥ ≤ Bφ̃, ∥∇θφ̃k(h,z;θ)∥`2 ≤ Cφ̃ and
∥∇h∇θφ̃k(h,z;θ)∥ ≤Dφ̃ for some scalars Bφ̃,Cφ̃,Dφ̃ > 0 and 1 ≤ k ≤ n. Let β+ > 0 be as in
Lemma 6. Then, with probability at least 1 − p0, for all θ ∈ Bd(θ⋆, r), we have

∣L̂(θ) − L̂
tr
(θ)∣ ≤ 2nβ+CρρL−1Bφ̃(cwσ +Cφ̃∥θ − θ⋆∥`2), (4.6)

∥∇L̂(θ) − ∇L̂
tr
(θ)∥`2 ≤ 2nβ+CρρL−1Dφ̃(cwσ +Cφ̃∥θ − θ⋆∥`2). (4.7)

Proof sketch: To prove Theorem 11, we use the Mean-value Theorem together with
Assumptions 1 and 2. First, using (2.3) and (4.5), we obtain

∣L̂(θ) − L̂
tr
(θ)∣ ≤

1
2

max
L≤t≤(T−1)

∣∥φ̃(ht,zt;θ⋆) +wt − φ̃(ht,zt;θ)∥2
`2

− ∥φ̃(ht,L−1,zt;θ⋆) +wt − φ̃(ht,L−1,zt;θ)∥2
`2 ∣. (4.8)

Suppose, the maximum is achieved at (h, h̄,z,w) (where h̄ is the truncated state). Then,
we use the identity a2 − b2 = (a + b)(a − b) to upper bound the difference ∣L̂(θ) − L̂tr(θ)∣
as a product of two terms ∣a + b∣ and ∣a − b∣ with a ∶= ∥φ̃(h,z;θ⋆) +w − φ̃(h,z;θ)∥`2 and
b ∶= ∥φ̃(h̄,z;θ⋆) +w − φ̃(h̄,z;θ)∥`2 . We upper bound the term ∣a + b∣ by bounding each
quantity a and b using the Mean-value Theorem together with Assumption 2. Similarly,
the term ∣a − b∣ is upper bounded by first applying triangle inequality and then using the
Mean-value Theorem together with Assumptions 1 and 2 (to bound the difference ∥h − h̄∥`2).
Combining the two bounds gives us the statement (4.6) of the Theorem. A similar proof
technique is used to upper bound the gradient distance ∥∇L̂(θ) − ∇L̂tr(θ)∥`2 .
Combining Theorems 4 and 11 allows us to upper bound the Euclidean distance between
the gradients of the empirical loss L̂(θ) and the auxiliary loss LD(θ) which is the topic of
the next section.

5. Main Results

5.1 Non-asymptotic Identification of Nonlinear Systems

In this section, we provide our main results on statistical and convergence guarantees of
gradient descent for learning nonlinear dynamical systems, using finite samples generated
from a single trajectory. Before stating our main result on non-asymptotic identification
of nonlinear systems, we state a theorem to bound the Euclidean distance between the
gradients the empirical loss L̂(θ) and the auxiliary loss LD(θ).

11
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Theorem 12 (Uniform convergence of gradient) Fix r > 0. Suppose Assumptions 1
and 2 on the system and Assumptions 4 and 5 on the Auxiliary Loss hold. Also suppose for all
θ ∈ Bd(θ⋆, r) and (h,z) ⊂ H ×Z, we have ∥∇θφ̃k(h,z;θ)∥`2 ≤ Cφ̃ and ∥∇h∇θφ̃k(h,z;θ)∥ ≤
Dφ̃ for all 1 ≤ k ≤ n for some scalars Cφ̃,Dφ̃ > 0. Define Kφ̃ ∶= (2/c0)β+Dφ̃(cwσ/σ0 ∨Cφ̃/K).
Let β+ > 0 be as in Lemma 6 and N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CρKφ̃n

√
N/d)

1 − ρ
⌉. (5.1)

Then, with probability at least 1 − 2Lp0 −L log(Krσ0
) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇L̂(θ) − ∇LD(θ)∥`2 ≤ 2c0(σ0 +K∥θ − θ⋆∥`2)Clog

√
d

N
. (5.2)

Proof sketch: Theorem 12 can be proved by combining the results of Theorems 4 and
11. The idea is to split the truncated loss L̂tr (Def. 10) as an average of L truncated
subtrajectory losses ˆ̀tr

τ (Def. 9) as: L̂tr(θ) = 1
L ∑

L−1
τ=0

ˆ̀tr
τ (θ). Recall that LD(θ) = E[ˆ̀tr

τ (θ)].
Then, we use Theorem 4 with a union bound over all 0 ≤ τ ≤ L − 1 to upper bound
∥∇ˆ̀tr

τ (θ) − ∇LD(θ)∥`2 which is used to show the uniform convergence of the truncated
loss L̂tr as: ∥∇L̂tr(θ) − ∇LD(θ)∥`2 ≤ 1

L ∑
L−1
τ=0 ∥∇ˆ̀tr

τ (θ) − ∇LD(θ)∥`2 . Combining this with
Theorem 11 and picking L via (5.1), we get the statement of the theorem.
Observe that Kφ̃ depends on the system related constants and the noise level. For example,
for a linear dynamical system (2.2), we can show that Kφ̃ = c

√
n + p. Note that, if we

choose N ≳ K2C2
logd/α

2 in Theorem 12, we get ∥∇L̂(θ) − ∇LD(θ)∥`2 ≲ σ0Clog
√
d/N +

(α/2)∥θ − θ⋆∥`2 . Combining this result with Assumption 3 gives our final result on non-
asymptotic identification of nonlinear dynamical systems from a single trajectory.

Theorem 13 (Non-asymptotic identification) Consider the setup of Theorem 12. Also
suppose the Auxiliary loss satisfies Assumption 3. Let N = ⌊(T −L)/L⌋, where we pick L as in
Theorem 12. Suppose N ≳ K2C2

logd/α
2. Given r > 0, set learning rate η = α/(16β2) and pick

θ0 ∈ B
d(θ⋆, r). Assuming σ0 ≲ rK, with probability at least 1 − 2Lp0 −L log(Krσ0

) exp(−100d),
all gradient descent iterates θτ on L̂ satisfy

∥θτ − θ⋆∥`2 ≤ (1 −
α2

128β2 )
τ
∥θ0 − θ⋆∥`2 +

cσ0
α
Clog

√
d

N
. (5.3)

Proof sketch: To prove Theorem 13, we first show that, when (i) the auxiliary loss LD
satisfies one-point convexity and smoothness (Assumption 3), (ii) for all θ ∈ Bd(θ⋆, r), ∇L̂

satisfies ∥∇L̂(θ) − ∇LD(θ)∥`2 ≤ ν +(α/2)∥θ − θ⋆∥`2 , and (iii) r ≥ 5ν/α; then, setting learning
rate η = α/(16β2) and fixing θ0 ∈ Bd(θ⋆, r), all gradient descent iterates θτ on L̂ satisfy
∥θτ − θ⋆∥`2 ≤ (1 − α2

128β2 )
τ
∥θ0 − θ⋆∥`2 + 5ν

α . Combining this with Theorem 12, we get the
desired result. Specifically, we use Theorem 12 with N ≳ K2C2

logd/α
2, to get the gradient

convergence in the form of (ii) with ν = cσ0Clog

√
d
N . Plugging this back to the gradient

descent convergence result established above, we get the statement of the theorem.

12
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Observe that, Theorem 13 requires O(d) samples to learn the dynamics θ⋆ ∈ Rd, hence, our
sample complexity captures the correct dependence on the dimension of unknown system
dynamics. Furthermore, it achieves σ

√
d/N error rate, which is optimal in both d and N .

Recall that the gradient noise σ0 is a function of the process noise σ, and role of σ will
be more clear in § 6. We remark that while this theorem provides strong dependence, the
results can be further refined when the number of states n is large since each sample in
(2.1) provides n equations. For example, we can accomplish better sample complexity for
separable dynamical systems (see §5.2) which is the topic of next section.

Lastly, observe that L is proportional to 1/(1 − ρ). As a result, our sample complexity
bound degrades with stability. In the extreme case, when ρ = 1, the approximate mixing
time L goes to infinity, and our analysis does not hold. This has been previously observed
in stability/mixing-based learning of nonlinear dynamical systems (Boffi et al., 2021; Foster
et al., 2020; Oymak, 2019). In contrast, it is well-known that this dependency (on ρ(A⋆))
can be avoided for learning linear dynamical systems (Simchowitz et al., 2018). Recently,
Jain et al. (2021) showed, under a strong invertibility condition, that dependency on the
mixing time can be avoided for the generalized linear models ht+1 = φ(A⋆ht) +wt. This
leaves open the question of whether learning without mixing is possible in situations beyond
the generalized linear models.

5.2 Separable Dynamical Systems

Suppose now that the nonlinear dynamical system is separable, that is, the nonlinear state
equation (2.1) can be split into n state updates via

ht+1[k] = φ̃k(ht,zt;θ⋆k) +wt[k], for 1 ≤ k ≤ n, (5.4)

where ht[k] and wt[k] denote the kth entry of ht and wt respectively while φ̃k denotes
the scalar function associated to the kth entry of φ̃. The overall system is given by the
concatenation θ⋆ = [θ⋆⊺1 ⋯ θ⋆⊺n ]⊺. For simplicity, let us assume θ⋆k ∈ Rd̄, where d̄ = d/n. In
the case of separable dynamical systems, the empirical loss in (2.3) is alternately given by,

L̂(θ) =
n

∑
k=1
L̂k(θk) where L̂k(θk) ∶=

1
2(T −L)

T−1
∑
t=L

(ht+1[k] − φ̃k(ht,zt;θk))2. (5.5)

As before, we aim to learn the system dynamics θ⋆ via gradient descent. The gradient of
the empirical loss simplifies to ∇L̂(θ) = [∇L̂1(θ1)

⊺ ⋯ ∇L̂n(θn)
⊺]⊺. From this, we observe

that learning θ⋆ via (2.3) is equivalent to learning each of its components θ⋆k by solving n
separate ERM problems in Rd̄. Denoting θ̂ to be the solution of the ERM problem (2.3),
we have the following equivalence: θ̂ ≡ [θ̂⊺1 ⋯ θ̂⊺n]⊺, where θ̂k ∈ Rd̄ is the solution to the
following minimization problem,

θ̂k = arg min
θk∈Rd̄

L̂k(θk). (5.6)

Similarly global iterations (2.4) follows the iterations of the subproblems, that is, the GD
iterate (2.4) implies θ(τ+1)

k = θ
(τ)
k − η∇L̂k(θ

(τ)
k ). Before, stating our main result on learning

13
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separable nonlinear dynamical systems, we will show how the Auxiliary loss LD and its finite
sample approximation L̂S can be split into the sum of n losses as follows,

L̂S(θ) =
n

∑
k=1
L̂k,S(θk) where L̂k,S(θk) =

1
N

N

∑
i=1
Lk(θk,xi),

LD(θ) =
n

∑
k=1
Lk,D(θk) where Lk,D(θk) = E[Lk(θk,x)],

(5.7)

where Lk(⋅,x) is a loss function that admits a sample x and outputs the corresponding loss.
When learning (5.4), the sample x corresponds to the variables (hL,hL−1,zL−1) triple and
the loss function Lk(θ,x) is given by

Lk(θk, (hL,hL−1,zL−1)) ∶=
1
2
(hL[k] − φ̃k(hL−1,zL−1;θk))2. (5.8)

The following theorem gives refined sample complexity for learning the dynamics of separable
nonlinear dynamical systems.

Theorem 14 (Refined complexity) Suppose Assumptions 1 and 2 on the system and
Assumptions 3, 4 and 5 on the Auxiliary Loss (5.7) hold for all 1 ≤ k ≤ n. Additionally,
suppose the nonlinear dynamical system is separable, that is, the nonlinear state equation
follows (5.4). Let Kφ̃ be as in Theorem 12. Let N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CρKφ̃n

√
N/d̄)

1 − ρ
⌉. (5.9)

Suppose N ≳ K2C2
logd̄/α

2. Given r > 0, set the learning rate η = α/(16β2) and pick
θ0 ∈ B

d(θ⋆, r). Assuming σ0 ≲ rK, with probability at least 1−2Lnp0−Ln log(Krσ0
) exp(−100d̄),

all gradient descent iterates θτ = [θ
(τ)⊺
1 ⋯ θ

(τ)⊺
n ]⊺ on L̂ satisfy

∥θ
(τ)
k − θ⋆k∥`2 ≤ (1 −

α2

128β2 )
τ
∥θ

(0)
k − θ⋆k∥`2 +

cσ0
α
Clog

√
d̄

N
for all 1 ≤ k ≤ n. (5.10)

Proof sketch: The proof technique for Theorem 14 is similar to that of Theorem 13.
First, using Assumptions 4 and 5 on the Auxiliary loss (5.7), we get an upper bound on
∥∇L̂k,S(θk) − ∇Lk,D(θk)∥`2 for all 1 ≤ k ≤ n. Next, using Assumption 1 and 2 on the system,
we upper bound ∥∇L̂k(θk) − ∇L̂tr

k (θk)∥`2 for all 1 ≤ k ≤ n. Combining these two bounds,
we get an upper bound on the gradient distance ∥∇L̂k(θk) − ∇Lk,D(θk)∥`2 for all 1 ≤ k ≤ n.
After picking N and L in the same way as we we did in Theorem 13, we use Theorem 3 with
Assumption 3 on the Auxiliary loss (5.7) and the derived bound on ∥∇L̂k(θk) − ∇Lk,D(θk)∥`2
to get the statement of the theorem.
Observe that, in the case of separable dynamical systems we require O(d̄) samples to learn
the dynamics θ⋆ ∈ Rd. We achieve refined sample complexity because each sample provides
n equations and d̄ = d/n. Common dynamical systems like linear dynamical systems and
nonlinear state equations are very structured and have separable state equations. Hence,
applying Theorem 14 to these systems results in accurate sample complexity and error rates
which is the topic of the next section.
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6. Applications

In this section, we apply our results from the previous section to learn two different dynamical
systems of the following form,

ht+1 = φ(A⋆ht) +B⋆zt +wt, (6.1)

where A⋆ ∈ Rn×n, B⋆ ∈ Rn×p are the unknown system dynamics, zt i.i.d.
∼ N(0,Ip) and

wt
i.i.d.
∼ N(0, σ2In). Specifically we learn the dynamics of the following dynamical systems:

(a) Standard linear dynamical systems (φ = In); and (b) Nonlinear state equations

ht+1 = φ(Θ⋆ht) + zt +wt, (6.2)

where the nonlinear function φ ∶ R→ R applies entry-wise on vector inputs. For the clarity
of exposition, we focus on stable systems and set the feedback policy π(ht) = 0. For linear
dynamical systems, this is equivalent to assuming ρ(A⋆) < 1. For nonlinear state equation,
we assume (Cρ, ρ)-stability holds according to Definition 1.

6.1 Linear Dynamical Systems

To simplify the notation, we define the following concatenated vector/matrix: xt ∶= [h⊺t z
⊺
t ]
⊺

and Θ⋆ ∶= [A⋆ B⋆]. Letting φ = In, the state update (6.1) is alternately given by: ht+1 =
Θ⋆xt +wt. To proceed, let θ⋆⊺k denotes the kth row of Θ⋆, then Θ⋆ ≡ [θ⋆1 ⋯ θ⋆n]⊺. Observe
that the standard linear dynamical system is separable as in (5.4). Therefore, given a
finite trajectory (ht,zt)

T−1
t=0 of the linear dynamical system (6.1) (φ = In), we construct the

empirical loss as follows,

L̂(Θ) =
n

∑
k=1
L̂k(θk) where L̂k(θk) ∶=

1
2(T −L)

T−1
∑
t=L

(ht+1[k] − θ⊺kxt)
2. (6.3)

Before stating our main result, we introduce a few more concepts to capture the properties
of gradient descent for learning the dynamics θ⋆k . Define the matrices,

Gt ∶= [At−1
⋆ B⋆ At−2

⋆ B⋆ ⋯ B⋆] and Ft ∶= [At−1
⋆ At−2

⋆ ⋯ In]. (6.4)

Then, the matrices GtG
⊺
t and FtF ⊺t are the finite time controllability Gramians for the

control and noise inputs, respectively. It is straightforward to see that the covariance matrix
of the concatenated vector xt satisfies the following bounds (see § A.1 for detail)

(1 ∧ λmin(GtG
⊺
t + σ2FtF

⊺
t ))In+p ⪯ Σ[xt] ⪯ (1 ∨ λmax(GtG

⊺
t + σ2FtF

⊺
t )In+p). (6.5)

Define, γ− ∶= 1 ∧ λmin(GL−1G
⊺
L−1 + σ2FL−1F

⊺
L−1), γ+ ∶= 1 ∨ λmax(GL−1G

⊺
L−1 + σ2FL−1F

⊺
L−1)

and β+ = 1 ∨ max1≤t≤T λmax(GtG
⊺
t + σ2FtF

⊺
t ). The following corollary of Theorem 14 states

our main result on the statistical and convergence guarantees of gradient descent for learning
the dynamics of linear dynamical systems.
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Corollary 15 Consider the system (6.1) with φ = In. Suppose ρ(A⋆) < 1. Let Cρ ≥ 1 and
ρ ∈ (ρ(A⋆),1) be scalars. Suppose zt i.i.d.

∼ N(0,Ip) and wt
i.i.d.
∼ N(0, σ2In). Let γ+ ≥ γ− > 0

be as defined in (6.5) and set κ = γ+/γ−. Let N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CCρβ+N(n + p)/γ+)

1 − ρ
⌉. (6.6)

Suppose N ≳ κ2 log2(6N +3)(n+p). Set the learning rate η = γ−/(16γ2+) and the initialization
Θ0 = 0. Assuming σ ≲ ∥Θ⋆∥F

√
γ+, with probability at least 1 − 4T exp(−100n) − Ln(4 +

log( ∥Θ⋆∥F√
γ+

σ )) exp(−100(n + p)), for all 1 ≤ k ≤ n, all gradient descent iterates Θτ =

[θ
(τ)
1 ⋯ θ

(τ)
n ]⊺ on L̂ satisfy

∥θ
(τ)
k − θ⋆k∥`2 ≤ (1 −

γ2−
128γ2+

)
τ
∥θ

(0)
k − θ⋆k∥`2 +

cσ
√
κ

√
γ−

log(6N + 3)
√
n + p

N
. (6.7)

Observe that Corollary 15 requires O(n + p) samples to learn the dynamics A⋆ ∈ Rn×n and
B⋆ ∈ Rn×p. The sample complexity captures the correct dependence on the dimension of
unknown system dynamics, because each sample provides n equations and there are n(n+p)
unknown parameters. Our sample complexity bound correctly depends on the condition num-
ber κ of the covariance matrix Σ[xL−1]. Moreover, γ− = 1 ∧ λmin(GL−1G

⊺
L−1 + σ2FL−1F

⊺
L−1)

is a non-decreasing function of the mixing time L. The intuition for this is that larger L
takes into account more long-term excitations to lower bound the size of covariance matrix
Σ[xL−1]. When the condition number of Σ[xt] is close to 1, the sample complexity of the
problem is lower and vice versa. Lastly, our statistical error rate σ

√
(n + p)/N is optimal

in the dimension (n + p) and sample size N . The logarithmic dependence on ∥Θ⋆∥F is an
artifact of our general framework. We believe it can be possibly removed with a more refined
concentration analysis.

6.2 Nonlinear State Equations

In this section, we apply Theorem 14 to learn the nonlinear state equation (6.2). Observe
that the nonlinear system (6.2) is separable because we assume that the nonlinear function
φ ∶ R→ R applies entry-wise on vector inputs. Let θ⋆⊺k denotes the kth row of Θ⋆. Given a
finite trajectory (ht+1,ht)

T−1
t=0 of (6.2), we construct the empirical loss as follows,

L̂(Θ) =
n

∑
k=1
L̂k(θk) where L̂k(θk) ∶=

1
2(T −L)

T−1
∑
t=L

(ht+1[k] − φ(θ⊺kht))
2. (6.8)

The following corollary of Theorem 14 states our main result on the statistical and convergence
guarantees of gradient descent for learning the nonlinear system (6.2).

Corollary 16 Suppose the nonlinear system (6.2) satisfies (Cρ, ρ)-stability according to
Def. 1. Suppose φ is γ-increasing (i.e. φ′(x) ≥ γ > 0 for all x ∈ R), has bounded first
and second derivatives, that is, ∣φ′∣, ∣φ′′∣ ≤ 1, and φ(0) = 0. Suppose zt i.i.d.

∼ N(0,In) and
wt

i.i.d.
∼ N(0, σ2In). Let N = ⌊(T −L)/L⌋, where we pick L via

L ≥ L0 where L0 = ⌈1 +
log(CCρ(1 + ∥Θ⋆∥FCρ(1 + σ)/(1 − ρ))Nn)

1 − ρ
⌉. (6.9)
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Setting Dlog = log(3(1 + σ)n + 3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2(2T )N/(1 − ρ) + 3), suppose N ≳
C4
ρ

γ4(1−ρ)4D
2
logn. Set the learning rate η =

γ2(1−ρ)4

32C4
ρ(1+σ)2n2 and pick the initialization Θ0 = 0.

Assuming σ ≲ ∥Θ⋆∥F , with probability at least 1 −Ln(4T + log( ∥Θ⋆∥FCρ(1+σ)
σ(1−ρ) )) exp(−100n),

for all 1 ≤ k ≤ n, all gradient descent iterates Θτ = [θ
(τ)
1 ⋯ θ

(τ)
n ]⊺ on L̂ satisfy

∥θ
(τ)
k − θ⋆k∥`2 ≤ (1 −

γ4(1 − ρ)4

512C4
ρn

2 )
τ
∥θ

(0)
k − θ⋆k∥`2 +

cσ

γ2(1 − ρ)
CρDlog

√
n

N
. (6.10)

We believe that the condition of γ-increasing φ can be relaxed and we expect many nonlinear
activations including ReLU to work. The main challenge is verifying one-point convexity of
the population loss when φ is ReLU. Lemma 6.1 of Kalan et al. (2019) shows this property
for i.i.d. Gaussian features. Extending this to subgaussian features, would yield the ReLU
result. Theorem 16 requires O(n) samples to learn the dynamics Θ⋆ ∈ Rn×n since each
sample gives n equations. The sample complexity bound depends on the condition number
of the covariance matrix Σ[ht], which can be shown to be bounded by C2

ρ/(1 − ρ)2 (see
Section A.2). Lastly, similar to the linear case, our statistical error rate σ

√
n/N is optimal

in the dimension n and sample size N .

Remark 17 (Probability of success) For our main results, instead of achieving 1 − δ
probability of success with variable δ ∈ (0, 1), we are content with achieving 1 −Klog exp(−cd)
probability of success for an absolute constant c > 0, where Klog is a fixed constant which
depends either logarithmically or linearly on the values of n,L,T,N,σ0,K etc. Please note
that, the probability of success in Theorems 12, 13 and 14 is coming from an application of
Lemma 18 in §10. We simply apply this lemma using a fixed choice of t = c0

√
d. This gives

the error bound Õ(σ0
√
d/N) and the probability of success 1 −Klog exp(−cd). One can also

obtain 1 − δ probability of success by setting t = c0
√

log(Klog/δ) (instead of t = c0
√
d), when

applying Lemma 18 in §10. This gives the error bound Õ(σ0

√
d log(Klog/δ)

N ). In this case,
one can easily see the trade-off between the probability of success and the error bound.

7. Numerical Experiments

Leakage ∥A⋆∥ ∥A′⋆∥ ρ(A⋆) ρ(A′⋆) sup∥x∥`2=1 ∥φ(A⋆x)∥`2 sup∥x∥`2=1 ∥φ(A′⋆x)∥`2
λ = 0.00 2.07 1.85 1.12 0.65 1.79 1.56
λ = 0.50 2.07 1.85 1.12 0.65 1.84 1.60
λ = 0.80 2.07 1.85 1.12 0.65 1.92 1.70
λ = 1.00 2.07 1.85 1.12 0.65 2.07 1.85

Table 1: This table lists the core properties of the (random) state matrix in our experiments. The
values are averaged over 1000 random trials. For linear systems, the state matrix A⋆ is
unstable however the closed-loop matrix A′⋆ is stable. We also list the nonlinear spectral
norms (i.e. sup∥x∥`2=1 ∥φ(A⋆x)∥`2) associated with A⋆ and A′⋆, as a function of different
leakage levels of leaky-ReLUs, which are all larger than 1. Despite this, experiments show
nonlinear systems are stable with A′⋆ (some even with A⋆). This indicates that Definition
1 is indeed applicable to a broad range of systems.
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Figure 2: We run gradient descent to learn nonlinear dynamical system governed by state
equation ht+1 = φ(Aht +But) +wt. We study the effect of nonlinearity, noise
variance and trajectory length on the convergence of gradient descent. The
empirical results verify what is predicted by our theory.

For our experiments, we choose unstable nonlinear dynamical systems (ρ(A) > 1) governed
by nonlinear state equation ht+1 = φ(Aht +But)+wt with state dimension n = 80 and input
dimension p = 50. A is generated with N(0,1) entries and scaled to have its largest 10
eigenvalues greater than 1. B is generated with i.i.d. N(0, 1/n) entries. For nonlinearity, we
use either softplus (φ(x) = ln(1 + ex)) or leaky-ReLU (max(x,λx), with leakage 0 ≤ λ ≤ 1)
activations. We run gradient descent with fixed learning rate η = 0.1/T , where T denotes the
trajectory length. We choose a noisy stabilizing policy K for the linear system (ignoring φ)
and set ut = −Kht + zt. Here K is obtained by solving a discrete-time Riccati equation (by
setting rewards Q,R to identity) and adding random Gaussian noise with zero mean and
variance 0.001 to each entry of the Riccati solution. We want to emphasize that any
stabilizing policy will work here. For some nonlinear activations, as shown in Figure 3, one
can learn the system dynamics using a policy which is unstable for the linear system but
remains stable for the nonlinear system. Lastly, zt i.i.d.

∼ N(0,Ip) and wt
i.i.d.
∼ N(0, σ2In).

We plot the normalized estimation error ofA andB given by the formula ∥A − Â∥2
F /∥A∥2

F

(same for B). Each experiment is repeated 20 times and we plot the mean and one standard
deviation. To verify our theoretical results, we study the effect of the following on the
convergence of gradient descent for learning the system dynamics.

● Nonlinearity: This experiment studies the effect of nonlinearity on the convergence
of gradient descent for learning nonlinear dynamical system with leaky-ReLU activation.
We run gradient descent over different values of λ (leakage). The trajectory length is set to
T = 2000 and the noise variance is set to σ2 = 0.01. In Figure 2a, we plot the normalized
estimation error of A over different values of λ. We observe that, decreasing nonlinearity
leads to faster convergence of gradient descent.

● Noise level: This experiment studies the effect of noise variance on the convergence
of gradient descent for learning nonlinear dynamical system with softplus activation. The
trajectory length is set to T = 2000. In Figure 2b, we plot the normalized estimation error
of A over different values of noise variance. We observe that, the gradient descent linearly
converges to the ground truth plus some residual which is proportional to the noise variance
as predicted by our theory.

18



Learning Nonlinear Dynamical Systems

0 20 40 60 80 100
Timesteps (t)

2

3

4

5

6

7

8

lo
g 1

0(
|h

t|
2) 

=0.0
=0.5
=0.8
=0.9
=1.0

Figure 3: For a properly chosen random unstable system the state vectors diverge for LDS
while they stay bounded for leaky ReLU systems with small leakage.

● Trajectory length: This experiment studies the effect of trajectory length on the
statistical accuracy of learning system dynamics via gradient descent. We use softplus
activation and the noise variance is set to σ2 = 0.01. In Figure 2c, we plot the normalized
estimation error of A over different values of T . We observe that, by increasing the trajectory
length (number of samples), the estimation gets better, verifying our theoretical results.

We remark that, we get similar plots for the input matrix B. Lastly, Figure 3 is generated
by evolving the state through 100 timesteps and recording the Euclidean norm of ht at each
timestep. This is repeated 500 times with ρ(A) > 1 and using leaky-ReLU activations. In
Figure 3, we plot the mean and one standard deviation of the Euclidean norm of the states
ht over different values of λ (leakage). The states are bounded when we use leaky-ReLU
with λ ≤ 0.5 even when the corresponding LDS is unstable. This shows that the nonlinearity
can help the states converge to a point in state space. However, this is not always true. For
example, when A = 2I and h0 has all entries positive. Then, using leaky-ReLU will not help
the trajectory to converge.

8. Related Work

Nonlinear dynamical systems relate to the literature in control theory, reinforcement learning,
and recurrent neural networks. We study nonlinear dynamical systems from optimization
and learning perspective rather than control. While such problems are known to be
challenging (especially under nonlinearity), there is a growing interest in understanding
system identification and associated optimal control problems (e.g. LQR) in a non-asymptotic
and data-dependent fashion (Recht, 2019). Recently Dean et al. (2018); Faradonbeh et al.
(2018, 2020); Fattahi et al. (2019); Hardt et al. (2018); Hazan et al. (2017, 2018); Oymak
and Ozay (2019); Sarkar and Rakhlin (2019); Sarkar et al. (2019, 2021); Simchowitz et al.
(2018, 2019); Tsiamis and Pappas (2019); Tsiamis et al. (2020); Wagenmaker and Jamieson
(2020) explore linear system identification in great depth. Allen-Zhu et al. (2019) provides
preliminary guarantees for recurrent networks (RNN) and Miller and Hardt (2019) shows
the role of stability in RNNs. There is also a substantial amount of work on model-free
approaches (see e.g., Dann and Brunskill, 2015; Fazel et al., 2018; Krauth et al., 2019;
Malik et al., 2019; Zou et al., 2019) which avoid learning the dynamics and find the optimal
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control input by directly optimizing over policy space. In a different line of work, Singh
et al. (2021) proposed a learning framework for trajectory planning from learned dynamics.
They propose a regularizer of dynamics that promotes stabilizability of the learned model,
which allows tracking reference trajectories based on estimated dynamics. Also, Khosravi
and Smith (2020a,b) developed learning methods that exploit other control-theoretic priors.
Nonetheless, none of these works characterize the sample complexity of the problem.

More recently, Mania et al. (2022) proposes an active learning approach for non-
asymptotic identification of nonlinear dynamical systems whose state transitions depend
linearly on a known feature embedding of state-action pairs. Kakade et al. (2020) extends
this to an online nonlinear control problem, and provides the lower confidence-based contin-
uous control algorithm, which enjoys O(

√
T ) regret bound. (Boffi et al., 2021) studies the

problem of adaptive control of a known discrete-time nonlinear system subject to unmodeled
disturbances, and uses online least squares algorithms to estimate the unknown parameter.
In a similar line of work, Lale et al. (2021) proposes an online model learning predictive
control framework to control unknown nonlinear dynamical systems, Mhammedi et al. (2020)
proposes a learning-theoretic framework for continuous control in which the environment is
summarized by a low-dimensional continuous latent state with linear dynamics and quadratic
costs, but the agent operates on high-dimensional, nonlinear observations, and Jain et al.
(2021) provides the first offline algorithm that can learn generalized linear models without
the mixing assumption.

Closer to our work, Bahmani and Romberg (2020); Oymak (2019) study theoretical
properties of nonlinear state equations with a goal towards understanding recurrent networks
and nonlinear systems. While some high-level ideas, such as mixing-time arguments, are
shared, our results (a) apply to a broader class of nonlinear systems (e.g. mild assumptions on
nonlinearity), (b) utilize a variation of the spectral radius for nonlinear systems1, (c) account
for process noise, and (d) develop new statistical guarantees for the uniform convergence
of the gradient of the empirical loss. The concurrent work of Foster et al. (2020) provides
related results for the recovery of generalized linear dynamical systems (ht+1 = φ(Θ⋆ht)+wt)
using complementary techniques. Foster et al. (2020) uses martingale arguments and analyze
GLMtron algorithm of Kakade et al. (2011), while we use mixing time arguments and
analyze gradient descent.

A very preliminary version of this work has appeared in a workshop paper (Sattar and
Oymak, 2019) where we provide preliminary guarantees for the identification nonlinear
dynamical systems. In contrast to this work, Sattar and Oymak (2019) does not provide
sample complexity and statistical error bounds and learns a simple noiseless system by
assuming the one-point convexity of the empirical loss (with i.i.d. samples). On the
other hand, this work provides new guarantees for non-asymptotic identification of nonlinear
dynamical systems under process noise. It develops new statistical guarantees for the uniform
convergence of the gradients of the empirical loss and applies the developed framework
to learn nonlinear state equations ht+1 = φ(Θ⋆ht) + zt +wt. Lastly, it also provides the
necessary technical framework and the associated proofs.

Perhaps the most established technique in the statistics literature for dealing with
non-independent, time-series data is the use of mixing-time arguments (Yu, 1994). In the
1Rather than enforcing contraction (i.e. 1-Lipschitzness)-based stability which corresponds to using spectral
norm rather than spectral radius.
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machine learning literature, mixing-time arguments have been used to develop generalization
bounds (Kuznetsov and Mohri, 2017; McDonald et al., 2017; Mohri and Rostamizadeh, 2007,
2008) which are analogous to the classical generalization bounds for i.i.d. data. We utilize
mixing-time for nonlinear stabilizable systems to connect our temporally-dependent problem
to standard supervised learning task with a focus on establishing statistical guarantees for
gradient descent.

Finite sample convergence of the gradients of the empirical loss (to the population
gradient) is studied by Foster et al. (2018); Mei et al. (2018). These guarantees are not
sufficient for our analysis as they only apply to problems with bounded nonlinearities and
do not accurately capture the noise dependence. We address this by establishing stronger
uniform convergence guarantees for empirical gradients and translate our bounds to the
system identification via mixing-time/stability arguments.

9. Conclusions

We proposed a general approach for learning nonlinear dynamical systems by utilizing
stabizability and mixing-time arguments. We showed that, under reasonable assumptions,
one can learn the dynamics of a nonlinear stabilized systems from a single finite trajectory.
Our general approach can treat important dynamical systems, such as LDS and the setups
of Bahmani and Romberg (2020); Foster et al. (2020); Oymak (2019) as special cases. We
provided both sample size and estimation error guarantees on LDS and certain nonlinear state
equations. Finally, the numerical experiments verify our theoretical findings on statistical
and computational efficiency of gradient descent for learning nonlinear systems.

There are many interesting future avenues. One direction is exploring alternative
approaches to mixing-time arguments. Martingale based arguments have the potential
to provide tighter statistical guarantees and mitigate dependence on the spectral radius
(Simchowitz et al., 2018). Another important direction is learning better control policies
by optimizing the policy function π in a data driven fashion. This topic has attracted
significant attention for linear systems (Dean et al., 2018; Recht, 2019) and led to strong
regret guarantees (Cohen et al., 2019; Mania et al., 2019), however, nonlinearity presents
significant challenges. Our framework is more suitable for model based approaches (as it
learns system dynamics θ⋆), however, model-free guarantees would be similarly intriguing.
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10. Proofs of the Main Results

In this section, we present the proofs of our main results.
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10.1 Proof of Theorem 4

Before we begin our proof, we state a lemma to bound the Euclidean norm of a sum of i.i.d.
subexponential random vectors. The following lemma is a restatement of Lemma D.7 of
Oymak (2018) (by specializing it to unit ball) and it follows from an application of generic
chaining tools.

Lemma 18 Let C > 0 be a universal constant. Suppose N ≥ d. Let (vi)
N
i=1 ∈ Rd be

i.i.d. vectors obeying µ = E[vi] and subexponential norm ∥vi −µ∥ψ1 ≤K. With probability at
least 1 − 2 exp(−cmin(t

√
N, t2)), we have that

∥
1
N

n

∑
i=1
vi −µ∥`2 ≤ CK

√
d + t
√
N

. (10.1)

Alternatively, setting t = τ
√
d for τ ≥ 1, with probability at least 1 − 2 exp(−cτd), we have

∥
1
N

N

∑
i=1
vi −µ∥`2 ≤ CK(τ + 1)

√
d/N. (10.2)

Throughout the proof of Theorem 4. we pick the constraint set C = Bd(θ⋆, r), however, these
ideas are general and would apply to any set with small covering numbers (such as sparsity,
`1, rank constraints).
Proof of uniform convergence with covering argument: We will use a peeling ar-
gument (Geer et al., 2000). Split the ball Bd(θ⋆, r) into P + 1 = ⌈log(Kr/σ0)⌉ + 1 sets via
following arguments,

B
d
(θ⋆, r) = ∪

P
i=0Si where Si =

⎧⎪⎪
⎨
⎪⎪⎩

Bd(θ⋆, σ0/K) if i = 0,
Bd(θ⋆,min(r, eiσ0/K)) − Bd(θ⋆, ei−1σ0/K) else.

By Assumption 4, with probability at least 1−p0, ∇L̂S(θ), ∇LD(θ) are LD-Lipschitz. Given
a set Si and the associated radius ri = min(r, eiσ0/K), pick an εi ≤ ri ≤ r covering Ni of the
set Si ⊂ Bd(θ⋆, ri) such that log ∣Ni∣ ≤ d log(3ri/εi). Observe that over Si, by construction,
we have

max(σ0/K, ∥θ − θ⋆∥`2) ≤ ri ≤ max(σ0/K, e∥θ − θ⋆∥`2). (10.3)

Applying Lemma 18 together with a union bound over the P + 1 covers and elements of the
covers, we guarantee the following: Within all covers Ni, gradient vector at all points θ ∈ Ni
satisfies

∥∇L̂S(θ) − ∇LD(θ)∥`2 ≲ (σ0 +Kri) log(3ri/εi)
√
d/N, (10.4)

with probability at least 1 − ∑
P
i=0 exp(−100d log(3ri/εi)). Given both events hold with

probability at least 1 − p0 −∑
P
i=0 exp(−100d log(3ri/εi)), for any θ ∈ Si, pick θ′ ∈ Ni so that

∥θ − θ′∥`2 ≤ ε. This yields

∥∇L̂S(θ) − ∇LD(θ)∥`2

≤ ∥∇LD(θ) − ∇LD(θ′)∥`2 + ∥∇L̂S(θ) − ∇L̂S(θ′)∥`2 + ∥∇LD(θ′) − ∇L̂S(θ′)∥`2 ,

≲ εiLD + (σ0 +Kri) log(3ri/εi)
√
d/N. (10.5)
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Setting εi = min(1, KLD
√
d/N)ri for 0 ≤ i ≤ P , for any θ ∈ Si (and thus for any θ ∈ Bd(θ⋆, r)),

we have

∥∇L̂S(θ) − ∇LD(θ)∥`2 ≲ (σ0 +Kri) log(3(1 +LDN/K))
√
d/N,

≲ (σ0 +K∥θ − θ⋆∥`2) log(3(1 +LDN/K))
√
d/N, (10.6)

where we used (10.3) to get the last inequality. Finally, observing that log(3ri/εi) ≥ 1, the
probability bound simplifies to

1 − p0 −
P

∑
i=0

exp(−100d log(3ri/εi)) ≥ 1 − p0 − log(Kr
σ0

) exp(−100d). (10.7)

This completes the proof.

10.2 Proof of Lemma 6

Proof Suppose h0 = 0. We claim that ∥ht∥`2 ≤ β+
√
n(1 −ρt) with probability at least 1 −p0,

where β+ ∶= Cρ(cwσ +B)/(1 − ρ). Note that, using the bounds on zt,wt, the state vector h1
satisfies the following bound and obeys the induction

∥h1∥`2 ≤ B
√
n + cwσ

√
n ≤ Cρ

√
n(B + cwσ) = β+

√
n(1 − ρ1

). (10.8)

Suppose the bound holds until t − 1, where t ≤ T , and let us apply induction. First observe
that ∥ht,L∥`2 obeys the same upper bound as ∥hL∥`2 by construction. Recalling (4.2), we
get the following by induction

∥ht −ht,t−1∥`2 ≤ Cρρ
t−1

∥h1∥`2 Ô⇒ ∥ht∥`2 ≤ Cρρ
t−1

∥h1∥`2 + ∥ht,t−1∥`2 ,

∥ht∥`2
(a)
≤ Cρρ

t−1
∥h1∥`2 + β+

√
n(1 − ρt−1

),

(b)
≤

√
n(Cρρ

t−1
(B + cwσ) + β+(1 − ρt−1

)),

≤ β+
√
n(1 − ρt), (10.9)

where, we get (a) from the induction hypothesis and (b) from the bound on h1. This bound
also implies ∥ht∥`2 ≤ β+

√
n with probability at least 1 − p0, for all 0 ≤ t ≤ T , and completes

the proof.

10.3 Proof of Lemma 8

Proof By construction h̄(i) only depends on the vectors {zt,wt}
τ+iL−1
t=τ+(i−1)L+1. Note that

the dependence ranges [τ + (i − 1)L + 1, τ + iL − 1] are disjoint intervals for each i′s. Hence,
{h̄(i)}Ni=1 are all independent of each other. To show the independence of {h̄(i)}Ni=1 and
{z(i)}Ni=1, observe that the inputs z(i) = zτ+iL have timestamps τ + iL; which is not covered
by [τ +(i− 1)L+ 1, τ + iL− 1] - the dependence ranges of {h̄(i)}Ni=1. Identical argument shows
the independence of {h̄(i)}Ni=1 and {w(i)}Ni=1. Lastly, {z(i)}Ni=1 and {w(i)}Ni=1 are independent
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of each other by definition. Hence, {h̄(i)}Ni=1,{z
(i)}Ni=1,{w

(i)}Ni=1 are all independent of each
other. This completes the proof.

10.4 Proof of Theorem 11

Proof Our proof consists of two parts. The first part bounds the Euclidean distance
between the truncated and non-truncated losses while the second part bounds the Euclidean
distance between their gradients.

● Convergence of loss: To start, recall L̂(θ) and L̂tr(θ) from (2.3) and (4.5) respec-
tively. The distance between them can be bounded as follows.

∣L̂(θ) − L̂
tr
(θ)∣

= ∣
1

2(T −L)

T−1
∑
t=L

∥ht+1 − φ̃(ht,zt;θ)∥2
`2 −

1
2(T −L)

T−1
∑
t=L

∥ht+1,L − φ̃(ht,L−1,zt;θ)∥2
`2 ∣,

≤
1

2(T −L)

T−1
∑
t=L

∣∥ht+1 − φ̃(ht,zt;θ)∥2
`2 − ∥ht+1,L − φ̃(ht,L−1,zt;θ)∥2

`2 ∣,

≤
1
2

max
L≤t≤(T−1)

∣∥ht+1 − φ̃(ht,zt;θ)∥2
`2 − ∥ht+1,L − φ̃(ht,L−1,zt;θ)∥2

`2 ∣,

≤
1
2
∥φ̃(h,z;θ⋆) +w − φ̃(h,z;θ)∥2

`2 − ∥φ̃(h̄,z;θ⋆) +w − φ̃(h̄,z;θ)∥2
`2 ∣,

≤
1
2
(∣∥φ̃(h,z;θ⋆) +w − φ̃(h,z;θ)∥`2 − ∥φ̃(h̄,z;θ⋆) +w − φ̃(h̄,z;θ)∥`2 ∣)

(∣∥φ̃(h,z;θ⋆) +w − φ̃(h,z;θ)∥`2 + ∥φ̃(h̄,z;θ⋆) +w − φ̃(h̄,z;θ)∥`2 ∣), (10.10)

where, (h, h̄,z,w) corresponds to the maximum index (h̄ be the truncated state) and we
used the identity a2 − b2 = (a+ b)(a− b). Denote the kth element of φ̃(h,z;θ) by φ̃k(h,z;θ)
and that of w by wk for 1 ≤ k ≤ n. To proceed, using Mean-value Theorem, with probability
at least 1 − p0, we have

∣φ̃k(h,z;θ⋆) − φ̃k(h,z;θ) +wk∣ ≤ cwσ + sup
θ̃∈[θ,θ⋆]

∥∇θφ̃k(h,z; θ̃)∥`2∥θ − θ⋆∥`2 ,

≤ cwσ +Cφ̃∥θ − θ⋆∥`2 for all 1 ≤ k ≤ n, (10.11)
Ô⇒ ∥φ̃(h,z;θ⋆) +w − φ̃(h,z;θ)∥`2 ≤

√
n max

1≤k≤n
∣φ̃k(h,z;θ⋆) − φ̃k(h,z;θ) +wk∣,

≤
√
n(cwσ +Cφ̃∥θ − θ⋆∥`2). (10.12)

This further implies that, with probability at least 1 − p0, we have

1
2
∣∥φ̃(h,z;θ⋆) +w − φ̃(h,z;θ)∥`2 + ∥φ̃(h̄,z;θ⋆) +w − φ̃(h̄,z;θ)∥`2 ∣

≤
√
n(cwσ +Cφ̃∥θ − θ⋆∥`2).

(10.13)
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To conclude, applying triangle inequality and using Mean-value Theorem, the difference term
∆ ∶= ∣∥φ̃(h,z;θ⋆) +w − φ̃(h,z;θ)∥`2 − ∥φ̃(h̄,z;θ⋆) +w − φ̃(h̄,z;θ)∥`2 ∣ is bounded as follows,

∆ ≤ ∥φ̃(h,z;θ⋆) − φ̃(h,z;θ) − φ̃(h̄,z;θ⋆) + φ̃(h̄,z;θ)∥`2 ,
≤ ∥φ̃(h,z;θ) − φ̃(h̄,z;θ)∥`2 + ∥φ̃(h,z;θ⋆) − φ̃(h̄,z;θ⋆)∥`2 ,
≤ sup
h̃∈[h,h̄]

∥∇hφ̃(h̃,z;θ)∥∥h − h̄∥`2 + sup
h̃∈[h,h̄]

∥∇hφ̃(h̃,z;θ⋆)∥∥h − h̄∥`2 ,

(a)
≤ Bφ̃Cρρ

L−1β+
√
n +Bφ̃Cρρ

L−1β+
√
n,

= 2Bφ̃Cρρ
L−1β+

√
n, (10.14)

with probability at least 1 − p0, where we get (a) from (4.2) and the initial assumption that
∥∇hφ̃(h,z;θ)∥ ≤ Bφ̃. Multiplying this bound with (10.13) yields the advertised bound on
the loss difference.

● Convergence of gradients: Next, we take the gradients of L̂(θ) and L̂tr(θ) to
bound Euclidean distance between them. We begin with

∥∇L̂(θ) − ∇L̂
tr
(θ)∥`2 ≤

1
T −L

T−1
∑
t=L

∥∇θφ̃(ht,zt;θ)
⊺
(φ̃(ht,zt;θ) −ht+1)

− ∇θφ̃(ht,L−1,zt;θ)
⊺
(φ̃(ht,L−1,zt;θ) −ht+1,L)∥`2 ,

≤ max
L≤t≤(T−1)

∥∇θφ̃(ht,zt;θ)
⊺
(φ̃(ht,zt;θ) −ht+1)

− ∇θφ̃(ht,L−1,zt;θ)
⊺
(φ̃(ht,L−1,zt;θ) −ht+1,L)∥`2 ,

≤ ∥∇θφ̃(h,z;θ)⊺(φ̃(h,z;θ) − φ̃(h,z;θ⋆) −w)

− ∇θφ̃(h̄,z;θ)⊺(φ̃(h̄,z;θ) − φ̃(h̄,z;θ⋆) −w)∥`2 ,

≤
√
nΛ, (10.15)

where (h, h̄,z,w) corresponds to the maximum index (h̄ be the truncated state) and we
define Λ to be the entry-wise maximum

Λ ∶= max
1≤k≤n

∥(φ̃k(h,z;θ) − φ̃k(h,z;θ⋆) −wk)∇θφ̃k(h,z;θ)

− (φ̃k(h̄,z;θ) − φ̃k(h̄,z;θ⋆) −wk)∇θφ̃k(h̄,z;θ)∥`2 , (10.16)

where φ̃k(h,z;θ) denotes the kth element of φ̃(h,z;θ). Without losing generality, suppose
k is the coordinate achieving maximum value and attaining Λ. Note that Λ = α(h) − α(h̄)
for some function α, hence, using Mean-value Theorem as previously, we bound Λ ≤
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suph̃∈[h,h̄] ∥∇hα(h̃)∥∥h − h̄∥`2 as follows,

Λ ≤ sup
h̃∈[h,h̄]

∥(φ̃k(h̃,z;θ) − φ̃k(h̃,z;θ⋆) −wk)∇h∇θφ̃k(h̃,z;θ)

+ ∇θφ̃k(h̃,z;θ)(∇hφ̃k(h̃,z;θ)⊺ − ∇hφ̃k(h̃,z;θ⋆)⊺)∥∥h − h̄∥`2 ,

≤ sup
h̃∈[h,h̄]

[∣φ̃k(h̃,z;θ) − φ̃k(h̃,z;θ⋆) −wk∣∥∇h∇θφ̃k(h̃,z;θ)∥

+ ∥∇θφ̃k(h̃,z;θ)∥`2∥∇hφ̃k(h̃,z;θ) − ∇hφ̃k(h̃,z;θ⋆)∥`2]∥h − h̄∥`2 ,

(a)
≤ sup
h̃∈[h,h̄]

[Dφ̃∣φ̃k(h̃,z;θ) − φ̃k(h̃,z;θ⋆) −wk∣

+Cφ̃∥∇hφ̃k(h̃,z;θ) − ∇hφ̃k(h̃,z;θ⋆)∥`2]∥h − h̄∥`2 , (10.17)

where we get (a) from the initial assumptions ∥∇θφ̃k(h,z;θ)∥`2 ≤ Cφ̃ and ∥∇h∇θφ̃k(h,z;θ)∥ ≤
Dφ̃. To proceed, again using Mean-value Theorem, we obtain

sup
h̃∈[h,h̄]

∥∇hφ̃k(h̃,z;θ) − ∇hφ̃k(h̃,z;θ⋆)∥`2 ≤ sup
h̃∈[h,h̄]
θ̃∈[θ,θ⋆]

∥∇θ∇hφ̃k(h̃,z; θ̃)∥∥θ − θ⋆∥`2 ,

≤Dφ̃∥θ − θ⋆∥`2 . (10.18)

Finally, plugging the bounds from (10.11) and (10.18) into (10.17), with probability at least
1 − p0, we have

∥∇L̂(θ) − ∇L̂
tr
(θ)∥`2 ≤

√
nΛ,

≤
√
n(Dφ̃(cwσ +Cφ̃∥θ − θ⋆∥`2) +Cφ̃Dφ̃∥θ − θ⋆∥`2)∥h − h̄∥`2 ,

≤ 2nβ+CρρL−1Dφ̃(cwσ +Cφ̃∥θ − θ⋆∥`2), (10.19)

This completes the proof.

10.5 Proof of Theorem 12

Proof Theorem 12 is a direct consequence of combining the results from Sections 3 and
4. To begin our proof, consider the truncated sub-trajectory loss ˆ̀tr

τ from Definition 9
which also implies that LD(θ) = E[ˆ̀tr

τ (θ)]. Hence, ˆ̀tr
τ it is a finite sample approximation

of the Auxiliary loss LD. To proceed, using Theorem 4 with Assumptions 4 and 5 on
the Auxiliary loss LD and its finite sample approximation ˆ̀tr

τ , with probability at least
1 −Lp0 −L log(Krσ0

) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇ˆ̀tr
τ (θ) − ∇LD(θ)∥`2 ≤ c0(σ0 +K∥θ − θ⋆∥`2) log(3(LDN/K + 1))

√
d/N, (10.20)

for all 0 ≤ τ ≤ L − 1, where we get the advertised probability by union bounding over all
0 ≤ τ ≤ L − 1. Next, observe that the truncated loss L̂tr can be split into (average of)
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L sub-trajectory losses via L̂tr(θ) = 1
L ∑

L−1
τ=0

ˆ̀tr
τ (θ). This implies that, with probability at

least 1 −Lp0 −L log(Krσ0
) exp(−100d), for all θ ∈ Bd(θ⋆, r), we have

∥∇L̂
tr
(θ) − ∇LD(θ)∥`2 ≤

1
L

L−1
∑
τ=0

∥∇ˆ̀tr
τ (θ) − ∇LD(θ)∥`2 ,

≤ max
0≤τ≤(L−1)

∥∇ˆ̀tr
τ (θ) − ∇LD(θ)∥`2 ,

≤ c0(σ0 +K∥θ − θ⋆∥`2) log(3(LDN/K + 1))
√
d/N. (10.21)

Combining this with Theorem 11, with the advertised probability, for all θ ∈ Bd(θ⋆, r), we
have

∥L̂(θ) − LD(θ)∥`2

≤ ∥L̂
tr
(θ) − LD(θ)∥`2 + ∥L̂(θ) − L̂

tr
(θ)∥`2 ,

≤ c0(σ0 +K∥θ − θ⋆∥`2) log(3(LDN/K + 1))
√
d/N + 2nβ+CρρL−1Dφ̃(cwσ +Cφ̃∥θ − θ⋆∥`2).

To simplify the result further, we pick L to be large enough so that the second term in the
above inequality becomes smaller than or equal to the first one. This is possible when

2nβ+CρρL−1Dφ̃ ≤ c0(σ0/cwσ ∧K/Cφ̃) log(3(LDN/K + 1))
√
d/N,

⇐⇒ ρL−1
≤ (σ0/cwσ ∧K/Cφ̃)

c0 log(3(LDN/K + 1))
√
d/N

2nβ+CρDφ̃

,

⇐⇒ L ≥ 1 + [ log (
2nβ+CρDφ̃

√
N/d

c0 log(3(LDN/K + 1))
) + log(cwσ/σ0 ∨Cφ̃/K)]/ log(ρ−1

),

⇐Ô L ≥ ⌈1 +
log((2/c0)nβ+CρDφ̃

√
N/d(cwσ/σ0 ∨Cφ̃/K))

1 − ρ
⌉. (10.22)

Hence, picking L via (10.22), with probability at least 1 − 2Lp0 −L log(Krσ0
) exp(−100d), for

all θ ∈ Bd(θ⋆, r), we have

∥∇L̂(θ) − ∇LD(θ)∥`2 ≤ 2c0(σ0 +K∥θ − θ⋆∥`2) log(3(LDN/K + 1))
√
d/N. (10.23)

This completes the proof.

10.6 Proof of Theorem 13

Before we begin the proof, we state a theorem to show the linear convergence of gradient
descent for minimizing an empirical loss L̂ when the population loss LD satisfies one-point
convexity and the Euclidean distance between the gradients of the two losses is upper
bounded as follows: ∥∇L̂(θ) − ∇LD(θ)∥`2 ≤ ν + (α/2)∥θ − θ⋆∥`2 .
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Theorem 19 (OPCS convergence) Suppose Assumption 3 holds. Assume for all θ ∈

Bd(θ⋆, r), ∇L̂ satisfies ∥∇L̂(θ) − ∇LD(θ)∥`2 ≤ ν+(α/2)∥θ − θ⋆∥`2 and r ≥ 5ν/α. Set learning
rate η = α/(16β2) and pick θ0 ∈ B

d(θ⋆, r). All gradient descent iterates θτ on L̂ satisfy

∥θτ − θ⋆∥`2 ≤ (1 −
α2

128β2 )
τ
∥θ0 − θ⋆∥`2 +

5ν
α
. (10.24)

Proof Set δτ = θτ − θ⋆. At a given iteration τ we have that δτ+1 = δτ − η∇L̂(θτ) which
implies

∥δτ+1∥
2
`2 = ∥δτ∥

2
`2 − 2η ⟨δτ ,∇L̂(θτ)⟩ + η2

∥∇L̂(θτ)∥
2
`2 . (10.25)

Using Assumptions 3 and ∥∇L̂(θ) − ∇LD(θ)∥`2 ≤ ν + (α/2)∥θ − θ⋆∥`2 , we have that

⟨δτ ,∇L̂(θτ)⟩ ≥ ⟨δτ ,∇LD(θτ)⟩ − ∣ ⟨δτ ,∇L̂(θτ) − ∇LD(θτ)⟩ ∣,

≥ α∥δτ∥
2
`2 − (ν + (α/2)∥δτ∥`2)∥δτ∥`2 ≥ (α/2)∥δτ∥2

`2 − ν∥δτ∥`2 . (10.26)

Similarly,

∥∇L̂(θτ)∥`2 ≤ ∥∇LD(θτ)∥`2 + ∥∇L̂(θτ) − ∇LD(θτ)∥`2 ≤ (3/2)β∥δτ∥`2 + ν. (10.27)

Suppose ∥δτ∥`2 ≥ 4ν/α. Then, (α/2)∥δτ∥2
`2

− ν∥δτ∥`2 ≥ (α/4)∥δτ∥2
`2

and (3/2)β∥δτ∥`2 + ν ≤

2β∥δτ∥`2 . Hence, using the learning rate η = α
16β2 , we obtain

∥δτ+1∥
2
`2 ≤ ∥δτ∥

2
`2(1 − ηα/2 + 4η2β2

) ≤ (1 −
α2

64β2 )∥δτ∥
2
`2 .

Now, imagine the scenario ∥δτ∥`2 ≤ 4ν/α. We would like to prove that δτ+1 satisfies a similar
bound namely ∥δτ+1∥`2 ≤ 5ν/α. This is shown as follows.

∥δτ+1∥
2
`2 ≤ ∥δτ∥

2
`2(1 − ηα + (9/4)η2β2

) + 2ην∥δτ∥`2 + η2
(3νβ∥δτ∥`2 + ν2

),

≤ (1 −
3α2

64β2 )∥δτ∥
2
`2 +

α

8β2 ν∥δτ∥`2 +
α2

256β4 (3νβ∥δτ∥`2 + ν2
),

≤ (
16
α2 +

1
2β2 +

3α
64β3 +

α2

256β4 )ν2
≤

25
α2 ν

2,

which implies ∥δτ+1∥`2 ≤ 5ν/α. To get the final result observe that during initial iterations,
as long as ∥δτ∥`2 ≥ 4ν/α, we have

∥δτ∥
2
`2 ≤ (1 −

α2

64β2 )
τ
∥δ0∥

2
`2 Ô⇒ ∥δτ∥`2 ≤ (1 −

α2

128β2 )
τ
∥δ0∥`2 .

After the first instance ∥δτ∥`2 < 4ν/α, iterations will never violate ∥δτ∥`2 ≤ 5ν/α. The reason
is

• If ∥δτ∥`2 < 4ν/α: we can only go up to 5ν/α and δτ+1 ≤ 5ν/α.

• If 4ν/α ≤ ∥δτ∥`2 ≤ 5ν/α: we have to go down hence δτ+1 ≤ 5ν/α.
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Proof The proof of Theorem 13 readily follows from combining our gradient convergence
result (i.e., Theorem 12) with Theorem 19. We begin by pickingN ≥ 16c2

0K
2 log2(3(LDN/K+

1))d/α2 in Theorem 12 to obtain

∥∇L̂(θ) − ∇LD(θ)∥`2 ≤ (α/2)∥θ − θ⋆∥`2 + 2c0σ0 log(3(LDN/K + 1))
√
d/N, (10.28)

with probability at least 1 − 2Lp0 −L log(Krσ0
) exp(−100d) for all θ ∈ Bd(θ⋆, r). We then use

Theorem 19 with ν = 2c0σ0 log(3(LDN/K + 1))
√
d/N and set c = 10c0 to get the statement

of the theorem. Lastly, observe that by choosing N ≥ 16c2
0K

2 log2(3(LDN/K + 1))d/α2, the
statistical error rate of our non-asymptotic identification can be upper bounded as follows,

5ν
α

=
10c0σ0
α

log(3(LDN/K + 1))
√
d/N ≲ σ0/K. (10.29)

Therefore, to ensure that Theorem 19 is applicable, we assume that the noise is small enough,
so that σ0 ≲ rK. This completes the proof.

10.7 Proof of Theorem 14

Proof Our proof strategy is similar to that of Theorem 13, that is, we first show the
gradient convergence result for each component L̂k of the empirical loss L̂. We then use
Theorem 19 to learn the dynamics of separable dynamical systems using finite samples
obtained from a single trajectory.

● Uniform gradient convergence: In the case of separable dynamical systems, As-
sumption 4 states that, there exist numbers LD, p0 > 0 such that with probability at least
1 − p0 over the generation of data, for all pairs θ,θ′ ∈ Bd(θ⋆, r), the gradients of empirical
and population losses in (5.7) satisfy

max(∥∇Lk,D(θk) − ∇Lk,D(θ′k)∥`2 , ∥∇L̂k,S(θk) − ∇L̂k,S(θ′k)∥`2) ≤ LD∥θk − θ′k∥`2 , (10.30)

for all 1 ≤ k ≤ n. Similarly, Assumption 5 states that, there exist scalars K,σ0 > 0 such that,
given x ∼ D, at any point θ, the subexponential norm of the gradient is upper bounded as a
function of the noise level σ0 and distance to the population minimizer via

∥∇Lk(θk,x) − E[∇Lk(θk,x)∥ψ1 ≤ σ0 +K∥θk − θ⋆k∥`2 for all 1 ≤ k ≤ n. (10.31)

To proceed, using Theorem 4 with Assumptions 4 and 5 replaced by (10.30) and (10.31)
respectively, with probability at least 1 − np0 − n log(Krσ0

) exp(−100d̄), for all θ ∈ Bd(θ⋆, r)
and 1 ≤ k ≤ n, we have

∥∇L̂k,S(θk) − ∇Lk,D(θk)∥`2 ≤ c0(σ0 +K∥θk − θ⋆k∥`2) log(3(LDN/K + 1))
√

d̄/N. (10.32)
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● Small impact of truncation: Next, we relate the gradients of the single trajectory
loss L̂k in (5.5) and the multiple trajectory loss L̂tr

k (defined below). Similar to (5.5), the
truncated loss for separable dynamical systems is alternately given by

L̂
tr
(θ) =

n

∑
k=1
L̂

tr
k (θk),where L̂tr

k (θk) ∶=
1

2(T −L)

T−1
∑
t=L

(ht+1,L[k] − φ̃k(ht,L−1,zt;θk))2, (10.33)

where ht,L[k] denotes the kth element of the truncated vector ht,L. We remark that
Assumptions 1 and 2 are same for both non-separable and separable dynamical systems.
Therefore, repeating the same proof strategy of Theorem 11, with L̂tr and L̂ replaced by L̂tr

k

and L̂k respectively, with probability at least 1 − np0, for all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we
have

∥∇L̂k(θk) − ∇L̂
tr
k (θk)∥`2 ≤ 2nβ+CρρL−1Dφ̃(cwσ +Cφ̃∥θk − θ⋆k∥`2). (10.34)

● Combined result: Next, we combine (10.32) and (10.34) to obtain a uniform con-
vergence result for the gradient of the empirical loss L̂k. Observe that, similar to L̂tr, the
truncated loss L̂tr

k can also be split into L truncated sub-trajectory losses (see the proof
of Theorem 12). Each of these truncated sub-trajectory loss is identically distributed as
L̂k,S . Therefore, using a similar line of reasoning as we did in the proof of Theorem 12, with
probability at least 1 −Lnp0 −Ln log(Krσ0

) exp(−100d̄), for all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we
have

∥∇L̂
tr
k (θk) − ∇Lk,D(θk)∥`2 ≤ c0(σ0 +K∥θk − θ⋆k∥`2) log(3(LDN/K + 1))

√

d̄/N. (10.35)

Combining this with (10.34), with probability at least 1 − Lnp0 − Ln log(Krσ0
) exp(−100d̄),

for all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we have

∥∇L̂k(θk) − ∇Lk,D(θk)∥`2

≤ ∥∇L̂
tr
k (θk) − ∇Lk,D(θk)∥`2 + ∥∇L̂k(θk) − ∇L̂

tr
k (θk)∥`2 ,

≤ c0(σ0 +K∥θk − θ⋆k∥`2) log(3(LDN/K + 1))
√

d̄/N + 2nβ+CρρL−1Dφ̃(cwσ +Cφ̃∥θk − θ⋆k∥`2).

To simplify the result further, we pick L to be large enough so that the second term in the
above inequality becomes smaller than or equal to the first one. This is possible when

L ≥ ⌈1 +
log((2/c0)nβ+CρDφ̃

√
N/d̄(cwσ/σ0 ∨Cφ̃/K))

1 − ρ
⌉. (10.36)

Hence, picking L as above, with probability at least 1 − 2Lnp0 −Ln log(Krσ0
) exp(−100d̄), for

all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n, we have

∥∇L̂k(θk) − ∇Lk,D(θk)∥`2 ≤ 2c0(σ0 +K∥θk − θ⋆k∥`2) log(3(LDN/K + 1))
√

d̄/N,

(a)
≤ (α/2)∥θk − θ⋆k∥`2 + 2c0σ0 log(3(LDN/K + 1))

√

d̄/N, (10.37)
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where we get (a) by choosing N ≥ 16c2
0K

2 log2(3(LDN/K + 1))d̄/α2.
● One-point convexity & smoothness: Lastly, Assumption 3 on the Auxiliary loss

Lk,D states that, there exist scalars β ≥ α > 0 such that, for all θ ∈ Bd(θ⋆, r) and 1 ≤ k ≤ n,
the auxiliary loss Lk,D(θk) of (5.7) satisfies

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ ≥ α∥θk − θ⋆k∥
2
`2 , (10.38)

∥∇Lk,D(θk)∥`2 ≤ β∥θk − θ⋆k∥`2 . (10.39)

● Finalizing the proof: We are now ready to use Theorem 19 with gradient concen-
tration bound given by (10.37) and the OPCS Assumptions given by (10.38) and (10.39).
Specifically, we use Theorem 19 with ν = 2c0σ0 log(3(LDN/K + 1))

√
d̄/N , the one-point

convexity assumption (10.38) and the one-point smoothness assumption (10.39) to get the
statement of the theorem. This completes the proof.
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Appendix A. Proof of Corollaries 15 and 16

A.1 Application to Linear Dynamical Systems

A.1.1 Verification of Assumption 1

The following lemma states that a linear dynamical system satisfies (Cρ, ρ)-stability if the
spectral radius ρ(A⋆) < 1.

Lemma 20 ((Cρ, ρ)-stability) Fix excitations (zt)
∞
t=0 and noise (wt)

∞
t=0. Denote the

state sequence (6.1) (φ = In) resulting from initial state h0 = α, (zτ)
t
τ=0 and (wτ)

t
τ=0

by ht(α). Suppose ρ(A⋆) < 1. Then, there exists Cρ ≥ 1 and ρ ∈ (ρ(A⋆),1) such that
∥ht(α) −ht(0)∥`2 ≤ Cρρt∥α∥`2 .

Proof To begin, consider the difference,

ht(α) −ht(0) =A⋆ht−1(α) +B⋆zt−1 −A⋆ht−1(0) −B⋆zt−1 =A⋆(ht−1(α) −ht−1(0)).

Repeating this recursion till t = 0 and taking the norm, we get

∥ht(α) −ht(0)∥`2 = ∥At
⋆(α − 0)∥`2 ≤ ∥At

⋆∥∥α∥`2 . (A.1)

Given ρ(A⋆) < 1, as a consequence of Gelfand’s formula, there exists Cρ ≥ 1 and ρ ∈ (ρ(A⋆), 1)
such that, ∥At⋆∥ ≤ Cρρt, for all t ≥ 0. Hence, ∥ht(α) −ht(0)∥`2 ≤ Cρρt∥α∥`2 . This completes
the proof.

A.1.2 Verification of Assumption 2

To show that the states of a stable linear dynamical system are bounded with high probability,
we state a standard Lemma from Oymak (2019) that bounds the Euclidean norm of a
subgaussian vector.
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Lemma 21 Let a ∈ Rn be a zero-mean subgaussian random vector with ∥a∥ψ2 ≤ L. Then
for any m ≥ n, there exists C > 0 such that

P(∥a∥`2 ≤ CL
√
m) ≥ 1 − 2 exp(−100m). (A.2)

To apply Lemma 21, we require the subgaussian norm of the state vector ht and the
concatenated vector xt. We will do that by first bounding the corresponding covariance
matrices as follows.

Theorem 22 (Covariance bounds) Consider the LDS in (6.1) with φ = In. Suppose
zt

i.i.d.
∼ N(0,Ip) and wt

i.i.d.
∼ N(0, σ2In). Let Gt and Ft be as in (6.4). Then, the covariance

matrix of the vectors ht and xt = [h⊺t z
⊺
t ]
⊺ satisfies

λmin(GtG
⊺
t + σ2FtF

⊺
t )In ⪯Σ[ht] ⪯ λmax(GtG

⊺
t + σ2FtF

⊺
t )In, (A.3)

(1 ∧ λmin(GtG
⊺
t + σ2FtF

⊺
t ))In+p ⪯Σ[xt] ⪯ (1 ∨ λmax(GtG

⊺
t + σ2FtF

⊺
t ))In+p, (A.4)

Proof We first expand the state vector ht as a sum of two independent components gt and
ωt as follows,

ht =
t−1
∑
i=0
At−1−i
⋆ B⋆zi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
gt

+
t−1
∑
i=0
At−1−i
⋆ wi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ωt

. (A.5)

Observe that, gt denotes the state evolution due to control input and ωt denotes the state
evolution due to noise. Furthermore, gt and ωt are both independent and zero-mean.
Therefore, we have

Σ[ht] = Σ[gt +ωt] = Σ[gt] + Σ[ωt] = E[gtg
⊺
t ] + E[ωtω

⊺
t ]

=
t−1
∑
i=0

t−1
∑
j=0

(Ai
⋆)B⋆E[ziz

⊺
j ]B

⊺
⋆(A

j
⋆)⊺ +

t−1
∑
i=0

t−1
∑
j=0

(Ai
⋆)E[wiw

⊺
j ](A

j
⋆)⊺

(a)
=

t−1
∑
i=0

(Ai
⋆)B⋆B

⊺
⋆(A

i
⋆)
⊺

+ σ2
t−1
∑
i=0

(Ai
⋆)(A

i
⋆)
⊺, (A.6)

where we get (a) from the fact that E[ziz
⊺
j ] = Ip and E[wiw

⊺
j ] = σ

2In when i = j, and
zero otherwise. To proceed, let Gt ∶= [At−1⋆ B⋆ At−2⋆ B⋆ ⋯ B⋆] and Ft ∶= [At−1⋆ At−2⋆ ⋯ In].
Observing GtG

⊺
t = ∑

t−1
i=0(A

i⋆)B⋆B⊺⋆(Ai⋆)⊺ and FtF ⊺t = ∑
t−1
i=0(A

i⋆)(Ai⋆)⊺, we obtain the fol-
lowing bounds on the covariance matrix of the state vector ht and the concatenated vector
xt = [h⊺t z

⊺
t ]
⊺.

λmin(GtG
⊺
t + σ2FtF

⊺
t )In ⪯Σ[ht] ⪯ λmax(GtG

⊺
t + σ2FtF

⊺
t )In, (A.7)

(1 ∧ λmin(GtG
⊺
t + σ2FtF

⊺
t ))In+p ⪯Σ[xt] ⪯ (1 ∨ λmax(GtG

⊺
t + σ2FtF

⊺
t ))In+p, (A.8)

where to get the second relation, we use the fact that Σ[zt] = Ip. This completes the proof.

Once we bound the covariance matrices, using standard bounds on the subgaussian norm

37



Sattar and Oymak

of a random vector, we find that ∥ht∥ψ2 ≲
√

Σ[ht] ≤
√
λmax(GtG

⊺
t + σ2FtF

⊺
t ) and ∥xt∥ψ2 ≲

√
Σ[xt] ≤ 1 ∨

√
λmax(GtG

⊺
t + σ2FtF

⊺
t ). Combining these with Lemma 21, we find that,

with probability at least 1 − 4T exp(−100n), for all 1 ≤ t ≤ T , we have ∥ht∥`2 ≤ c
√
β+n and

∥xt∥`2 ≤ c0
√
β+(n + p), where we set β+ = 1 ∨ max1≤t≤T λmax(GtG

⊺
t + σ2FtF

⊺
t ). This verifies

Lemma 6 and consequently Assumption 2.

A.1.3 Verification of Assumption 3

Recall that, we define the following concatenated vector/matrix for linear dynamical systems:
xt = [h⊺t z

⊺
t ]
⊺ and Θ⋆ = [A⋆ B⋆]. Let θ⋆⊺k denotes the kth row of Θ⋆. Then, the auxiliary

loss for linear dynamical system is defined as follows,

LD(Θ) =
n

∑
k=1
Lk,D(θk), where Lk,D(θk) ∶=

1
2
E[(hL[k] − θ⊺kxL−1)

2
]. (A.9)

Using the derived bounds on the covariance matrix, it is straightforward to show that the
auxiliary loss satisfies the following one-point convexity and smoothness conditions.
Lemma 23 (One-point convexity & smoothness) Consider the setup of Theorem 22
and the auxiliary loss given by (A.9). Define Γt ∶=GtG

⊺
t +σ2FtF

⊺
t . Let γ− ∶= 1 ∧λmin(ΓL−1)

and γ+ ∶= 1 ∨ λmax(ΓL−1). For all 1 ≤ k ≤ n, the gradient ∇Lk,D(θk) satisfies,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ ≥ γ−∥θk − θ⋆k∥
2
`2 ,

∥∇Lk,D(θk)∥`2 ≤ γ+∥θk − θ⋆k∥`2 .

Proof To begin, we take the gradient of the auxiliary loss Lk,D (A.9) to get ∇Lk,D(θk) =
E[xL−1x

⊺
L−1(θk − θ⋆k) −xL−1wL−1[k]]. Note that, E[xL−1wL−1[k]] = 0 for linear dynamical

systems because wL−1 and xL−1 are independent and we have E[wL−1] = E[xL−1] = 0.
Therefore, using Theorem 22 with t = L − 1, we get the following one point convexity bound,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ = ⟨θk − θ⋆k ,E[xL−1x
⊺
L−1](θk − θ⋆k)⟩ ,

≥ γ−∥θk − θ⋆k∥
2
`2 . (A.10)

Similarly, we also have

∥∇Lk,D(θk)∥`2 ≤ ∥E[xL−1x
⊺
L−1]∥∥θk − θ⋆k∥`2 ≤ γ+∥θk − θ⋆k∥`2 . (A.11)

This completes the proof.

A.1.4 Verification of Assumption 4

Let S ∶= (h
(i)
L ,h

(i)
L−1,z

(i)
L−1)

N
i=1 be N i.i.d. copies of (hL,hL−1,zL−1) generated from N i.i.d.

trajectories of the system (6.1) with φ = In. Let x(i)
L−1 ∶= [h

(i)⊺
L−1 z

(i)⊺
L−1]

⊺ and Θ ∶= [A B] be
the concatenated vector/matrix. Then, the finite sample approximation of the auxiliary loss
LD is given by

L̂S(Θ) =
n

∑
k=1
L̂k,S(θk), where L̂k,S(θk) ∶=

1
2N

N

∑
i=1

(h
(i)
L [k] − θ⊺kx

(i)
L−1)

2. (A.12)

The following lemma states that both ∇Lk,D and ∇L̂k,S are Lipschitz with high probability.
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Lemma 24 (Lipschitz gradient) Consider the same setup of Theorem 22. Consider
the auxiliary loss Lk,D and its finite sample approximation L̂k,S from (A.9) and (A.12)
respectively. Let γ+ > 0 be as in Lemma 23. For N ≳ n + p, with probability at least
1 − 2 exp(−100(n + p)), for all pairs Θ,Θ′ and for all 1 ≤ k ≤ n, we have

max(∥∇Lk,D(θk) − ∇Lk,D(θ′k)∥`2 , ∥∇L̂k,S(θk) − ∇L̂k,S(θ′k)∥`2) ≤ 2γ+∥θk − θ′k∥`2 . (A.13)

Proof To begin, recall the auxiliary loss from (A.9). We have that

∥∇Lk,D(θk) − ∇Lk,D(θ′k)∥`2 = ∥E[xL−1x
⊺
L−1](θk − θ⋆k) − E[xL−1x

⊺
L−1](θ

′
k − θ⋆k)∥`2 ,

≤ ∥E[xL−1x
⊺
L−1]∥∥θk − θ′k∥`2 ,

≤ γ+∥θk − θ′k∥`2 . (A.14)

To obtain a similar result for the finite sample loss L̂k,S , we use Corollary 5.50 from Vershynin
(2012) which bounds the concentration of empirical covariance around its population when
the sample size is sufficiently large. Specifically, applying this corollary on the empirical
covariance of x(i)

L−1 with t = 10, ε = 1 shows that, for N ≳ n + p, with probability at least
1 − 2 exp(−100(n + p)), we have

∥
1
N

N

∑
i=1
x

(i)
L−1(x

(i)
L−1)

⊺
− E[xL−1x

⊺
L−1]∥ ≤ γ+. (A.15)

Thus, the gradient ∇L̂k,S(θk) also satisfies the Lipschitz property, that is, for N ≳ n + p,
with probability at least 1 − 2 exp(−100(n + p)), we have

∥∇L̂k,S(θk) − ∇L̂k,S(θ′k)∥`2

≤ ∥
1
N

N

∑
i=1
x

(i)
L−1(x

(i)
L−1)

⊺
(θk − θ⋆k) −

1
N

N

∑
i=1
x

(i)
L−1(x

(i)
L−1)

⊺
(θ′k − θ⋆k)∥`2 ,

≤ ∥
1
N

N

∑
i=1
x

(i)
L−1(x

(i)
L−1)

⊺
∥∥θk − θ′k∥`2 ,

≤ [∥E[xL−1x
⊺
L−1]∥ + ∥

1
N

N

∑
i=1
x

(i)
L−1(x

(i)
L−1)

⊺
− E[xL−1x

⊺
L−1]∥]∥θk − θ′k∥`2 ,

≤ 2γ+∥θk − θ′k∥`2 , (A.16)

for all 1 ≤ k ≤ n. Combining the two results, we get the statement of the lemma. This
completes the proof.

A.1.5 Verification of Assumption 5

Given a single sample (hL,hL−1,zL−1) from the trajectory of a linear dynamical system,
setting xL−1 = [h⊺L−1 z

⊺
L−1]

⊺, the single sample loss is given by,

L(Θ, (hL,xL−1)) =
n

∑
k=1
Lk(θk, (hL[k],xL−1)),

where Lk(θk, (hL[k],xL−1)) ∶=
1
2
(hL[k] − θ⊺kxL−1)

2. (A.17)
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The following lemma shows that the gradient of the above loss is subexponential.

Lemma 25 (Subexponential gradient) Consider the same setup of Theorem 22. Let
Lk(θk, (hL[k],xL−1)) be as defined in (A.17) and γ+ > 0 be as in lemma 23. Then, at any
point Θ, for all 1 ≤ k ≤ n, we have

∥∇Lk(θk, (hL[k],xL−1)) − E[∇Lk(θk, (hL[k],xL−1))]∥ψ1 ≲ γ+∥θk − θ⋆k∥`2 + σ
√
γ+.

Proof Using standard bounds on the subgaussian norm of a random vector, we find that
∥xL−1∥ψ2 ≲

√
Σ[xL−1] ≤

√
γ+, where γ+ > 0 is as defined in Lemma 23. Combining this with

∥wL−1[k]∥ψ2 ≤ σ, we get the following subexponential norm bound,

∥∇Lk(θk, (hL[k],xL−1)) − E[∇Lk(θk, (hL[k],xL−1))]∥ψ1

= ∥(xL−1x
⊺
L−1 − E[xL−1x

⊺
L−1])(θk − θ⋆k) −xL−1wL−1[k]∥ψ1 ,

≤ ∥(xL−1x
⊺
L−1 − E[xL−1x

⊺
L−1])(θk − θ⋆k)∥ψ1 + ∥xL−1wL−1[k]∥ψ1 ,

≲ γ+∥θk − θ⋆k∥`2 + σ
√
γ+,

where we get the last inequality from the fact that, the product of two subgaussian random
variables results in a subexponential random variable with its subexponential norm bounded
by the product of the two subgaussian norms.

A.1.6 Proof of Corollary 15

Proof Our proof strategy is based on verifying Assumptions 1, 2, 3, 4 and 5 for a stable
linear dynamical system and then applying Theorem 14. Since, we already verified all the
assumptions, we are ready to use Theorem 14. Before that, we find the values of the system
related constants to be used in Theorem 14 as follows.

Remark 26 Consider the same setup of Theorem 22. For a stable linear dynamical system,
with probability at least 1 − 4T exp(−100n), for all 1 ≤ t ≤ T , the scalars Cφ̃,Dφ̃ take the
following values:

∥∇θk(θ
⊺
kxt)∥`2 = ∥xt∥`2 ≤ c0

√
β+(n + p) = Cφ̃, (A.18)

∥∇xt∇θk(θ
⊺
kxt)∥ = ∥In+p∥ ≤ 1 =Dφ̃, (A.19)

where β+ = 1 ∨ max1≤t≤T λmax(GtG
⊺
t + σ2FtF

⊺
t ). Furthermore, the Lipschitz constant and

the gradient noise coefficients take the following values: LD = 2γ+, K = cγ+ and σ0 = cσ
√
γ+.

Lastly, we also have p0 = 2 exp(−100(n + p)).

Using these values, we get the following sample complexity bound for learning linear
dynamical system via gradient descent,

N ≳ κ2 log2
(3(2γ+)N/γ+ + 3)(n + p) ⇔ N ≳ κ2 log2

(6N + 3)(n + p), (A.20)
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where κ = γ+/γ− is an upper bound on the condition number of the covariance matrix Σ[xt].
Similarly, the approximate mixing time for the linear dynamical system is given by,

L ≥ 1 + [ log(c0(n + p)
√
β+Cρ

√
N/(n + p)) + log(c/√γ+ ∨ c

√
β+(n + p)/γ+)]/ log(ρ−1

)

⇐Ô L ≥ ⌈1 +
log(CCρβ+N(n + p)/γ+)

1 − ρ
⌉, (A.21)

where, C > 0 is a constant. Finally, given the trajectory length T ≳ L(N + 1), where N and
L are given by (A.20) and (A.21) respectively, starting from Θ(0) = 0 and using learning
rate η = γ−/(16γ2+) (in Theorem 14), with probability at least 1 − 4T exp(−100n) −Ln(4 +

log( ∥Θ⋆∥F√
γ+

σ )) exp(−100(n + p)) for all 1 ≤ k ≤ n, all gradient descent iterates Θ(τ) on L̂
satisfy

∥θ
(τ)
k − θ⋆k∥`2 ≤ (1 −

γ2−
128γ2+

)
τ
∥θ

(0)
k − θ⋆k∥`2 +

5c
γ−
σ
√
γ+ log(6N + 3)

√
n + p

N
. (A.22)

We remark that, choosing N ≳ κ2 log2(6N + 3)(n + p), the residual term in (A.22) can be
bounded as follows,

5c
γ−
σ
√
γ+ log(6N + 3)

√
n + p

N
≲ σ/

√
γ+.

Therefore, to ensure that Theorem 14 is applicable, we assume that the noise is small enough,
so that σ ≲

√
γ+∥Θ⋆∥F (we choose Θ(0) = 0 and r = ∥Θ⋆∥F ). This completes the proof.

A.2 Application to Nonlinear State Equations

Lemma 27 Let X be a non-negative random variable upper bounded by another random
variable Y . Fix an integer k > 0. Fix a constant C > 1 + k log 3 and suppose for some B > 0
we have that P(Y ≥ B(1 + t)) ≤ exp(−Ct2) for all t > 0. Then, the following bound holds,

E[Xk
] ≤ (2k + 2)Bk.

Proof Split the real line into regions Ri = {x ∣ Bi ≤ x ≤ B(i + 1)}. Observe that P(Y ∈

R0) + P(Y ∈ R1) ≤ 1 and P(Y ∈ Ri+1) ≤ exp(−Ci2) for i ≥ 1. Then,

E[Y k
] ≤

∞
∑
i=0

(B(i + 1))kP(Y ∈ Ri),

≤ (2k + 1)Bk
+
∞
∑
i=1

(i + 2)kBk exp(−Ci2).

Next, we pick C > 0 sufficiently large to satisfy exp(−Ci2)(i+ 2)k ≤ exp(−i2) ≤ exp(−i). This
can be guaranteed by picking C to satisfy, for all i

exp((C − 1)i2) ≥ (i + 2)k ⇐⇒ (C − 1)i2 ≥ k log(i + 2),

⇐⇒ C ≥ 1 + sup
i≥1

k log(i + 2)
i2

,

⇐⇒ C ≥ 1 + k log 3.
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Following this, we obtain ∑∞i=1(i+ 2)kBk exp(−Ci2) ≤ Bk. Thus, we find E[Y k] ≤ (2k + 2)Bk.

A.2.1 Verification of Assumption 2

Lemma 28 (Bounded states) Suppose, the nonlinear system (6.2) is (Cρ, ρ)-stable and
φ(0) = 0. Suppose, zt i.i.d.

∼ N(0,In), wt
i.i.d.
∼ N(0, σ2In) and let β+ ∶= Cρ(1 + σ)/(1 − ρ).

Then, starting from h0 = 0, for all 0 ≤ t ≤ T , we have:
(a) P(∥ht∥`2 ≤ cβ+

√
n) ≥ 1 − 4T exp(−100n).

(b) E[∥ht∥
2
`2
] ≤ β2+n.

(c) E[∥ht∥
3
`2
] ≤ Cβ3+(log(2T )n)3/2.

Proof (a) Given ∥zt∥ψ2 ≤ 1 and ∥wt∥ψ2 ≤ σ, we use Lemma 21 to obtain P(∥zt∥`2 ≲
√
n) ≥

1−2T exp(−100n) and P(∥wt∥`2 ≲ σ
√
n) ≥ 1−2T exp(−100n) for all 0 ≤ t ≤ T −1. Using these

results along-with (Cρ, ρ)-stability in Lemma 6, we get the desired bound on the Euclidean
norm of the state vector ht.

(b) Recall that h0 = 0. We claim that E[∥ht∥
2
`2
] ≤ β2+n(1−ρt)2, where β+ ∶= Cρ(1+σ)/(1−

ρ). Note that, using standard results on the distribution of squared Euclidean norm of a
Gaussian vector, we have E[∥zt∥

2
`2
] = n and E[∥wt∥

2
`2
] = σ2n, which implies E[∥zt∥`2] ≤

√
n

and E[∥wt∥`2] ≤ σ
√
n. Using this results, we show that h1 satisfies the following bound and

obeys the induction

E[∥h1∥
2
`2] = E[∥φ(0) + zt +wt∥

2
`2] ≤ (1 + σ2

)n ≤ C2
ρ(1 + σ)2n = β2

+n(1 − ρ1
)

2.

This implies E[∥h1∥`2] ≤ β+
√
n(1 − ρ1) as well. Suppose the bound holds until t − 1, that

is, E[∥ht−1∥
2
`2
] ≤ β2+n(1 − ρt−1)2 (which also means E[∥ht−1∥`2] ≤ β+

√
n(1 − ρt−1)). We now

apply the induction as follows: First observe that E[∥ht,L∥`2] obeys the same upper bound
as E[∥hL∥`2] by construction. To proceed, recalling (4.2), we get the following by induction

∥ht −ht,t−1∥`2 ≤ Cρρ
t−1

∥h1∥`2

Ô⇒ ∥ht∥`2 ≤ Cρρ
t−1

∥h1∥`2 + ∥ht,t−1∥`2 ,

Ô⇒ ∥ht∥
2
`2 ≤ (Cρρ

t−1
∥h1∥`2 + ∥ht,t−1∥`2)

2,

Ô⇒ E[∥ht∥
2
`2] ≤ C

2
ρρ

2(t−1)E[∥h1∥
2
`2] + E[∥ht−1∥

2
`2] + 2Cρρt−1 E[∥h1∥`2]E[∥ht−1∥`2],

(a)
≤ C2

ρρ
2(t−1)

(1 + σ)2n + β2
+n(1 − ρt−1

)
2

+ 2nCρρt−1
(1 + σ)β+(1 − ρt−1

),

(b)
≤ β2

+n(ρ
2(t−1)

(1 − ρ1
)

2
+ (1 − ρt−1

)
2

+ 2ρt−1
(1 − ρt−1

)(1 − ρ1
)),

= β2
+n[ρ

2t−2
(1 + ρ2

− 2ρ) + 1 + ρ2t−2
− 2ρt−1

+ (2ρt−1
− 2ρ2t−2

)(1 − ρ)],

= β2
+n(1 + ρ2t

− 2ρt),
= β2

+n(1 − ρt)2, (A.23)

where we get (a) from the induction hypothesis and (b) from the bound on h1. This bound
also implies E[∥ht∥

2
`2
] ≤ β2+n and completes the proof.

42



Learning Nonlinear Dynamical Systems

(c) Recall that, we have ∥zt∥ψ2 ≤ 1, ∥wt∥ψ2 ≤ σ, E[∥zt∥`2] ≤
√
n and E[∥wt∥`2] ≤ σ

√
n.

Combining these bounds with standard concentration inequalities of a Guassian random
vector, we have

P(∥zt∥`2 ≥ E[∥zt∥`2] + t) ≤ exp(−t2/2) and P(∥wt∥`2 ≥ E[∥wt∥`2] + t) ≤ exp(−t2/(2σ2
)),

Ô⇒ P(∥zt∥`2 ≥
√

2cn(1 + t)) ≤ exp(−cnt2), (A.24)
and P(∥wt∥`2 ≥ σ

√
2cn(1 + t)) ≤ exp(−cnt2). (A.25)

To proceed, let X = ∥ht∥`2 and Y = ∑
t−1
τ=0Cρρ

τ(∥zt∥`2 + ∥wt∥`2) and note that X ≤ Y . Now,
using (A.24), (A.25) and union bounding over all 0 ≤ t ≤ T − 1, we get the following high
probability upper bound on Y , that is,

P(Y ≥
t−1
∑
τ=0

Cρρ
τ
√

2cn(1 + σ)(1 + t)) ≤ 2T exp(−cnt2),

Ô⇒ P(Y ≥ Cρ
√

10n log(2T )(1 + t)(1 + σ)/(1 − ρ)) ≤ exp(−5nt2),

where we choose c = 5 log(2T ) to get the final concentration bound of Y . Finally using this
bound in Lemma 27, we get

E[∥ht∥
3
`2] ≤ 32β3

+(log(2T )n)3/2, (A.26)

where β+ = Cρ(1 + σ)/(1 − ρ), as defined earlier. This completes the proof.

A.2.2 Verification of Assumption 3

Theorem 29 Suppose the nonlinear system (6.2) satisfies (Cρ, ρ)-stability. Suppose zt i.i.d.
∼

N(0,In) and wt
i.i.d.
∼ N(0, σ2In). Let β+ be as in Lemma 28. Then, the matrix E[hth

⊺
t ]

satisfies

(1 + σ2
)In ⪯ E[hth

⊺
t ] ⪯ β

2
+nIn. (A.27)

Proof We first upper bound the matrix E[hth
⊺
t ] by bounding its largest singular value as

follows,

E[hth
⊺
t ] ⪯ E[∥hth

⊺
t ∥]In ⪯ E[∥ht∥

2
`2]In ⪯ β

2
+nIn, (A.28)

where we get the last inequality by applying Lemma 28. To get a lower bound, note that
Σ[ht] = E[hth

⊺
t ] − E[ht]E[ht]

⊺. Since, all of these matrices are positive semi-definite, we
get the following lower bound,

E[hth
⊺
t ] ⪰ Σ[ht] = Σ[φ(Θ⋆ht−1) + zt +wt] ⪰ Σ[zt +wt] = (1 + σ2

)In. (A.29)

Combining the two bounds gives us the statement of the lemma. This completes the proof.
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To verify Assumption 3 for the nonlinear system (6.2), denoting the kth row of Θ by θ⊺k , the
auxiliary loss for the nonlinear system (6.2) is given by,

LD(Θ) =
n

∑
k=1
Lk,D(θk) where Lk,D(θk) ∶=

1
2
E[(hL[k] − φ(θ⊺khL−1) − zL−1[k])

2
]. (A.30)

Using the derived bounds on the matrix E[hth
⊺
t ], it is straightforward to show that the

auxiliary loss satisfies the following one-point convexity and smoothness conditions.

Lemma 30 (One-point convexity & smoothness) Consider the setup of Theorem 29
and the auxiliary loss given by (A.30). Suppose, φ is γ-increasing (i.e. φ′(x) ≥ γ > 0 for all
x ∈ R) and 1-Lipschitz. Let β+ be as in Lemma 28. Then, for all 1 ≤ k ≤ n, the gradients
∇Lk,D(θk) satisfy,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ ≥ γ
2
(1 + σ2

)∥θk − θ⋆k∥
2
`2 ,

∥∇Lk,D(θk)∥`2 ≤ β
2
+n∥θk − θ⋆k∥`2 .

Proof Given two distinct scalars a, b we define φ′(a, b) ∶=
φ(a)−φ(b)

a−b . Observe that 0 < γ ≤
φ′(a, b) ≤ 1 because of the assumption that φ is 1-Lipschitz and γ-increasing. Now, recalling
the auxiliary loss Lk,D from (A.30), we have

∇Lk,D(θk) = E[(φ(θ⊺khL−1) − φ(θ⋆⊺k hL−1) −wL−1[k])φ
′
(θ⊺khL−1)hL−1],

= E[φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)φ

′
(θ⊺khL−1)(θ

⊺
khL−1 − θ⋆⊺k hL−1)hL−1]

− E[wL−1[k]φ
′
(θ⊺khL−1)hL−1],

= E[φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)φ

′
(θ⊺khL−1)hL−1h

⊺
L−1(θk − θ⋆k)], (A.31)

where E[wL−1[k]φ
′(θ⊺khL−1)hL−1] = 0 because hL−1 and wL−1 are independent and we have

E[wL−1] = 0. Next, using γ-increasing property of φ, we get the following one-point convexity
bound,

⟨θk − θ⋆k ,∇Lk,D(θk)⟩ = ⟨θk − θ⋆k ,E[φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)φ

′
(θ⊺khL−1)hL−1h

⊺
L−1(θk − θ⋆k)]⟩ ,

≥ γ2 ⟨θk − θ⋆k ,E[hL−1h
⊺
L−1](θk − θ⋆k)⟩ ,

≥ γ2
(1 + σ2

)∥θk − θ⋆k∥
2
`2 . (A.32)

Similarly, using 1-Lipschitzness of φ, we get the following smoothness bound,

∥∇Lk,D(θk)∥`2 = ∥E[φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)φ

′
(θ⊺khL−1)hL−1h

⊺
L−1(θk − θ⋆k)]∥`2 ,

≤ E[∥φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)φ

′
(θ⊺khL−1)hL−1h

⊺
L−1∥]∥θk − θ⋆k∥`2 ,

≤ E[∥hL−1h
⊺
L−1∥]∥θk − θ⋆k∥`2 .

≤ β2
+n∥θk − θ⋆k∥`2 , (A.33)

where β+ is as defined in Lemma 28. This completes the proof.
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A.2.3 Verification of Assumption 4

Let S = (h
(i)
L ,h

(i)
L−1,z

(i)
L−1)

N
i=1 be N i.i.d. copies of (hL,hL−1,zL−1) generated from N i.i.d.

trajectories of the system (6.2). Then, the finite sample approximation of the auxiliary loss
LD is given by,

L̂S(Θ) =
n

∑
k=1
L̂k,S(θk) where L̂k,S(θk) ∶=

1
2N

N

∑
i=1

(h
(i)
L [k] − φ(θ⊺kh

(i)
L−1) − z

(i)
L−1[k])

2. (A.34)

The following lemma states that both ∇Lk,D and ∇L̂k,S are Lipschitz with high probability.

Lemma 31 (Lipschitz gradient) Consider the same setup of Theorem 29. Consider
the auxiliary loss Lk,D and its finite sample approximation L̂k,S from (A.30) and (A.34)
respectively. Suppose, φ has bounded first and second derivatives, that is, ∣φ′∣, ∣φ′′∣ ≤ 1. Let
β+ be as in Lemma 28. Then, with probability at least 1 − 4T exp(−100n), for all pairs
Θ,Θ′ ∈ Bn×n(Θ⋆, r) and for 1 ≤ k ≤ n, we have

max(∥∇Lk,D(θk) − ∇Lk,D(θ′k)∥`2 , ∥∇L̂k,S(θk) − ∇L̂k,S(θ′k)∥`2)

≲ ((1 + σ)β2
+n + rβ3

+n
3/2 log3/2

(2T ))∥θk − θ′k∥`2 .

Proof To begin recall that, ∇Lk,D(θk) = E[(φ(θ⊺khL−1) − φ(θ⋆⊺k hL−1))φ
′(θ⊺khL−1)hL−1].

To bound the Lipschitz constant of the gradient ∇Lk,D(θk), we will upper bound the spectral
norm of the Hessian as follows,

∥∇
2
Lk,D(θk)∥ = ∥E[(φ(θ⊺khL−1) − φ(θ⋆⊺k hL−1))φ

′′
(θ⊺khL−1)hL−1h

⊺
L−1]

+ E[φ′(θ⊺khL−1)φ
′
(θ⊺khL−1)hL−1h

⊺
L−1]∥,

≤ E[∥φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)(θ

⊺
khL−1 − θ⋆⊺k hL−1)φ

′′
(θ⊺khL−1)hL−1h

⊺
L−1∥]

+ E[∥φ′(θ⊺khL−1)φ
′
(θ⊺khL−1)hL−1h

⊺
L−1∥],

≤ E[∥(θ⊺khL−1 − θ⋆⊺k hL−1)hL−1h
⊺
L−1∥] + E[∥hL−1h

⊺
L−1∥],

≤ ∥θk − θ⋆k∥`2 E[∥hL−1∥
3
`2] + E[∥hL−1∥

2
`2],

≲ β3
+(log(2T )n)3/2

∥θk − θ⋆k∥`2 + β2
+n, (A.35)

where we get the last inequality by applying Lemma 28. Similarly, to bound the Lipschitz
constant of the empirical gradient

∇L̂k,S(θk) = 1/N
N

∑
i=1

(φ(θ⊺kh
(i)
L−1) − φ(θ⋆⊺k h

(i)
L−1) −w

(i)
L−1[k])φ

′
(θ⊺kh

(i)
L−1)h

(i)
L−1,
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we bound the spectral norm of the Hessian of the empirical loss L̂k,S as follows,

∥∇
2
L̂k,S(θk)∥ ≤

1
N

N

∑
i=1

∥(φ(θ⊺kh
(i)
L−1) − φ(θ⋆⊺k h

(i)
L−1) −w

(i)
L−1[k])φ

′′
(θ⊺kh

(i)
L−1)h

(i)
L−1(h

(i)
L−1)

⊺
∥

+
1
N

N

∑
i=1

∥φ′(θ⊺kh
(i)
L−1)φ

′
(θ⊺kh

(i)
L−1)h

(i)
L−1(h

(i)
L−1)

⊺
∥,

(a)
≤

1
N

N

∑
i=1

[∥(θ⊺kh
(i)
L−1 − θ⋆⊺k h

(i)
L−1)h

(i)
L−1(h

(i)
L−1)

⊺
∥ + (1 + ∣w

(i)
L−1[k]∣)∥h

(i)
L−1(h

(i)
L−1)

⊺
∥],

≤
1
N

N

∑
i=1

[∥θk − θ⋆k∥`2∥h
(i)
L−1∥

3
`2 + (1 + ∣w

(i)
L−1[k]∣)∥h

(i)
L−1∥

2
`2],

≲β3
+n

3/2
∥θk − θ⋆k∥`2 + (1 + σ)β2

+n, (A.36)

with probability at least 1 − 4T exp(−100n), where we get (a) by using a similar argument
as we used in the case of auxiliary loss while the last inequality comes from Lemma 28.
Combining the two bounds, gives us the statement of the lemma. This completes the proof.

A.2.4 Verification of Assumption 5

Given a single sample (hL,hL−1,zL−1) from the trajectory of the nonlinear system (6.2),
the single sample loss is given by,

L(Θ, (hL,hL−1,zL−1)) =
n

∑
k=1
Lk(θk, (hL[k],hL−1,zL−1[k])),

where Lk(θk, (hL[k],hL−1,zL−1[k])) ∶=
1
2
(hL[k] − φ(θ⊺khL−1) − zL−1[k])

2. (A.37)

Before stating a lemma on bounding the subexponential norm of the gradient of the single
sample loss (A.37), we will state an intermediate lemma to prove the Lipschitzness of the
state vector.
Lemma 32 (Lipschitzness of the state vector) Suppose the nonlinear system (6.2) is
(Cρ, ρ)-stable, zt i.i.d.

∼ N(0,In) and wt
i.i.d.
∼ N(0, σ2In). Let vt ∶= [z⊺t 1/σw⊺t ]⊺ and h0 = 0.

Fixing all {vi}i≠τ (i.e., all except vτ ), ht+1 is Cρρt−τ(1 + σ2)1/2 Lipschitz function of vτ for
0 ≤ τ ≤ t.
Proof To begin, observe that ht+1 is deterministic function of the sequence {vτ}

t
τ=0. Fixing

all {vi}i≠τ , we denote ht+1 as a function of vτ by ht+1(vτ). Given a pair of vectors (vτ , v̂τ),
using (Cρ, ρ)-stability of the nonlinear system (6.2), for any t ≥ τ , we have

∥ht+1(vτ) −ht+1(v̂τ)∥`2 ≤ Cρρ
t−τ

∥hτ+1(vτ) −hτ+1(v̂τ)∥`2 ,

≤ Cρρ
t−τ

∥φ(Θ⋆hτ) + zτ +wτ − φ(Θ⋆hτ) − ẑτ − ŵτ∥`2 ,

≤ Cρρ
t−τ

(∥zτ − ẑτ∥`2 + σ∥1/σwτ − 1/σŵτ∥`2),

(a)
≤ Cρρ

t−τ
(1 + σ2

)
1/2

(∥zτ − ẑτ∥
2
`2 + 1/σ2

∥wτ − ŵτ∥
2
`2)

1/2,

≤ Cρρ
t−τ

(1 + σ2
)

1/2
∥vτ − v̂τ∥`2 , (A.38)

46



Learning Nonlinear Dynamical Systems

where we get (a) by using Cauchy-Schwarz inequality. This implies ht+1 is Cρρt−τ(1 + σ2)1/2

Lipschitz function of vτ for 0 ≤ τ ≤ t and completes the proof.
We are now ready to state a lemma to bound the subexponential norm of the gradient of
the single sample loss (A.37).

Lemma 33 (Subexponential gradient) Consider the same setup of Lemma 32. Let
Lk(θk, (hL[k],hL−1,zL−1[k]) be as in (A.37) and β+ ∶= Cρ(1+σ)/(1−ρ). Suppose ∣φ′(x)∣ ≤ 1
for all x ∈ R. Then, at any point Θ, for all 1 ≤ k ≤ n, we have

∥∇Lk(θk, (hL[k],hL−1,zL−1[k])) − E[∇Lk(θk, (hL[k],hL−1,zL−1[k]))]∥ψ1

≲ β2
+∥θk − θ⋆k∥`2 + σβ+.

Proof We first bound the subgaussian norm of the state vector ht following Oymak
(2019) as follows: Setting vt = [z⊺t 1/σw⊺t ]⊺, define the vectors qt ∶= [v⊺0 ⋯ v⊺t−1]

⊺ ∈ R2nt

and q̂t ∶= [v̂⊺0 ⋯ v̂⊺t−1]
⊺ ∈ R2nt. Observe that ht is a deterministic function of qt, that is,

ht = f(qt) for some function f . To bound the Lipschitz constant of f , for all (deterministic)
vector pairs qt and q̂t, we find the scalar Lf satisfying

∥f(qt) − f(q̂t)∥`2 ≤ Lf∥qt − q̂t∥`2 . (A.39)

For this purpose, we define the vectors {bi}
t
i=0 as follows: bi = [v̂⊺0 ⋯ v̂⊺i−1 v

⊺
i ⋯ vt−1]

⊺.
Observing that b0 = qt and bt = q̂t, we write the telescopic sum,

∥f(qt) − f(q̂t)∥`2 ≤
t−1
∑
i=0

∥f(bi+1) − f(bi)∥`2 . (A.40)

Observe that f(bi+1) and f(bi) differs only in vi, v̂i terms in the argument. Hence, viewing
ht as a function of wi and using the result of Lemma 32, we have

∥f(qt) − f(q̂t)∥`2 ≤
t−1
∑
i=0
Cρρ

t−1−i
(1 + σ2

)
1/2

∥vi − v̂i∥`2 ,

(a)
≤ Cρ(1 + σ2

)
1/2(

t−1
∑
i=0
ρ2(t−1−i))1/2

(
t−1
∑
i=0

∥vi − v̂i∥
2
`2)

1/2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∥qt−q̂t∥`2

,

(b)
≤
Cρ(1 + σ2)1/2

(1 − ρ2)1/2 ∥qt − q̂t∥`2 , (A.41)

where we get (a) by applying the Cauchy-Schwarz inequality and (b) follows from ρ < 1.
Setting βK = Cρ(1 + σ2)1/2/(1 − ρ2)1/2, we found that ht is βK-Lipschitz function of qt.
Since vt i.i.d.

∼ N(0,I2n), the vector qt i.i.d.
∼ N(0,I2nt). Since, ht is βK-Lipschitz function

of qt, for any fixed unit length vector a, a⊺ht is still βK-Lipschitz function of qt. This
implies ∥ht − E[ht]∥ψ2 ≲ βK . Secondly, βK-Lipschitz function of a Gaussian vector obeys the
variance inequality var[a⊺ht] ≤ β2

K (page 49 of Ledoux (2001)), which implies the covariance
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bound Σ[ht] ⪯ β
2
KIn. Combining these results with ∥wt[k]∥ψ2 ≤ σ, we get the following

subexponential norm bound,

∥∇Lk(θk, (hL[k],hL−1,zL−1[k])) − E[∇Lk(θk, (hL[k],hL−1,zL−1[k]))]∥ψ1

≤ ∥φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)φ

′
(θ⊺khL−1)hL−1h

⊺
L−1(θk − θ⋆k)

− E[φ′(θ⊺khL−1,θ
⋆⊺
k hL−1)φ

′
(θ⊺khL−1)hL−1h

⊺
L−1(θk − θ⋆k)]∥ψ1

+ ∥φ′(θ⊺khL−1)wL−1[k]hL−1∥ψ1 ,

≲ β2
K∥θk − θ⋆k∥`2 + σβK ,

≲ β2
+∥θk − θ⋆k∥`2 + σβ+, (A.42)

where we get the last two inequalities from the fact that the product of a bounded function (φ
is 1-Lipschitz because ∣φ′(x)∣ ≤ 1 for all x ∈ R) with a subgaussian/subexponential random
vector is still a subgaussian/subexponential random vector. This completes the proof.

A.2.5 Proof of Corollary 16

Proof We have verified Assumptions 2, 3, 4 and 5 for the nonlinear system 6.2. Hence,
we are ready to use Theorem 14 to learn the dynamics Θ⋆ of the nonlinear system (6.2) .
Before that, we find the values of the system related constants to be used in Theorem 14 as
follows.

Remark 34 Consider the same setup of Lemma 32. Let β+ ≥ βK > 0 be as defined in
Lemmas 28 and 33 respectively. Then, with probability at least 1 − 4T exp(−100n), for all
1 ≤ t ≤ T , Θ ∈ Bn×n(Θ⋆, r) and 1 ≤ k ≤ n, the scalars Cφ,Dφ take the following values.

∥∇θkφ(θ
⊺
kht)∥`2 = ∥φ′(θ⊺kht)ht∥`2 ≤ ∥ht∥`2 ≲ β+

√
n = Cφ,

∥∇ht∇θkφ(θ
⊺
kht)∥ = ∥φ′(θ⊺kht)In + φ′′(θ⊺kht)htθ

⊺
k∥ ≲ 1 + β+

√
n∥θk∥`2 ≲ 1 + ∥Θ⋆∥Fβ+

√
n =Dφ

where without loss of generality we choose Θ(0) = 0 and r = ∥Θ⋆∥F . Furthermore, the
Lipschitz constant and the gradient noise coefficients take the following values: LD =

c((1 + σ)β2+n + ∥Θ⋆∥Fβ3+n3/2 log3/2(2T )), K = cβ2+ and σ0 = cσβ+. Lastly, we also have
p0 = 4T exp(−100n).

Using these values, we get the following sample complexity bound for learning nonlinear
system (6.2) via gradient descent,

N ≳
β4+

γ4(1 + σ2)2 log2
(3((1 + σ)β2

+n + ∥Θ⋆∥Fβ3
+n

3/2 log3/2
(2T ))N/β2

+ + 3)n,

Ô⇒ N ≳
C4
ρ

γ4(1 − ρ)4 log2
(3(1 + σ)n + 3∥Θ⋆∥Fβ+n3/2 log3/2

(2T )N + 3)n, (A.43)

where β2
+

1+σ2 ≤
C2
ρ(1+σ)2/(1−ρ)2

(1+σ)2/2 =
2C2

ρ

(1−ρ)2 is an upper bound on the condition number of the
covariance matrix Σ[ht]. Similarly, the approximate mixing time of the nonlinear system (6.2)
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is given by,

L ≥ 1 + [ log(c0Cρβ+(1 + ∥Θ⋆∥Fβ+
√
n)n

√
N/n) + log(c/β+ ∨ c

√
n/β+)]/ log(ρ−1

),

⇐Ô L ≥ ⌈1 +
log(CCρ(1 + ∥Θ⋆∥Fβ+)Nn)

1 − ρ
⌉, (A.44)

where C > 0 is a constant. Finally, given the trajectory length T ≳ L(N + 1), where
N and L are as given by (A.43) and (A.44) respectively, starting from Θ(0) = 0 and
using the learning rate η =

γ2(1+σ2)
16β4

+n
2 ≥

γ2(1−ρ)4

32C4
ρ(1+σ)2n2 , with probability at least 1 − Ln(4T +

log( ∥Θ⋆∥FCρ(1+σ)
σ(1−ρ) )) exp(−100n) for all 1 ≤ k ≤ n, all gradient descent iterates Θ(τ) on L̂

satisfy

∥θ
(τ)
k − θ⋆k∥`2 ≤ (1 −

γ4(1 + σ2)2

128β4+n2 )
τ
∥θ

(0)
k − θ⋆k∥`2

+
5c

γ2(1 + σ2)
σβ+ log(3(1 + σ)n + 3∥Θ⋆∥Fβ+n3/2 log3/2

(2T )N + 3)
√

n

N
.

≤ (1 −
γ4(1 − ρ)4

512C4
ρn

2 )
τ
∥θ

(0)
k − θ⋆k∥`2

+
10cCρ

γ2(1 − ρ)
σ log(3(1 + σ)n + 3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2

(2T )N/(1 − ρ) + 3)
√

n

N
,

where we get the last inequality by plugging in the value of β+ = Cρσ/(1 − ρ) and using
the inequality (1 + σ2) ≥ (1+σ)2

2 . We remark that, choosing N ≳
C4
ρ

γ4(1−ρ)4 log2(3(1 + σ)n +

3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2(2T )N/(1 − ρ) + 3)n, the residual term in the last inequality can
be bounded as,

10cCρ
γ2(1 − ρ)

log(3(1 + σ)n + 3Cρ(1 + σ)∥Θ⋆∥Fn3/2 log3/2
(2T )N/(1 − ρ) + 3)

√
n

N
≲ σ.

Therefore, to ensure that Theorem 14 is applicable, we assume that σ ≲ ∥Θ⋆∥F (where we
choose Θ(0) = 0 and r = ∥Θ⋆∥F ). This completes the proof.

49


	Introduction
	Problem Setup
	Assumptions on the System and the Inputs
	Optimization Machinery

	Accurate Statistical Learning with Gradient Descent
	Learning from a Single Trajectory
	Main Results
	Non-asymptotic Identification of Nonlinear Systems
	Separable Dynamical Systems

	Applications
	Linear Dynamical Systems
	Nonlinear State Equations

	Numerical Experiments
	Related Work
	Conclusions
	Proofs of the Main Results
	Proof of Theorem 4
	Proof of Lemma 6
	Proof of Lemma 8
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 13
	Proof of Theorem 14

	Proof of Corollaries 15 and 16
	Application to Linear Dynamical Systems
	Verification of Assumption 1
	Verification of Assumption 2
	Verification of Assumption 3
	Verification of Assumption 4
	Verification of Assumption 5
	Proof of Corollary 15

	Application to Nonlinear State Equations
	Verification of Assumption 2
	Verification of Assumption 3
	Verification of Assumption 4
	Verification of Assumption 5
	Proof of Corollary 16



