
Input Feature Pruning for Accelerating GNN
Inference on Heterogeneous Platforms

Jason Yik
Harvard University
jyik@g.harvard.edu

Sanmukh R. Kuppannagari
Case Western Reserve University
sanmukh.kuppannagari@case.edu

Hanqing Zeng
Meta AI

zengh@meta.com

Viktor K. Prasanna
University of Southern California

prasanna@usc.edu

Abstract—Graph Neural Networks (GNNs) are an emerging 
class of machine learning models which utilize structured graph 
information and node features to reduce high-dimensional input 
data to low-dimensional embeddings, from which predictions can 
be made. Due to the compounding effect of aggregating neighbor 
information, GNN inferences require raw data from many times 
more nodes than are targeted for prediction. Thus, on heteroge-
neous compute platforms, inference latency can be largely subject 
to the inter-device communication cost of transferring input 
feature data to the GPU/accelerator before computation has even 
begun. In this paper, we analyze the trade-off effect of pruning 
input features from GNN models, reducing the volume of raw 
data that the model works with to lower communication latency 
at the expense of an expected decrease in the overall model 
accuracy. We develop greedy and regression-based algorithms 
to determine which features to retain for optimal prediction 
accuracy. We evaluate pruned model variants and find that they 
can reduce inference latency by up to 80% with an accuracy loss 
of less than 5% compared to non-pruned models. Furthermore, 
we show that the latency reductions from input feature pruning 
can be extended under different system variables such as batch 
size and floating p oint precision.

Index Terms—data science algorithms, graph neural network, 
accuracy/performance trade-off, input feature pruning

I. INTRODUCTION

Graph Neural Networks (GNNs) have recently attracted
attention for their ability to learn and make predictions on
graph-structured data. State-of-the-art models have been de-
ployed on web-scale graphs in a diverse set of real-world
applications such as recommendation [1] [2], traffic prediction
[3], and fraud detection [4]. As is the case for traditional neural
network models, GNNs operate on large tensors and have high
computation workloads, so to achieve reasonable execution
times GNNs will execute on heterogeneous systems consisting
of a host CPU and an accelerator device. In addition to GPU-
based acceleration, FPGA [5] and ASIC [6] accelerators for
GNN execution have been proposed.

To express the structural information of its graph, GNNs
rely on aggregating previous-layer features from the neighbor-
hood of target nodes to generate features at the current layer.
As the depth of a GNN increases, such aggregation causes an
exponential increase in the number of sampled nodes, referred
to as the ”neighbor explosion” effect [7]. This explosion

The current work was supported by the U.S. National Science Foundation 
under award numbers PPoSS-2119816, SaTC-2104264, and OAC-1911229. 
Completed while authors were affiliated with the University of Southern 
California.

effect is particularly impactful at the initial GNN layer, in 
which the raw input features are aggregated. For heterogeneous 
compute platforms, the communication latency of transferring 
this large volume of input features before computation begins 
can heavily impact the overall inference latency.

While several works have focused on optimizing the com-
putation aspects of GNNs [8], optimizing for inter-device 
communication has not been well explored. A key challenge 
in communication optimization is that any reduction in the 
transferred data removes information from which the model 
can use for inference, leading to an adverse non-trivial im-
pact on the accuracy of the model. Hence, detailed trade-off 
analysis of the accuracy and performance of model variants 
generated with reduced data volumes is required.

In this work, we study the effect of pruning input features 
from GNN nodes to accelerate inference by reducing inter-
device communication. A high level analogy to a non-GNN 
neural network approach would be to reduce the resolution 
of an input video stream. For example, it is clear that down-
sampling a 1080p, 60 Hz video to 360p, 24 Hz would allow for 
optimized memory transfer, potentially leading to important 
latency reductions in both real-time and offline inference 
settings. However, the corresponding idea of reducing the 
input data dimensionality for GNNs has not been studied. 
Since GNN inputs are embeddings of node features by nature, 
pruning techniques that have historically been applied to 
intermediate model channels [9] can also be applied to raw 
GNN input data.

We explore the trade-off in our pruned model variants’ 
inference accuracy and make suggestions as to how they can 
be used in GNN inference service systems. Our contributions 
can be summarized as follows:

• We highlight how neighborhood aggregation leads to
an inter-device communication bottleneck during GNN
inference.

• We develop heuristic and regression-based algorithms for
pruning input features from GNN nodes.

• We evaluate our pruning techniques on widely-used, large
datasets and different GNN architectures. On different
datasets, we produce variants which exhibit 11.88ms to
4.24ms (64%), 15.58ms to 2.54ms (83%), and 50.03ms
to 8.85ms (82%) reductions in latency for accuracy losses
of less than 5% in all cases.



• We show that the latency reductions from input feature
pruning can be extended under system variables such as
batch size and floating point precision.

• We show how pruned model variants can be incorporated
into GNN inference as-a-service cloud systems.

II. BACKGROUND

A. Graph Neural Networks
Graph neural networks are a class of models which per-

form inference using neighbor message passing over graph-
structured connections, turning a node’s high-dimensional in-
put features into a low-dimensional embedding that can be
used in downstream tasks such as classification [10]. A GNN
model is usually constructed from multiple layers, each of
which transforms the features (or intermediate embeddings)
from the previous layer. The forward pass of each layer can
be generalized into two steps, feature aggregation and feature
transformation.

1) Feature aggregation: For a given layer l, the first step is
to aggregate each target node’s neighbor features from the pre-
vious layer, X l−1 (X0 denotes the input features, in the case
of l = 1). Aggregation functions differ by GNN architecture,
having distinct ways of combining the self features of a node
with its neighbors’ features. Generally, for a neighborhood and
aggregation scheme modeled by Al, feature aggregation takes
the form

Zl = (AlX l−1)

In practice, since a node can have an arbitrarily large num-
ber of neighbors, neighbor sampling algorithms are typically
used to limit the number of features aggregated for each node.
For instance, the GraphSAGE [11] sampling algorithm defines
per-layer budgets and randomly samples at most that many
neighbors for each node that requires feature transformation
in the layer. Thus, in the above equation X l−1 has the size
of the sampled neighborhood and Al defines which neighbors
are sampled.

2) Feature transformation: In this step, at layer-l the ag-
gregated features Zl are transformed by the learned weight
matrix W l and a nonlinear function σ to generate the next
layer’s features. This step thus takes the form

X l = σ(ZlW l)

After the aggregation and transformation across all layers
in the GNN model, each node is left with a low-dimensional
embedding from which a prediction can be made. In this paper,
we study node classification, in which nodes’ final embeddings
are subject to a softmax layer that predicts one or multiple
classifications for the node.

GNN architectures such as GCN [10], GraphSAGE [11],
and GIN [12] differ in aggregation schemes and transformation
methods. A GNN model’s architecture is not dependent on
its neighbor sampling algorithm [13], i.e. which neighbors it
chooses to aggregate in each layer. For simplicity, in this paper
we use the aforementioned GraphSAGE sampling algorithm,
though our pruning methods can be applied regardless of
which sampling algorithm is used.

B. Related Work

A recent survey on algorithms for GNN acceleration [8]
categorizes current methods into two optimization categories
- graph-level and model-level. The graph-level optimization
methods focus primarily on breaking up graph data into more
manageable pieces via sampling, sparsification, or partitioning.
Such methods work only on the graph itself and do not account
for node features. Model-level optimization methods aim for
efficient computation by simplifying or compressing the GNN
model itself. Efficient communication methods which optimize
on inter-device data transfers have not been well-studied,
especially for GNN inference tasks. In the following section
we discuss related works relevant to efficient communication,
our methods, and practical use cases for our work.

Quantization. Several works have proposed quantization
methods for GNNs which reduce the precision of feature
and model data to compress and accelerate model execu-
tion. Degree-Quant [14] uses node protection and percentile
tracking at training time to generate high-accuracy quantized
models, and BGN [15] goes to the limit of quantization by
reducing model weights and embeddings to single bits. While
the potential of reducing the precision of input features for use
in quantized GNNs offers to solve the same memory transfer
bottleneck as our input feature pruning, quantized GNN work
has focused more on CPU-only inference service, especially
for use on small edge CPUs. As noted in Degree-Quant, the
massive parallel computation of GPUs limits the compute
benefits of lower precision and offers little speedup over non-
quantized model inference [14]. In our evaluation, we perform
tests with reduced-precision models to show how they compare
and combine with input feature pruning, see Section IV-D.

Neighborhood Sampling. GNN models such as Graph
Attention Networks [16] aggregate features from all neighbors,
assigning each with an attention coefficient dictating how
impactful that neighbor’s features should be. However, for
very large, web-scale graphs, aggregating all neighbors for
every target node quickly becomes intractable. Thus, bounding
the sampled neighborhood to some constant size is required
for scaling GNN inference. Recently, shaDowGNN [13] has
proposed to decouple neighborhood sampling from GNN
architecture, identifying a fixed number of important nodes
from around the immediate neighborhood of a target and
using only those nodes for aggregation in all layers. By
reducing the number of sampled nodes, these methods also can
accelerate GNN execution by reducing initial communication
volume. Rather than studying graph sampling, in this work we
examine the orthogonal dimension of node features, and we
note that our method of input feature pruning can be combined
with sampling algorithms for greater potential performance
improvements.

Channel Pruning. Pruning neural networks generally refers
to reducing model sizes by removing internal parameters
[17], and our techniques for GNN input feature pruning
are adapted from GNN channel pruning methods [9]. While
reducing model parameters, channel pruning maintains all



raw input feature data. Rather than focusing on decreasing
feature communication time, it lowers computation complexity
and compresses models. Generally, small and shallow GNN
models already achieve state-of-the-art performance [18], so
our work optimizes around the size of data rather than the
size of the model.

Accuracy/Performance Trade-offs in ML as-a-Service.
Recently, accuracy/performance trade-offs have been explored
for machine learning service systems [19] [20] [21], hereafter
referred to as dynamic service systems. Such systems take
advantage of the fact that the same inference task can be served
by many different model variants, differing in parameters
such as model architecture, accelerator platform, and optimiza-
tion degree. Having many different model variants on hand,
dynamic systems will switch service automatically between
high-accuracy/high-latency variants to lower-accuracy/lower-
latency variants in reaction to changing user demands or
workloads. Our technique of input feature pruning generates
model variants that serve the same inference tasks at varying
accuracy and latency, so GNN model variants that have been
input feature-pruned can be used practically in such dynamic
systems. We study this use case in Section V. So far, dynamic
systems have studied applications in image processing [21] and
speech recognition [19] [20] using traditional convolutional
neural networks - to our knowledge we are the first to study
the intersection of GNN models with dynamic systems.

III. APPROACH

We consider heterogeneous GNN inference platforms with
a host CPU and an accelerator device (GPU, FPGA [5], ASIC
[6]). The host receives inference requests and communicates
input data from its memory to the accelerator memory over
PCIe. In our analysis, we consider that the inference requests
follow back-to-back and thus the model can reside within
accelerator memory instead of being transferred on every
request.

A. Communication Bottleneck

Feature aggregation in GNNs necessitates raw input data
from many more nodes than are targeted for inference. In cases
where graphs are too large to fit in accelerator memory, or
the same accelerator serves multiple client tasks, transferring
this raw data during each inference request can be a latency
bottleneck.

In terms of communication volume, the worst-case scenario
is that every node aggregates from every one of its neighbors,
a sampling method used by some GNN architectures [16].
In this case, embeddings for target nodes at the last layer
are generated by aggregating all intermediate features from
the second-to-last layer, which are generated by aggregating
all features from the third-to-last layer, ... until the input
features are reached. Thus, there is an exponential growth
in aggregation size backwards through the GNN layers. For
inference on t target nodes in a graph with degree d, an L-layer
GNN would need to aggregate O(dLt) input feature vectors.

In practice, aggregating features from every neighbor of
each target node can become computationally intractable.
Thus, sampling budgets may be imposed at each layer to limit
the number of neighbor features aggregated. For a neighbor
sampling method with sampling budget ni for each layer i, the
size of the neighborhood N0 from which input feature vectors
must be aggregated is

N0 = c0 · t ·
L−1∏
i=0

ni

Since the same node may be sampled by multiple different
neighbors in the next layer, the number of unique nodes is
some fraction c0 of the product. Generally, the size of the
aggregated neighborhood in the i-th layer of the GNN is

Ni = ci · t ·
L−1∏
i

ni

where ci is the unique node factor for that layer.
The compounding effect of sampling neighbors makes GNN

inference intensive in communication, a property not seen
in other neural network types. Because of the exponential
aggregation trend, Ni is multiplicatively larger than Ni+1, thus
the size of N0 is dominant within the GNN execution. Also,
due to the high-dimensional nature of raw data, the feature
vectors f0 for each node are larger than intermediate and final
feature vectors. The input feature matrix X0, with dimensions
(N0 × f0), is therefore the largest matrix computed by the
GNN and determines a significant portion of the computation
workload. Since X0 is the input to the GNN inference,
the entire matrix must be transferred from host memory to
accelerator memory, so it is also the dominant portion of the
communication workload. Therefore, the complexity of com-
putation and communication in GNN inference is comparable,
unlike in the case for CNN architectures in which sliding
windows may compute many times over the same input data.
It is well known that communication performance and scaling
lags far behind computation performance and scaling [22], so
GNN execution can strongly suffer from a communication
bottleneck. We validate this theory in our evaluations, see
Table V.

B. Input Feature Pruning

Motivated by the idea of an inter-device communication
bottleneck, we propose to increase the performance of GNN
inference on heterogeneous platforms by pruning input fea-
tures. If feature communication is a large factor in overall
inference latency, reducing the volume of transferred data can
significantly decrease the response time. However, pruning
also creates lower-complexity GNN models - as more features
are pruned there is less raw data to inform the model to
generate its embeddings. Thus, by varying the degree of
pruning, our technique can generate different GNN model
variants that exhibit a range of accuracy and performance.

Pruning input features shrinks the input feature dimension
by removing certain features, creating new input vectors for



each node which include only important features. “Impor-
tance” of features refers to their relative usefulness in a GNN
model for reaching the correct output embeddings: if a similar
embedding can be reached in the absence of a certain feature
then the feature is not important and can be pruned.

In terms of the input feature matrix X0 with f0 original
features, we are identifying the important features as the subset
S with elements [1, f0], and we generate pruned input feature
matrix X0

S with the columns of X0 corresponding to the
elements of S.

To generate different model variants we vary pruning
amount by changing the size of X0

S . For ease of choosing
different pruning degrees, we order the features with an
importance ranking and prune away lower-ranked features to
construct the subset S. We study model variants generated
using two heuristic-based methods and one regression-based
method, adapted from methods which were first proposed to
prune the hidden channels of GNN models for the sake of
reducing computation and model size [9]. In this work, we
extend them to GNN input feature pruning for the primary
purpose of reducing inter-device communication. We analyze
the different methods in Section IV-A.

C. Ranking Algorithms

1) Transforming Weights (TransWt): Using a trained GNN
model, the features are ranked based on the L1-norm of the
row corresponding to each feature in the first-layer weight
matrix W 1 of the model. W 1 transforms f0 features to f1
features, so its dimensions are (f0×f1). The ranking of feature
i, Ri is

Ri =

f1−1∑
j=0

W 1[i][j]

Intuitively, smaller values in the weight matrix decrease
a feature’s impact on transformation into the next layer’s
features, thus that feature can be deemed less important. In
practice, this approach can fall short due to its inability to
account for the relative average magnitudes of the features, for
instance a feature with generally low magnitude would have
greater transforming weights than a feature with generally high
magnitude, for both to have similar impact on the next layer’s
features.

2) Feature Magnitude (FeatMag): Unlike the previous al-
gorithm which requires a trained GNN model, this uses the
training data itself to rank features. For input features of T
training nodes, X0

T (dimension (T × f0))), the ranking of
feature i is

Ri =

∑T−1
j=0 |X0

T [j][i]|
T

Features which have greater average magnitudes over the
available training data are ranked higher than those with lower
average magnitude. For features centered around 0, features
are ranked by their overall variance. This technique attempts to
circumvent the previous technique’s issue with assigning more

importance to low-magnitude features, though it is subject to
failing to discern between unprocessed features that may have
widely differing magnitude ranges. For example, some features
may be very expressive near 0 in the range (−1, 1) while
others may be expressive in the range (0, 100).

3) LASSO Regression (Lasso): We use lasso regression on
the input features to identify their importance. Given a trained
GNN model and training data, we learn a coefficients mask
which is applied to input features before they are aggregated
and transformed. The objective is to minimize the difference
between first-layer intermediate features (X1) generated from
masked input features and first-layer intermediate features
generated from original input features, using the aggregation
scheme and weight matrix of the first layer of the GNN
model for both. We add a penalty based on the combined
magnitude of the coefficients, which forces the coefficients of
certain features to decrease. A small coefficient for a given
feature decreases its impact towards generating first-layer
hidden features, making it a better candidate to be pruned.
Thus, after the coefficients mask is learned, we rank features
based off of the magnitude of their coefficients in the mask.

Formally, for a GNN model with first-layer aggregation
neighborhood A1 and weight matrix W 1, input features X0

T

from nodes in the training set, and penalty factor λ we
optimize the coefficient mask β for the problem

argmin
β

(
∥A1X0

TW
1 −A1(β ⊙X0

T )W
1∥22 + λ∥β∥1

)
where ⊙ denotes element-wise multiplication for each row of
the matrix.

To begin, all coefficients in β are 1. In one epoch for the
lasso regression, we calculate the above function as loss and
backpropagate on β. To force features to decrease, at each
epoch we increase the penalty factor λ by a set amount. After
regression, features are ranked based on the corresponding
magnitudes in β

Ri = β[i]

Since features are ranked based on the magnitude of their
coefficient in β, we do not require any quota of features to
be near zero and instead stop optimization after a number of
epochs.

D. Generating Model Variants

Once the features are ranked, they can be used to create
pruned input feature matrices X0

S to train a model variant
using only the pruned features. The ranking allows for fine
control over how many features should be used to train pruned
models since the subset S of saved features are taken from
the top of the ranking, though in practice we find that a broad
performance range is possible with only a few pruned model
variants.

The process of ranking and training pruned model variants
can operate with or without the supervision of the system
client, asynchronous to inference service. A user may choose
to perform the training and separately upload the model



variants into a machine learning as-a-service system, or the 
user may upload a master model trained with all input features 
and the system can automatically perform ranking and pruned 
model variant training internally. At runtime, based on the 
model variant selected for service, the system will transfer 
only the pruned feature set to its accelerator to serve inference 
requests.

In our evaluation, we observe that the time for ranking 
features, even for Lasso, is negligible compared to pruned 
model variant training time. Since the decreased feature 
communication time is also relevant to forward propagation 
in training and pruned models have fewer weights, training 
pruned model variants is tractable. In practice, we observe 
a rough correlation between prune amount and training time 
reduction. The combined training time for 2×, 4×, and 8× 
pruned models is on the same order of the training time 
of the unpruned model, which would suggest linear scaling 
when applying input feature pruning to larger GNN datasets. 
This is consistent with our hypothesis of the general GNN 
communication bottleneck (Section III-A) and our empirical 
results of inference latency reduction (Section IV-B).

IV. EVALUATION

TABLE I
DATASET STATISTICS. (S) AND (M) DENOTE SINGLE- AND MULTI-LABEL 

CLASSIFICATION.

Dataset Nodes Edges Features Classes

Flickr [23] 89,250 899,756 500 7(s)
Arxiv [24] 169,343 1,166,243 128 40(s)
Reddit [23] 232,965 11,606,919 602 41(s)
Yelp [23] 716,847 6,977,410 300 100(m)

Products [24] 2,449,029 61,859,140 100 47(s)

In this section, we evaluate the accuracy/latency trade-offs
of the model variants generated by input feature pruning.
Unless otherwise specified, all experiments are run on a
machine equipped with an AMD Ryzen 3990X CPU and
NVIDIA A6000 GPU, connected using PCIe 4.0.

We choose five datasets for GNN node classification from
Pytorch Geometric [23] and Open Graph Benchmark [24],
described in Table I. We run experiments under inductive
settings [11], in which test nodes are unseen during training,
which represents classification tasks where a GNN model is
trained on a subset of all nodes and deployed for inference on
the rest of the nodes or new nodes. All are single-classification
tasks except Yelp, which assigns multiple ground-truth labels
per node. Thus “Accuracy” refers to the F1-micro score for
Yelp evaluation.

Our models are implemented using Python3 and Pytorch
Geometric [23]. All models have two layers (one hidden
feature transformation between input and output features). We
train model variants with a batch size of 1024 and test the total
accuracy and average latency values with 1024 inference batch
size using the testing node set. We use GraphSAGE neighbor
sampling with sampling budgets of 10 and 25 in the first and
second layers, respectively.

In our workflow, we first train a model using all original
input features, then rank features using the trained model as
necessary for the ranking technique. To express a wide pruning
range with concision we use an exponential pruning scheme,
generating model variants with half, a quarter, and an eighth
of original input features, referred to as 2×, 4×, 8× in our
results. The un-pruned original model is referred to as 1×.
Hyperparameters were tuned for the original model using the
validation set, and all pruned variants are trained with the same
hyperparameters as the original model they are generated from.

A. Comparison of Ranking Techniques

TABLE II
COMPARISON OF MODEL ACCURACY FOR DIFFERENT RANKING

TECHNIQUES

Dataset Prune Method 1× 2× 4× 8×

Flickr
TransWt 51.52 51.27 50.81 49.93
FeatMag 51.52 50.79 50.28 50.08

Lasso 51.52 51.15 50.69 49.69

Arxiv
TransWt 69.50 67.85 66.09 60.22
FeatMag 69.50 66.93 63.61 56.71

Lasso 69.50 67.03 63.43 58.10

Reddit
TransWt 94.72 95.18 94.58 93.26
FeatMag 94.72 93.69 92.26 90.60

Lasso 94.72 93.76 93.17 91.65

Yelp
TransWt 63.34 61.77 59.44 54.68
FeatMag 63.34 60.99 58.45 55.93

Lasso 63.34 61.17 58.81 55.36

Products
TransWt 74.90 71.72 61.89 47.75
FeatMag 74.90 74.24 71.65 66.25

Lasso 74.90 74.18 70.62 65.50

In Table II, we compare the accuracy of GraphSAGE model
variants generated using the three different ranking algorithms
outlined in Section III (Transforming Weights, Feature Magni-
tude, Lasso Regression). We do not report latency values here
since the models differ only in which features are pruned and
otherwise have the same dimensions. Highest accuracy model
variants per pruning amount are bolded. The un-pruned 1×
model is the same for each of the ranking techniques.

Accuracy differences are generally subtle between the dif-
ferent ranking techniques, which can suggest that structural
information gained through neighbor aggregation may play a
more significant role in inference accuracy than which specific
node features are chosen. In general, we find that TransWt is
slightly more accurate than Lasso, and both are slightly more
accurate than FeatMag. For most of the datasets, TransWt
outperforms the other ranking techniques across all pruning
levels, sometimes by significant margins up to 2.5%. FeatMag
models generally perform 1% less accurate than Lasso models.

The notable exception to the general trend is the Products
dataset, for which TransWt models are far less accurate -
around 3%, 10%, and 20% less than the FeatMag and Lasso
models at 2×, 4×, and 8× pruned, respectively. Surprisingly,
simply ranking features based off of their average magnitude



across the training data produces better pruned models than 
the regression-based Lasso models, though the difference is 
marginal. In our tests, we find t hat t he T ransWt algorithm 
ranks low-magnitude features highest for the Products dataset, 
as expected given the technique’s affinity f or low-magnitude 
features as described in Section III-B. FeatMag, on the other 
hand, ranks high-magnitude features highest, and we also find 
that the features chosen by Lasso ranking also generally have 
higher magnitude.

Of the datasets tested, Arxiv [24], Reddit [11], and Yelp 
[7] all use averages of embeddings from individual words in 
the associated node’s text as their node features, and Flickr [7] 
uses unprocessed bag-of-words counts as node features. Unlike 
the other datasets, Products [24] uses principal component 
analysis to reduce bag-of-words counts from product descrip-
tions to a 100-dimensional embedding. Principal component 
analysis, by its nature, produces non-uniform embeddings: the 
first p rincipal c omponent exposes t he h ighest variance across 
the data points (i.e. all nodes), the second component exposes 
the next highest variance when the first is disregarded, and so 
on. Thus, by using the FeatMag ranking technique on the Prod-
ucts dataset, we essentially are ranking the features according 
to the given PCA-based order, since higher-variance features 
have larger average magnitudes than the lower-variance fea-
tures. For the Products dataset and other datasets with similarly 
generated features, the FeatMag ranking technique or even 
simply pruning features from the tail-ends of the original input 
feature vectors generates the strongest pruned model variants.

Though it did not achieve the highest accuracy in our 
results, Lasso generally outperforms FeatMag or is behind 
within a small error margin (<1%). Due to its consistently 
high performance (as opposed to the catastrophic fall-off 
for TransWt on Products) and the theoretical robustness of 
regression, for the rest of our experiments we use the Lasso 
algorithm for all model variants.

B. Lasso Model Variant Performance

In Tables III and IV we show results for input feature
pruning for all 5 datasets using the Lasso ranking technique
for SAGE [11] and GIN [12] architectures, respectively. The
GraphSAGE architecture learns two transforming weight ma-
trices per layer, one which is applied to a node’s self-features
and the other which is applied to the mean of the node’s
sampled neighbor features. The GIN architecture scales self-
features by a learned value, adds them to sampled neighbor
features, and passes it through an MLP to generate the next
layer’s features. For the un-pruned original model and the three
pruned model variants, we show accuracy, latency, serialized
model size, and GPU memory usage. Latency measures the
time beginning when feature data starts transferring to the
GPU and ending once GPU computations are complete.

In all results, we notice a significant reduction in inference
latency, positively correlated to the number of features pruned.
As expected, datasets with a larger number of original input
features see a larger latency reduction. Arxiv and Products,
with the lowest number of original features 128 and 100,

TABLE III
EXPERIMENTAL RESULTS FOR SAGE VARIANTS WITH LASSO RANKING.

Dataset Prune Accuracy Latency (ms) Size (KB) GPU Mem (MB)

Flickr

1× 51.52 15.58 1021 174
2× 51.15 8.82 523 90
4× 50.69 3.92 272 46
8× 49.69 2.54 145 25

Arxiv

1× 69.50 4.40 680 86
2× 67.03 3.36 424 46
4× 63.43 2.79 296 25
8× 58.10 1.81 232 15

Reddit

1× 94.72 48.74 1293 541
2× 93.76 26.63 693 274
4× 93.17 14.63 390 140
8× 91.65 9.00 240 71

Yelp

1× 63.34 15.06 1608 1100
2× 61.17 8.91 1009 697
4× 58.81 4.17 709 493
8× 55.36 3.03 556 390

Products

1× 74.90 11.88 301 954
2× 74.18 6.03 201 488
4× 70.62 4.24 151 253
8× 65.50 3.32 125 132

TABLE IV
EXPERIMENTAL RESULTS FOR GIN VARIANTS WITH LASSO RANKING.

Dataset Prune Accuracy Latency (ms) Size (KB) GPU Mem (MB)

Flickr

1× 51.96 14.63 268 171
2× 51.91 8.15 209 88
4× 51.51 4.03 176 44
8× 51.06 2.74 160 23

Arxiv

1× 69.81 4.43 184 84
2× 69.84 2.85 169 44
4× 67.98 2.14 161 23
8× 64.32 1.75 157 13

Reddit

1× 92.04 50.03 432 538
2× 91.05 26.70 359 272
4× 89.10 15.16 320 138
8× 87.64 8.85 301 71

Yelp

1× 63.38 14.93 730 1097
2× 61.87 8.66 657 688
4× 59.20 4.11 618 484
8× 55.75 2.89 599 382

Products

1× 72.82 6.25 308 954
2× 72.29 4.55 296 488
4× 70.78 3.41 290 254
8× 65.73 2.93 286 133

achieve around 50% latency reduction from 1× to 8× pruned
models, while the other three datasets with a larger number of
features (300, 500, 602) achieve around 80% latency reduction
for the same. Notably, for a large number of features like in the
Reddit dataset, latency improvements are nearly linear to the
pruning amount, which validates the technique of extrapolating
the number of features to prune given some target inference
latency constraint.

For both the GIN and SAGE architectures, accuracy results
between the same graph under the same pruning are similar,
but between the datasets the accuracy results are variable.
For some datasets, there is a small drop in accuracy, while
others exhibit large accuracy degradations as more features are
pruned. The relative drop in accuracy is not as predictable as in
latency, but we observe that it is also correlated to the number
of original input features. Flickr and Reddit, with 500 and 602



original input features, still achieve high accuracy even when
pruned down 8× to 63 or 75 features. On the other hand,
Arxiv and Products suffer more accuracy loss with only 16
and 12 input features at 8× prune. In all cases, the accuracy
drop between 1× and 8× models is less than 10%.

Generally, we find that 2× models offer significant latency
reduction at only slightly reduced accuracy compared to un-
pruned models. In the case of GIN models on Arxiv, the
pruned model even outperforms the original model. In many
other cases accuracy differences are less than 1%. Reducing
the raw data available to the model, even by as much as
half, can positively affect its inference accuracy by reducing
noise. As input features are pruned away, increased sparsity
can generate more accurate models since there is less learned
noise and thus better prediction generalization.

Pruning affects not only the accuracy and latency of the
models, but also their sizes and the runtime GPU memory
usage. A pruned input feature dimension reduces the number
of parameters needed in the first layer weight matrix W 1, and
during computation the GPU does not need to save as much
raw data or intermediate values. Since inference latency from
dynamic systems can be subject to model loading time for cold
starts and the system may need to co-host several models on
the same device at once, having smaller and more resource-
efficient model variants provide more opportunities for system
optimization at runtime.

While pruned models are smaller due to reductions in first-
layer transforming matrix sizes, we note that the reduction
in latency is in general proportional to the pruning ratio,
while reduction in model size is not. Thus, we attribute the
latency reduction to decreased inter-device communication
rather than decreased computation, supporting our hypothesis
of a communication bottleneck in Section III.

C. Batch Size

TABLE V
RATIO OF COMMUNICATION TIME TO COMPUTATION TIME AND TOTAL

LATENCY FOR DIFFERENT BATCH SIZES FOR SAGE YELP MODELS

Prune Amount

Batch Size 1× 2× 4× 8×

1024 17.29 9.34 3.90 2.89
15.06ms 8.91ms 4.17ms 3.03ms

512 9.61 3.83 2.83 2.29
8.88ms 4.05ms 2.83ms 1.98ms

256 3.57 2.79 2.18 1.50
3.96ms 2.57ms 1.87ms 1.37ms

128 2.65 2.00 1.43 1.10
2.46ms 1.76ms 1.39ms 1.17ms

To better understand the communication and computation
components of total inference latency, in Table V we show the
communication time to computation time ratio (in bold) and
total latency of SAGE Yelp model variants, subject to different
target batch sizes. Communication time measures the latency
of inter-device feature transfers from the host to GPU, and

computation time measures the latency of GPU computation.
Accuracy is not reported since batch size during inference does
not affect accuracy.

As the inference batch size decreases, fewer nodes are
sampled, and as prune amount increases, fewer features are
transferred for each sampled node. Both have the effect of re-
ducing the overall communication volume, which is observed
as a decreasing trend in communication/computation ratio both
to the right and downwards in Table V. For the same batch
size, as prune amount increases the computation load decreases
due to the aforementioned reduction in first-layer transforming
matrix size. From the decreasing communication/computation
ratios, we clearly see that the communication reduction from
pruning outpaces the computation reduction.

At smaller batch sizes, communication time begins to reach
computation time and performance improvements begin to fall
off. At batch size of 128, latency from 1× to 8× model
variants decreases by about half for a total of 1.3ms, which
is not as much as the 80%, 12ms reduction for the case of
1024 batch size. In our tests, batches smaller than 128 show
negligible latency differences as kernel overheads dominate
actual feature transfer. For real-time applications during which
inference requests arrive individually, input feature pruning of
a few nodes at a time will not impact total inference latency.
However, for non-real-time web-scale classification tasks on
very large graphs (as are modeled by our datasets), millions
or even billions of nodes may be targeted for inference and
thus larger inference batch sizes are preferable. In such cases,
input feature pruning can be effectively used to reduce overall
latency.

D. Half Precision

TABLE VI
LATENCY OF HALF PRECISION VS FULL PRECISION SAGE MODELS

Model Accuracy Latency (ms)

Reddit

Half, 1× 94.81 27.58
Half, 2× 93.91 15.62
Full, 2× 93.76 26.63
Full, 4× 93.17 14.63

Yelp

Half, 1× 63.36 9.33
Half, 2× 61.21 4.50
Full, 2× 61.17 8.91
Full, 4× 58.81 4.17

Products

Half, 1× 74.91 6.31
Half, 2× 74.21 4.48
Full, 2× 74.18 6.03
Full, 4× 70.62 4.24

Though quantization and reduced precision optimization is 
not the focus on this paper, we briefly compare our pruning 
technique against reduced precision model inference. In theory, 
reducing from full (32-bit) to half (16-bit) floating point 
precision is equivalent to 2× feature pruning in terms of 
communication volume. We compare half precision model 
variants at 1× and 2× pruning to full precision model variants



at 2× and 4× pruning in Table VI. Half precision variants are
generated by casting pre-trained full precision models.

Overall communication volume, whether at full or half
precision, is the determining factor for total inference latency.
Half precision 1× models match the latency of full precision
2× models, and similarly half 2× models match full 4×
models. All full precision models are slightly faster than the
corresponding half precision counterparts, which may be due
to the GPU being more optimized for 32-bit operations than
16-bit.

Interestingly, half precision models are generally slightly
more accurate than full precision models at the same pruning
amount. Post-training quantization in CNNs to 16-bit has been
shown to have negligible effect on accuracy [25], and even
training GNNs at 16-bit has small effects on accuracy [26].
In our case, the reduction of full precision noise appears as
an overall benefit to inference accuracy. Since half precision
models achieve significant latency reduction without any ac-
curacy trade-off, in practical use it should be the default.
We maintain full precision results for consistency with other
research, and note that input feature pruning exhibits a similar
accuracy/performance trade-off for both half and full precision
models.

V. INPUT FEATURE PRUNING IN A DYNAMIC SYSTEM

Model variants produced with input feature pruning exhibit
a range of accuracy and performance that can be taken
advantage of by a dynamic inference service system. At run-
time, the dynamic system automatically switches its inference
service based on changing user demands and workloads. For
such systems, users interface via service-level objectives of
accuracy and latency thresholds. The system has an internal
performance profile of each of its model variants so it can
deploy inference requests to suitable variants to meet the
objectives. In this section, we show the application of our
techniques to dynamic systems.

A. Latency Under Accuracy Tolerance

Accuracy Tolerance

R
el

at
iv

e 
La

te
nc

y

0

25

50

75

100

N=0 N=1 N=2 N=5 N=10

Flickr Arxiv Reddit Yelp Products

Latency Under Accuracy Tolerance

Fig. 1. Minimum latency under different accuracy tolerances for SAGE Lasso
variants.

We package the accuracy/performance range of our gener-
ated models into an interface that the system or client could

use by defining Latency under Accuracy Tolerances, similar
to the client API used in Tolerance Tiers [20]. For this metric,
we first identify the model variant with the highest possible
accuracy, which serves as the baseline. Then, for an accuracy
tolerance of N , we provide the relative latency (compared to
the baseline) of the lowest-latency model variant which serves
inference within N accuracy percent points of the baseline.
Here, for highest accuracy inference a user would always
choose accuracy tolerance of zero, and as the user relaxes
their accuracy tolerance the relative latency will continue to
decrease.

A latency under accuracy tolerance graph with multiple
tolerances is shown in Fig. 1 for SAGE lasso model variants.
For a finer granularity of accuracy tolerances, we report from
a set of model variants trained under a linear pruning scheme
(90%, 80%, ..., 10% features) instead of the exponential
scheme (2×, 4×, 8×).

For a 2-point accuracy tolerance, input feature pruned
model variants can achieve 25% to 65% reductions in latency
compared to the highest accuracy models. Extending to a 5-
point accuracy tolerance can further reduce latency by another
25% to 50%. In some cases, the same model serves at multiple
different accuracy tolerances, such as Flickr at N = 2, 5, and
10, or Products at N = 1 and 2. If finer granularity is required
for the accuracy tolerance interface, more model variants can
be trained; however, the simple linear-pruned model variant
set generates a performance range wide enough for dynamic
inference already.

B. Model Variant Profiling

0.5 0.6 0.7 0.8 0.9
Accuracy

0

10

20

30

40

50

La
te

nc
y 

(m
s)

Validation Profile vs Test Performance
Flickr
Arxiv
Reddit
Yelp

Fig. 2. Static performance modeling for SAGE variants under Lasso ranking,
for all datasets except Products. Stars represent expected performance based
on validation set, crosses represent test set performance with 1 std.

In a system operating under an inductive setting [11], nodes
targeted for inference at runtime are unseen, and there does not
exist a test set that generated model variants can be profiled
on. As such, generated model variants must be profiled for
accuracy and latency characteristics statically before runtime.
We simulate static profiling by treating the validation set of
our datasets as a test set, performing batched inference on it
and logging accuracy and latency results. Then, we test this
static profiling method by comparing the validation profile to
the results from inference on the test set.



0.65 0.70 0.75 0.80 0.85 0.90
Accuracy

4

6

8

10

12

14

16

La
te

nc
y 

(m
s)

Validation Profile vs Test Performance, Products

Fig. 3. Static performance modeling for SAGE Products with Lasso ranking.

Figure 2 shows accuracy and latency profiles from validation
set inference (stars) versus results from test set inference
(error bars ±1 std.), for SAGE Lasso variants on all datasets
except Products. Across the difference dataset sizes, accuracy
ranges, and latency ranges, we see that validation profiles are
remarkably close to test performance.

The exception to the other datasets is Products, for which
validation profile vs test performance graph is shown in Figure
3. In this case, not only are validation profiles far more
accurate than test performance, they also have higher latency
expectations. Whereas the other datasets have generally similar
structures between validation and testing graphs such that val-
idation inference performance could predict testing inference
performance well, the results for Products indicate that the
validation subgraph is not a good indicator of the testing
subgraph. Notably, its accuracy suggests that the validation
set’s structure and features are a close match to training set,
and the lower latency of testing suggest that the test nodes
have fewer neighbors to be aggregated. The Products dataset
is constructed by ranking items based on sales, and the top
8% is used for training, the next 2% for validation, and the
remaining 90% for testing [24]. Such construction is consistent
with our evaluation and creates challenges in predicting model
performance on unseen nodes.

While static, training-time performance modeling can be
extensible to runtime inference in many cases, for certain
datasets dynamic profiling techniques are necessary for ac-
curate performance knowledge, and we identify this direction
as important future work.

VI. CONCLUSION

In this paper we studied the effect of pruning input features
for accelerated GNN inference on heterogeneous platforms.
Our results showed that GNN inference suffers a significant
communication bottleneck from inter-device transfer of ini-
tial data, which is greatly alleviated by reducing the size
of input feature vectors. Over different pruning algorithms,
GNN architectures, datasets, and system variables, we showed
the effectiveness of input feature pruning to generate lower
latency model variants without sacrificing heavily in inference
accuracy.

REFERENCES

[1] A. Pal, C. Eksombatchai, Y. Zhou, B. Zhao, C. Rosenberg, and
J. Leskovec, “Pinnersage,” Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, Jul
2020. [Online]. Available: http://dx.doi.org/10.1145/3394486.3403280

[2] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou,
“Aligraph: A comprehensive graph neural network platform,” 2019.

[3] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester,
L. Perez, M. Nunkesser, S. Lee, X. Guo, B. Wiltshire, and
et al., “Eta prediction with graph neural networks in google
maps,” Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, Oct 2021. [Online]. Available:
http://dx.doi.org/10.1145/3459637.3481916

[4] Z. Liu, C. Chen, X. Yang, J. Zhou, X. Li, and L. Song, “Heterogeneous
graph neural networks for malicious account detection,” 2020.

[5] B. Zhang, H. Zeng, and V. Prasanna, “Accelerating large scale gcn
inference on fpga,” in 2020 IEEE 28th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2020,
pp. 241–241.

[6] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” 2020.

[7] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna,
“Graphsaint: Graph sampling based inductive learning method,” 2019.
[Online]. Available: https://arxiv.org/abs/1907.04931

[8] X. Liu, M. Yan, L. Deng, G. Li, X. Ye, D. Fan, S. Pan, and
Y. Xie, “Survey on graph neural network acceleration: An algorithmic
perspective,” 2022. [Online]. Available: https://arxiv.org/abs/2202.04822

[9] H. Zhou, A. Srivastava, H. Zeng, R. Kannan, and V. Prasanna,
“Accelerating large scale real-time gnn inference using channel pruning,”
Proceedings of the VLDB Endowment, vol. 14, no. 9, p. 1597–1605, May
2021. [Online]. Available: http://dx.doi.org/10.14778/3461535.3461547

[10] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations (ICLR), 2017.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

[12] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How
powerful are graph neural networks?” in International
Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=ryGs6iA5Km

[13] H. Zeng, M. Zhang, Y. Xia, A. Srivastava, A. Malevich, R. Kannan,
V. Prasanna, L. Jin, and R. Chen, “Decoupling the depth and
scope of graph neural networks,” in Thirty-Fifth Conference on
Neural Information Processing Systems, 2021. [Online]. Available:
https://openreview.net/forum?id=d0MtHWY0NZ

[14] S. A. Tailor, J. Fernandez-Marques, and N. D. Lane, “Degree-quant:
Quantization-aware training for graph neural networks,” 2021.

[15] M. Bahri, G. Bahl, and S. Zafeiriou, “Binary graph neural networks,”
2021.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2018.

[17] D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is the
state of neural network pruning?” in Proceedings of Machine Learning
and Systems, I. Dhillon, D. Papailiopoulos, and V. Sze, Eds., vol. 2,
2020, pp. 129–146.

[18] F. Wu, T. Zhang, A. H. de Souza Jr. au2, C. Fifty, T. Yu, and K. Q.
Weinberger, “Simplifying graph convolutional networks,” 2019.

[19] F. Romero, Q. Li, N. J. Yadwadkar, and C. Kozyrakis,
“Infaas: Automated model-less inference serving,” in 2021
USENIX Annual Technical Conference (USENIX ATC 21).
USENIX Association, Jul. 2021, pp. 397–411. [Online]. Available:
https://www.usenix.org/conference/atc21/presentation/romero

[20] M. Halpern, B. Boroujerdian, T. Mummert, E. Duesterwald, and
V. Janapa Reddi, “One size does not fit all: Quantifying and exposing
the accuracy-latency trade-off in machine learning cloud service apis via
tolerance tiers,” 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), Mar 2019. [Online].
Available: http://dx.doi.org/10.1109/ISPASS.2019.00012

[21] J. Zhang, S. Elnikety, S. Zarar, A. Gupta, and
S. Garg, “Model-switching: Dealing with fluctuating workloads
in machine-learning-as-a-service systems,” in 12th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud



20). USENIX Association, Jul. 2020. [Online]. Available:
https://www.usenix.org/conference/hotcloud20/presentation/zhang

[22] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[23] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[24] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” arXiv preprint arXiv:2005.00687, 2020.

[25] M. Nagel, M. van Baalen, T. Blankevoort, and M. Welling, “Data-free
quantization through weight equalization and bias correction,” 2019.
[Online]. Available: https://arxiv.org/abs/1906.04721

[26] J. Brennan, S. Bonner, A. Atapour Abarghouei, P. Jackson, B. Obara,
and A. McGough, “Not half bad: Exploring half-precision in graph
convolutional neural networks,” pp. 2725–2734, 12 2020.


