
Symphony in the Latent Space: Provably Integrating High-dimensional
Techniques with Non-linear Machine Learning Models

Qiong Wu*1, Jian Li2, Zhenming Liu1, Yanhua Li3, Mihai Cucuringu4

1William & Mary
2Tsinghua University

2Worcester Polytechnic Institute
4University of Oxford and The Alan Turing Institute

Abstract

This paper revisits building machine learning algorithms that
involve interactions between entities, such as those between
financial assets in an actively managed portfolio, or interac-
tions between users in a social network. Our goal is to forecast
the future evolution of ensembles of multivariate time series
in such applications (e.g., the future return of a financial asset
or the future popularity of a Twitter account). Designing ML
algorithms for such systems requires addressing the challenges
of high-dimensional interactions and non-linearity. Existing
approaches usually adopt an ad-hoc approach to integrating
high-dimensional techniques into non-linear models and re-
cent studies have shown these approaches have questionable
efficacy in time-evolving interacting systems.
To this end, we propose a novel framework, which we dub
as the additive influence model. Under our modeling assump-
tion, we show that it is possible to decouple the learning of
high-dimensional interactions from the learning of non-linear
feature interactions. To learn the high-dimensional interac-
tions, we leverage kernel-based techniques, with provable
guarantees, to embed the entities in a low-dimensional latent
space. To learn the non-linear feature-response interactions,
we generalize prominent machine learning techniques, includ-
ing designing a new statistically sound non-parametric method
and an ensemble learning algorithm optimized for vector re-
gressions. Extensive experiments on two common applica-
tions demonstrate that our new algorithms deliver significantly
stronger forecasting power compared to standard and recently
proposed methods.

Introduction
We revisit the problem of building machine learning algo-
rithms that involve interactions between entities, such as
those between users and items in a recommendation system,
or between financial assets in an actively managed portfolio,
or between populations in different counties in a disease-
spreading process. Our proposed forecasting model uses in-
formation available up to time t to predict yt+1,i, the future
behavior of entity i at time t + 1 (e.g., the future price of
stock i at time t+ 1), for a total number of d entities (Laptev
et al. 2017; Farhangi et al. 2022). Designing such models has

*Currently working at AT&T Labs.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

proven remarkably difficult, as one needs to circumvent two
main challenges that require often incompatible solutions.
1. Cross-entity interaction: high-dimensionality. In many
ensembles of multivariate time series systems, it is often the
case that the current state of one entity could potentially im-
pact the future state of another. When considering the equity
market as an example, Amazon’s disclosure of its revenue
change in cloud services could indicate that the revenues of
other cloud providers (e.g., competitors) could also change.

The interaction is high-dimensional because the total pos-
sible number of interactions is usually much larger than the
number of available observations. For example, in a portfolio
of 3,000 stocks, the total number of potential links between
pairs of stocks is 3, 000 × 3, 000 ≈ 107, but we often have
only 2,500 data points (e.g., 10 years of daily data), and
thus capturing the cross-entity interactions becomes a very
challenging problem.
2. Feature-response interactions: non-linearity. Linear
models are usually insufficient to characterize the relationship
between the response/label and the available information (fea-
tures), thus techniques beyond simple linear regressions are
heavily needed. For example, in a financial context, economic
productivity is non-linear in temperature for most countries;
similarly, electricity consumption is a nonlinear function of
temperature, and modeling this relationship is crucial for
pricing electricity derivative contracts. As shown in Fig. 1(a),
the existing relevant learning models can be categorized into
the following two groups.
1. Provable cross-entity models (CEM) for high-
dimensionality. Cross-entity models solve a vector
regression problem yt+1 = f(xt) + ξt, to forecast the future
behavior of all entities, where yt+1 , (yt+1,1, . . . , yt+1,d),
and xt denotes the features of all entities, constructed from
their historical data. Since the features of one entity can be
used to predict the future behavior of another, CEMs have
stronger expressive and predictive power. CEMs are both
computationally and statistically challenging because we
need to solve the “high-dimensional” (overparametrized)
problem and mathematically understand the root cause of the
overfitting. Extensive research has been undertaken to design
regularization techniques (Chen, Dong, and Chan 2013;
Friedman, Hastie, and Tibshirani 2001; Wu et al. 2021) to
address the issue, and most algorithms in this category are

1

ar
X

iv
:2

21
2.

00
85

2v
1

 [
cs

.L
G

]
 1

 D
ec

 2
02

2

linear and have theoretical guarantees.

2. Practical univariate models (UM) for non-linearity. Uni-
variate models fit a function yt+1,i = f(xt,i)+ξt,i to forecast
one entity’s feature behavior by using features constructed
from that entity’s historical data. Univariate models primarily
learn the feature-response interaction by using off-the-shelf
ML techniques such as Deep learning (DL) (Abadi et al.
2016; Hochreiter and Schmidhuber 1997; Wu et al. 2019)
or gradient boosted algorithms (Chen and Guestrin 2016;
Ke et al. 2017; Dorogush, Ershov, and Gulin 2018). These
practical models are effective in extracting non-linear signals
but they often do not come with theoretical guarantees.
Existing integration techniques: ad-hoc methods It re-
mains unclear how to integrate two seemingly incompatible
modeling processes (i.e., UM and CEM) with different design
philosophies. In Fig. 1 (b), we show that existing integration
solutions predominately follow an ad-hoc approach, in part
due to the belief that deep learning is the “holly-grail” for
practical problems (Sejnowski 2018). For example, one often
adds an `1- or `2-regularizer to a neural net’s cost function,
hoping such regularizers will also magically work in neu-
ral nets (Abadi et al. 2016; Paszke et al. 2017). However,
the mathematical properties of a provable technique often
break when combined into a neural net. Furthermore, la-
tent embedding models have also been recently introduced
(Wang et al. 2019; Feng et al. 2019; Chen et al. 2019). The
central idea is to project the entities into points in a low-
dimensional space so that similar entities (i.e., stocks in the
above works) are closer to each other in this embedding.
Because point interactions are more restrictive in the latent
space, they have the potential to address the overfitting is-
sues (Wang et al. 2019). However, these lines of work do
not offer any theoretical guarantees and are often not robust
in practice. Recent studies have demonstrated that the ef-
ficacy of such ad-hoc approaches is questionable in many
interacting systems (Dacrema, Cremonesi, and Jannach 2019;
Rendle, Zhang, and Koren 2019; Qiong et al. 2021).
Our approach & contributions We propose a general la-
tent position model dubbed as the additive influence model
to enable us to seamlessly orchestrate mathematically rigor-
ous high-dimensional techniques with practically effective
machine learning algorithms. In Fig. 1(c), we show that it
is possible to decouple the learning of high-dim interactions
between entities from the learning of the non-linear signals.

We assume each entity is associated with an embedded
position zi and at timestamp t, entity i is also associated with
an unobserved signal si,t ∈ R that is a function of xi,t. We
assume the generative model yi,t =

∑
i≤j κ(zi, zj)sj,t+εi,t,

where κ(zi, zj) is a function that measures the interaction
strength between zi and zj , and can be any kernel function,
such as a Gaussian kernel or simply an inner product, and
εi,t denotes noise. Each entity could potentially influence
yi,t. The influence of j on i depends on the “distance” or
“similarity” between zi and zj . On the other hand, we assume
sj,t = g(xj,t) for some g(·), so that the model captures high-
dimensional interactions via zi and non-linearity via g(·).

Our proposed model allows for feature interactions through
g(·), and addresses the overfitting problem arising from entity

interactions because the distances (interaction strength) be-
tween entities are constrained by the latent Euclidean space:
when both (zi − zj) and (zj − zk) are small, then (zi − zk)
is also small, and thus the degree of freedom for entity inter-
actions becomes substantially smaller than O(d2).

Our goal is to learn both the zi’s and g(·). We note that
these two learning tasks can be decoupled: high-dimensional
methods can be developed to provably estimate the zi’s with-
out the knowledge of g(·), and when estimates of zi’s are
given, an experiment-driven process can be used to learn
g(·) by examining prominent machine learning methods such
as neural nets and boosting. In other words, when we learn
entity interactions, we do not need to be troubled by the over-
fitting problem escalated by fine-tuning g(·), and when we
learn feature interactions, the generalization error will not
be jeopardized by the curse of dimensionality from entity
interactions.

• To learn the zi’s, we design a simple algorithm that
uses low-rank approximation of yt’s covariance matrix to in-
fer the closeness of the entities and develop a novel theoretical
analysis based on recent techniques from high dimensionality
and kernel learning (Belkin 2018; Tang et al. 2013; Wu et al.
2020a).

• To learn g(·), we generalize major machine learning
techniques, including neural nets, non-parametric, and boost-
ing methods, to the additive influence model when estimates
of zi’s are known. We specifically develop a moment-based
algorithm for non-parametric learning of g(·), and a compu-
tationally efficient boosting algorithm.

• Finally, we perform extensive experiments on a major
equity market and social network datasets to confirm the
efficacy of our modeling approaches and analysis.

Related work and comparison
Univariate machine learning models handle feature-response
interactions and mostly rely on deep learning and GBRT
(Goodfellow, Bengio, and Courville 2016; Wu et al. 2020b;
Goodfellow, Bengio, and Courville 2016; Wüthrich, Per-
munetilleke et al. 1998; Chen and Guestrin 2016; Ke et al.
2017; Dorogush, Ershov, and Gulin 2018; Gong et al. 2017;
Yang and Ding 2020; Ding et al. 2015; Zhang, Aggarwal,
and Qi 2017; Feng, Polson, and Xu 2018; Han et al. 2018;
Wu et al. 2020b; Chen, Pelger, and Zhu 2019; Kelly, Pruitt
et al. 2019; Ke et al. 2019; Chen et al. 2019; Li et al. 2019;
Wu et al. 2015). These models aim to optimize their empiri-
cal performance and limit theoretical investigations. Recent
cross-entity models consider the high-dimensional interac-
tions, where overfitting easily happens and theoretical jus-
tifications are essential to avoid spurious result in practice.
Cross-entity models are mostly linear models (Bunea, She,
and Wegkamp 2011; Koltchinskii, Lounici et al. 2011; Ne-
gahban and Wainwright 2011; Huang, Li, and Zhou 2019)
that have theoretical guarantees, but they cannot effective for
non-linear feature-response interactions. Efforts for building
CEMs include (Tibshirani 1996; Candès and Wakin 2008;
Tao and Series 2009; Hoerl and Kennard 1970; Tsigler and
Bartlett 2020; Liu et al. 2019).
Ad-hoc approach for integration. Recent integrating solu-
tions for high-dimensionality and nonlinearity challenges has

2

... Neural Net

Regularizer

Deep embedding

Features

Ad-hoc
methods

… …

……

𝑡 𝑡 + 1

𝒙!,#… 𝒚!$%,# 𝒙!,#

𝒙!,%

𝒙!,& 𝒚!$%,&

𝒚!$%,#

𝒚!$%,%
𝑡 𝑡 + 1

CEM

UM

𝐾 𝑔

Input: 𝒙!,%, 𝒙!,'.. 𝒙!,&
Output: 𝒚!,%, 𝒚!,'.. 𝒚!,&

Additive influence Model
𝐾!,#𝑔(𝒙$,!)

Decomposition

Provable Tools
High-dim techniques:

Kernel learning

Practical Tools
g-EST, ML/DL

Lin-PVEL

Interaction Problem Non-linear Problem

(𝒚!,#,𝒙!,$)

𝑔(𝑥)

Theory sound
New Vector

ensemble alg.

(a) UM and CEM. (b) Ad-hoc methods lead to overfitting. (c) Our proposed framework.
Figure 1: (a) UM for non-linearity and CEM for high-dimensionality. (b) Exsiting ad-hoc methods have questionable efficay. (c) Our framework
decouples the high-dimensional learning of entity interactions and non-linear learning of feature interactions.
been a frustrating endeavor, which we can call the ad-hoc
approaches and many were shown to have questionable effi-
cacy in interacting systems. 1. Deep learning + Lasso/Ridge
For example, one (Abadi et al. 2016; Paszke et al. 2017)
often adds an l1- or l2-regularizer to a neural net’s cost func-
tion, hoping these regularizers can also magically work in
neural nets. 2. Deep embedding. Recent studies have ad-
dressed high-dimensional entity interactions by using deep
embedding, based on the idea that when entities are embed-
ded in low-dim Euclidean space, they can interact in a quite
restricted way, therefore preventing overfitting (Zhao et al.
2020; Shen et al. 2022; Xie, Girshick, and Farhadi 2016;
Zhang, Aggarwal, and Qi 2017; Hu, Liu et al. 2018; Li et al.
2019; Wang et al. 2019). While this idea is effective for
linear models (Abraham et al. 2015; Li et al. 2017), deep
embedding-based solutions may have very high false positive
rates, for instance, when forecasting the returns of financial
assets (Qiong et al. 2021; Wang et al. 2019).
Remark: (i) Modeling framework. Our framework proposes
a key algorithmic insight that the latent position estimation
should be decoupled from the learning link function g(·). We
develop the first algorithm that can provably estimate the en-
tity’s latent positions and provide theoretical guarantees. Our
novel analysis leverages a diverse set of tools from kernel
learning, non-parametric methods, and random walks. (ii)
Comparison to deep embedding. While embedding can be
learned by deep learning (Hu, Liu et al. 2018; Wang et al.
2019), it usually does not provide any theoretical guaran-
tee, whereas our framework makes stricter assumptions (e.g.,
how embedding and features should interact) and delivers a
quality guarantee. Deep embedding also requires every com-
ponent including the function g(·) in the architecture to be
represented by a neural net to run SGD, whereas we allow
g(·) to be learned by a wide range of algorithms such as
boosting or non-parametric techniques.

Problem definition
Notations. For a matrix A, Pr(A) denotes its rank-r ap-
proximation obtained by keeping the top r singular values
and the corresponding singular vectors. σi(A) (resp. λi(A))
is the i-th singular value (resp. eigenvalue) of A. We use
Python/MATLAB notation when we refer to a specific row
or column. For example, A1,: is the first row of A, and A:,1

is the first column. ‖A‖F and ‖A‖2 denote the Frobenius
and spectral norms, respectively, of A. In general, we use

boldface upper case (e.g., X) to denote data matrices and
boldface lower case (e.g., x) to denote one sample. xt,i,
which refers to the features associated with stock i at time
t, can be one or multi-dimensional. Let (xt,i)j be the j-th
coordinate (feature) of xt,i. An event occurring with high
probability (whp) means that it happens with probability
≥ 1 − n−10, where 10 is an arbitrarily chosen large con-
stant and is not optimized. A bivariate function is a Gaussian
kernel if κ(x,x′) = exp(−‖x− x′‖2/σ2), an inverse multi-
quadratic (IMQ) kernel if κ(x,x′) = (c2 + ‖x − x′‖2)−α

(α > 0), and an inner product kernel if κ(x,x′) = 〈x,x′〉. A
function g(·) is Lipschitz-continuous if |g(x1) − g(x2)| ≤
c‖x1 − x2‖ for a constant c. A distribution D with bounded
domain and probability density function fD is near-uniform
if sup fD(x)

inf fD(x) = O(1).

The forecasting problem. We operate in a time-dependent
setting, where each timestamp t can be construed as the tth
round. An interacting system consisting of d entities (e.g.,
denoting stocks in the equity market or user accounts in a
network), that are updated at each round, for a total number
of T rounds. Let yt,i ∈ R denote the next-period forecast
of entity i at the t-th round, and yt = (yt,1, . . . ,yt,d) ∈ Rd.
Our goal is to forecast yt based on all information available
up to (but excluding) round t.

Model Assumptions. Under the additive influence model, a
generic model takes the form

yt,i =
∑
j≤d

κ(zi, zj)g(xt,j) + ξt,i, (1)

and our goal is to learn g(·) and zi’s with a total number of
n observations. Let K ∈ Rd×d such that Ki,j = κ(zi, zj).
Here, we assume that • (A.1) the vector representations zi’s
of the stocks and features xt,i are i.i.d. samples from (two
different) near-uniform distributions on bounded supports,
• (A.2) xt,i ∈ [−1, 1] and E[g(xt,i)] = 0, • (A.3) g(·) is
Lipschitz-continuous, and • (A.4) ξt,i’s are zero-mean i.i.d.
Gaussian random variables with standard deviation σξ.

We remark that (A.1) is standard in the literature (Abra-
ham et al. 2015; Sussman, Tang, and Priebe 2013; Tang et al.
2013; Li et al. 2017; Rastelli, Friel, and Raftery 2016). As-
suming (A.2) simplifies the calculation and is without loss of
generality, and (A.4) can also be relaxed to settings in which
the ξt,i variables are sub-Gaussian. See App. A for a more
detailed discussion of the assumptions.

3

5 10 15 20
0

0.5

1

S
in

gu
la

r
va

lu
es

(a)
5 10 15 20

0

0.5

1

Si
ng

ul
ar

 v
al

ue
s

(b)
Figure 2: (a) We use the square root of Pi∗(Y

TY) to approximate
K so that we pay a factor of 1/σi∗(K), instead of 1/σmin(K).
(b) Three key requirements for i∗: • (R1) σi∗(K) is large, • (R2)
Pi∗(K

2) is close to K2, and • (R3) σi∗(K)− σi∗+1(K) is large.

Our algorithms
This section introduces our algorithmic pipeline in full detail.
Sec. 4 describes an algorithm for learning the embedding
without knowing g(·). Sec. 4 explains the estimation of g(·)
using machine learning techniques. Due to the space limit,
detailed proofs of all the Props are deferred to App. B.

Learning vector representation provably
This section presents a provable algorithm to estimate the
kernel matrix K and the embedding zi’s. Our algorithm does
not require knowledge of g(·), thus providing a conceptually
new approach to construct CEMs: high-dimensional learning
of entity interactions can be decoupled from using ML tech-
niques to fit the features. Because learning entity interactions
could be a major source of causing overfitting, disentangling
it from the downstream task of learning g(·) enables us to
leverage the function-fitting power of ML techniques without
the cost of amplifying generalization errors.

We next walk through our design intuition and start by
introducing additional notation. Let Y ∈ Rn×d be such
that Yt,i = yt,i (Y is a matrix and y a random variable),
S ∈ Rn×d with St,i = st,i , g(xt,i), and E ∈ Rn×d with
Et,i = ξt,i. Recall that K ∈ Rd×d s.t. Ki,j = κ(zi, zj),
and Pr(A) denotes A’s rank-r approximation obtained by
keeping the top r singular values and vectors. Finally, for any
PSD matrix A with SVD A = UΣUT, let

√
A , UΣ

1
2UT.

Eq. (1) can be re-written as Y = SK + E, in which we
need to infer K using only Y. We first observe that while
none of the entries in S are known, the St,i’s are i.i.d. ran-
dom variables (because the xt,i’s are i.i.d.); therefore, our
problem resembles a dictionary learning problem, in which
K can be viewed as the dictionary to be learned, and S is the
measurement matrix (see e.g., (Arora, Bhaskara et al. 2014)).
However, in our case, K is neither low-rank nor sparse, and
we cannot use standard dictionary learning techniques.

First, we observe that, if infinitely many samples were
available, then YTY/n approaches toK2. Hence, intuitively
we could use

√
YTY/n to approximate

√
K2 = K. How-

ever, the existing standard matrix square root result has the
notorious “1/σmin-blowup” problem, i.e., it gives us only
‖
√

YTY/n−KW‖F ∝ 1/σmin(K) (W a unitary matrix),
where typically σmin(K) is extremely small, thus rendering
the bound too loose to be useful (Bhojanapalli, Kyrillidis,
and Sanghavi 2016).

To tackle the problem, our algorithm uses
√
Pi∗(YTY)/n

to approximate K for a carefully chosen i∗ so that we pay a
factor of σi∗(K), instead of σmin(K), to substantially tighten

the error. See Alg. 2 in App. B and Fig. 2(a). To implement
this idea, we need to show that there always exists an i∗ such
that • (R1): σi∗(K) is sufficiently large, • (R2): Pi∗(K2) is
close toK2, and • (R3): the spectral gap σi∗(K)−σi∗+1(K)
is sufficiently large so that we can use the Davis-Kahan the-
orem to prove that Pi∗(K2) ∝ Pi∗(Y TY) (Stewart 1990).
See also Fig. 2(b).

These three requirements may not always be met simulta-
neously. For example, when σi(K2) ∝ 1

i , the gap is insuffi-
cient and the tail diverges (R2 and R3 are violated). Therefore,
we integrate the following two results. • (i) The eigenvalues
decay fast. This stems from two classical results from the
kernel learning literature. First, when κ(·, ·) is sufficiently
smooth (such as the Gaussian, IMQ, or inner product ker-
nels), the eigenvalues of the kernel operator K associated
with κ(·, ·) decay exponentially (e.g., λi(K) ≤ exp(−Ci 1r)
for Gaussian kernels (Belkin 2018)). Second, it holds true
that

∑
i≥1 |λi(K)− λi(K/d)|2F ∝

1
n , a convergence result

under the PAC setting (Tang et al. 2013). Therefore, λi(K)
also approximately decays exponentially. • (ii) Combina-
torial analysis between gaps and tails. We then leverage a
recent analysis (Wu et al. 2020a) showing that when λi(K)
decays fast, it is always possible to find an i∗ such that
λi∗(K)− λi∗+1(K) is sufficiently large (R1 & R3 are satis-
fied) and

∑
j≥i∗ λ

2
j (K) = o(1) (R2 is satisfied). Putting all

these together leads to the following statement.
Proposition 4.1. Consider the additive influence model. Let
κ(zi, zj) be a Gaussian, inverse multi-quadratic (IMQ) or
inner product kernel. Let n ≥ d be the number of ob-
servations and ε = c0 log3 d√

d
. Assume that the noise level

σξ = O(
√
d). Let δ be a tunable parameter (also appeared

in Alg. 2 in App. B) such that δ3 = ω(ε2). There exists an
efficient algorithm that outputs K̂ such that 1

d2 ‖K̂ −K‖
2
F =

O(ε
2

δ3 + δ
4
5)(= Õ(d−Θ(1))).

We remark that (i) the algorithm does not need to know
the exact form of κ, so long as it is one of Gaussian, IMQ, or
inner product kernels, (ii) once K is estimated, an Isomap-
flavored algorithm may be used to estimate zi’s (Li et al.
2017), and (iii) knowing K̂ (without reconstructing zi’s) is
sufficient for the downstream g(·)-learners.
Learning g(·)
Here, we explain how prominent machine learning tech-
niques, including neural nets (deep learning), non-parametric
methods, and boosting, can be used to learn g(·). These tech-
niques make different functional form assumptions of g(·),
and possess different “iconic” properties: deep learning as-
sumes that g(·) can be represented by a possibly sophisticated
neural net and uses stochastic gradient descent to train the
model; non-parametric methods learn a Lipschitz-continuous
g(·) with statistical guarantees; boosting consolidates fore-
casts produced from computationally efficient weak learners.

Our setting has a different cost structure: in univariate mod-
els, g(xt,j) controls only one response ŷt,j , but here, g(xt,j)
impacts all responses ŷt,i, i ∈ [d], as ŷt,i =

∑
j Ki,jg(xt,j).

We generalize ML techniques under the new cost functions,
while retaining the iconic properties of each technique.

4

Algorithm 1 nparam-gEST:

Input X, Y, K̂;
Output µ1 (estimating other µi’s is similar)

1: procedure NPARAM-GEST(K̂,X,Y)
2: for all t← 1 to n do
3: qt = Rand(d)

4: L(t,qt),j = MAP-REGRESS(qt, K̂,Xt,:)

5: return µ1 ← FLIPSIGN (qt, {yt, L(t,qt),j}t≤n)

6: procedure MAP-REGRESS(qt, K̂,xt)
7: Let L(t,qt),j = 0
8: for all k ← 1 to d do
9: L(t,qt),j+ = K̂qt,k with j s.t. xt,k ∈ Ωj .

10: return L(t,qt),j

11: procedure FLIPSIGN(qt, {yt, L(t,qt),j}t≤n)
12: for all t← 1 to n do
13: Π̂

(qt)
1 (t) , L(t,qt),1 − 1

`−1

(∑
j 6=1 L(t,qt),j

)
14: b̃t,qt =


1 if Π̂

(qt)
1 (t) ≥ c

log d

√
d
`

−1 if Π̂
(qt)
1 (t) < − c

log d

√
d
`

0 otherwise

15: return µ1 =
∑
t≤n b̃t,qtyt,qt∑

t≤n b̃t,qt Π̂
(qt)
1 (t)

…

…

∆!,#= 3 ∆!,$= −1 ∆!,%= 4 ∆!,&= 1 ∆!,#'=−1

𝜇! 𝜇" 𝜇# 𝜇$ 𝜇!%

𝑑
10

𝑦!,# = 𝑔 𝑥!,# + 𝑔 𝑥!,$ + …+ 𝑔 𝑥!,(+ 𝜉!,#	(𝐾)* = 1)	

∆!,%= 𝐿 !,# ,% −
𝑑
10

𝐿 !,# ,%

Figure 3: A toy example of nparam-gEST when Ki,j =
1 for all i and j and Ω = [−1, 1] and is uniformly par-
titioned into 10 pieces. Sampling a g(xt,i) corresponds
to randomly placing a ball into a total number of 10 bins.
For example, xt,2 falls into the 8-th interval so µ8 is
used to approximate g(xt,2), which may be viewed as
a new ball of type µ8 (or in 8-th bin) is created. The
mean load for each bin is d/` = d/10. We calculate∑

i≤d g(xt,i) by counting the balls in each bin: yt,1 =
5×µ1 +1×µ2 + ...+6×µ8 +3×µ9 +1×µ10 +ξt,1.

Technique 1. Learn g(·) using neural nets. When an
estimate K̂ is given, the training cost is

∑
t,i(yt,i −∑

j∈[d] K̂i,jg(xt,j))
2, in which case one can employ stochas-

tic gradient descent when g(·) is a neural net.
Technique 2. Learn g(·) using non-parametric methods.
When the response is univariate, e.g., yt,i = g(xt,i) + ξt,i,
we can use a neighbor-based approach to estimate g(x) for
a new x: we identify one (or multiple) xt,i’s in the training
set that are close to the new x, and output yt,i (or their aver-
ages, when multiple xt,i are chosen), using g(x) ≈ g(xt,i),
whenever x is close to xt,i.

Here, we do not directly observe the values of individ-
ual g(xt,i)’s. Instead, each response is a linear combina-
tion of multiple g(·)’s evaluated at different points, e.g.,
yt,1 = Ki,1 · g(xt,1) + · · ·+Ki,d · g(xt,d) + ξt,i. We show
that finding neighbors reduces to solving a linear system.
Furthermore, we design a moment-based algorithm, namely
“nparam-gEST”, which estimates g(·) with provable guaran-
tees, as summarized in the following result.
Proposition 4.2. Consider the problem of learning an ad-
ditive influence model with the same setup/parameters as
in Prop. 4.1. Assume that xt,i ∈ RO(1). Let ` be a tun-
able parameter. There exists an efficient algorithm to com-
pute ĝ(·), based on K̂ such that supx |ĝ(x) − g(x)| ≤
(log6 n)

(√
γ +

√
`
n + 1

`

)
= Õ(d−c) for suitable parame-

ters, where γ , ε2

δ3 + δ
4
5 .

Our algorithm (Alg. 1) consists of the following 3 steps:
Step 1. Approximation of g(·). Partition Ω = [−1, 1]k into
subsets {Ωj}j≤`, and use piece-wise constant function to
approximate g(·), i.e., g̃(xt,i) takes the same value for all
xt,i in the same Ωj . We partition {Ωj}j≤` in a way such that
Pr[xt,i ∈ Ωj] are the same for all j.
Step 2. Reduction to linear regression. Each observation

can be construed as a linear combination of µj’s (j ∈ [`]),
where µj = E[g(xt,i) | xt,i ∈ Ωj]. For example, yt,1 =∑

i≤dK1,iµji+ξt,1+o(1), where xt,i ∈ Ωji , and in general,
we have

yt,i =
∑
j≤`

L(t,i),jµj + ξt,i + o(1), (2)

where L(t,i),j =
∑

m∈Lt,j

Ki,m and Lt,j = {m : xt,m ∈ Ωj}.

Therefore, our learning problem reduces to a linear regres-
sion problem, in which the L(t,i),j’s are features and the
{µj}j≤` are coefficients to be learned.
Step 3. Moment-based estimation. An MSE-based estimator
is consistent but finding its confidence interval (error bound)
requires knowing the spectrum of the features’ covariance
matrix, which is remarkably difficult in our setting. There-
fore, we propose a moment-based algorithm with provable
performance (FLIPSIGN in Alg. 1).

We illustrate each steps above through a toy example, in
which we assume Ki,j = 1 for all i and j so the model
simplifies to yt,1 =

∑
j≤d g(xt,j) + ξt,1. See Fig. 3 for

additional details.

Steps 1 & 2. First, we view the generation of samples as
a balls-and-bins process so that the g(·)-estimation problem
reduces to a regression problem (Steps 1 & 2). Specifically,
we generate (yt,1, {xt,i}i≤d) as first sequentially sampling
{xt,i}i≤d and computing the corresponding g(xt,i), then
summing each term up together with ξt,1 to produce yt,1.
When an xt,i is sampled, it falls into one of Ωi’s with uni-
form probability. Let ji be the bin that xt,i falls into. Then
g(xt,i) is approximated by µji according to Step 1. Thus,
we may view a ball of “type µji” (or in ji-th bin) is created.
For example, in Fig. 3, xt,2 falls into the 8-th interval so
a ball is added in the 8-th bin. After all xt,i’s are sampled,
compute yt,1 by counting the numbers of balls in different

5

bins. Recalling that the load of j-th bin is L(t,1),j , we have
yt,1 ≈

∑
j≤d L(t,1),j · µj + ξt,1. Let ∆t,j = L(t,1),j − d/`

and using that E[L(t,1),j] = d/` and
∑
j≤d µj = 0, we have

yt,1 = ∆t,1µ1 + · · ·+ ∆t,`µ` + ξt,1. (3)
Eq. (3) is a standard (univariate) regression: for each t, we
know yt,1, and know all ∆t,j’s because all xt,j’s are observed
so the number of balls in each bin can be calculated. We need
to estimate the unknown µj’s. Note that E[∆t,j] = 0.
Steps 3. We solve the regression (Step 3). Our algorithm
“tweaks” the observations so that the features associated with
µ1 are always positive: let bt,1 = 1 if ∆t,1 > 0 and −1
otherwise. Multiply bt,1 to both sides of Eq. (3) for each t,

bt,1yt,1 = |∆t,1|µ1 + · · ·+ bt,1 ·∆t,` · µ` + bt,1ξt,1. (4)
We sum up the LHS and RHS of (4) and obtain∑

t≤n

bt,1yt,1 =
(∑
t≤n

|∆t,1|
)
µ1 + · · ·+ (5)

(∑
t≤n

bt,1 ·∆t,`

)
µ` +

∑
t≤n

bt,1ξt,1.

Next, we have
∑
t≤n |∆t,1| = Θ(n) whp. Also, we can

see that bt,1 and ∆t,j are “roughly” independent for j 6= 1
(careful analysis will make it rigorous). Therefore, for any
j 6= 1, E[bt,1 ·∆t,j] = 0, and thus

∑
t≤n bt,1 ·∆t,j = O(

√
n)

whp. Now (5) becomes
∑
t≤n bt,1 · yt,1 =

(∑
t |∆t,1|

)
µ1 +

O(` ·
√
n). Thus our estimator is µ̂1 ,

∑
t bt,1·yt,1(∑
t |∆t,1|

) = µ1 +

O(`·
√
n)

Θ(n) = µ1 + O
(
√̀
n

)
. Here, the covariance analysis for

the ∆t,j’s is circumvented because ∆t,j’s interactions are
compressed into the term O

(
√̀
n

)
. We remark that the above

analysis contains some crude steps and can be tightened up,
as we have done in App. C.

Technique 3. Learn g(·) using boosting. In the univariate
setting, we have yt,i =

∑
m≤b gm(xt,i)+ξt,i, in which each

gm(xt,i) is a weak learner. Standard boosting algorithms,
such as (Quinlan 1986; Chen and Guestrin 2016), assume
that each gm(·) is represented by a regression tree and con-
structed sequentially. A greedy strategy is used to build a new
tree, e.g., iteratively splitting a node in a tree by choosing a
variable that optimizes prediction improvement. In our set-
ting, yt,i depends on evaluating gm(·) at d different locations
xt,1, . . . ,xt,d, so the splitting procedure either is d (e.g. 3000
for equity market) times slower in a standard implementation,
or requires excessive engineering tweak of existing systems.

Here, we propose a simple and effective weak learner
based on the intuition of the tree structure. Let

(xt)i =
(
(xt,1)i, (xt,2)i, . . . , (xt,d)i

)
∈ Rd,

(xt)i,j =
(
(xt,1)i · (xt,1)j , . . . , (xt,d)i · (xt,d)j

)
∈ Rd,

and (xt)i,j,k can be defined in a similar manner. We observe
that regression trees used in GBRT models for equity return
are usually shallow and can be linearized: we may unfold
a tree into disjunctive normal form (DNF) (Abasi, Bshouty,
and Mazzawi 2014), and approximate the DNF by a sum of

multiple interaction terms, e.g., I((xt,i)1 > 0) · I((xt,i)2 >
0) can be approximated by (xt,i)1 · (xt,i)2.

Our algorithm, namely LIN-PVEL (linear projected vector
ensemble learner), consists of weak learners in linear forms.
Each linear learner consists of a subset of features and their
interactions. The number of features included and the depth
of their interactions are hyper-parameters corresponding to
the depth of the decision tree. For example, if the first three
features are included in the learner, we need to fit yt,i against∑
j∈[d]

K̂i,j︸︷︷︸
given

·
[
β1(xt,j)1 + . . .︸ ︷︷ ︸

linear terms

+β4(xt,j)1,2 + · · ·+ β7(xt,j)1,2,3︸ ︷︷ ︸
interaction terms

]
,

(6)
by MSE. Conceptually, although we use linearized models to
approximate the trees, the “target” trees are unavailable (for
the computational efficiency reasons above). We need a new
procedure to select features for each learner. Our intuition is
that, if an interaction term could have predictive power, each
feature involved in the interaction should also have predictive
power. Our procedure is simply to select a fixed number of
i’s with the largest corr((yRes)t, K̂(xt)i), where (yRes)t is
the residual error.

Using feature interactions to approximate DNF
(I((xt,i)1 > 0) · I((xt,i)2 > 0) ≈ (xt,i)1 · (xt,i)2)
may not always be accurate, however, in our setting, linear
interaction models often outperform decision trees or
DNFs. We believe this occurs because interaction terms are
continuous (whereas DNFs are discrete functions), and thus
they are more suitable to model smooth changes.

Evaluation
We evaluate our algorithms on two real-world data sets: an
equity market to predict stock returns, and a social network
data set to predict user popularity, respectively. Additional
details and experiments for the equity market and Twitter
data sets are in APP. G. We remark that this is a theoretical
paper; examining the performance on more data sets and
baselines is a promising direction for future work.

Models under our framework. We estimate K and g(·)
separately. To estimate K, we use both the algorithm dis-
cussed in Sec. 4 and other refinements discussed in App. B.
To estimate g(·), we use SGD-based algorithms (MLP and
LSTM), nparam-gEST, and LIN-PVEL.

Baselines. Our baselines include the commonly used mod-
els and domain specific models. (i) The UMs include linear,
MLP, LSTM, GBRT, and SFM (Zhang, Aggarwal, and Qi
2017). We also implement a “poor man’s version” of both
LIN-PVEL and nparam-gEST for UM, which assumes that
influences from other entities are 0; (ii) The CEMs include
a standard linear VAR (Negahban and Wainwright 2011),
ARRR (Wu et al. 2020a). (iii) Ad-hoc integration AlphaS-
tock (Wang et al. 2019), and HAN (Hu, Liu et al. 2018) for
the equity data set; Node2Vec (Grover and Leskovec 2016)
for the Twitter data set.
Predicting equity returns. We use 10 years of equity data
from an emerging market to evaluate our algorithms and fo-
cus on predicting the next 5-day returns, for which the last
three years are out-of-sample. The test period is substantially

6

Universe 800 Full universe Backtesting
Models corr w_corr t-stat w_t-stat corr w_corr t-stat w_t-stat PnL Sharpe
Ours: LIN-PVEL 0.0764 0.0936 6.7939 6.3362 0.0944 0.1009 8.2607 6.4435 0.5261 10.97
Ours: nparam-gEST 0.0446 0.0320 3.2961 1.5753 0.0618 0.0553 5.7327 3.5212 0.3386 7.59
Ours: MLP 0.0550 0.0567 6.4782 5.0172 0.0738 0.0692 9.2034 6.4151 0.4202 9.43
Ours: LSTM 0.0286 0.0347 3.4517 3.0261 0.0473 0.0491 6.3615 4.2385 0.2487 7.10
UM: poor man Lin-PVEL 0.0674 0.0866 6.0947 5.7312 0.0827 0.0884 7.4297 5.6659 0.4565 9.76
UM: poor man nparam-gEST 0.0432 0.0309 3.1505 1.4912 0.0584 0.0509 5.0098 3.0844 0.3070 6.59
UM: MLP 0.0507 0.5050 6.0234 4.4966 0.0606 0.0467 8.2857 4.4555 0.2782 6.38
UM: LSTM 0.0178 0.0200 2.2136 1.8077 0.0352 0.0297 4.0602 2.3619 0.175 4.33
UM: Linear models 0.0106 0.0192 1.6471 2.3030 0.0290 0.0251 4.4711 2.6010 0.1888 4.79
UM: GBRT 0.0516 0.0591 7.5739 5.6310 0.0673 0.0747 9.3379 7.8931 0.3858 4.45
UM: SFM 0.0027 0.0032 0.4688 0.4050 0.0147 0.0051 1.2683 0.3892 0.0169 0.54
Existing CEM: VR 0.0156 0.0159 2.4997 1.7046 0.0041 -0.0025 0.8847 -0.3021 0.0430 1.20
Existing CEM: ARRR 0.0314 0.0382 2.5336 2.4213 0.0222 0.0273 1.8557 1.8968 0.1674 3.24
Ad-hoc integration: AlphaStock 0.0085 0.0063 2.1045 1.2516 0.0027 0.0032 0.4688 0.4050 0.0045 0.10
Ad-hoc integration: HAN 0.0105 0.0081 1.7992 1.0017 0.0080 0.0050 1.5716 0.7340 0.0570 2.02
Consolidated: All Ours 0.0775 0.0950 6.8687 6.4108 0.0958 0.1025 8.5703 6.6487 0.5346 11.30

Table 1: Summary of results for equity raw return forecasts. LIN-PVEL is the gradient boosting method with the linear learner. Boldface denotes
the best performance in each group. Backtesting results pertain to the Full universe.

longer than those employed in recent works (Zhang, Aggar-
wal, and Qi 2017; Hu, Liu et al. 2018; Li et al. 2019), adding
to the robustness of our results. We constructed 337 standard
technical factors to serve as a feature database for all models.
We consider two universes: (i) Universe 800 can be construed
as an equivalence to the S&P 500 in the US, and consists
of 800 stocks, and (ii) Full universe consists of all stocks
except for the very illiquid ones. Visualizations are shown in
App. G.

We next describe our evaluation metrics and argue why
they are more suitable and different from those employed
in standard ML problems (see App. G) • (i) Correlation vs
MSE. While the MSE is a standard metric for regression prob-
lems, correlations are better-suited metrics for equity data
sets (Zhou and Jain 2014). • (ii) Significance testing. The use
of t-statistics estimators (Newey and West 1986) can account
for the serial and cross-sectional correlations (App. G) • (iii)
Stock capacity/liquidity considerations. Predicting illiquid
stocks is less valuable compared to predicting liquid ones
because they cannot be used to build large portfolios. We
use a standard approach to weight correlations (w_corr) and
t-statistics by a function of historical notional (dollar) traded
volume to reflect the capacity of the signals.
Results. See Table 1 for the results and the simulated Profit
& Loss (PnL). The experiments confirm that • (i) Models
under our framework consistently outperform prior works. In
addition, our LIN-PVEL model has the best performance; •
(ii) By using a simple consolidation algorithm, the aggregated
signal outperforms all individual ones. Our new models pick
up signals that are orthogonal to existing ones because we rely
on a new mechanism to use stock and feature interactions.
Predicting user popularity in social networks. We use a
Twitter data set to build models for predicting a user’s next
1-day popularity, defined as the sum of retweets, quotes, and
replies received by the user. We collected 15 months of Twit-
ter data streams related to US politics. In total, there are 804
million tweets and 19 million distinct users. User u has one
interaction if and only if he or she is retweeted/replied/quoted
by another user v. Due to the massive scale, we extract the
subset of 2000 users with the most interactions, for evaluation
purposes. For each user, we compute his/her daily popularity
for 5 days prior to day t as the features.
Results. We report the MSE and correlation for both in-

Models MSE (in) MSE (out) Corr (in) Corr (out)
Ours: Lin-PVEL 0.472 0.520 0.733 0.712
Ours: nparam-gEST 0.492 0.559 0.688 0.658
Ours: MLP 0.486 0.547 0.716 0.692
Ours: LSTM 0.484 0.541 0.724 0.703
UM: Poor man Lin-PVEL 0.488 0.552 0.710 0.684
UM: Poor man nparam-gEST 0.544 0.584 0.634 0.605
UM: Poor man MLP 0.506 0.562 0.703 0.673
UM: Poor man LSTM 0.496 0.559 0.710 0.679
UM: Linear models 0.616 0.663 0.618 0.592
UM: Random forest 0.611 0.659 0.623 0.587
UM: Xgboost 0.530 0.571 0.671 0.647
CEM: VR 0.540 0.729 0.649 0.408
CEM: ARRR 0.564 0.652 0.610 0.573
Ad-hoc: Node2Vec 0.537 0.690 0.693 0.468
Consolidated: All Ours 0.459 0.502 0.767 0.742

Table 2: Overall in-sample and out-of-sample performance on the
Twitter data set. Boldface denotes the best performance in each group.

sample and out-of-sample in Table 2. We observe the consis-
tent results with equity return experiments: (i) Methods under
our framework achieve better performance in out-of-sample
MSE and correlation, with LIN-PVEL attaining the overall
best performance. (ii) Our methods yield the best general-
ization error by having a much smaller gap between training
and test metrics.

Conclusion
This paper revisits the problem of building machine learning
algorithms that involve interactions between entities. We pro-
pose an additive influence framework that enables us to decou-
ple the learning of the entity-interactions from the learning of
feature-response interactions. Our upstream entity interaction
learner has provable performance guarantees, whereas our
downstream g(·)-learners can leverage a wide set of effective
ML techniques. All these methods under our framework are
proven to be superior to the existing baselines.

Acknowledgement
We thank anonymous reviewers for helpful comments and
suggestions. Jian Li was supported in part by the National
Natural Science Foundation of China Grant 62161146004,
Turing AI Institute of Nanjing and Xi’an Institute for Inter-
disciplinary Information Core Technology. Yanhua Li was
supported in part by NSF grants IIS-1942680 (CAREER),
CNS-1952085, CMMI- 1831140, and DGE-2021871. Zhen-
ming Liu and Qiong Wu were supported by NSF grants
NSF-2008557, NSF-1835821, and NSF-1755769.

7

