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Abstract 
 
Vehicles are highly likely to lose control unexpectedly when encountering unforeseen hazardous road friction 
conditions. With automation and connectivity increasingly available to assist drivers, vehicle performance can 
significantly benefit from a road friction preview map, particularly to identify where and how friction ahead of a 
vehicle may be suddenly decreasing. Although many techniques enable the vehicle to measure the local friction 
as driving upon a surface, these encounters limit the ability of a vehicle to slow down before a low-friction surface 
is already encountered. Using the connectivity of connected and autonomous vehicles (CAVs), a global road 
friction map can be created by aggregating information from vehicles. A challenge in the creation of these global 
friction maps is the very large quantity of data involved, and that the measurements populating the map are 
generated by vehicle trajectories that do not uniformly cover the grid. This paper presents a road friction map 
generation strategy that aggregates the measured road-tire friction coefficients along the individual trajectories of 
CAVs into a road surface grid. And through clustering the friction grids further, an insight of this work is that the 
friction map can be represented compactly by rectangular boxes defined by a pair of corner coordinates in space 
and a friction value within the box. To demonstrate the method, a simulation is presented that integrates traffic 
simulations, vehicle dynamics and on-vehicle friction estimators, and a highway road surface where friction is 
changing in space, particularly over a bridge segment. The experimental results indicate that the road friction 
distribution can be measured effectively by collecting and aggregating the friction data from CAVs. By defining 
a cloud-based data sharing method for the networks of CAVs, this road friction mapping strategy provides great 
potential for improving CAVs' control performance and stability via database-mediated feedback systems. 
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1. Introduction 

In the field of transportation, significant research, development, and performance improvements have been enabled 
by digitally mapping the topology and geometry of the road network. These maps can aid drivers: with the help of 
a digital road network and traffic map, drivers can easily find the fastest route to their destinations. As well, drivers 
can aid map development: the data from the drivers’ phones and traffic sensors can be connected and utilized to 
generate a live traffic map for choosing the best route [1].  
 
In impacting vehicle stability and safety, few data are as important as maps of road surface conditions and the 
friction between tires and the road surface. Some research has been conducted in this area [2], [3], yet actionable 
road-friction maps are not yet widely available. Vehicles are highly likely to spin out or skid unexpectedly when 
encountering unforeseen hazardous road friction conditions such as snow, ice, rain, etc. It is well known that these 
low-friction conditions can even result in traffic crashes [4], [5]. The Federal Highway Administration reports that 
approximately 20% of all crashes occur in adverse road conditions. Drivers and driving algorithms can compensate 
by assuming worst-case conditions and driving slowly, yet this practice can lead to a low level of service (LOS) 
where the throughput of the highway is not fully utilized. It is known, for example, that light rain or snow can 
reduce average traffic flow volume by 5% to 10% on the highway [6]. 
 
Research has proved that prior estimation of friction allows significant improvements in vehicle chassis control 
systems [7]. Specifically, a vehicle can proactively plan appropriate paths and velocities with the preview of 
friction distribution, particularly where and how friction ahead of a vehicle may be suddenly decreasing [8], [9]. 
In addition, the availability of friction preview could enhance the performance and reliability of driver-assist 
systems such as stability control, adaptive cruise control, and electronic braking. The potential benefit of a friction 
map to mitigate the impact of road surface conditions on traffic safety and mobility via providing a preview is 
obvious, but mapping road friction is a challenging problem. Thus, an efficient and cost-effective road surface 
friction mapping and data-sharing methodology are needed.   
 
The challenge of friction map development involves road friction estimation, raw data aggregation, and map data 
delivery. Significant research has proven the viability and performance of vehicle-based road friction estimation 
techniques, which can be broadly categorized as non-contact and contact techniques. Non-contact methods 
generally utilize special camera-based sensors and computer algorithms to recognize road texture and thereby 
estimate friction [10], [11], and such sensors can be installed in a vehicle [12] or a fixed station [13] to provide 
measurement and preview. The contact methods measure the interplay force between tires and pavement surface 
and thereby estimate the friction coefficient based on vehicle dynamics [14], [15]. These techniques enable the 
individual vehicle to measure the local friction when driving upon a surface or provide some friction preview to 
other vehicles immediately following, but this approach limits the ability of an individual vehicle to slow down 
before a sudden decrease in surface friction, especially when vehicles are operating on hills or sharp corners. For 
one vehicle’s data to benefit the performance of another vehicle that is not in direct communication, methods are 
needed to collect and aggregate friction data from individual vehicles to thereby map road surface conditions. 
Further, these methods need to be extensible for large-scale traffic systems. 
 
By utilizing the data collected by existing sensing technologies, several data aggregation and representation models 
for road surface condition-related parameters description have been developed in the literature. Nordic countries 
including Finland, Norway, Estonia, etc. have developed online road surface condition maps [16] with data from 
the roadside road condition sensors. In [17] machine learning models were trained to estimate and predict the 
friction class (slippery or non-slippery) for specific road segments using the friction data from connected Volvo 
cars and data from weather stations. The time-series features from station friction sensing data have been utilized 
in prior work to improve friction predictive performance [4]. However, in these studies, the road and thereby 
friction distributions are represented as one-dimensional line segment features, and common heterogeneous lateral 
friction features, for example, the “snow rut” scenario [18], are thus neglected. In addition, the station sensors 
cannot provide the full road network surface map, as they are located on main roads and usually at far distances 
from each other [19]. Hence, providing a detailed friction map for an entire road surface is highly challenging.  
 
Even as vehicles are increasingly equipped to produce friction data to populate friction maps for transportation 
networks, an additional challenge arises in the representation and sharing of this friction data. This challenge was 
encountered by the authors in ongoing work with using Connected and Autonomous Vehicles (CAVs) to aggregate 
the measured road-tire friction coefficients from a fleet of CAVs. The data flow of this strategy is illustrated in 
Figure 1. In the framework, the estimated raw road friction data streaming from a fleet of vehicles driving on a 
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road segment is shared with a database; then, the raw data is aggregated into a friction map and shared back to 
vehicles for appropriate driving planning. A naive approach is to finely grid the road surface in the data aggregation 
step at levels similar to the fidelity of tire position accuracy and contact patch size, generally on the order of 10cm; 
however, if one wishes to maintain this resolution then such databases, even for modest-sized roads, rapidly 
become prohibitively large. This insight motivated efforts in this paper such that the friction map can be 
represented compactly by rectangular boxes defined by a pair of corner coordinates in space and a friction value 
within the box. 

 
Figure 1: A road friction map generation strategy by aggerating the measured road-tire friction 

coefficients along the individual trajectories of CAVs through a shared roadside database. 

More specifically, this paper demonstrates a data aggregation process to generate a full road surface friction map.  
This process is explained in detail in the sections that follow, but to summarize: the road surface is first tiled into 
the static curved grids with a spatial resolution of 10cm by 10cm in a careful choice of the tiling coordinate system. 
Then the measured raw friction data is associated with each grid cell and the friction value in each grid is 
represented by the average value of associated raw friction coefficient measurements, the number of associated 
measurement points, and confidence interval. In this way, a grid-based road friction map with a high spatial 
resolution is generated. However, the data size of this friction map is too large for fast sharing. To represent the 
map more compactly, the grids with similar friction values are clustered into a few regions using the K-Means 
method. The regions are further partitioned into a collection of rectangular boxes to represent them efficiently. As 
a result, the road surface condition map can be generated and represented compactly as the partition of axis-aligned 
rectangular boxes with associated friction coefficient values. To present this process in more detail, the remainder 
of this paper is organized as follows: sample road patterns and friction data acquisition are introduced in Section 
II. The data aggregation and friction map representation are presented in Section III. The discussions for the 
methodology are reported in Section IV. Finally, the conclusion and future work of the study is given in Section 
V. 
 

2. Friction Data Measurement and Collection 

This section presents the friction coefficient data acquisition method from a fleet of connected vehicles when 
they are driving on a sample highway road segment where friction changes in space. The data acquisition process 
is simulated based on the micro-simulation framework proposed in [20] wherein traffic simulation tools are used 
to generate traffic-like trajectories of a large number of vehicles, and these trajectories are further refined via a 
secondary layer of chassis dynamic simulations wherein simulated drivers follow the trajectories while friction 
estimation is occurring via chassis measurements. 

2.1 Description of Testing Road Segment  

In this work, a highway segment where friction changes in space, particularly over a bridge, is selected as a sample 
to demonstrate the friction map generation process. The geolocation and geometry of the road segment are selected 
from the Interstate-99 interstate highway, outside State College, PA, USA, shown in Figure 1(a). It is a 496m 
double-lane highway segment with a 3.8 m lane width. 
 
Figure 2(b) shows a typical actual road friction distribution pattern with the occurrence of ice and as well real-world 
photographs on bridges showing lateral snow ruts. A bridge is exposed to cold air more than a normal road surface 
with a solid roadbed. As a result, when it snows and the temperature drops, a bridge tends to cool and accumulate 
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snow and ice much faster than the surrounding pavement. After a while, the bridge is completely covered in snow, 
while the adjacent roads are completely snow-free [21]. The transition from the clear road to snow takes place in 
mere centimeters. The most dangerous threat of this road condition is the unforeseenness, which catches drivers off 
guard when they are driving at full speed as the rest of the road is dry or just a little wet. Consequently, vehicles 
with high speed are highly likely to lose control unexpectedly when encountering the bridge with this unforeseen 
sudden decrease in friction. Moreover, snow ruts occur along the wheel paths when vehicles drive through the snowy 
bridge. Rutting is a transverse pavement surface condition characteristics, which has a different friction feature with 
the adjacent road [18], [22]. Consequently, lane changing on the roads with snow ruts presents a potential threat to 
vehicle stability and control. Thus, a road surface map that can provide a preview of this scenario could enable the 
human drivers or autonomous vehicles to plan appropriate driving strategies proactively to avoid loss of control on 
this type of road segment. 
 
Without loss of the generality, to represent the snowy bridge and snow ruts, we synthetically generate a friction 
distribution numerically as the “true” road surface condition in this work. This ground-truth data is shown in Figure 
2 (c) and (d). To further align the data in directions that are likely similar in friction, the location of the road 
segment is first converted from latitude-longitude-altitude (LLA) geographic coordinates into the east-north-up 
(ENU) cartesian coordinates. Next, to align the data with the local roadway directions, the ENU coordinates are 
converted into station-transverse-height (STH) curvilinear coordinates. In the curvilinear STH coordinates system, 
the station is the distance traveled along the road segment reference line and the transverse is orthogonal offset 
from the reference line. The definition of STH is detailed further in section 3.1. This process ensures that the 
geometric length of road cells and travel distance are preserved; however, the resulting road grid introduces 
artifacts such as geometric distortions for networks that span a significant curvature of the earth’s sphere (~100 
km or more). The geolocational corrections necessary for data alignment within very large-scale transportation 
networks are possible with the careful design of road network databases, but this is outside the scope of this paper. 

          

  

Figure 2: Testing road segment and surface friction distribution: (a) the geolocation of the road segment, 
(b) an actual friction distribution pattern over a bridge, (c) (d) the numerical representation of the road 
surface friction pattern in ENU and STH coordinates respectively. The color bar indicates the friction 

coefficient values. 

1.2 Friction Data Acquisition Simulation 

A micro-simulation framework proposed in [20] is used in this study to simulate the friction coefficient data 
acquisition process from a fleet of connected vehicles. The simulation framework integrates traffic simulation, 
chassis simulation, and a shared database for the simulation of database-mediated CAV study. Using the tool, a 
highway traffic scenario was simulated for 30 minutes with highway flow volumes during a winter day morning 
reported by PennDOT at a traffic data collection site near the I99 segment [23] shown in Figure 1(a). During this 
time, 1038 vehicles passed through the road segment with the road friction distribution described in Figure 1(c). In 
this simulated scenario, each vehicle is assumed to operate a rapid road friction estimator that is integrated into the 
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vehicle dynamic model based on the work by [14]. Specifically, the surface friction is estimated through direct 
model inversion using the independent measurements of the left and right side front steering torques. White 
Gaussian noise with a 30dB signal-to-noise ratio was added to the simulated friction coefficient measurements to 
realistically reproduce a real application.   
 
The measured data from each vehicle is obtained at 100 Hz and includes the friction coefficient and the 
corresponding road-tire contact coordinates; these are pushed into a “raw data” database. In this study, all the data 
are managed by a PostgreSQL 12.09 database server. The data flow is shown in Figure 1. Even within this very 
limited time range and section of the road, the simulation produces about 10 million raw friction measurement data 
points, which take up 2.7GB of database storage space. The challenge to generate the friction map through the 
aggregation of such large-size measurement data is addressed in the next section. 
 

3. Friction Data Aggregation 

The goal of this study is to generate a road friction map by aggregating the measured road-tire friction coefficients 
along the individual trajectories of CAVs. The data flow of this step is also shown in Figure 1. To present the process, 
this section begins by introducing the grid-based road surface representation. This section then details the method 
to aggregate the raw friction data based on the road surface grid.  

3.1 Grid-based road surface representation 

Before any friction data aggregation steps, the local coordinate system of the grid is carefully chosen as it plays an 
essential role in defining data similarity and the success of the data aggregation process. The curved regular grid is 
a common way to describe the road surface data in high spatial resolution [24]. As illustrated in Figure 3, a road 
surface space as shown in Figure 3(a) can be divided into curved grid structures based on the road reference line 
which is generally the curved road centerline. Longitudinal cuts are parallel with the reference line, and the 
transverse cuts are orthogonal to the road reference line. The curved regular grid can be placed in an East-North(EN) 
Cartesian coordinate shown in Figure 3(b). Based on the grid, any road surface data, e.g., elevation and friction 
coefficients, is given in U-direction orthogonal to the E/N-plane. In this way, a microscopic view of the road surface 
can be described in a 3-dimensional(3D) data structure. 

 

 
Figure 3: Grid-based road surface representation example. (a) a true road sample, (b) curved road grid in 

EN coordinates, (c) uncurved road grid in ST coordinates. 

But vehicle friction data typically exhibit similarities in the travel or lateral directions. To enforce this similarity, 
the grid was next placed in the curvilinear station-transverse (ST) coordinate shown in Figure 3(c). ST is a right-
handed coordinates system. The station direction follows the tangent of the road reference line and magnitude is the 
distance traveled along the road reference line from the beginning of the reference line. The transverse direction is 
orthogonal to the direction of station S and the magnitude is the offset distance from the reference line. Road surface 
data can be given in height (H)-direction orthogonal to the ST-plane. Using STH coordinates system, the road 
surface map can be represented with the uncurved grids and associated height values. Under STH frame, some 
frequently used mathematical calculations, such as distance, projection, and transformation, can be highly simplified. 
It is also interesting to note that in STH coordinates each grid cell can be regarded as an image pixel, and thereby 
the road map can be represented through an image. Consequently, common digital image processing algorithms and 
hardware (GPUs, for example) can be used for road surface data processing.  
 
In this work, to test the tire-based estimation of road varying friction, the grid size is 10cm by 10cm square to be 
comparable with a tire’s contact patch. To represent the testing road segment surface shown in Figure 2, about 
382,000 grid cells are needed. In this study, the PostgreSQL database with a spatial database extender PostGIS [25] 
is employed to manage the spatial grid data; the GIS features of the database include spatial query operations, nearest 
neighbor searches, and range searching.  
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3.2 Cluster the friction based on the road grid  

The purpose of friction-data aggregation is to associate friction values with appropriate spatial context, which 
implies raw data clustering. Clustering large-size data directly is time-consuming [26]. Inspired by the grid-based 
clustering algorithm which has a great speed advantage when the data size is large compared to the grid size[26]. 
In this study, the database includes 10 million raw friction data points from 30 minutes of simulated measurements; 
this data is dense when compared to the 382,000 static grid cells. However, most of the 300k cells are nearly 
identical to their neighbors. To produce a compact representation, the raw data is first clustered based on the pre-
generated static road grid in the database to expedite the friction map generation. Specifically, the raw data is 
assigned membership to each road grid using nearest-neighbor searching, a fast process when using hierarchical 
tree data structures within the PostgreSQL spatial database. Next, the friction estimation in each grid is represented 
by the average friction coefficient value, the number of raw data, and confidence interval. The confidence interval 
is calculated based on 95% probability intervals of t-distribution. A smaller interval magnitude indicates a more 
accurate estimation. The results are shown in Figure 4.  
 

  
(a)                                                                            (b) 

Figure 4: Association of raw data into a road grid: (a) the number of raw data in each cell is indicated by 
the color bar in each grid cell, (b) the mean friction coefficient value is indicated by the color bar in each 

grid cell – the location of the icy bridge segment is visible clearly. 

From Figure 4 (a), one can see that many measurements occur at the locations at snow ruts, further, one can observe 
that the right lane has more vehicle traffic and thus measurement data than the left lane. The results are consistent 
with the typical traffic pattern wherein more vehicles prefer to drive on the right driving lanes, especially on snowy 
roads. And one can also see, around the 20m station mark, that many vehicles change lanes before entering the 
snowy bridge. The plot illustrates that there are many grids, especially within the inter-lane area, that do not have 
any measurement as no vehicles pass through these areas – vehicles very rarely changed lanes on bridges in this 
simulation. To deal with the problem of missing data, this paper fills the friction mean value to the missing data 
grids using its nearest non-missing grid data, and as well fills the confidence values for missing data with the worst 
confidence interval to indicate high uncertainty. The mean and confidence interval are shown in Figure 5. The 
camera-based friction estimation method [10] which can cover larger road surface area can also be utilized as a 
supplement to the road-tire-based friction estimation in future work. 
 

  
(a)                                                                            (b) 

Figure 5: After correcting for missing data, the friction map is shown here and includes: (a) the friction 
coefficient value of each grid cell (on a scale of 0 to 1), and (b) the confidence interval magnitude of each 

grid cell. 
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The results in Figure 5(a) include the mean and represent a friction map of the road. Comparing the results with 
the true friction distribution shown in Figure 2(d), one can see that the boundaries between the snowy bridge and 
adjacent dry road and the edges between snow ruts and loose snow road area are mapped clearly. Quantitatively, 
the root-mean-square error (RMSE) between this friction map and the true friction distribution was found to be 
0.00440, which indicates an accurate mapping. This map describes the entire road surface with a high spatial 
resolution of 0.1m by 0.1m. However, a database of about 131MB in data size is required to store this less 500m 
road friction map information; this is not scalable to large road networks. Moreover, considering this data may be 
shared with each vehicle in the road segment for driving assistance, the large size limits the practical data sharing 
and transfer in practical applications of V2x systems.  
 
Examining the Figure 5(a) data carefully, one observes that the friction grids in some areas are similar to each 
other. Thus, similar cells can be grouped into clustered regions to reduce the data size. To achieve this, this paper 
uses a spatial clustering method based on the K-Means clustering algorithm [26] due to its easy application and 
high efficiency. K-Means clustering categorizes the N spatial friction grids into K clusters in which each grid 
belongs to the cluster with the nearest mean. Estimating the clusters number K is a major challenge of applying 
the K-Means algorithm. In this work, K is determined through the statistics results of friction values and expected 
cluster resolution. Specifically, the friction coefficient values at all grids are grouped into 10 bins at every 0.1 
interval ranging from 0.1 to 0.9 (<0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, >0.9), which is shown in Figure 6(a). The 
number of clusters, K, was chosen to be the number of bins whose percentage is larger than 1%. From the plot, K 
is equal to 6 in this case. Next, the K-Means clustering algorithm is used to group the friction grids, i.e. partition 
the road surface. Because clustering seeks to maintain both constant spatial coordinates and constant friction values, 
it is important that the scaling of spatial information is similar to friction information. In particular, the ST location 
values of grids are normalized into the same scale (0 to 1) and a large weight (30) is assigned to the friction attribute 
(on a scale of 0 to 1) when creating each cluster. The clustering result is shown in Figure 6(b). It reveals that the 
friction grids are clustered into friction blocks and the friction value of the grid within each block is nearly identical. 

 
(a)                                                                            (b) 

Figure 6: Friction grids clustering. (a) histograms of friction values in all grids (b) clustering results with 
K=6 

Comparing the clustering results with the true friction distribution shown in Figure 2 (d), one can see that the 
boundaries between the snowy bridge and adjacent dry road and the edges between snow rut and loose snow are 
mapped clearly. Quantitatively, the root-mean-square error (RMSE) between this clustered friction map and the 
true friction distribution is 0.0180, the root-mean-square percentage error RMSPE is 5.36%, and the maximum 
absolute error (MAE) is 0.0453, which implies an accurate mapping. It should be noted that the interval and thereby 
the K can be tailored to get specific cluster results, which is further discussed in section 4.1.  
 

3.3 Represent the friction cluster block with rectangular boxes 

Examining the clustering results shown in Figure 6(b), one can see that the road surface is partitioned into friction 
blocks which is a collection of road grids with identical friction coefficient values. Figure 7(a) provides an example 
of a friction block which is the region within the bold red polygon. To represent friction blocks efficiently, they 
are further partitioned into a collection of rectangular boxes shown as the black boxes in Figure 7(a). The location 
and shape of the ith STH-coordinate axis-aligned bounding box (AABB) can be represented by the coordinates of 
the lower-left corner (Si1,Ti1) and upper right corner  (Si2,Ti2). Partitioning cluster blocks shown in Figure 6(b) into 
boxes results in the friction map shown in Figure 7(b). In this simulation, 104 boxes are generated from the original 
300k friction cells. It is interesting to note that, under the ST coordinates, nearly all the friction boxes are 
intrinsically axis-aligned bounding boxes whose width is always aligned to the S axis, and the height to the T axis. 
Many spatial searching tasks thereby become trivial with such an axis alignment feature. For example, one can 
find which box a point (Sq,Tq) on the road belongs to via just comparing its coordinates with all boxes’ corner 
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locations respectively. This is useful for vehicles to conduct spatial friction queries very rapidly even without high 
computational loads.  
 
With the grouping of friction into partitions, the road friction map is represented as a set of axis-aligned bounding 
boxes with associated friction coefficient values. Queries of friction boxes can be managed efficiently through the 
spatial database. In this study, the PostgreSQL database with a spatial database extender PostGIS [25] is employed 
to manage data. The database can create a spatial index, a generalized search tree (GiST) [27], for the box object 
to facilitate various spatial queries. A common spatial query is to find the nearest box given a point. Furthermore, 
the resulting database requires only about 30KB of space to store all 104 friction boxes. With this compact 
representation, the friction map data can easily be shared with the connected vehicles, as shown in Figure 1, with 
less data cost and time delay. With the friction map, the vehicle can plan the driving style according to the available 
friction [8]. For the friction scenario in Figure 2(b), the vehicle may need to slow down when approaching the 
snowy bridge and avoid lane changing for driving stability.  
 

    
(a)                                                                            (b) 

Figure 7: Partition cluster blocks into rectangular boxes. (a) a partition example for one block (b) 
partition results for the clustering shown in Figure 6(b) 

The results indicate that the road friction distribution can be measured effectively by collecting and aggregating 
the friction data from CAVs, with compact data sharing defined by the axis-aligned rectangular friction boxes. 
This road friction mapping strategy provides great potential for improving CAVs control performance and stability 
via database-mediated feedback systems, with a cloud-based data sharing method that is suited for real-time 
deployment in actual networks of CAVs.  
 

4. Analysis and Discussion 

In this section, several variations of the proposed data aggregation method are investigated. 
 

4.1 Granularity and data size  

Recall section 3.2 where we utilize the K-Means algorithm to partition the friction grids and the K is estimated via 
histogram statistics with 0.1 bin width. If one conducts the same clustering and friction boxes partition method but 
uses different bin widths and thereby different K values, the number of friction boxes and aggregation error 
between clustered friction map and the true friction distribution will change. This test was performed and the 
results are summarized in Table 1. The results reveal the trade-off between the partition granularity, i.e. the number 
of friction boxes, and mapping accuracy. And this trade-off can be tuned through the choice of cluster number K. 
A larger cluster number, K, results in a higher mapping accuracy but generates more friction boxes, longer data 
aggregation times, and larger databases. For all of the cases, the data size reduction percentage is greater than 99.9% 
which indicates much higher compactness and efficiency of boxes-based representation than grid-based road 
friction map.  
 
Conducting the data aggregation process in section 3 to the true friction data shown in Figure 2 where no 
measurement noise is involved, only 47 friction boxes are generated, whereas 104 friction boxes are generated 
when aggregating the noisy measured friction data from vehicles. Comparing the results, we find that the additional 
boxes are mainly located in the uneven transition boundaries resulting from the data noise between friction blocks. 
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4.2 Polygon representation of friction blocks 

In section 3.3, the axis-aligned bounding boxes (AABBs) were used to represent the friction cluster block. Another 
more means of defining cell boundaries is to simply use the boundary of the cluster block. Figure 7(a) provides an 
example of a friction block which is the region within the bold red polygon boundaries. In this paper, the 
boundaries of each block are detected using image dilate and erode operation with a disk-shaped morphological 
structuring element of radius 1. The polygon boundaries can be depicted using the vertice coordinates values in 
ST coordinates. With this method, fewer polygons are required to represent the friction map, which is shown in 
Table 1. The drawback of representing friction maps using boundary definitions rather than AABBs is that 
managing the polygon object, including data storage and the spatial query, is much less efficient in a database, 
especially for polygons with holes. Because most databases are designed to support AABB queries, such partitions 
have clear implementation advantages. 
 

Table 1: Friction grids clustering performance with various interval values  
Interval K Number of 

friction boxes 
Data size reduction 
percentage 

Number of 
friction blocks 

RMSE  RMSPE MAE 

0.03 15  285 99.9371% 136 0.00761 2.24% 0.019 
0.05 10  177 99.9614% 91 0.0114 3.22% 0.0309 
0.1 6 104 99.9771% 55 0.0180 5.36% 0.0453 
0.15 5 85 99.9812% 47 0.0234 6.61% 0.0648 
0.25 4 67 99.9852% 30 0.0302 8.90% 0.0779 
0.3 3 54 99.9881% 12 0.0467 15.67% 0.113 

 

5. Conclusions and Future Work 

This paper presents a road friction map generation strategy by aggerating the measured road-tire friction 
coefficients from a fleet of CAVs. To demonstrate the strategy, a simulation was developed to collect the friction 
measurement data from CAVs. The simulation integrates traffic simulations, vehicle chassis dynamics and on-
vehicle friction estimators, and a highway road surface with varying friction, particularly over bridge segments 
that have strong friction variation due to weather events. Due to the large size of collected raw data, a road-grid-
based data aggregation process is introduced to generate a friction map that associates friction values with 
appropriate spatial context. The results indicate that the road friction distribution can be measured effectively by 
collecting and aggregating the friction data from CAVs. Moreover, an insight of work is that the friction map can 
be represented compactly by rectangular axis-aligned bounding boxes defined by a pair of corner coordinates in 
space and a friction value within the box, as long as STH (curvilinear) coordinates are used.  
 
This road friction mapping strategy provides great potential for improving CAVs control performance and stability 
via database-mediated feedback systems, with a cloud-based data sharing method that is suited for real-time 
deployment in actual networks of CAVs. In addition, the friction information can support road maintenance 
strategy development, especially in adverse weather conditions, thus mitigating the impact of inclement road 
conditions on traffic mobility and safety. Such friction information can also clearly help drivers arrive at their 
destination with more safety. 
 
Future work can readily improve the simple approach of this paper toward data aggregation. Specifically, the 
identical fine grid size is not necessary for all road sections and a coarse grid may be suited for non-bridge areas. 
Thus, an algorithm can be developed that adaptively estimates grid sizes for different road sections and road 
conditions. Similarly, this study ignored time-varying friction effects (as only 30 minutes of data is studied); the 
appropriate time window scale or forgetful factor is needed to represent the time variation of friction; one could 
develop a friction prediction model by considering the time dynamics of road and weather conditions. In addition, 
the integration of on-vehicle data with roadside sensors [28] or in-vehicle camera [10] friction estimation methods 
holds promise for future work. Finally, the performance of the algorithm with more noisy measurement data needs 
to be evaluated further.  
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