
Published as a conference paper at ICLR 2023

IMPLICIT REGULARIZATION FOR GROUP SPARSITY

Jiangyuan Li?, Thanh V. Nguyen, Chinmay Hegde† & Raymond K. W. Wong?

?Texas A&M University
†New York University
{jiangyuanli, raywong}@tamu.edu;
thanhng.cs@gmail.com; chinmay.h@nyu.edu

ABSTRACT

We study the implicit regularization of gradient descent towards structured sparsity
via a novel neural reparameterization, which we call a “diagonally grouped linear
neural network”. We show the following intriguing property of our reparameter-
ization: gradient descent over the squared regression loss, without any explicit
regularization, biases towards solutions with a group sparsity structure. In contrast
to many existing works in understanding implicit regularization, we prove that
our training trajectory cannot be simulated by mirror descent. We analyze the
gradient dynamics of the corresponding regression problem in the general noise
setting and obtain minimax-optimal error rates. Compared to existing bounds for
implicit sparse regularization using diagonal linear networks, our analysis with
the new reparameterization shows improved sample complexity. In the degenerate
case of size-one groups, our approach gives rise to a new algorithm for sparse
linear regression. Finally, we demonstrate the efficacy of our approach with several
numerical experiments1.

1 INTRODUCTION

Motivation. A salient feature of modern deep neural networks is that they are highly overparame-
terized with many more parameters than available training examples. Surprisingly, however, deep
neural networks trained with gradient descent can generalize quite well in practice, even without
explicit regularization. One hypothesis is that the dynamics of gradient descent-based training itself
induce some form of implicit regularization, biasing toward solutions with low-complexity (Hardt
et al., 2016; Neyshabur et al., 2017). Recent research in deep learning theory has validated the
hypothesis of such implicit regularization effects. A large body of work, which we survey below, has
considered certain (restricted) families of linear neural networks and established two types of implicit
regularization — standard sparse regularization and `2-norm regularization — depending on how
gradient descent is initialized.

On the other hand, the role of network architecture, or the way the model is parameterized in implicit
regularization, is less well-understood. Does there exist a parameterization that promotes implicit
regularization of gradient descent towards richer structures beyond standard sparsity?

In this paper, we analyze a simple, prototypical hierarchical architecture for which gradient descent
induces group sparse regularization. Our finding — that finer, structured biases can be induced via
gradient dynamics — highlights the richness of co-designing neural networks along with optimization
methods for producing more sophisticated regularization effects.

Background. Many recent theoretical efforts have revisited traditional, well-understood problems
such as linear regression (Vaskevicius et al., 2019; Li et al., 2021; Zhao et al., 2019), matrix factoriza-
tion (Gunasekar et al., 2018b; Li et al., 2018; Arora et al., 2019) and tensor decomposition (Ge et al.,
2017; Wang et al., 2020), from the perspective of neural network training. For nonlinear models
with squared error loss, Williams et al. (2019) and Jin & Montúfar (2020) study the implicit bias of
gradient descent in wide depth-2 ReLU networks with input dimension 1. Other works (Gunasekar
et al., 2018c; Soudry et al., 2018; Nacson et al., 2019) show that gradient descent biases the solution
towards the max-margin (or minimum `2-norm) solutions over separable data.

1Code is available on https://github.com/jiangyuan2li/Implicit-Group-Sparsity

1

a
rX

iv
:2

3
0
1
.1

2
5
4
0
v
1

[s

ta
t.

M
L

]
 2

9
 J

a
n
 2

0
2
3

Published as a conference paper at ICLR 2023

NNs Noise Implicit vs. Explicit Regularization

Vaskevicius et al. (2019) DLNN 3 Implicit (GD) Sparsity
Dai et al. (2021) LNN 7 Explicit (`2-penalty) (Group) Quasi-norm

Jagadeesan et al. (2021) LCNN 7 Explicit (`2-penalty) Norm induced by SDP
Wu et al. (2020) DLNN 7 Implicit `2-norm

This paper DGLNN 3 Implicit (GD) Structured sparsity

Table 1: Comparisons to related work on implicit and explicit regularization. Here, GD stands for
gradient descent, (D)LNN/CNN for (diagonal) linear/convolutional neural network, and DGLNN for
diagonally grouped linear neural network.

Outside of implicit regularization, several other works study the inductive bias of network architectures
under explicit `2 regularization on model weights (Pilanci & Ergen, 2020; Sahiner et al., 2020). For
multichannel linear convolutional networks, Jagadeesan et al. (2021) show that `2-norm minimization
of weights leads to a norm regularizer on predictors, where the norm is given by a semidefinite
program (SDP). The representation cost in predictor space induced by explicit `2 regularization
on (various different versions of) linear neural networks is studied in Dai et al. (2021), which
demonstrates several interesting (induced) regularizers on the linear predictors such as `p quasi-norms
and group quasi-norms. However, these results are silent on the behavior of gradient descent-based
training without explicit regularization. In light of the above results, we ask the following question:

Beyond `2-norm, sparsity and low-rankness, can gradient descent induce other
forms of implicit regularization?

Our contributions. In this paper, we rigorously show that a diagonally-grouped linear neural
network (see Figure 1b) trained by gradient descent with (proper/partial) weight normalization
induces group-sparse regularization: a form of structured regularization that, to the best of our
knowledge, has not been provably established in previous work.

One major approach to understanding implicit regularization of gradient descent is based on its
equivalence to a mirror descent (on a different objective function) (e.g., Gunasekar et al., 2018a;
Woodworth et al., 2020). However, we show that, for the diagonally-grouped linear network architec-
ture, the gradient dynamics is beyond mirror descent. We then analyze the convergence of gradient
flow with early stopping under orthogonal design with possibly noisy observations, and show that the
obtained solution exhibits an implicit regularization effect towards structured (specifically, group)
sparsity. In addition, we show that weight normalization can deal with instability related to the
choices of learning rates and initialization. With weight normalization, we are able to obtain a similar
implicit regularization result but in more general settings: orthogonal/non-orthogonal designs with
possibly noisy observations. Also, the obtained solution can achieve minimax-optimal error rates.

Overall, compared to existing analysis of diagonal linear networks, our model design — that induces
structured sparsity — exhibits provably improved sample complexity. In the degenerate case of
size-one groups, our bounds coincide with previous results, and our approach can be interpreted as a
new algorithm for sparse linear regression.

Our techniques. Our approach is built upon the power reparameterization trick, which has been
shown to promote model sparsity (Schwarz et al., 2021). Raising the parameters of a linear model
element-wisely to the N -th power (N > 1) results in that parameters of smaller magnitude receive
smaller gradient updates, while parameters of larger magnitude receive larger updates. In essence,
this leads to a “rich get richer” phenomenon in gradient-based training. In Gissin et al. (2019)
and Berthier (2022), the authors analyze the gradient dynamics on a toy example, and call this
“incremental learning”. Concretely, for a linear predictor w ∈ R

p, if we re-parameterize the model as
w = u◦N − v◦N (where u◦N means the N -th element-wise power of u), then gradient descent will
bias the training towards sparse solutions. This reparameterization is equivalent to a diagonal linear
network, as shown in Figure 1a. This is further studied in Woodworth et al. (2020) for interpolating
predictors, where they show that a small enough initialization induces `1-norm regularization. For
noisy settings, Vaskevicius et al. (2019) and Li et al. (2021) show that gradient descent converges
to sparse models with early stopping. In the special case of sparse recovery from under-sampled

2

Published as a conference paper at ICLR 2023

(a) Diagonal linear NN (DLNN). (b) Diagonally grouped linear NN (DGLNN).

Figure 1: An illustration of the two architectures for standard and group sparse regularization.

observations (or compressive sensing), the optimal sample complexity can also be obtained via this
reparameterization (Chou et al., 2021).

Inspired by this approach, we study a novel model reparameterization of the form w = [w1, . . . ,wL],
where wl = u2

l vl for each group l ∈ {1, . . . , L}. (One way to interpret this model is to think of ul as
the “magnitude” and vl as the “direction” of the subvector corresponding to each group; see Section
2 for details.) This corresponds to a special type of linear neural network architecture, as shown in
Figure 1b. A related architecture has also been recently studied in Dai et al. (2021), but there the
authors have focused on the bias induced by an explicit `2 regularization on the weights and have not
investigated the effect of gradient dynamics.

The diagonally linear network parameterization of Woodworth et al. (2020); Li et al. (2021) does
not suffer from identifiability issues. In contrast to that, in our setup the “magnitude” parameter
ul of each group interacts with the norm of the “direction”, ‖vl‖2, causing a fundamental problem
of identifiability. By leveraging the layer balancing effect (Du et al., 2018) in DGLNN, we verify
the group regularization effect implicit in gradient flow with early stopping. But gradient flow is
idealized; for a more practical algorithm, we use a variant of gradient descent based on weight
normalization, proposed in (Salimans & Kingma, 2016), and studied in more detail in (Wu et al.,
2020). Weight normalization has been shown to be particularly helpful in stabilizing the effect of
learning rates (Morwani & Ramaswamy, 2022; Van Laarhoven, 2017). With weight normalization,
the learning effect is separated into magnitudes and directions. We derive the gradient dynamics on
both magnitudes and directions with perturbations. Directions guide magnitude to grow, and as the
magnitude grows, the directions get more accurate. Thereby, we are able to establish regularization
effect implied by such gradient dynamics.

A remark on grouped architectures. Finally, we remark that grouping layers have been commonly
used in grouped CNN and grouped attention mechanisms (Xie et al., 2017; Wu et al., 2021), which
leads to parameter efficiency and better accuracy. Group sparsity is also useful for deep learning
models in multi-omics data for survival prediction (Xie et al., 2019). We hope our analysis towards
diagonally grouped linear NN could lead to more understanding of the inductive biases of grouping-
style architectures.

2 SETUP

Notation. Denotes the set {1, 2, . . . , L} by [L], and the vector `2 norm by ‖·‖. We use 1p and 0p to
denote p-dimensional vectors of all 1s and all 0s correspondingly. Also, � represents the entry-wise

multiplication whereas β◦N denotes element-wise power N of a vector β. We use ei to denote the ith

canonical vector. We write inequalities up to multiplicative constants using the notation ., whereby
the constants do not depend on any problem parameter.

Observation model. Suppose that the index set [p] = ∪L
j=lGl is partitioned into L disjoint (i.e.,

non-overlapping) groups G1, G2, . . . , GL where Gi ∩Gj = ∅, ∀i 6= j. The size of Gl is denoted by
pl = |Gl| for l ∈ [L]. Let w? ∈ R

p be a p-dimensional vector where the entries of w? are non-zero
only on a subset of groups. We posit a linear model of data where observations (xi, yi) ∈ R

p×R, i ∈

3

Published as a conference paper at ICLR 2023

[n] are given such that yi = 〈xi,w
?〉+ ξi for i = 1, . . . , n, and ξ = [ξ1, . . . , ξn]

> is a noise vector.
Note that we do not impose any special restriction between n (the number of observations) and p (the
dimension). We write the linear model in the following matrix-vector form: y = Xw? + ξ, with the
n× p design matrix X = [X1,X2, . . . ,XL], where Xl ∈ R

n×pl represents the features from the lth

group Gl, for l ∈ [L]. We make the following assumptions on X:

Assumption 1. The design matrix X satisfies

sup
‖β1‖≤1,‖β2‖≤1

∣

∣

∣

∣

〈

β1,

(

1

n
X>

l Xl − I

)

β2

〉∣

∣

∣

∣

≤ δin, where β1,β2 ∈ R
pl , (1)

and

sup
‖β1‖≤1,‖β2‖≤1

∣

∣

∣

∣

〈

1√
n
Xlβ1,

1√
n
Xl′β2

〉∣

∣

∣

∣

≤ δout, where β1 ∈ R
pl ,β2 ∈ R

p
l′ , l 6= l′, (2)

for some constants δin, δout ∈ (0, 1).

The first part (1) is a within-group eigenvalue condition while the second part (2) is a between-group
block coherence assumption. There are multiple ways to construct a sensing matrix to fulfill these
two conditions (Eldar & Bolcskei, 2009; Baraniuk et al., 2010). One of them is based on the fact that
random Gaussian matrices satisfy such conditions with high probability (Stojnic et al., 2009).

Reparameterization. Our goal is to learn a parameter w from the data {(xi, yi)}ni=1 with coefficients
which obey group structure. Instead of imposing an explicit group-sparsity constraint on w (e.g., via
weight penalization by group), we show that gradient descent on the unconstrained regression loss can
still learn w?, provided we design a special reparameterization. Define a mapping g(·) : [p] → [L]
from each index i to its group g(i). Each parameter is rewritten as wi = u2

g(i)vi, ∀i ∈ [p]. The

parameterization G(·) : RL
+ × R

p → R
p reads

[u1, . . . , uL, v1, v2, . . . , vp] → [u2
1v1, u

2
1v2, . . . , u

2
Lvp].

This corresponds to the 2-layer neural network architecture displayed in Figure 1b, in which W1 =
diag(v1, . . . , vp), and W2 is “diagonally” tied within each group:

W2 = diag(u1, . . . , u1, u2, . . . , u2, . . . , uL, . . . , uL).

Gradient dynamics. We learn u and v by minimizing the standard squared loss:

L(u,v) = 1

2

∥

∥y −X[(Du)◦2 � v]
∥

∥

2
,

where

D =









1p1 0p1 . . . 0p1

0p2 1p2 . . . 0p2

...
...

...
...

0pL
0pL

. . . 1pL









∈ R
p×L.

By simple algebra, the gradients with respect to u and v read as follows:

∇uL = 2D> (v �
[

X>X((Du)◦2 � v −w?)−X>ξ
]

�Du
)

,

∇vL =
[

X>X((Du)◦2 � v −w?)−X>ξ
]

� (Du)◦2.

Denote r(t) = y −∑L
l′=1 u

2
l (t)Xlvl(t). For each group l ∈ [L], the gradient flow reads

∂ul(t)

∂t
=

2

n
ul(t)v

>
l (t)X

>
l r(t),

∂vl(t)

∂t
=

1

n
u2
l (t)X

>
l r(t). (3)

Although we are not able to transform the gradient dynamics back onto w(t) due to the overparame-
terization, the extra term ul(t) on group magnitude leads to “incremental learning” effect.

4

Published as a conference paper at ICLR 2023

3 ANALYSIS OF GRADIENT FLOW

3.1 FIRST ATTEMPT: MIRROR FLOW

Existing results about implicit bias in overparameterized models are mostly based on recasting
the training process from the parameter space {u(t),v(t)}t≥0 to the predictor space {w(t)}t≥0

(Woodworth et al., 2020; Gunasekar et al., 2018a). If properly performed, the (induced) dynamics
in the predictor space can now be analyzed by a classical algorithm: mirror descent (or mirror
flow). Implicit regularization is demonstrated by showing that the limit point satisfies a KKT
(Karush–Kuhn–Tucker) condition with respect to minimizing some regularizer R(·) among all
possible solutions.

At first, we were unable to express the gradient dynamics in Eq. (3) in terms of w(t) (i.e., in the
predictor space), due to complicated interactions between u and v. This hints that the training
trajectory induced by an overparameterized DGLNN may not be analyzed by mirror flow techniques.
In fact, we prove a stronger negative result, and rigorously show that the corresponding dynamics
cannot be recast as a mirror flow. Therefore, we conclude that our subsequent analysis techniques are
necessary and do not follow as a corollary from existing approaches.

We first list two definitions from differential topology below.

Definition 1. Let M be a smooth submanifold of RD. Given two C1 vector fields of X,Y on M , we
define the Lie Bracket of X and Y as [X,Y](x) := ∂Y (x)X(x)− ∂X(x)Y (x).

Definition 2. Let M be a smooth submanifold of RD. A C2 parameterization G : M → R
d is said

to be commuting iff for any i, j ∈ [d], the Lie Bracket [∇Gi,∇Gj](x) = 0 for all x ∈ M .

The parameterization studied in most existing works on diagonal networks is separable, meaning that
each parameter only affects one coordinate in the predictor space. In DGLNN, the parameterization
is not separable, due to the shared parameter u within each group. We formally show that it is indeed
not commuting.

Lemma 1. G(·) is not a commuting parameterization.

Non-commutativity of the parameterization implies that moving along −∇Gi and then −∇Gj is
different with moving with −∇Gj first and then −∇Gi. This causes extra difficulty in analyzing the
gradient dynamics. Li et al. (2022) study the equivalence between gradient flow on reparameterized
models and mirror flow, and show that a commuting parameterization is a sufficient condition for
when a gradient flow with certain parameterization simulates a mirror flow. A complementary
necessary condition is also established on the Lie algebra generated by the gradients of coordinate
functions of G with order higher than 2. We show that the parameterization G(·) violates this
necessary condition.

Theorem 1. There exists an initialization [u>
init,v

>
init] ∈ R

L
+ × R

p and a time-dependent loss Lt

such that gradient flow under Lt �G starting from [u>
init,v

>
init] cannot be written as a mirror flow

with respect to any Legendre function R under the loss Lt.

The detailed proof is deferred to the Appendix. Theorem 1 shows that the gradient dynamics implied
in DGLNN cannot be emulated by mirror descent. Therefore, a different technique is needed to
analyze the gradient dynamics and any associated implicit regularization effect.

3.2 LAYER BALANCING AND GRADIENT FLOW

Let us first introduce relevant quantities. Following our reparameterization, we rewrite the true
parameters for each group l as

w?
l = (u?

l)
2v?

l , ‖v?
l ‖2 = 1, v?

l ∈ R
pl .

The support is defined on the group level, where S = {l ∈ [L] : u?
l > 0} and the support size is

defined as s = |S|. We denote u?
max = max{u?

l |l ∈ S}, and u?
min = min{u?

l |l ∈ S}.

The gradient dynamics in our reparameterization does not preserve ‖vl(t)‖2 = 1, which causes
difficulty to identify the magnitude of each ul and ‖vl(t)‖2. Du et al. (2018) and Arora et al. (2018)

5

Published as a conference paper at ICLR 2023

show that the gradient flow of multi-layer homogeneous functions effectively enforces the differences
between squared norms across different layers to remain invariant. Following the same idea, we
discover a similar balancing effect in DGLNN between the parameter u and v.

Lemma 2. For any l ∈ [L], we have

d

dt

(

1

2
u2
l − ‖vl‖2

)

= 0.

The balancing result eliminates the identifiability issue on the magnitudes. As the coordinates within
one group affect each other, the direction which controls the growth rate of both u and v need to be
determined as well.

Lemma 3. If the initialization vl(0) is proportional to 1
nX

>
l y, then

〈

vl(0)

‖vl(0)‖
,v?

l

〉

≥ 1−
(

δin + Lδout +

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

2

/(u?
l)

2

)2

.

Note that this initialization can be obtained by a single step of gradient descent with 0 initialization.
Lemma 3 suggests the direction is close to the truth at the initialization. We can further normalize it to

be ‖vl(0)‖22 = 1
2u

2
l (0) based on the balancing criterion. The magnitude equality, ‖vl(t)‖22 = 1

2u
2
l (t),

is preserved by Lemma 2. However, ensuring the closeness of the direction throughout the gradient
flow presents significant technical difficulties. That said, we are able to present a meaningful implicit
regularization result of the gradient flow under orthogonal (and noisy) settings.

Theorem 2. Fix ε > 0. Consider the case where 1
nX

>
l Xl = I, 1

nX
>
l Xl′ = O, l 6= l′, the

initialization ul(0) = θ < ε
2(u?

max
)2 and vl(0) = ηl

1
nX

>
l y with ‖vl(0)‖22 = 1

2θ
2, ∀l ∈ [L], there

exists an lower bound and upper bound of the time Tl < Tu in the gradient flow in Eq. (3), such that
for any Tl ≤ t ≤ Tu we have

∥

∥u2
l (t)vl(t)−w?

l

∥

∥

∞ .

{
∥

∥

1
nX

>ξ
∥

∥

∞ ∨ ε, if l ∈ S.

θ3/2, if l /∈ S.

Theorem 2 states the error bounds for the estimation of the true weights w?. For entries outside the

(true) support, the error is controlled by θ3/2. When θ is small, the algorithm keeps all non-supported
entries to be close to zero through iterations while maintaining the guarantee for supported entries.
Theorem 2 shows that under the assumption of orthogonal design, gradient flow with early stopping
is able to obtain the solution with group sparsity.

4 GRADIENT DESCENT WITH WEIGHT NORMALIZATION

Algorithm 1 Gradient descent with weight normalization

Initialize: u(0) = α1, unit norm initialization vl(0) for each l ∈ [L], ηl,t =
1

u4
l
(t)

.

for t = 0 to T do
z(t+ 1) = v(t)− ηl,t∇vL(u(t),v(t))
vl(t+ 1) = zl(t+1)

‖zl(t+1)‖2
, ∀l ∈ [L]

u(t+ 1) = u(t)− γ∇uL(u(t),v(t+ 1))
if the early stopping criterion is satisfied then

stop
end if

end for

We now seek a more practical algorithm with more general assumptions and requirements on
initialization. To speed up the presentation, we will directly discuss the corresponding variant of
(the more practical) gradient descent instead of gradient flow. When standard gradient descent is

6

Published as a conference paper at ICLR 2023

applied on DGLNN, initialization for directions is very crucial; The algorithm may fail even with a
very small initialization when the direction is not accurate, as shown in Appendix E. The balancing
effect (Lemma 2) is sensitive to the step size, and errors may accumulate (Du et al., 2018).

Weight normalization as a commonly used training technique has been shown to be helpful in
stabilizing the training process. The identifiability of the magnitude is naturally resolved by weight
normalization on each vl. Moreover, weight normalization allows for a larger step size on v, which
makes the direction estimation at each step behave like that at the origin point. This removes the
restrictive assumption of orthogonal design. With these intuitions in mind, we study the gradient
descent algorithm with weight normalization on v summarized in Algorithm 1. One advantage of
our algorithm is that it converges with any unit norm initialization vl(0). The step size on u(t) is
chosen to be small enough in order to enable the incremental learning, whereas the step size on v(t)
is chosen as ηl,t =

1
u4
l
(t)

as prescribed by our theoretical investigation. For convenience, we define

ζ = 80

(∥

∥

∥

∥

1

n
X>ξ

∥

∥

∥

∥

∞
∨ ε

)

,

for a precision parameter ε > 0. The convergence of Algorithm 1 is formalized as follows:

Theorem 3. Fix ε > 0. Consider Algorithm 1 with

ul(0) = α <
ε4 ∧ 1

(u?
max)

8
∧ 1

80L
(u?

min)
2 ∧ ε

L
, ∀l ∈ [L],

any unit-norm initialization on vl for each l ∈ [L] and γ ≤ 1
20(u?

max
)2 . Suppose Assumption 1 is

satisfied with δin ≤ (u?

min
)2

120(u?
max

)2 and δout ≤ (u?

min
)2

120s(u?
max

)2 . There exist a lower bound on the number of

iterations

Tlb =
log

(u?

max
)2

2α2

2 log(1 + γ
2 (ζ ∨ (u?

min)
2))

+

⌊

log2
(u?

max)
2

ζ

⌋

5

2γ(ζ ∨ (u?
min)

2)
,

and an upper bound

Tub ≥
5

16γ(ζ ∨ (u?
min)

2)
log

1

α4
,

such that Tlb ≤ Tub and for any Tlb ≤ t ≤ Tub,

∥

∥u2
l (t)vl(t)−w?

l

∥

∥

∞ .

{
∥

∥

1
nX

>ξ
∥

∥

∞ ∨ ε, if l ∈ S

α, if l /∈ S
.

Similarly as Theorem 2, Theorem 3 states the error bounds for the estimation of the true weights
w?. When α is small, the algorithm keeps all non-supported entries to be close to zero through
iterations while maintaining the guarantee for supported entries. Compared to the works on implicit
(unstructured) sparse regularization (Vaskevicius et al., 2019; Chou et al., 2021), our assumption on
the incoherence parameter δout scales with 1/s, where s is the number of non-zero groups, instead
of the total number of non-zero entries. Therefore, the relaxed bound on δout implies an improved
sample complexity, which is also observed experimentally in Figure 4. We now state a corollary in a
common setting with independent random noise, where (asymptotic) recovery of w? is possible.

Definition 3. A random variable Y is σ-sub-Gaussian if for all t ∈ R there exists σ > 0 such that

EetY ≤ eσ
2t2/2.

Corollary 1. Suppose the noise vector ξ has independent σ2-sub-Gaussian entries and ε =

2
√

σ2 log(2p)
n . Under the assumptions of Theorem 3, Algorithm 1 produces w(t) = (Du(t))◦2 �v(t)

that satisfies ‖w(t)−w?‖22 . (sσ2 log p)/n with probability at least 1 − 1/(8p3) for any t such
that Tlb ≤ t ≤ Tub.

Note that the error bound we obtain is minimax-optimal. Despite these appealing properties of Algo-
rithm 1, our theoretical results require a large step size on each vl(t), which may cause instability at
later stages of learning. We observe this instability numrerically (see Figure 6, Appendix E). Although

7

Published as a conference paper at ICLR 2023

the estimation error of w? remains small (which aligns with our theoretical result), individual entries
in v may fluctuate considerably. Indeed, the large step size is mainly introduced to maintain a strong
directional information extracted from the gradient of vl(t) so as to stabilize the updates of u(t) at
the early iterations. Therefore, we also propose Algorithm 2, a variant of Algorithm 1, where we
decrease the step size after a certain number of iterations.

Algorithm 2. Run Algorithm 1 with the same setup till each ul(t), l ∈ [L] gets roughly accurate, set
ηl,t = η. Continue Algorithm 1 until early stopping criterion is satisfied.

Theorem 4. Under the assumptions of Theorem 3 with replacing the condition on δ’s by δin ≤√
ζ(u?

min
)2

120(u?
max

)3 and δout ≤
√
ζ(u?

min
)2

120s(u?
max

)3 , we apply Algorithm 2 with ηl,t =
1

u4(t) at the beginning, and

ηl,t = η ≤ 4
9(u?

max
)2 after ∀l ∈ [L], u2

l (t) ≥ 1
2 (u

?
l)

2, then with the same Tlb and Tub, we have that

for any Tlb ≤ t ≤ Tub,

∥

∥u2
l (t)vl(t)−w?

l

∥

∥

∞ .

{
∥

∥

1
nX

>ξ
∥

∥

∞ ∨ ε, if l ∈ S.

α, if l /∈ S.

In Theorem 4, the criterion to decrease the step size is: u2
l (t) ≥ 1

2 (u
?
l)

2, ∀l ∈ [L]. Once this criterion
is satisfied, our proof indeed ensures that it would hold for at least up to the early stopping time Tub

specified in the theorem. In practice, since u?
l ’s are unknown, we can switch to a more practical

criterion: max
l∈[L]

{|ul(t+ 1)− ul(t)|/|ul(t) + ε|} < τ for some pre-specified tolerance τ > 0 and

small value ε > 0 as the criterion for changing the step size. The motivation of this criterion is
further discussed in Appendix D. The error bound remains the same as Theorem 3. The change in
step size requires a new way to study the gradient dynamics of directions with perturbations. With
our proof technique, Theorem 4 requires a smaller bound on δ’s (see Lemma 16 versus Lemma 8 in
Appendix C for details). We believe it is a proof artifact and leave the improvement for future work.

Connection to standard sparsity. Consider the degenerate case where each group size is 1. Our repa-
rameterization, together with the normalization step, can roughly be interpreted as wi ≈ u2

i sgn(vi),
which is different from the power-reparameterization wi = uN

i − vNi , N ≥ 2 in Vaskevicius et al.
(2019) and Li et al. (2021). This also shows why a large step size on vi is needed at the beginning. If
the initialization on vi is incorrect, the sign of vi may not move with a small step size.

5 SIMULATION STUDIES

We conduct various experiments on simulated data to support our theory. Following the model in
Section 2, we sample the entries of X i.i.d. using Rademacher random variables and the entries of the
noise vector ξ i.i.d. under N(0, σ2). We set σ = 0.5 throughout the experiments.

0 500 1000 1500 2000
epochs

0

1

2

3

||
w
(t
)
−

w
?
||
2

Recovery error

0 500 1000 1500 2000
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S

max
l /∈S

ul(t)

Figure 2: Convergence of Algorithm 1. The entries on the support are all 10.

The effectiveness of our algorithms. We start by demonstrating the convergence of the two proposed
algorithms. In this experiment, we set n = 150 and p = 300. The number of non-zero entries is
9, divided into 3 groups of size 3. We run both Algorithms 1 and 2 with the same initialization
α = 10−6. The step size γ on u and decreased step size η on v are both 10−3. In Figure 2, we
present the recovery error of w? on the left, and recovered group magnitudes on the right. As we can

8

Published as a conference paper at ICLR 2023

0 200 400 600 800 1000
epochs

0

2

4

6

8

10

12

w
li
(t
)

Recovered entries

wli(t), l ∈ S

max
l /∈S

wli(t)

0 200 400 600 800 1000
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S

max
l /∈S

ul(t)

0 200 400 600 800 1000
epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00

〈v
l(
t)
,v

?
〉

Recovered group directions

group1

group2

group3

Figure 3: Convergence of Algorithm 2. The entries on the support are from 5 to 13.

see, early stopping is crucial for reaching the structured sparse solution. In Figure 3, we present the
recovered entries, recovered group magnitudes and recovered directions for each group from left to
right. In addition to convergence, we also observe an incremental learning effect.

0 100 200 300 400 500
epochs

0.00

0.25

0.50

0.75

1.00

1.25

w
li
(t
)

Recovered entries using group sparsity

wli(t), l ∈ S

max
l /∈S

wli(t)

0 100 200 300 400 500
epochs

0.00

0.25

0.50

0.75

1.00

1.25

w
li
(t
)

Recovered entries using sparsity

wli(t), l ∈ S

max
l /∈S

wli(t)

Figure 4: Comparison with reparameterization using standard sparsity. n = 100, p = 500.

Structured sparsity versus standard sparsity. From our theory, we see that the block incoherence
parameter scales with the number of non-zero groups, as opposed to the number of non-zero entries.
As such, we can expect an improved sample complexity over the estimators based on unstructured
sparse regularization. We choose a larger support size of 16. The entries on the support are all 1
for simplicity. We apply our Algorithm 2 with group size 4. The result is shown in Figure 4 (left).
We compare with the method in Vaskevicius et al. (2019) with parameterization w = u◦2 − v◦2,
designed for unstructured sparsity. We display the result in the right figure, where interestingly, that
algorithm fails to converge because of an insufficient number of samples.

0 200 400 600 800 1000
epochs

−1.0

−0.5

0.0

0.5

1.0

w
li
(t
)

Recovered entries

wli(t), l ∈ S

max
l /∈S

|wli(t)|

0 200 400 600 800 1000
epochs

−10

−8

−6

−4

lo
g
2
||
w

t
−

w
?
||
2 2

Recovery error

Figure 5: Degenerate case when each group size is 1. The log `2-error plot is repeated 30 times, and
the mean is depicted. The shaded area indicates the region between the 25th and 75th percentiles.

Degenerate case. In the degenerate case where each group is of size 1, our reparameterization takes
a simpler form wi ≈ u2

i sgn(v), i.e., due to weight normalization, our method normalizes v to 1 or −1
after each step. We demonstrate the efficacy of our algorithms even in the degenerate case. We set
n = 80 and p = 200. The entries on the support are [1,−1, 1,−1, 1] with both positive and negative
entries. We present the coordinate plot and the recovery error in Figure 5.

9

Published as a conference paper at ICLR 2023

6 DISCUSSION

In this paper, we show that implicit regularization for group-structured sparsity can be obtained by
gradient descent (with weight normalization) for a certain, specially designed network architecture.
Overall, we hope that such analysis further enhances our understanding of neural network training.
Future work includes relaxing the assumptions on δ’s in Theorem 2, and rigorous analysis of modern
grouping architectures as well as power parametrizations.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under grants CCF-1934904,
CCF-1815101, and CCF-2005804.

REFERENCES

Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of deep networks: Implicit
acceleration by overparameterization. In International Conference on Machine Learning, pp.
244–253. PMLR, 2018.

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. arXiv preprint arXiv:1905.13655, 2019.

Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde. Model-based compressive
sensing. IEEE Transactions on information theory, 56(4):1982–2001, 2010.

Raphaël Berthier. Incremental learning in diagonal linear networks. arXiv preprint arXiv:2208.14673,
2022.

Iain Carmichael, Thomas Keefe, Naomi Giertych, and Jonathan P Williams. yaglm: a python package
for fitting and tuning generalized linear models that supports structured, adaptive and non-convex
penalties. arXiv preprint arXiv:2110.05567, 2021.

Hung-Hsu Chou, Johannes Maly, and Holger Rauhut. More is less: Inducing sparsity via overparam-
eterization. arXiv preprint arXiv:2112.11027, 2021.

Zhen Dai, Mina Karzand, and Nathan Srebro. Representation costs of linear neural networks:
Analysis and design. Advances in Neural Information Processing Systems, 34, 2021.

Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep homogeneous
models: Layers are automatically balanced. Advances in Neural Information Processing Systems,
31, 2018.

Yonina C Eldar and Helmut Bolcskei. Block-sparsity: Coherence and efficient recovery. In 2009
IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2885–2888. IEEE,
2009.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. arXiv preprint arXiv:1711.00501, 2017.

Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental
learning drives generalization. arXiv preprint arXiv:1909.12051, 2019.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in
terms of optimization geometry. In International Conference on Machine Learning, pp. 1832–1841.
PMLR, 2018a.

Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Implicit bias of gradient descent on
linear convolutional networks. arXiv preprint arXiv:1806.00468, 2018b.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent on
linear convolutional networks. Advances in Neural Information Processing Systems, 31, 2018c.

10

Published as a conference paper at ICLR 2023

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
gradient descent. In International Conference on Machine Learning, pp. 1225–1234. PMLR, 2016.

Meena Jagadeesan, Ilya Razenshteyn, and Suriya Gunasekar. Inductive bias of multi-channel linear
convolutional networks with bounded weight norm. arXiv preprint arXiv:2102.12238, 2021.

Hui Jin and Guido Montúfar. Implicit bias of gradient descent for mean squared error regression with
wide neural networks. arXiv preprint arXiv:2006.07356, 2020.

Li Jing, Jure Zbontar, et al. Implicit rank-minimizing autoencoder. Advances in Neural Information
Processing Systems, 33:14736–14746, 2020.

Tae Kwan Lee, Wissam J Baddar, Seong Tae Kim, and Yong Man Ro. Convolution with logarithmic
filter groups for efficient shallow cnn. In International Conference on Multimedia Modeling, pp.
117–129. Springer, 2018.

Jiangyuan Li, Thanh Nguyen, Chinmay Hegde, and Raymond K. W. Wong. Implicit sparse regu-
larization: The impact of depth and early stopping. Advances in Neural Information Processing
Systems, 34, 2021.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In Conference On Learning Theory,
pp. 2–47. PMLR, 2018.

Zhiyuan Li, Tianhao Wang, JasonD Lee, and Sanjeev Arora. Implicit bias of gradient descent on
reparametrized models: On equivalence to mirror descent. arXiv preprint arXiv:2207.04036, 2022.

Cesare Molinari, Mathurin Massias, Lorenzo Rosasco, and Silvia Villa. Iterative regularization
for convex regularizers. In International conference on artificial intelligence and statistics, pp.
1684–1692. PMLR, 2021.

Depen Morwani and Harish G Ramaswamy. Inductive bias of gradient descent for weight normalized
smooth homogeneous neural nets. In International Conference on Algorithmic Learning Theory,
pp. 827–880. PMLR, 2022.

Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan
Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In The 22nd
International Conference on Artificial Intelligence and Statistics, pp. 3420–3428. PMLR, 2019.

Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of
optimization and implicit regularization in deep learning. arXiv preprint arXiv:1705.03071, 2017.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In International Conference on Machine
Learning, pp. 7695–7705. PMLR, 2020.

Arda Sahiner, Tolga Ergen, John Pauly, and Mert Pilanci. Vector-output relu neural network problems
are copositive programs: Convex analysis of two layer networks and polynomial-time algorithms.
arXiv preprint arXiv:2012.13329, 2020.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Todd E Scheetz, Kwang-Youn A Kim, Ruth E Swiderski, Alisdair R Philp, Terry A Braun, Kevin L
Knudtson, Anne M Dorrance, Gerald F DiBona, Jian Huang, Thomas L Casavant, et al. Regulation
of gene expression in the mammalian eye and its relevance to eye disease. Proceedings of the
National Academy of Sciences, 103(39):14429–14434, 2006.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter Latham, and Yee Teh. Powerpropaga-
tion: A sparsity inducing weight reparameterisation. Advances in Neural Information Processing
Systems, 34, 2021.

Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit
bias of gradient descent on separable data. The Journal of Machine Learning Research, 19(1):
2822–2878, 2018.

11

Published as a conference paper at ICLR 2023

Mihailo Stojnic, Farzad Parvaresh, and Babak Hassibi. On the reconstruction of block-sparse
signals with an optimal number of measurements. IEEE Transactions on Signal Processing, 57(8):
3075–3085, 2009.

Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

Tomas Vaskevicius, Varun Kanade, and Patrick Rebeschini. Implicit regularization for optimal sparse
recovery. In Advances in Neural Information Processing Systems, pp. 2972–2983, 2019.

Xiang Wang, Chenwei Wu, Jason D Lee, Tengyu Ma, and Rong Ge. Beyond lazy training for
over-parameterized tensor decomposition. Advances in Neural Information Processing Systems,
33:21934–21944, 2020.

Francis Williams, Matthew Trager, Daniele Panozzo, Claudio Silva, Denis Zorin, and Joan Bruna.
Gradient dynamics of shallow univariate relu networks. Advances in neural information processing
systems, 32, 2019.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan,
Daniel Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In
Conference on Learning Theory, pp. 3635–3673. PMLR, 2020.

Xiaoxia Wu, Edgar Dobriban, Tongzheng Ren, Shanshan Wu, Zhiyuan Li, Suriya Gunasekar, Rachel
Ward, and Qiang Liu. Implicit regularization and convergence for weight normalization. Advances
in Neural Information Processing Systems, 33:2835–2847, 2020.

Xuan Wu, Zhijie Zhang, Wanchang Zhang, Yaning Yi, Chuanrong Zhang, and Qiang Xu. A
convolutional neural network based on grouping structure for scene classification. Remote Sensing,
13(13):2457, 2021.

Gangcai Xie, Chengliang Dong, Yinfei Kong, Jiang F Zhong, Mingyao Li, and Kai Wang. Group
lasso regularized deep learning for cancer prognosis from multi-omics and clinical features. Genes,
10(3):240, 2019.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1492–1500, 2017.

Yi Yang and Hui Zou. A fast unified algorithm for solving group-lasso penalize learning problems.
Statistics and Computing, 25:1129–1141, 2015.

Peng Zhao, Yun Yang, and Qiao-Chu He. Implicit regularization via hadamard product over-
parametrization in high-dimensional linear regression. arXiv preprint arXiv:1903.09367, 2019.

12

Published as a conference paper at ICLR 2023

A GEOMETRIC PROPERTIES OF THE PARAMETRIZATION

We start by calculating the vector field induced by the parameterization G(·).
∇Gi([u

>,v>]) = 2ug(i)vieg(i) + u2
g(i)eL+i,

where ei ∈ R
L+p is only 1 on ith entry and 0 elsewhere, and

∇2Gi([u
>,v>]) = 2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i),

where Ei,j ∈ R
(L+p)×(L+p) is the one-hot matrix for ith row and jth column. For i 6= j s.t.

g(i) = g(j),

∇2Gi([u
>,v>])∇Gj([u

>,v>]) = (2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i))

· (2ug(j)vjeg(j) + u2
g(j)eL+j)

= 4ug(j)vivjeg(i) + 4ug(i)ug(j)vjeL+i

= 4ug(i)vivjeg(i) + 4u2
g(i)vjeL+i,

similarly,

∇2Gj([u
>,v>])∇Gi([u

>,v>]) = 4ug(i)vivjeg(i) + 4u2
g(i)vieL+j .

Proof for Lemma 1. For two indices within the same group, i.e, i 6= j and g(i) = g(j), we obtain
that

[∇Gi,∇Gj]([u
>,v>]) =∇2Gj([u

>,v>])∇Gi([u
>,v>])−∇2Gi([u

>,v>])∇Gj([u
>,v>])

= 4u2
g(i)vjeL+i − 4u2

g(i)vieL+j ,

which is not always 0 when vi 6= vj . Therefore, G(·) is not commuting.

Proof for Theorem 1. For i 6= j and g(i) 6= g(j), we have

[∇Gi,∇Gj]([u
>,v>]) = 0.

For i 6= j and g(i) = g(j), we have that

[∇Gi,∇Gj]([u
>,v>]) = vj∇Gi − vi∇Gj ∈ span{∇Gi}pi=1.

By Corollary 4.13 in (Li et al., 2022) and Lemma 1, we show that there exists and initialization and a
time-dependent loss that the gradient flow can not be analyzed by mirror flow.

Alternatively, we can show directly that the necessary condition in Theorem 4.10 in Li et al. (2022) is
violated, i.e.,

〈∇Gj , [∇Gi, [∇Gi,∇Gj]]〉([u>,v>]) 6= 0

for some [u>,v>] in every open set M .

We first obtain that

∇[∇Gi,∇Gj]([u
>,v>]) = 8ug(i)vjEL+i,g(i) + 4u2

g(i)EL+i,L+j

− 8ug(i)viEL+j,g(i) − 4u2
g(i)EL+j,L+i.

Therefore,

[∇Gi, [∇Gi,∇Gj]]([u
>,v>]) = ∇[∇Gi,∇Gj]([u

>,v>])∇Gi([u
>,v>])

−∇2Gi([u
>,v>])[∇Gi,∇Gj]([u

>,v>])

= (8ug(i)vjEL+i,g(i) + 4u2
g(i)EL+i,L+j

− 8ug(i)viEL+j,g(i) − 4u2
g(i)EL+j,L+i)

· (2ug(i)vieg(i) + u2
g(i)eL+i)

− (2viEg(i),g(i) + 2ug(i)Eg(i),L+i + 2ug(i)EL+i,g(i))

· (4u2
g(i)vjeL+i − 4u2

g(i)vieL+j)

= 16u2
g(i)vivjeL+i − 16u2

g(i)v
2
i eL+j − 4u4

g(i)eL+j − 8u3
g(i)vjeg(i)

= 16u2
g(i)vivjeL+i − (16u2

g(i)v
2
i + 4u4

g(i))eL+j − 8u3
g(i)vjeg(i).

13

Published as a conference paper at ICLR 2023

Hence,

〈∇Gj , [∇Gi, [∇Gi,∇Gj]]〉([u>,v>])

=〈2ug(i)vjeg(i) + u2
g(i)eL+j , 16u

2
g(i)vivjeL+i − (16u2

g(i)v
2
i + 4u4

g(i))eL+j − 8u3
g(i)vjeg(i)〉

=− 16u4
g(i)v

2
j − 16u4

g(i)v
2
i − 4u6

g(i) < 0.

By Theorem 4.10 in Li et al. (2022), there exists an initialization such that no Legendre function R is
able to make the gradient flow be written as a mirror flow with respect to R.

B PROOF FOR ANALYSIS OF GRADIENT FLOW

Proof for Lemma 2. Recall

∂L
∂ul

= − 2

n
ulv

>
l X

>
l r(t),

∂L
∂vl

= − 1

n
u2
lX

>
l r(t).

Therefore, we obtain that

∂ ‖vl(t)‖2
∂t

= 2v>
l (t)

∂vl(t)

∂t
= 2v>

l (t)

(

− ∂L
∂vl

)

=
2

n
u2
l v

>
l (t)X

>
l r(t)

= ul

(

− ∂L
∂ul

)

=
∂ 1

2u
2
l (t)

∂t
.

Proof for Lemma 3. We start with decomposing vl(0)

vl(0) = η
1

n
X>

l y = ηw?
l + η

(

1

n
X>

l X− I

)

w?
l + η

∑

l′ 6=l

1

n
X>

l Xl′w
?
l′ + η

1

n
X>

l ξ

= ηw?
l + ηbl.

With this decomposition, we have that

〈vl(0),v
?
l 〉2 = η2((u?

l)
2 + 〈bl,v

?
l 〉)2

‖vl(0)‖22 = η2((u?
l)

4 + 2〈bl,w
?
l 〉+ ‖bl‖22).

Therefore,

〈vl(0),v
?
l 〉2

‖vl(0)‖22
=

η2((u?
l)

2 + 〈bl,v
?
l 〉)2

η2((u?
l)

4 + 2〈bl,w?
l 〉+ ‖bl‖22)

= 1− ‖bl‖22 − 〈bl,v
?
l 〉2

(u?
l)

4 + 2〈bl,w?
l 〉+ ‖bl‖22

= 1−
∥

∥bl/(u
?
l)

2
∥

∥

2

2
− 〈bl/(u

?
l)

2,v?
l 〉2

1 + 2〈bl/(u?
l)

2,v?
l 〉+ ‖bl/(u?

l)
2‖2

2

= 1− 1− 〈bl/ ‖bl‖ ,v?
l 〉2

1 + 2 ‖bl‖ /(u?
l)

2〈bl/ ‖bl‖ ,v?
l 〉+ ‖bl‖2 /(u?

l)
4

∥

∥bl/(u
?
l)

2
∥

∥

2

≥ 1−
∥

∥bl/(u
?
l)

2
∥

∥

2

2
,

where last inequality is from

1− α2

β2 + 2αβ + 1
=

1
β2+2αβ+1

1−α2

=
1

1 + β2+2αβ+α2

1−α2

=
1

1 + (α+β)2

1−α2

≤ 1,

14

Published as a conference paper at ICLR 2023

for 0 ≤ α ≤ 1.

Since

‖bl‖2 ≤ δin(u
?
l)

2 + Lδout(u
?
l)

2 +

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

2

,

we obtain that
〈

vl(0)

‖vl(0)‖
,v?

l

〉

≥ 1−
(

δin + Lδout +

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

2

/(u?
l)

2

)2

.

Lemma 4. Consider a simplified case where 1
nX

>
l Xl = I, 1

nX
>
l Xl′ = O, l 6= l′, if vl(0) =

η 1
nX

>
l y, then

vl(t) = c
1

n
X>

l y,

for some constant c.

Proof. From the gradient on the directions, we have that

∂vl(t)

∂t
=

1

n
u2
l (t)X

>
l r(t) =

1

n
u2
l (t)X

>
l y − 1

n
u2
l (t)X

>
l

∑

l′

Xl′u
2
l′(t)vl′(t)

=
1

n
u2
l (t)X

>
l y − u4

l (t)vl(t).

Since vl(0) is with the same direction as 1
nX

>
l y at the initialization. Therefore,

∂vl(t)
∂t has the same

direction as vl(t). We obtain that vl(t) = c 1
nX

>
l y for some constant c.

Lemma 5. If the gradient flow satisfies

1

2

∂u2(t)

∂t
≤ u6(t) +

√
2u4(t)B

for some constant B > 0, then for any t ≤ T =
log 1

θ

2θ2+θ
√
2B

we have u(t) ≤
√
θ with initialization

u(0) = θ.

Proof. We wanted to find some time T such that when t ≤ T , u(t) ≤
√
θ. Since the gradient is

bounded from above, we obtain that

1

2
u2(T) ≤ 1

2
θ2 · exp

(

∫ T

0

2u4(t) +
√
2u2(t)Bdt

)

≤ 1

2
θ2 · exp

(

(2θ2 +
√
2θB)T

)

≤ 1

2
θ.

This gives us

T ≤ log 1
θ

2θ2 + θ
√
2B

.

Lemma 6. Fix any τ < 1
2 . Consider the gradient flow

1

2

∂u2(t)

∂t
≥ (1− 2B)

√
2u3(t)(u?)2 − u6(t)−

√
2u3(t)B(u?)2

for some constant 0 < B < 1
10 with initialization u(0) = θ < 1

2u
?, we have that

∣

∣

∣

∣

1√
2
u3(t)− (u?)2

∣

∣

∣

∣

< (1− 3B − τ)(u?)2,

after

t ≥ T =
21/3(u?)4/3

θ2
1

(1− 6B)
√
2(u?)2θ

+
2 log2

1
2τ

3(u?)2(1/2− 3B)
(√

2(1/2− 3B)(u?)2
)1/3

.

15

Published as a conference paper at ICLR 2023

Proof. For any T ≥ 0, we have that

1

2
u2(T) ≥ 1

2
θ2 · exp

(

∫ T

0

(1− 2B)2
√
2u(t)(u?)2 − 2u4(t)− 2

√
2u(t)B(u?)2dt

)

.

When u(t) < 1
2u

?, we first aim to get T1 such that 1√
2
u3(T1) ≥ 1

2 (u
?)2. Therefore,

1

2
θ2 · exp

(

∫ T

0

(1− 2B)2
√
2u(t)(u?)2 − 2u4(t)− 2

√
2u(t)B(u?)2dt

)

≥ 1

2
θ2 · exp

((

(1− 2B)2
√
2(u?)2 −

√
2(u?)2 − 2

√
2B(u?)2

)

θT1

)

≥ 1

2

(√
2

2
(u?)2

)2/3

.

We obtain that

T ≥ 21/3(u?)4/3

θ2
1

(1− 6B)
√
2(u?)2θ

.

When t ≥ T1, we have that 1√
2
u3(t) ≥ 1

2 (u
?)2. Let us denote 1√

2
u3(0) = ((1− 3B)− η)(u?)2, we

wonder how many iterations Td are needed to make 1√
2
u3(Td) ≥

(

(1− 3B)− 1
2η
)

(u?)2.

1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3

· exp
(

∫ T

0

(1− 2B)2
√
2u(t)(u?)2 − 2u4(t)− 2

√
2u(t)B(u?)2dt

)

≥ 1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3

· exp
((

1

2
η(u?)2

)

(√
2 ((1− 3B)− η) (u?)2

)1/3

T2

)

≥ 1

2

(√
2 ((1− 3B)− η) (u?)2

)2/3

·
(

1 +

(

1

2
η(u?)2

)

(√
2 ((1− 3B)− η) (u?)2

)1/3

T2

)

≥ 1

2

(√
2

(

(1− 3B)− 1

2
η

)

(u?)2
)2/3

.

Therefore,

T2 ≥
(

(1− 3B)− 1
2η
)2/3 − ((1− 3B)− η)

2/3

((1− 3B)− η)
2/3

1

1
2η(u

?)2
(√

2 ((1− 3B)− η) (u?)2
)1/3

≥ 2

3

1
2η

1
2η(u

?)2 ((1− 3B)− η)
(√

2 ((1− 3B)− η) (u?)2
)1/3

≥ 2

3(u?)2(1/2− 3B)
(√

2(1/2− 3B)(u?)2
)1/3

.

Overall, we obtain that
∣

∣

∣

∣

1√
2
u3(t)− (u?)2

∣

∣

∣

∣

< (1− 3B − ε)(u?)2,

after

t ≥ T = T1 + T2 log2
1

2τ
.

Proof of Theorem 2. Denote ζ = 100
∥

∥

1
nX

>ξ
∥

∥

∞. For l ∈ S, the gradient flow can be simplied as

1

2

∂u2
l (t)

∂t
=

2

n
w>

l (t)X
>
l r(t)

= 2w>
l (t)(w

?
l −wl(t)) +

2

n
w>

l X
>
l ξ

≥ 2u2
l (t)(u

?
l)

2〈vl(t),v
?
l 〉 − 2u4

l (t) ‖vl(t)‖22 − 2u2
l (t) ‖vl(t)‖2

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

2

.

16

Published as a conference paper at ICLR 2023

Since the initialization is balanced 1
2u

2
l (0) = ‖vl(0)‖22, we know that from the balancing result

Lemma 2,
1

2
u2
l (t) = ‖vl(t)‖22 .

Since the initialization of vl(t) is aligned with direction 1
nX

>
l y, and with our assumption on

orthogonal design, by Lemma 3 and Lemma 4, if
∥

∥

1
nX

>
l ξ
∥

∥

2
≤ B(u?

l)
2, we can further simplify the

gradient flow as

1

2

∂u2
l (t)

∂t
≥

√
2(1− 2B2)u3

l (t)(u
?
l)

2 − u6
l (t)−

√
2u3

l (t)B

≥
√
2(1− 2B)u3

l (t)(u
?
l)

2 − u6
l (t)−

√
2u3

l (t)B,

where the last inequality holds when B < 1. We will verify that B < 1 holds in the following
analysis.

If ζ ≥ (u?
max)

2, then our desired inequality is achieved at the initialization.

If (u?
min)

2 ≤ ζ ≤ (u?
max)

2, for these group that ζ ≤ (u?
l)

2, applying Lemma 6 with

B =

∥

∥

1
nX

>
l ξ
∥

∥

2

(u?
l)

2
≤
∥

∥

1
nX

>ξ
∥

∥

∞
(u?

l)
2

≤ 1

100
, τ =

ε

(u?
l)

2

we obtain the convergence on magnitudes

| ‖wl(t)‖2 − ‖w?
l ‖2 | ≤ (3B + ε) ‖w?

l ‖2 ,
after

21/3(u?
l)

4/3

θ2
1

(1− 6B)
√
2(u?

l)
2θ

+
2 log2

(ul)
2

2ε

3(u?
l)

2(1/2− 3B)
(√

2(1/2− 3B)(u?
l)

2
)1/3

.

If ζ ≤ (u?
min)

2, similarly applying Lemma 6, the number of iterations needed for entries on the
support to converge is

Tl =
21/3(u?

max)
4/3

θ2
1

(1− 6B)
√
2(u?

min)
2θ

+
2 log2

(umax)
2

2ε

3(u?
min)

2(1/2− 3B)
(√

2(1/2− 3B)(u?
min)

2
)1/3

.

We now have that for l ∈ S,

| ‖wl(t)‖2 − ‖w?
l ‖2 | ≤ (3B + ε) ‖w?

l ‖2 ,

where B =
‖ 1

n
X>y‖

∞

(u?

min
)2 ≤ 1

100 , ∀l ∈ S.

Recall that the direction is lower bounded by Lemma 3 and Lemma 8,
〈

wl(t)

‖wl(t)‖2
,

w?
l

‖w?
l ‖2

〉

≥ 1−B2.

Therefore, the error bound on the support is as follows,

‖wl(t)−w?
l ‖∞ ≤ ‖wl(t)−w?

l ‖2 =

∥

∥

∥

∥

(

‖wl(t)‖2 − (u?
l)

2
) vl(t)

‖vl(t)‖
+ (u?

l)
2

〈

vl(t)

‖vl(t)‖
,v?

l

〉∥

∥

∥

∥

2

≤ (3B + τ)(u?
l)

2 + (u?
l)

2

√

2− 2

〈

vl(t)

‖vl(t)‖
,v?

l

〉

= (3B + τ)(u?
l)

2 + (u?
l)

2
√
2B ≤

∥

∥

∥

∥

1

n
X>y

∥

∥

∥

∥

∞
+ ε.

For l /∈ S, we derive a lower bound on the growth rate

1

2

∂u2
l (t)

∂t
=

2

n
w>

l (t)X
>
l r(t)

= 2 ‖wl(t)‖22 +
2

n
w>

l X
>
l ξ

≤ u6
l (t) +

√
2u4

l (t)B.

17

Published as a conference paper at ICLR 2023

By applying Lemma 5 with B =
∥

∥

1
nX

>y
∥

∥

∞, we obtain that before

Tu =
log 1

θ

2θ2 + θ
√
2B

.

Since θ < ε
2(umax)2

, Tl < Tu is ensured.

C ANALYSIS OF GRADIENT DESCENT

C.1 MONOTONIC UPDATES

Lemma 7. With an initialization u(0) < u? and step size γ ≤ 1
4(u?)2 , the updating sequence

u(t) = u(t− 1) + 2γu(t− 1)[(u?)2 − u2(t− 1)],

is always bounded above by u?.

Proof. We prove it by contradiction. Assume there is a time t s.t.

u(t) ≤ u?, u(t+ 1) > u?.

Therefore,

u(t) + 2γu(t)[(u?)2 − u2(t)] > u?.

Denote λ = u(t)/u?, we have that

1 + 2γ(u?)2(1− λ2)− 1/λ > 0

for some λ ∈ (0, 1].

Let f(λ) = 1 + 2γ(u?)2(1− λ2)− 1/λ, we obtain the derivative

f ′(λ) = −4γ(u?)2λ+
1

λ2
> 0.

However, fmax(λ) = f(1) = 0, and f(λ) ≤ 0 for all λ ∈ (0, 1], which gives our desired contradic-
tion.

C.2 UPDATES WITH BOUNDED PERTURBATIONS

To study the general non-orthogonal and noisy case, we first extend the lemmas above to gradient
dynamics with bounded perturbations.

Consider the update on v(t) with bounded perturbations

z(t+ 1) = v(t) + ηtu
2(t)((u?)2v? − u2(t)v(t)) + ηtu

2(t)bt

v(t+ 1) =
z(t+ 1)

‖z(t+ 1)‖ .
(4)

and the updates on u(t)

u(t+ 1) = u(t) + 2γu(t)v>(t+ 1){(u?)2v? − u2(t)v(t+ 1)}+ 2γu(t)et, (5)

Note that if we choose ηt =
1

u4(t) , Eq. (4) is recast as

z(t+ 1) =
(u?)2

u2(t)
v? +

1

u2(t)
bt

v(t+ 1) =
z(t+ 1)

‖z(t+ 1)‖ .
(6)

18

Published as a conference paper at ICLR 2023

Lemma 8. Consider the update in Eq. (6), if ‖bt‖ ≤ B(u?)2 for some constant 0 < B < 1, we
have that

〈v(t+ 1),v?〉 ≥ 1−B2.

Proof. We have that

〈z(t+ 1),v?〉 = (u?)2

u2(t)
+

1

u2
l (t)

〈bt,v
?〉

‖z(t+ 1)‖2 =
(u?)4

u4(t)
+ 2

(u?)2

u4(t)
〈bt,v

?〉+ 1

u4
l (t)

‖bt‖2 ,

therefore,

〈z(t+ 1),v?〉2
‖z(t+ 1)‖2

=

(u?)4

u4(t) + 2 (u?)2

u4(t) 〈bt,v
?〉+ 1

u4
l
(t)

〈bt,v
?〉2

(u?)4

u4(t) + 2 (u?)2

u4(t) 〈bt,v?〉+ 1
u4
l
(t)

‖bt‖2

= 1− ‖bt‖2 − 〈bt,v
?〉2

(u?)4 + 2(u?)2〈bt,v?〉+ ‖bt‖2

= 1−
∥

∥bt/(u
?)2
∥

∥

2 − 〈bt/(u
?)2,v?〉2

1 + 2〈bt/(u?)2,v?〉+ ‖bt/(u?)2‖2

= 1− 1− 〈bt/ ‖bt‖ ,v?〉2
1 + 2 ‖bt‖ /(u?)2〈bt/ ‖bt‖ ,v?〉+ ‖bt‖2 /(u?)4

∥

∥bt/(u
?)2
∥

∥

2

≥ 1−
∥

∥bt/(u
?)2
∥

∥

2

≥ 1−B2.

Hence, we have that

〈v(t+ 1),v?〉 ≥
√

1−B2 ≥ 1−B2.

Lemma 9. Consider the updates in Eq. (5) with |et| ≤ B, if u2(0) ≤ (u?)2, then u2(t) ≤ (u?)2+B
for all t. If u2(0) ≥ (u?)2 and |〈v(t),bt〉| ≤ B2τ(u

?)2, then u2(t) ≥ (1−B2)(u
?)2 −B for all t.

Proof. Proof by contradiction similarly to Lemma 7.

Lemma 10. Fix the step size γ for the update on u(t), and choose u(0) = α ≤ 1
5u

?. Consider

the updates in Eq. (5) and Eq. (4) with |〈v(t),bt〉| ≤ 1
20 (u

?)2 and |et| ≤ 1
20 (u

?)2, then T ≥
log

(u?)2

2α2

2 log(1+γ 1
2 (u

?)2)
, we have that u2(T) ≥ 1

2 (u
?)2.

Proof. Apply Lemma 8 with B = 1
20 ,

〈v(t+ 1),v?〉 ≥ 1−B2 = 1− 1

400
≥ 4

5

Starting from t = 1, we have that

v>(t){(u?)2v? − u2(t)v(t)} ≥ 4

5
(u?)2 − u2(t),

therefore, we obtain an lower bound of the growth rate on u(t), which reads

u(t+ 1) ≥ u(t) + 2γu(t)

(

4

5
(u?)2 − u2(t)− 1

20
(u?)2

)

= u(t)

(

1 + 2γ

(

3

4
(u?)2 − u2(t)

))

≥ u(t)

(

1 + γ
1

2
(u?)2

)

.

19

Published as a conference paper at ICLR 2023

Therefore, the requirement on the number of iterations is recast as

α2

(

1 + γ
1

2
(u?)2

)2T

≥ 1

2
(u?)2

⇐⇒2T ≥ log (u?)2

2α2

log(1 + γ 1
2 (u

?)2)

⇐⇒T ≥ log (u?)2

2α2

2 log(1 + γ 1
2 (u

?)2)
.

With these requirements, by Lemma 9, we also have that u2(t) ≤ 3
2 (u

?)2, ∀t ≥ 0.

Lemma 11. Fix the step size γ for the update on u(t), and choose the initialization u(0) such that
|(u?)2 − u2(0)| ≤ τ(u?)2 where 0 < τ ≤ 1/2. Consider the updates in Eq. (5) and Eq. (4) with
|〈v(t),bt〉| ≤ 1

10τ(u
?)2 and |et| ≤ 1

10τ(u
?)2, then after T ≥ 5

2γ(u?)2 , we have that 〈v(t),v?〉 ≥
1− 1

5τ
2 for all t ≤ T and |u2(T)− (u?)2| ≤ 1

2τ(u
?)2.

Proof. When u2(0) ≤ (u?)2, by applying to Lemma 8, we have that

〈v(t+ 1),v?〉 ≥ 1−
(

1

10
τ

)2

≥ 1− 1

5
τ2,

therefore,

u(t+ 1) ≥ u(t) + 2γu(t)

((

1− 1

5
τ

)

(u?)2 − u2(t)− 1

10
τ(u?)2

)

= u(t)

(

1 + 2γ

((

1− 3

10
τ

)

(u?)2 − u2(t)

))

.

Further, we want to find an lower bound requirement on T s.t.

(

(u?)2 − τ(u?)2
)

(

1 + 2γ

((

1− 3

10
τ

)

(u?)2 −
(

(u?)2 − 1

2
τ

)

(u?)2
))2T

≥ (u?)2 − 1

2
τ(u?)2,

which can be relaxed as

(

(u?)2 − τ(u?)2
)

(

1 +
2

5
γTτ(u?)2

)

≥ (u?)2 − 1

2
τ(u?)2

⇐⇒1 +
2

5
γTτ(u?)2 ≥ (u?)2 − 1

2τ(u
?)2

(u?)2 − τ(u?)2

⇐⇒2

5
γTτ(u?)2 ≥

1
2τ(u

?)2

((u?)2 − τ(u?)2)

⇐⇒T ≥ 5

4γ(u?)2(1− τ)

=⇒T ≥ 5

2γ(u?)2
.

20

Published as a conference paper at ICLR 2023

When u2(0) > (u?)2, we have that

u(t+ 1) ≤ u(t) + 2γu(t)

(

(u?)2 − u2(t) +
1

10
τ(u?)2

)

= u(t)

(

1 + 2γ

((

1 +
1

10
τ

)

(u?)2 − u2(t)

))

.

≤ u(t)

(

1− 4

5
γτ(u?)2

)

.

Similarly, we want to get

(u?)2 +
1

2
τ(u?)2 ≥

(

(u?)2 + τ(u?)2
)

(

1− 4

5
γTτ(u?)2

)

⇐⇒ (u?)2 + 1
2τ(u

?)2

(u?)2 + τ(u?)2
≥ 1− 4

5
γTτ(u?)2

⇐⇒4

5
γTτ(u?)2 ≥

1
2τ(u

?)2

(u?)2 + τ(u?)2

⇐⇒T ≥ 5

8γ(u?)2(1 + τ)

=⇒T ≥ 5

8γ(u?)2
.

If u(0) <= u? and u(t) > u?, t < T , or u(0) > u? and u(t) ≤ u?, t < T , we have already have
|u2(t)− u?)2| ≤ 1

2τ(u
?)2. By Lemma 9, |u2(T)− u?)2| ≤ 1

2τ(u
?)2 remains to hold.

Hence, after T ≥ 5
2γ(u?)2 , we have |u2(T)− u?)2| ≤ 1

2τ(u
?)2.

C.3 ANALYSIS OF PERTURBATIONS

We decompose the updates into several terms for later investigation.

The gradient of L(·) on each vl is

∂L
∂vl

= − 1

n
u2
lX

>
l



y −
∑

l′ 6=l

u2
l′Xl′vl′



+
1

n
u4
lX

>
l Xlvl

= − 1

n
u2
lX

>
l

(

y −
L
∑

l′=1

u2
l′Xl′vl′

)

When l ∈ S, the gradient update on each vl is

zl(t+ 1) = vl(t) + ηl,tu
2
l (t)

1

n
X>

l

(

y −
L
∑

l′=1

u2
l′(t)Xl′vl′(t)

)

= vl(t) + ηl,tu
2
l (t)((u

?
l)

2v?
l − u2

l (t)vl(t))

+ ηl,tu
2
l (t)

(

1

n
X>

l Xl − I

)

((u?
l)

2v?
l − u2

l (t)vl(t))

+ ηl,tu
2
l (t)

∑

l′ 6=l,l′∈S

1

n
X>

l Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t))

− ηl,tu
2
l (t)

∑

l′∈Sc

1

n
X>

l Xl′u
2
l′(t)vl′(t)

+ ηl,tu
2
l (t)

1

n
X>

l ξ.

21

Published as a conference paper at ICLR 2023

The gradient of L(·) on each ul is

∂L
∂ul

= − 2

n
ul

〈

Xlvl,y −
∑

l′ 6=l

u2
l′Xl′vl′

〉

+
2

n
u3
l ‖Xlvl‖2

= − 2

n
ul

〈

Xlvl,y −
L
∑

l′=1

u2
l′Xl′vl′

〉

When l ∈ S, the gradient update on ul reads

ul(t+ 1) = ul(t) + γ
2

n
ul(t)

〈

Xlvl(t+ 1),y −
L
∑

l′=1

u2
l′(t)Xl′vl′(t+ 1)

〉

= ul(t) + 2γul(t)v
>
l (t+ 1)((u?

l)
2v?

l − u2
l (t)vl(t+ 1))

+ 2γul(t)v
>
l (t+ 1)

(

1

n
X>

l Xl − I

)

((u?
l)

2v?
l − u2

l (t)vl(t+ 1))

+ 2γul(t)v
>
l (t+ 1)

1

n
X>

l

∑

l′ 6=l,l′∈S

Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t+ 1))

− 2γul(t)v
>
l (t+ 1)

1

n
X>

l

∑

l′∈Sc

Xl′u
2
l′(t)vl′(t+ 1)

+ 2γul(t)
1

n
v>
l (t+ 1)X>

l ξ.

We now rewrite the definition of bounded perturbation in Eq. (4, 5), where the bounded perturbation
el,t on updates of ul(t) reads

el,t = v>
l (t+ 1)

(

1

n
X>

l Xl − I

)

((u?
l)

2v?
l − u2

l (t)vl(t+ 1))

+ v>
l (t+ 1)

1

n
X>

l

∑

l′ 6=l,l′∈S

Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t+ 1))

− v>
l (t+ 1)

1

n
X>

l

∑

l′∈Sc

Xl′u
2
l′(t)vl′(t+ 1)

+
1

n
v>
l (t+ 1)X>

l ξ,

and the bounded perturbation bl,t on updates of vl(t) reads

bl,t =

(

1

n
X>

l Xl − I

)

((u?
l)

2v?
l − u2

l (t)vl(t))

+
∑

l′ 6=l,l′∈S

1

n
X>

l Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t))

−
∑

l′∈Sc

1

n
X>

l Xl′u
2
l′(t)vl′(t)

+
1

n
X>

l ξ.

We show in Lemma 11 that when the perturbations are bounded, the direction is roughly accurate
(〈vl(t),v

?〉 is large) and ul(t) converges exponentially. Now we show below that when the direction
is roughly accurate and ul(t) is close to u?

l , the perturbations are bounded.

22

Published as a conference paper at ICLR 2023

Lemma 12. Assume δin ≤ (u?

min
)2

120(u?
max

)2 and δout ≤ (u?

min
)2

120s(u?
max

)2 , α < 1
2

√

τ0
L u?

l ,
∥

∥

1
nX

>ξ
∥

∥

∞ ≤
1
80τ0(u

?
l)

2 and |(u?
l)

2−u2
l (0)| ≤ τ(u?

l)
2 for each l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2. If 〈vl(t),v

?
l 〉 ≥

1− 1
5τ

2, then |〈vl(t),bl,t〉| ≤ 1
10τ(u

?
l)

2 and |el,t| ≤ 1
10τ(u

?
l)

2.

Proof. We first verify
∥

∥(u?
l)

2v?
l − u2

l (t)vl(t)
∥

∥ =
∥

∥{(u?
l)

2 − u2
l (t)}v?

l − u2
l (t){vl(t)− v?

l }
∥

∥

≤ |(u?
l)

2 − u2
l (t)|+ u2

l (t) ‖vl(t)− v?
l ‖

≤ τ(u?
l)

2 + u2
l (t)

√

2− 2〈vl(t),v?
l 〉

≤ τ(u?
l)

2 +
3

2
(u?

l)
2

√
2√
5
τ (7)

≤ 3τ(u?
l)

2.

By Assumption 1, we have that
∣

∣

∣

∣

∣

∣

v>
l (t)

(

1

n
X>

l Xl − I

)

((u?
l)

2v?
l − u2

l (t)vl(t)) + v>
l (t)

∑

l′ 6=l,l′∈S

1

n
X>

l Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t))

∣

∣

∣

∣

∣

∣

≤ 3δinτ(u
?
max)

2 + 3sδoutτ(u
?
max)

2 ≤ 1

40
τ(u?

l)
2 +

1

40
τ(u?

l)
2 =

1

20
τ(u?

l)
2.

For the other two terms, we have that
∣

∣

∣

∣

∣

v>
l (t)

∑

l′∈Sc

1

n
X>

l Xl′u
2
l′(t)vl′(t)

∣

∣

∣

∣

∣

≤ δ(L− s)α2 ≤ 1

80
τ(u?

l)
2,

and
∣

∣

∣

∣

v>
l (t)

1

n
X>

l ξ

∣

∣

∣

∣

≤
∥

∥v>
l (t)

∥

∥

1

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

∞

≤
∥

∥v>
l (t)

∥

∥

2

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

∞

≤ 1

80
τ(u?

l)
2.

Therefore,

|el,t| = |〈vl(t),bl,t〉| ≤
1

20
τ(u?

l)
2 +

1

80
τ(u?

l)
2 +

1

80
τ(u?

l)
2 ≤ 1

10
τ(u?

l)
2.

Lemma 11 shows that when the upper bound of perturbation is fixed, ul(t) grows. Now we show that
after ul(t) grows, the upper bound of perturbations will be decreased.

Lemma 13. Assume δin ≤ (u?

min
)2

120(u?
max

)2 and δout ≤ (u?

min
)2

120s(u?
max

)2 , α <
√
τ0

2
√
L
u?
l ,
∥

∥

1
nX

>ξ
∥

∥

∞ ≤
1
80τ0(u

?
l)

2 and 〈vl(t),v
?
l 〉 ≥ 1 − 1

5τ
2. If we achieve that |(u?

l)
2 − u2

l (0)| ≤ 1
2τ(u

?
l)

2 for each

l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2, then |〈vl(t),bl,t〉| ≤ 1
20τ(u

?
l)

2 and |el,t| ≤ 1
20τ(u

?
l)

2.

Proof. Similarly to the proof of Lemma 11,

∥

∥(u?
l)

2v?
l − u2

l (t)vl(t)
∥

∥ ≤ 1

2
τ(u?

l)
2 + u2

l (t)
√

2− 2〈vl(t),v?
l 〉

≤ 1

2
τ(u?

l)
2 +

3

2
(u?

l)
2 1√

5
τ

≤ 3

2
τ(u?

l)
2.

23

Published as a conference paper at ICLR 2023

By Assumption 1, we have that
∣

∣

∣

∣

∣

∣

v>
l (t)

(

1

n
X>

l Xl − I

)

((u?
l)

2v?
l − u2

l (t)vl(t)) + v>
l (t)

∑

l′ 6=l,l′∈S

1

n
X>

l Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t))

∣

∣

∣

∣

∣

∣

≤ 3

2
δinτ(u

?
max)

2 +
3

2
sδoutτ(u

?
max)

2 ≤ 1

40
τ(u?

l)
2,

where δ ≤ 1
60s . Similarly, we obtain that

|el,t| = |〈vl(t),bl,t〉| ≤
1

40
τ(u?

l)
2 +

1

80
τ(u?

l)
2 +

1

80
τ(u?

l)
2 ≤ 1

20
τ(u?

l)
2.

By Lemma 10, we know that after certain iterations, we have that |u2(t)− (u?)2| ≤ 1
2 (u

?)2. Starting
from there, we will apply Lemma 11 and Lemma 12 iteratively until we have our desired accuracy.

We just need to verify when τ = 1
2 , the condition of either Lemma 11 and Lemma 12 is satisfied.

Note that the condition of Lemma 10 already satisfies the condition of Lemma 11 at τ = 1
2 . Note the

condition of Lemma 10 is satisfied when δin ≤ (u?

min
)2

120(u?
max

)2 and δout ≤ (u?

min
)2

120s(u?
max

)2 , α ≤ 1
4 (u

?
min)

2,
∥

∥

1
nX

>ξ
∥

∥

∞ ≤ 1
80τ0(u

?
min)

2.

C.4 ERROR ANALYSIS OUTSIDE THE SUPPORT

We only care about the growth rate of ul(t) when l /∈ S. When l ∈ Sc, the gradient updates on ul

reads

ul(t+ 1) = ul(t) + γ
2

n
ul(t)

〈

Xlvl(t),y −
L
∑

l′=1

u2
l′(t)Xl′vl′(t)

〉

= ul(t)− 2γu3
l (t)

− 2γu3
l (t)v

>
l (t)

(

1

n
X>

l Xl − I

)

vl(t)

+ 2γul(t)v
>
l (t)

1

n
X>

l

∑

l′∈S

Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t))

− 2γul(t)v
>
l (t)

1

n
X>

l

∑

l′ 6=l,l′∈Sc

Xl′u
2
l′(t)vl′(t)

+ 2γul(t)
1

n
vl(t)X

>
l ξ.

Consider the initialization is ul(0) = α, we wonder the smallest number t of iterations that we can
ensure ul(t) ≤

√
α. Denote

el,t = −u2
l (t)− u2

l (t)v
>
l (t)

(

1

n
X>

l Xl − I

)

vl(t)

+ v>
l (t)

1

n
X>

l

∑

l′∈S

Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t))

− v>
l (t)

1

n
X>

l

∑

l′ 6=l,l′∈Sc

Xl′u
2
l′(t)vl′(t)

+
1

n
v>
l (t)X

>
l ξ.

We have that

|el,t| ≤ α+ αδin + αδout(L− s) +
3

2
(u?

max)
2δouts+

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

∞
.

24

Published as a conference paper at ICLR 2023

If α ≤ 1
80L (u

?
min)

2, δin ≤ (u?

min
)2

120(u?
max

)2 and δout ≤ (u?

min
)2

120s(u?
max

)2 , we have that

|el,t| ≤
1

20
(u?

min)
2 +

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

∞
. (8)

Lemma 14. Consider

u(t+ 1) = u(t)(1 + 2γet)

where |et| ≤ B and u(0) = α. Let the step size γ ≤ 1
4B , then for any t ≤ T = 1

32γB log 1
α4 , we

have u(t) ≤
√

u(0).

Proof. We start by observing,
√
α ≥ u(t) ≥ α(1 + 2γB)t

⇐⇒t ≤
log 1√

α

log(1 + 2γB)
.

By using log x ≤ x− 1,

log 1√
α

log(1 + 2γB)
≥ 1

2γB
log

1√
α

≥ 1

32γB
log

1

α4
.

D PROOF FOR THEOREMS IN SECTION 4

D.1 PROOF OF THEOREM 3

Proof. If ζ ≥ (u?
max)

2, at the initialization, we already have for ∀l ∈ [L]
∥

∥u2
l (0)vl(0)− (u?

l)
2v?

l

∥

∥

∞ ≤ u2
l (0) + (u?

l)
2 ≤ α2 + (u?

max)
2

≤ 2(u?
max)

2 ≤ 2ζ

≤ 160

∥

∥

∥

∥

1

n
X>ξ

∥

∥

∥

∥

∞
∨ 160ε.

If ζ ≤ (u?
max)

2, for those l ∈ S such that ζ ≤ (u?
l)

2, we can apply Lemma 10. After

T1 =
log

(u?

l
)2

2α2

2 log(1 + γ 1
2 (u

?
l)

2)
,

we obtain that 1
2 (u

?
l)

2 ≤ u2
l (T1) ≤ 3

2 (u
?
l)

2, where we also have that
∥

∥

1
nX

>ξ
∥

∥

∞ ≤ 1
80 (u

?
l)

2 for
every l.

Let m0 be the number s.t.

2−m0−1(u?
max)

2 ≤ ζ ≤ 2−m0(u?
max)

2,

which can be written as m0 = blog2 (u?

max
)2

ζ c. We can apply Lemma 11 and Lemma 12 together m0

times. Then further after

T2 = blog2
(u?

max)
2

ζ
c 5

2γ(u?
l)

2
,

we have that

|u2
l (T2)− (u?

l)
2| ≤ 2−m0(u?

max)
2 ≤ 2ζ

〈vl(T2),v
?
l 〉 ≥ 1− 1

5
2−2m0 .

25

Published as a conference paper at ICLR 2023

Therefore,
∥

∥u2
l (T2)vl(T2)− (u?

l)
2v?

l

∥

∥

∞ ≤
∥

∥u2
l (T2)vl(T2)− (u?

l)
2v?

l

∥

∥

2

≤
∥

∥(u2
l (T2)− (u?

l)
2)vl(T2)− (u?

l)
2(v?

l − vl(T2))
∥

∥

2

≤ 2−m0(u?
max)

2 + (u?
l)

2
√

2− 2〈vl(T2),v?
l 〉

≤ 2−m0(u?
max)

2 + (u?
l)

2 2

5
2−m0

≤ 2ζ.

(9)

Note that the above inequality holds for every l ∈ S such that (u?
l)

2 ≥ ζ. For those l such that
ζ ≥ (u?

l)
2, we are not able to recover the true signal (u?

l)
2. the gradient dynamics on this group

behaves as errors outside group, and bounded by Lemma 14.

For entries outside the support, we know that from Eq. (8),

B =
1

20
(u?

min)
2 +

∥

∥

∥

∥

1

n
X>

l ξ

∥

∥

∥

∥

∞
≤ 1

10
(ζ ∨ (u?

min)
2).

By Lemma 14, we have that before T3 ≤ 1
32γB log 1

α4 , ul(T3) ≤
√
α.

When ζ ≤ (u?
min)

2, Eq. (9) holds for every l ∈ S. Therefore, a uniform number of iterations T1 and
T2 for all groups is written as

T1 =
log

(u?

max
)2

2α2

2 log(1 + γ 1
2 (ζ ∨ (u?

min)
2))

,

and

T2 = blog2
(u?

max)
2

ζ
c 5

2γ(ζ ∨ (u?
min)

2)
.

All we left is to show that T3 ≥ T1 + T2. We observe that

T1 =
log

(u?

max
)2

2α2

2 log(1 + γ 1
2 (ζ ∨ (u?

min)
2))

≤ 1 + γ 1
2 (ζ ∨ (u?

min)
2))

γ(ζ ∨ (u?
min)

2))
log

(u?
max)

2

2α2

≤ 2

γ(ζ ∨ (u?
min)

2)
log

(u?
max)

2

2α2

where the first inequality is by log x ≥ x−1
x .

With our choice of small initialization on α, we have T1 ≤ 1
2T3, due to α < 1

(u?
max

)8 . We have

T2 ≤ 1
2T3, because of α < ζ4

(umax)8
.

Hence, we obtain that after Tl = T1 + T2 ≥ log
(u?

max
)2

2α2

2 log(1+γ 1
2 (ζ∨(u?

min
)2))

+ blog2 (u?

max
)2

ζ c 5
2γ(ζ∨(u?

min
)2) ,

and before Tu = T3 ≤ 5
16γ(ζ∨(u?

min
)2) log

1
α4 ,

∥

∥u2
l (t)vl(t)− (u?

l)
2v?

l

∥

∥

∞ .

{
∥

∥

1
nX

>ξ
∥

∥

∞ ∨ ε, if l ∈ S.

α, if l /∈ S.

D.2 PROOF FOR COROLLARY 1

Here is a standard result for sub-Gaussian noise.

Lemma 15. Let 1√
n
X be a n × p matrix with `2-normalized columns. Let ξ ∈ R

n be a vector of

independent σ2-sub-Gaussian random variables. Then, with probability at least 1− 1
8p3

∥

∥

∥

∥

1

n
X>ξ

∥

∥

∥

∥

∞
.

√

σ2 log p

n
.

26

Published as a conference paper at ICLR 2023

Proof of Lemma 15. Since the vector ξ are made of independent σ2-sub-Gaussian random variables
and any column of X is `2-normalized, the random variable 1√

n
(X>ξ)i is still σ2-sub-Gaussian.

It is a standard result that for any ε > 0,

P

(∥

∥

∥

∥

1√
n
X>ξ

∥

∥

∥

∥

∞
> ε

)

≤ 2p exp

(

− ε2

2σ2

)

.

Setting ε = 2
√

2σ2 log(2p), with probability at least 1− 1
8p3 we have

∥

∥

∥

∥

1

n
X>ξ

∥

∥

∥

∥

∞
≤ 1√

n
2
√

σ2 log(2p) .

√

σ2 log p

n
.

Proof of Corollary 1. Since ξ is made of independent σ2-sub-Gaussian entries, by Lemma 15 with
probability 1− 1/(8p3) we have

∥

∥

∥

∥

1

n
X>ξ

∥

∥

∥

∥

∞
≤ 2

√

2σ2 log(2p)

n
.

Hence, letting ε = 2
√

2σ2 log(2p)
n , we obtain that

∥

∥(Du(t))2 � v(t)−w?
∥

∥

2

2
.
∑

l∈S

ε2 +
∑

l/∈S

α ≤ sε2 + (L− s)
ε2

L2
.

sσ2 log p

n
.

D.3 CONVERGENCE FOR ALGORITHM 2

Lemma 16. Consider the update in Eq. (4), choose the step size ηt = η ≤ 4
9(u?)4 , if 〈v(t),v?〉 ≥

1− 1
5τ , |u2(t)− (u?)2| ≤ τ(u?)2 and ‖bt‖ ≤ 1

10τ(u
?)2 for some constant 0 < τ < 1

2 , we have that

〈v(t+ 1),v?〉 ≥ 1− 1

5
τ.

Proof. We first rewrite z(t+ 1) as

z(t+ 1) = ηu2(t)(u?)2v? + (1− ηu4(t))v(t) + ηu2(t)bt.

Therefore,

〈z(t+ 1),v?〉 ≥ ηu2(t)(u?)2 + (1− ηu4(t))〈v(t),v?〉+ ηu2(t)〈bt,v
?〉

≥ ηu2(t)(u?)2 + (1− ηu4(t))

(

1− 1

5
τ

)

− ηu2(t)
1

10
τ(u?)2

‖z(t+ 1)‖ ≤ ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t)
1

10
τ(u?)2.

We obtain that

〈v(t+ 1),v?〉 = 〈z(t+ 1),v?〉
‖z(t+ 1)‖ ≥ 1−

1
5τ(1− ηu4(t)) + 2ηu2(t) 1

10τ(u
?)2

ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t) 1
10τ(u

?)2

≥ 1− 1− ηu4(t) + ηu2(t)(u?)2

ηu2(t)(u?)2 + (1− ηu4(t)) + ηu2(t) 1
10τ(u

?)2
1

5
τ

≥ 1− 1

5
τ.

27

Published as a conference paper at ICLR 2023

Note that compared with Lemma 8, under the condition ‖bt‖ ≤ B(u?)2, we get 〈v(t+ 1),v?〉 ≥
1− B instead of 〈v(t+ 1),v?〉 ≥ 1− B2. Accordingly, we need to a new version for Lemma 12
with a smaller bound on δ to make up the loss in Lemma 16.

Lemma 17. Assume δin ≤
√
τ0(u

?

min
)2

120(u?
max

)2 and δout ≤
√
τ0(u

?

min
)2

120s(u?
max

)2 , α < 1
2

√

τ0
L u?

l ,
∥

∥

1
nX

>ξ
∥

∥

∞ ≤
1
80τ0(u

?
l)

2 and |(u?
l)

2−u2
l (0)| ≤ τ(u?

l)
2 for each l ∈ [L] where 0 < τ0 ≤ τ ≤ 1/2. If 〈vl(t),v

?
l 〉 ≥

1− 1
5τ , then |〈vl(t),bl,t〉| ≤ 1

10τ(u
?
l)

2 and |el,t| ≤ 1
10τ(u

?
l)

2.

Proof. Similarly to Lemma 12, we have that

∥

∥(u?
l)

2v?
l − u2

l (t)vl(t)
∥

∥ ≤ τ(u?
l)

2 + u2
l (t)

√

2− 2〈vl(t),v?
l 〉

≤ τ(u?
l)

2 +
3

2
(u?

l)
2

√
2√
5

√
τ (10)

≤
(

1 + 2
1√
τ0

)

τ(u?
l)

2.

By Assumption 1, we have that
∣

∣

∣

∣

∣

∣

v>
l (t)

(

1

n
X>

l Xl − I

)

((u?
l)

2v?
l − u2

l (t)vl(t)) + v>
l (t)

∑

l′ 6=l,l′∈S

1

n
X>

l Xl′((u
?
l′)

2v?
l′ − u2

l′(t)vl′(t))

∣

∣

∣

∣

∣

∣

≤
(

1 + 2
1√
τ0

)

δinτ(u
?
max)

2 +

(

1 + 2
1√
τ0

)

sδoutτ(u
?
max)

2 ≤ 1

20
τ(u?

l)
2,

where δ ≤
√
τ0(u

?

min
)2

60s(u?
max

)2 . The other two terms follows exactly what we did in Lemma 12. Therefore,

|el,t| = |〈vl(t),bl,t〉| ≤
1

20
τ(u?

l)
2 +

1

80
τ(u?

l)
2 +

1

80
τ(u?

l)
2 ≤ 1

10
τ(u?

l)
2.

Proof to Theorem 4. The proof is similar to that of Theorem 3. For the first stage, we apply
Lemma 10, as nothing is changed from Theorem 3. For the second stage, instead of applying
Lemma 11 and Lemma 12, we apply Lemma 16 and Lemma 17 iteratively. To apply these lemmas,
we first observe that

ζ ≤ τ0(u
?
max)

2 ⇐⇒ ζ

(u?
max)

2
≤ τ0.

Therefore the requirement on δ’s becomes δin ≤
√
τ0(u

?

min
)2

120(u?
max

)3 and δout ≤
√
τ0(u

?

min
)2

120s(u?
max

)3 . The number

of iterations and convergence results follow from the proof of Theorem 3.

The criterion for switching time. We provide some motivation for the practical criterion. We first
note that, the criterion in Theorem 4 actually indicates a lower bound of switching time. With more
derivations, our results still hold if one choose to switch after the time when the criterion is first
satisfied (instead of switching right at that time.) Let us focus on the entries on the support. In the
proof of Theorem 3, one can also obtain the convergence on ul(t) as the positiveness of ul(t) can be
ensured with a small step size γ (since the power-parametrization will recast the gradient updates
into a multiplicative sequence). Therefore, with an appropriate choice of τ , the practical criterion
max
l∈S

{|ul(t+ 1)− ul(t)|/|ul(t) + ε|} < τ would imply the theoretical criterion ul(t)
2 ≥ 1

2u
?
l (t)

2

on the support, and therefore would indicate a possibly later switching time than what the theoretical
criterion determines. For gradient updates outside the support, we observe slow growth rate and
hence the practical rule is likely satisfied on the non-support entry, which we observe in the numerical
experiments. Note that the switching only happens when both the support and non-support entries
fulfill the criterion.

28

Published as a conference paper at ICLR 2023

E MORE NUMERICAL RESULTS

E.1 STABILITY ISSUE OF ALGORITHM 1 AND STANDARD GD

0 100 200 300 400 500

0

5

10

15

Recovered entries

group1

group2

group3

non support

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Recovered direction parameters (v)

group1

group2

group3

non support

(a) Numerical instability in direction estimations.

0 100 200 300 400 500
epochs

0

1

2

3

||
w
(t
)
−

w
?
||
2

Recovery error

0 100 200 300 400 500
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S

max
l /∈S

ul(t)

(b) Parameter estimation error remains small.

Figure 6: Numerical instability of algorithm 1

Stability issue of Algorithm 1. Figure 6 presents the recovered entries and direction parameters v(t)
under the same setting as Figure 2. Because of the large learning rate on v, the algorithm may not
show a convergent result in the latter stage due to the irreducible error (perturbations). Although the
parameter estimation is still reasonable with normalization on each vl, l ∈ [L], we still aim to get a
stable algorithm, which motivates our algorithm 2.

0 2000 4000 6000 8000
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

w
li
(t
)

Recovered entries with zero initialization

wli(t), l ∈ S

max
l /∈S

wli(t)

0 2000 4000 6000 8000
epochs

0.0

0.2

0.4

0.6

0.8

1.0

〈v
l(
t)
,v

?
〉

Recovered group directions with zero initialization

group1

group2

group3

group4

0 2000 4000 6000 8000
epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

w
li
(t
)

Recovered entries with small initialization

wli(t), l ∈ S

max
l /∈S

wli(t)

Figure 7: Gradient descent without weight normalization.

Standard gradient descent. To further understand how weight normalization affects the gradient
dynamics, we conduct experiments using standard gradient descent without weight normalization.
For that, we use the same setting as in Figure 4 and show the result in Figure 7. The left and middle
figures are based on zero initialization on v. We see a numerically convergent result, and the inner
product between learned and true directions starts to grow from 0. As the directions guide the
magnitude to grow, there is an extra stage for the directions to become roughly accurate. The choice
of this initialization is necessary and subtle. The figure on the right is for small initialization 10−3,
where the entries outside support get significant magnitudes, and the algorithm fails.

29

Published as a conference paper at ICLR 2023

E.2 AUTOENCODER WITH GROUPING LAYER

The grouping layers have been used in grouped CNN and grouped attention mechanisms (Wu et al.,
2021; Xie et al., 2017; Lee et al., 2018), which usually leads to parameter efficiency and better
accuracy. To demonstrate the practical value of such grouping layers, we conduct the following
experiment about learning good representations on MNIST.

(Jing et al., 2020) proposed implicit rank-minimizing autoencoder (IRMAE), which is a deterministic
autoencoder with implicit regularization. The idea is to apply more linear layers between encoder
and decoder to penalize the rank of latent representation. A graphical illustration of the architecture
is shown in Figure 8, where we explicitly show the last convolution layer and the linear layers in the
latent space, which are absorbed into the last layer of the encoder in practice. This design is related
to the power parametrization (Schwarz et al., 2021) trick to promote sparsity/low-rankness. One
major advantage is that IRMAE produces a more interpretable latent representation, and the linear
interpolation in the latent space gives a natural transition between two images.

x Enc CNN Dec XZ

latent layers

Figure 8: Implicit rank-minimizing autoencoder.

X Enc Dec XZ

grouped latent layers

Figure 9: Implicit rank-minimizing autoencoder with grouping layers.

Inspired by our DGLNN, we design a CNN analog of it, which we call grouped autoencoder
(GAE). The architecture is shown in Figure 9. The channels feed into the last convolutional layer of
encoder is separable into g groups. The linear layers (power-parametrization) are applied within each
group. Grouping channels of convolutional layers is a common practice to improve the parameter
efficiency. With these grouping and power layers in the latent space, we expect it learns a better latent
representation as IRMAE does.

30

Published as a conference paper at ICLR 2023

A
E

V
A

E
G

A
E

8
G

A
E

4
IR

M
A

E

Figure 10: Linear interpolations between data points on the MNIST dataset. GAE4/8 stands for
grouped autoencoder with 4/8 groups.

The linear interpolations between data points in the latent space are shown in Figure 10. We compare
the grouped autoencoder (GAE) with autoencoder (AE), variantional autoencoder (VAE) and implicit
rank-minimizing autoencoder (IRMAE). We see that GAE outperforms AE and VAE, and gives
comparable results with IRMAE. However, GAE achieves a better parameter efficiency as shown in
Table 2.

of params

IRMAE 786K
GAE4 196K
GAE8 98K

Table 2: Number of parameters of hidden layers in latent space.

E.3 EXPERIMENTS WITH GAUSSIAN MEASUREMENTS

Besides the numerical results shown in Section 5, we conduct the following experiments with
sampling each entry of X from a standard normal distribution.

The effectiveness. We follow the same setting with that Figure 3 except changing Rademacher
random variables to Gaussian random variables. The convergence of Algorithm 2 is shown in
Figure 11. We see that the recovered entries, group magnitudes and directions successfully converge
to the true ones.

0 200 400 600 800 1000
epochs

0

2

4

6

8

10

12

w
li
(t
)

Recovered entries

wli(t), l ∈ S

max
l /∈S

wli(t)

0 200 400 600 800 1000
epochs

0

1

2

3

4

u
l(
t)

Recovered group magnitudes

ul(t), l ∈ S

max
l /∈S

ul(t)

0 200 400 600 800 1000
epochs

0.94

0.95

0.96

0.97

0.98

0.99

1.00

〈v
l(
t)
,v

?
〉

Recovered group directions

group1

group2

group3

Figure 11: Convergence of algorithm 2 with Gaussian measurements

Comparisons with explicit regularization methods. We compare Algorithm 2 with proximal
gradient descent implemented in (Carmichael et al., 2021) and primal-dual procedure (Molinari et al.,

31

Published as a conference paper at ICLR 2023

2021). Each entry of X is sampled from a standard Gaussian distribution. We set n = 150 and
p = 300, and the number of non-zero entries is 10, divided into 3 groups with size 4. We vary the
variance in the noise to achieve different signal-to-noise ratios (SNR). The experiment is repeated 30
times at each noise level. The average and standard deviation of the estimation error are depicted
in Figure 12. Our algorithm is consistently better than explicit regularization methods, whereas the
primal-dual procedure has a comparable performance when SNR is large.

0 5 10 15 20 25 30 35

SNR

−4

−2

0

2

4

6

8

lo
g
2
||
w

t
−

w
?
||
2 2

PGD

DGLNN

Primal-Dual

Figure 12: Comparisons with proximal gradient descent and iterative regularization.

To further discover the potential applications of our findings, we use a gene expression dataset from
the Microarray experiments of mammalian eye tissue samples (Scheetz et al., 2006). The dataset
consists of 120 samples with 100 predictors that are expanded from 20 genes using 5 basis B-splines,
as described in (Yang & Zou, 2015). The goal is to predict the gene expression level of TRIM32,
which causes Bardet-Biedl syndrome. We randomly split the data equally, and use the validation
dataset for hyperparameter tuning and early stopping. We compare our approach with the commonly
used proximal gradient descent and a primal-dual approach. The result is shown in Table 3. Our
approach achieves the best performance among these three methods.

Test error PGD Primal-Dual Our approach

MSE 0.03096 0.02868 0.02477

Table 3: Comparisons of MSE (mean squared error) on test set.

32

	1 Introduction
	2 Setup
	3 Analysis of Gradient Flow
	3.1 First Attempt: Mirror Flow
	3.2 Layer Balancing and Gradient Flow

	4 Gradient Descent with Weight Normalization
	5 Simulation Studies
	6 Discussion
	A Geometric properties of the parametrization
	B Proof for Analysis of Gradient Flow
	C Analysis of gradient descent
	C.1 Monotonic updates
	C.2 Updates with bounded perturbations
	C.3 Analysis of perturbations
	C.4 Error analysis outside the support

	D Proof for Theorems in Section 4
	D.1 Proof of Theorem 3
	D.2 Proof for Corollary 1
	D.3 Convergence for algorithm 2

	E More numerical results
	E.1 Stability issue of Algorithm 1 and standard GD
	E.2 Autoencoder with grouping layer
	E.3 Experiments with gaussian measurements

