arX1v:2301.12540v1 [stat.ML] 29 Jan 2023

Published as a conference paper at ICLR 2023

IMPLICIT REGULARIZATION FOR GROUP SPARSITY

Jiangyuan Li*, Thanh V. Nguyen, Chinmay Hegde' & Raymond K. W. Wong*
*Texas A&M University

fNew York University

{jiangyuanli, raywong}@tamu.edu;

thanhng.cs@gmail.com; chinmay.h@nyu.edu

ABSTRACT

We study the implicit regularization of gradient descent towards structured sparsity
via a novel neural reparameterization, which we call a “diagonally grouped linear
neural network”. We show the following intriguing property of our reparameter-
ization: gradient descent over the squared regression loss, without any explicit
regularization, biases towards solutions with a group sparsity structure. In contrast
to many existing works in understanding implicit regularization, we prove that
our training trajectory cannot be simulated by mirror descent. We analyze the
gradient dynamics of the corresponding regression problem in the general noise
setting and obtain minimax-optimal error rates. Compared to existing bounds for
implicit sparse regularization using diagonal linear networks, our analysis with
the new reparameterization shows improved sample complexity. In the degenerate
case of size-one groups, our approach gives rise to a new algorithm for sparse
linear regression. Finally, we demonstrate the efficacy of our approach with several
numerical experiments'.

1 INTRODUCTION

Motivation. A salient feature of modern deep neural networks is that they are highly overparame-
terized with many more parameters than available training examples. Surprisingly, however, deep
neural networks trained with gradient descent can generalize quite well in practice, even without
explicit regularization. One hypothesis is that the dynamics of gradient descent-based training itself
induce some form of implicit regularization, biasing toward solutions with low-complexity (Hardt
et al., 2016; Neyshabur et al., 2017). Recent research in deep learning theory has validated the
hypothesis of such implicit regularization effects. A large body of work, which we survey below, has
considered certain (restricted) families of linear neural networks and established two types of implicit
regularization — standard sparse regularization and ¢5-norm regularization — depending on how
gradient descent is initialized.

On the other hand, the role of network architecture, or the way the model is parameterized in implicit
regularization, is less well-understood. Does there exist a parameterization that promotes implicit
regularization of gradient descent towards richer structures beyond standard sparsity?

In this paper, we analyze a simple, prototypical hierarchical architecture for which gradient descent
induces group sparse regularization. Our finding — that finer, structured biases can be induced via
gradient dynamics — highlights the richness of co-designing neural networks along with optimization
methods for producing more sophisticated regularization effects.

Background. Many recent theoretical efforts have revisited traditional, well-understood problems
such as linear regression (Vaskevicius et al., 2019; Li et al., 2021; Zhao et al., 2019), matrix factoriza-
tion (Gunasekar et al., 2018b; Li et al., 2018; Arora et al., 2019) and tensor decomposition (Ge et al.,
2017; Wang et al., 2020), from the perspective of neural network training. For nonlinear models
with squared error loss, Williams et al. (2019) and Jin & Montiifar (2020) study the implicit bias of
gradient descent in wide depth-2 ReLU networks with input dimension 1. Other works (Gunasekar
et al., 2018c; Soudry et al., 2018; Nacson et al., 2019) show that gradient descent biases the solution
towards the max-margin (or minimum ¢5-norm) solutions over separable data.

!Code is available on https://github.com/jiangyuan2li/Implicit-Group-Sparsity
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| NNs | Noise | Implicit vs. Explicit | Regularization
Vaskevicius et al. (2019) | DLNN v Implicit (GD) Sparsity
Dai et al. (2021) LNN X Explicit (¢2-penalty) | (Group) Quasi-norm
Jagadeesan et al. (2021) | LCNN X Explicit (/2-penalty) | Norm induced by SDP
Wu et al. (2020) DLNN X Implicit f5-norm
This paper DGLNN v Implicit (GD) Structured sparsity

Table 1: Comparisons to related work on implicit and explicit regularization. Here, GD stands for
gradient descent, (D)LNN/CNN for (diagonal) linear/convolutional neural network, and DGLNN for
diagonally grouped linear neural network.

Outside of implicit regularization, several other works study the inductive bias of network architectures
under explicit {5 regularization on model weights (Pilanci & Ergen, 2020; Sahiner et al., 2020). For
multichannel linear convolutional networks, Jagadeesan et al. (2021) show that ¢5-norm minimization
of weights leads to a norm regularizer on predictors, where the norm is given by a semidefinite
program (SDP). The representation cost in predictor space induced by explicit /5 regularization
on (various different versions of) linear neural networks is studied in Dai et al. (2021), which
demonstrates several interesting (induced) regularizers on the linear predictors such as ¢, quasi-norms
and group quasi-norms. However, these results are silent on the behavior of gradient descent-based
training without explicit regularization. In light of the above results, we ask the following question:

Beyond /5-norm, sparsity and low-rankness, can gradient descent induce other
forms of implicit regularization?

Our contributions. In this paper, we rigorously show that a diagonally-grouped linear neural
network (see Figure 1b) trained by gradient descent with (proper/partial) weight normalization
induces group-sparse regularization: a form of structured regularization that, to the best of our
knowledge, has not been provably established in previous work.

One major approach to understanding implicit regularization of gradient descent is based on its
equivalence to a mirror descent (on a different objective function) (e.g., Gunasekar et al., 2018a;
Woodworth et al., 2020). However, we show that, for the diagonally-grouped linear network architec-
ture, the gradient dynamics is beyond mirror descent. We then analyze the convergence of gradient
flow with early stopping under orthogonal design with possibly noisy observations, and show that the
obtained solution exhibits an implicit regularization effect towards structured (specifically, group)
sparsity. In addition, we show that weight normalization can deal with instability related to the
choices of learning rates and initialization. With weight normalization, we are able to obtain a similar
implicit regularization result but in more general settings: orthogonal/non-orthogonal designs with
possibly noisy observations. Also, the obtained solution can achieve minimax-optimal error rates.

Overall, compared to existing analysis of diagonal linear networks, our model design — that induces
structured sparsity — exhibits provably improved sample complexity. In the degenerate case of
size-one groups, our bounds coincide with previous results, and our approach can be interpreted as a
new algorithm for sparse linear regression.

Our techniques. Our approach is built upon the power reparameterization trick, which has been
shown to promote model sparsity (Schwarz et al., 2021). Raising the parameters of a linear model
element-wisely to the NV-th power (/N > 1) results in that parameters of smaller magnitude receive
smaller gradient updates, while parameters of larger magnitude receive larger updates. In essence,
this leads to a “rich get richer” phenomenon in gradient-based training. In Gissin et al. (2019)
and Berthier (2022), the authors analyze the gradient dynamics on a toy example, and call this
“incremental learning”. Concretely, for a linear predictor w € RP, if we re-parameterize the model as
w = u°Y — v°¥ (where u®" means the N-th element-wise power of u), then gradient descent will
bias the training towards sparse solutions. This reparameterization is equivalent to a diagonal linear
network, as shown in Figure 1a. This is further studied in Woodworth et al. (2020) for interpolating
predictors, where they show that a small enough initialization induces ¢;-norm regularization. For
noisy settings, Vaskevicius et al. (2019) and Li et al. (2021) show that gradient descent converges
to sparse models with early stopping. In the special case of sparse recovery from under-sampled
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(a) Diagonal linear NN (DLNN). (b) Diagonally grouped linear NN (DGLNN).

Figure 1: An illustration of the two architectures for standard and group sparse regularization.

observations (or compressive sensing), the optimal sample complexity can also be obtained via this
reparameterization (Chou et al., 2021).

Inspired by this approach, we study a novel model reparameterization of the formw = [wq,..., wp],
where w; = u?v; for each group ! € {1,..., L}. (One way to interpret this model is to think of u; as
the “magnitude” and v; as the “direction” of the subvector corresponding to each group; see Section
2 for details.) This corresponds to a special type of linear neural network architecture, as shown in
Figure 1b. A related architecture has also been recently studied in Dai et al. (2021), but there the
authors have focused on the bias induced by an explicit /5 regularization on the weights and have not
investigated the effect of gradient dynamics.

The diagonally linear network parameterization of Woodworth et al. (2020); Li et al. (2021) does
not suffer from identifiability issues. In contrast to that, in our setup the “magnitude” parameter
u; of each group interacts with the norm of the “direction”, ||v;||,, causing a fundamental problem
of identifiability. By leveraging the layer balancing effect (Du et al., 2018) in DGLNN, we verify
the group regularization effect implicit in gradient flow with early stopping. But gradient flow is
idealized; for a more practical algorithm, we use a variant of gradient descent based on weight
normalization, proposed in (Salimans & Kingma, 2016), and studied in more detail in (Wu et al.,
2020). Weight normalization has been shown to be particularly helpful in stabilizing the effect of
learning rates (Morwani & Ramaswamy, 2022; Van Laarhoven, 2017). With weight normalization,
the learning effect is separated into magnitudes and directions. We derive the gradient dynamics on
both magnitudes and directions with perturbations. Directions guide magnitude to grow, and as the
magnitude grows, the directions get more accurate. Thereby, we are able to establish regularization
effect implied by such gradient dynamics.

A remark on grouped architectures. Finally, we remark that grouping layers have been commonly
used in grouped CNN and grouped attention mechanisms (Xie et al., 2017; Wu et al., 2021), which
leads to parameter efficiency and better accuracy. Group sparsity is also useful for deep learning
models in multi-omics data for survival prediction (Xie et al., 2019). We hope our analysis towards
diagonally grouped linear NN could lead to more understanding of the inductive biases of grouping-
style architectures.

2 SETUP

Notation. Denotes the set {1,2,..., L} by [L], and the vector {2 norm by ||-||. We use 1,, and 0,, to
denote p-dimensional vectors of all 1s and all Os correspondingly. Also, ® represents the entry-wise
multiplication whereas B°Y denotes element-wise power NN of a vector 3. We use e; to denote the 7™
canonical vector. We write inequalities up to multiplicative constants using the notation <, whereby
the constants do not depend on any problem parameter.

Observation model. Suppose that the index set [p] = UJL:lGl is partitioned into L disjoint (i.e.,
non-overlapping) groups G1, Ga, ..., G where G; N G; = 0, Vi # j. The size of G| is denoted by
pi = |Gy| forl € [L]. Let w* € R? be a p-dimensional vector where the entries of w* are non-zero
only on a subset of groups. We posit a linear model of data where observations (x;,y;) € RP xR, i €
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[n] are given such that y; = (x;, w*) + & fori =1,...,n,and € = [¢,...,&,] T is a noise vector.
Note that we do not impose any special restriction between n (the number of observations) and p (the
dimension). We write the linear model in the following matrix-vector form: y = Xw* + £, with the
n x p design matrix X = [Xy, X, ..., X], where X; € R"*P! represents the features from the /™
group Gy, for [ € [L]. We make the following assumptions on X:

Assumption 1. The design matrix X satisfies

sup
1B 1<L, 1182 1I<1

1
</6.17 (nXlTXl_I) /82>‘ Séiﬂm Whereﬂl?ﬂQ eRPl, (1)
and

sup
1B:1I<1,11B21I<1

1 1
<\/ﬁxl,31, \/ﬁxl'ﬂ2>‘ < dout, where By € RP', B, € RPV 1 # v, 2

Sor some constants iy, 0pur € (0, 1).

The first part (1) is a within-group eigenvalue condition while the second part (2) is a between-group
block coherence assumption. There are multiple ways to construct a sensing matrix to fulfill these
two conditions (Eldar & Bolcskei, 2009; Baraniuk et al., 2010). One of them is based on the fact that
random Gaussian matrices satisfy such conditions with high probability (Stojnic et al., 2009).

Reparameterization. Our goal is to learn a parameter w from the data {(x;, y;) }7_; with coefficients
which obey group structure. Instead of imposing an explicit group-sparsity constraint on w (e.g., via
weight penalization by group), we show that gradient descent on the unconstrained regression loss can
still learn w*, provided we design a special reparameterization. Define a mapping g(-) : [p] — [L]
from each index i to its group g(i). Each parameter is rewritten as  w; = u () Vis Vi € [p]. The

parameterization G(-) : RY x R? — RP reads

[ula ceey UL, V1,02, .. avp] - [U%UMU%UQ, s ,U%Up].

This corresponds to the 2-layer neural network architecture displayed in Figure 1b, in which W; =
diag(v1, ... ,vp), and Wy is “diagonally” tied within each group:

Wy =diag(ug, ..., U1, Uy .o Uy ee o UL, ...y UL).

Gradient dynamics. We learn u and v by minimizing the standard squared loss:

1 o 2
C(U,V) = §Hy—X[(Du) 2®V” )
where
1, 0p o Oy
D_ O%,2 1.p,_, . . 0?2 —
0,, 0, ... 1,

By simple algebra, the gradients with respect to u and v read as follows:
Vol =2DT (vo [X'X((Dw)*? o v -w") - X"¢] ©Du),
VoL = [XTX((Du)?ov-w") —X"¢ o (Du)*

Denote r(t) =y — ZzL/=1 u? (¢)X;v,(t). For each group [ € [L], the gradient flow reads

aul(t) 2 8vl (t) 1

o = LwOVI(OX[x(t), == = —ui (X x(). 3)
Although we are not able to transform the gradient dynamics back onto w(t) due to the overparame-
terization, the extra term u;(¢) on group magnitude leads to “incremental learning” effect.
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3 ANALYSIS OF GRADIENT FLOW

3.1 FIRST ATTEMPT: MIRROR FLOW

Existing results about implicit bias in overparameterized models are mostly based on recasting
the training process from the parameter space {u(t), v(t)}:+>o to the predictor space {w(t)}:>0
(Woodworth et al., 2020; Gunasekar et al., 2018a). If properly performed, the (induced) dynamics
in the predictor space can now be analyzed by a classical algorithm: mirror descent (or mirror
flow). Implicit regularization is demonstrated by showing that the limit point satisfies a KKT
(Karush—Kuhn-Tucker) condition with respect to minimizing some regularizer R(-) among all
possible solutions.

At first, we were unable to express the gradient dynamics in Eq. (3) in terms of w(¢) (i.e., in the
predictor space), due to complicated interactions between u and v. This hints that the training
trajectory induced by an overparameterized DGLNN may not be analyzed by mirror flow techniques.
In fact, we prove a stronger negative result, and rigorously show that the corresponding dynamics
cannot be recast as a mirror flow. Therefore, we conclude that our subsequent analysis techniques are
necessary and do not follow as a corollary from existing approaches.

We first list two definitions from differential topology below.

Definition 1. Let M be a smooth submanifold of RP. Given two C! vector fields of X,Y on M, we
define the Lie Bracket of X andY as [X,Y](z) = 0Y ()X (z) — 0X ()Y (z).

Definition 2. Let M be a smooth submanifold of RP. A C? parameterization G - M — R? is said
to be commuting iff for any i, j € [d], the Lie Bracket [NG;,VG,](x) = 0forallxz € M.

The parameterization studied in most existing works on diagonal networks is separable, meaning that
each parameter only affects one coordinate in the predictor space. In DGLNN, the parameterization
is not separable, due to the shared parameter u within each group. We formally show that it is indeed
not commuting.

Lemma 1. G() is not a commuting parameterization.

Non-commutativity of the parameterization implies that moving along —VG; and then —V G| is
different with moving with —V G first and then —V G;. This causes extra difficulty in analyzing the
gradient dynamics. Li et al. (2022) study the equivalence between gradient flow on reparameterized
models and mirror flow, and show that a commuting parameterization is a sufficient condition for
when a gradient flow with certain parameterization simulates a mirror flow. A complementary
necessary condition is also established on the Lie algebra generated by the gradients of coordinate
functions of G with order higher than 2. We show that the parameterization G(-) violates this
necessary condition.

v5it] € RE x RP and a time-dependent loss L,
such that gradient flow under L; ® G starting from [u; ..,
with respect to any Legendre function R under the loss L.

Theorem 1. There exists an initialization [u; ,,,

v

init] cannot be written as a mirror flow

The detailed proof is deferred to the Appendix. Theorem 1 shows that the gradient dynamics implied
in DGLNN cannot be emulated by mirror descent. Therefore, a different technique is needed to
analyze the gradient dynamics and any associated implicit regularization effect.

3.2 LAYER BALANCING AND GRADIENT FLOW

Let us first introduce relevant quantities. Following our reparameterization, we rewrite the true
parameters for each group [ as

wi = ()i, vill, =1, v; €R™.

The support is defined on the group level, where S = {l € [L] : v} > 0} and the support size is
defined as s = |S|. We denote u},,, = max{uj|l € S}, and v}, = min{u}|l € S}.

The gradient dynamics in our reparameterization does not preserve ||v;(t)|l, = 1, which causes
difficulty to identify the magnitude of each u; and ||v;(t)||,. Du et al. (2018) and Arora et al. (2018)
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show that the gradient flow of multi-layer homogeneous functions effectively enforces the differences
between squared norms across different layers to remain invariant. Following the same idea, we
discover a similar balancing effect in DGLNN between the parameter u and v.

Lemma 2. Foranyl € [L], we have
d (1, 2\
4 (58 = Iwl?) <o

The balancing result eliminates the identifiability issue on the magnitudes. As the coordinates within
one group affect each other, the direction which controls the growth rate of both u and v need to be
determined as well.

Lemma 3. [f the initialization v;(0) is proportional to %Xl—ry, then

Vl(o) *> ( H [
T Y > 1- 6277, + Léou +||=X 5
<||Vz(0)| : B

2

2/<uf>2)

Note that this initialization can be obtained by a single step of gradient descent with O initialization.
Lemma 3 suggests the direction is close to the truth at the initialization. We can further normalize it to
be ||v;(0) Hg = 1u?(0) based on the balancing criterion. The magnitude equality, ||v;(¢) Hg = 1uf(t),
is preserved by Lemma 2. However, ensuring the closeness of the direction throughout the gradient
flow presents significant technical difficulties. That said, we are able to present a meaningful implicit
regularization result of the gradient flow under orthogonal (and noisy) settings.

Theorem 2. Fix ¢ > 0. Consider the case where 1XX; = I 1XX; = 0,1 # U, the

initialization u;(0) = 0 < 3(ar 2 and vi(0) = miX,y with Hvl(0)||§ = 202Vl € [L), there
exists an lower bound and upper bound of the time T; < T, in the gradient flow in Eq. (3), such that
foranyT; <t < T, we have

N 'Y Ve, ifles.
||u12(t)vl(t)—wl||OC < {237’/2, €H°O ‘ §I¢S.

Theorem 2 states the error bounds for the estimation of the frue weights w*. For entries outside the
(true) support, the error is controlled by #3/2. When @ is small, the algorithm keeps all non-supported
entries to be close to zero through iterations while maintaining the guarantee for supported entries.
Theorem 2 shows that under the assumption of orthogonal design, gradient flow with early stopping
is able to obtain the solution with group sparsity.

4 GRADIENT DESCENT WITH WEIGHT NORMALIZATION

Algorithm 1 Gradient descent with weight normalization

Initialize: u(0) = o1, unit norm initialization v;(0) for each ! € [L], n;+ =
fort =0to 7T do
z(t+1) = v(t) —m:VvL(u(t), v(t))

vi(t+1) = p2EH- Vi € [1]

u(t+1) =u(t) —yVuLl(ut),v(t +1))
if the early stopping criterion is satisfied then
stop
end if
end for

1
up(t)”

We now seek a more practical algorithm with more general assumptions and requirements on
initialization. To speed up the presentation, we will directly discuss the corresponding variant of
(the more practical) gradient descent instead of gradient flow. When standard gradient descent is
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applied on DGLNN, initialization for directions is very crucial; The algorithm may fail even with a
very small initialization when the direction is not accurate, as shown in Appendix E. The balancing
effect (Lemma 2) is sensitive to the step size, and errors may accumulate (Du et al., 2018).

Weight normalization as a commonly used training technique has been shown to be helpful in
stabilizing the training process. The identifiability of the magnitude is naturally resolved by weight
normalization on each v;. Moreover, weight normalization allows for a larger step size on v, which
makes the direction estimation at each step behave like that at the origin point. This removes the
restrictive assumption of orthogonal design. With these intuitions in mind, we study the gradient
descent algorithm with weight normalization on v summarized in Algorithm 1. One advantage of
our algorithm is that it converges with any unit norm initialization v;(0). The step size on u(t) is
chosen to be small enough in order to enable the incremental learning, whereas the step size on v (t)
is chosen as 1 = as prescribed by our theoretical investigation. For convenience, we define

‘ \/e),
oo

for a precision parameter € > 0. The convergence of Algorithm 1 is formalized as follows:
Theorem 3. Fix e > 0. Consider Algorithm I with
el 1
/\
(uf,..)®  80L

max

1
up(t)

i
n

(i) A~

min L ’

L. Suppose Assumption 1 is

20(usqq)
* 2 * 2
satisfied with 8, < 12%@7*)2 and Opyr < % There exist a lower bound on the number of

Tnaw) Taz

w(0) = a < vi e [L],

any unit-norm initialization on v; for each | € [L] and v <

iterations

* 2
log “pas O 5

_ 0 )\
T = 2log(1 + Z(CV (uhin)?)) - {1 82 ¢ J 27(CV (upyi)?)’

and an upper bound

T . > 5 log —
" E 16y (CV (uhy)?) Eat

such that Ty, < Ty, and for any Ty, <t < Ty,

|1XTel| v, iies

Hﬁ@w@—wﬂmﬁ{% iflgs

Similarly as Theorem 2, Theorem 3 states the error bounds for the estimation of the true weights
w*. When « is small, the algorithm keeps all non-supported entries to be close to zero through
iterations while maintaining the guarantee for supported entries. Compared to the works on implicit
(unstructured) sparse regularization (Vaskevicius et al., 2019; Chou et al., 2021), our assumption on
the incoherence parameter d,,; scales with 1/s, where s is the number of non-zero groups, instead
of the total number of non-zero entries. Therefore, the relaxed bound on d,,; implies an improved
sample complexity, which is also observed experimentally in Figure 4. We now state a corollary in a
common setting with independent random noise, where (asymptotic) recovery of w* is possible.

Definition 3. A random variable Y is o-sub-Gaussian if for all t € R there exists o > 0 such that
EetY < ¢7't°/2,

Corollary 1. Suppose the noise vector & has independent o2-sub-Gaussian entries and € =

24/ %. Under the assumptions of Theorem 3, Algorithm 1 produces w(t) = (Du(t))°2 ® v(t)

that satisfies |w(t) — W*||§ < (so?logp)/n with probability at least 1 — 1/(8p®) for any t such

that Ty, < t < Typ.

Note that the error bound we obtain is minimax-optimal. Despite these appealing properties of Algo-
rithm 1, our theoretical results require a large step size on each v;(t), which may cause instability at
later stages of learning. We observe this instability numrerically (see Figure 6, Appendix E). Although
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the estimation error of w* remains small (which aligns with our theoretical result), individual entries
in v may fluctuate considerably. Indeed, the large step size is mainly introduced to maintain a strong
directional information extracted from the gradient of v, (¢) so as to stabilize the updates of u(t) at
the early iterations. Therefore, we also propose Algorithm 2, a variant of Algorithm 1, where we
decrease the step size after a certain number of iterations.

Algorithm 2. Run Algorithm 1 with the same setup till each w;(t),l € [L] gets roughly accurate, set
M, = 1. Continue Algorithm I until early stopping criterion is satisfied.

Theorem 4. Under the assumptions of Theorem 3 with replacing the condition on §’s by 6;, <

* 2 * 2
1\2@)22% and Sy < fgg&% we apply Algorithm 2 with 1, ; = u%(t) at the beginning, and

me=1n< 9# after Vi € [L],u(t) > %(ul*)2 then with the same Ty, and T, we have that

(Whnas)?

forany Ty, <t < Ty,

. IXTE|| Ve ifles.
[uf (O)vi(t) = wi|| S {l I ifl ¢ S.

In Theorem 4, the criterion to decrease the step size is: w7 (t) > 1 (u})?, VI € [L]. Once this criterion
is satisfied, our proof indeed ensures that it would hold for at least up to the early stopping time 7',
specified in the theorem. In practice, since u;’s are unknown, we can switch to a more practical
criterion: {Iel[aL)](HUl(t + 1) — w(¥)]/|w(t) + €]} < 7 for some pre-specified tolerance 7 > 0 and

small value € > 0 as the criterion for changing the step size. The motivation of this criterion is
further discussed in Appendix D. The error bound remains the same as Theorem 3. The change in
step size requires a new way to study the gradient dynamics of directions with perturbations. With
our proof technique, Theorem 4 requires a smaller bound on 4’s (see Lemma 16 versus Lemma 8 in
Appendix C for details). We believe it is a proof artifact and leave the improvement for future work.

Connection to standard sparsity. Consider the degenerate case where each group size is 1. Our repa-
rameterization, together with the normalization step, can roughly be interpreted as w; ~ u? sgn(v;),
which is different from the power-reparameterization w; = u¥ — v, N > 2 in Vaskevicius et al.
(2019) and Li et al. (2021). This also shows why a large step size on v; is needed at the beginning. If
the initialization on v; is incorrect, the sign of v; may not move with a small step size.

5 SIMULATION STUDIES

We conduct various experiments on simulated data to support our theory. Following the model in
Section 2, we sample the entries of X i.i.d. using Rademacher random variables and the entries of the
noise vector £ i.i.d. under N(0,02). We set o = 0.5 throughout the experiments.

Recovery error Recovered group magnitudes

— u(t),leS

32 = maxy(t
5 max w(t)

0 500 1000 1500 2000 0 500 1000 1500 2000
epochs epochs

Figure 2: Convergence of Algorithm 1. The entries on the support are all 10.

The effectiveness of our algorithms. We start by demonstrating the convergence of the two proposed
algorithms. In this experiment, we set n = 150 and p = 300. The number of non-zero entries is
9, divided into 3 groups of size 3. We run both Algorithms 1 and 2 with the same initialization
a = 1075, The step size v on u and decreased step size 17 on v are both 1073, In Figure 2, we
present the recovery error of w* on the left, and recovered group magnitudes on the right. As we can
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Recovered entries Recovered group magnitudes Recovered group directions

o)
()

— w(t).leS —_— ylt),l€S

maxu(t)

groupl
—— group2
—— group3

max (1)

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
epochs epochs epochs

Figure 3: Convergence of Algorithm 2. The entries on the support are from 5 to 13.
see, early stopping is crucial for reaching the structured sparse solution. In Figure 3, we present the

recovered entries, recovered group magnitudes and recovered directions for each group from left to
right. In addition to convergence, we also observe an incremental learning effect.

Recovered entries using group sparsity Recovered entries using sparsity
25 -
125 1251 — wy(t),l€ S
1.00 Loo{ — maxuwi(t)
=075
%050
— wy;(t),l €S ?
0.25 max wy;(t) 0.25
1¢S
0.00 0.00
0 100 200 300 400 500 0 100 200 300 400 500
epochs epochs

Figure 4: Comparison with reparameterization using standard sparsity. n = 100, p = 500.

Structured sparsity versus standard sparsity. From our theory, we see that the block incoherence
parameter scales with the number of non-zero groups, as opposed to the number of non-zero entries.
As such, we can expect an improved sample complexity over the estimators based on unstructured
sparse regularization. We choose a larger support size of 16. The entries on the support are all 1
for simplicity. We apply our Algorithm 2 with group size 4. The result is shown in Figure 4 (left).
We compare with the method in Vaskevicius et al. (2019) with parameterization w = u°? — v°2,
designed for unstructured sparsity. We display the result in the right figure, where interestingly, that
algorithm fails to converge because of an insufficient number of samples.

Recovered entries Recovery error
1.0 [5 — —4
0.5 an
T 6
——————————————— |
— wi(t),l€ S i3
o -8
ax lw &
max [ewni ()| E
-1.0
—-10
0 200 400 600 800 1000 0 200 400 600 800 1000
epochs epochs

Figure 5: Degenerate case when each group size is 1. The log ¢s-error plot is repeated 30 times, and
the mean is depicted. The shaded area indicates the region between the 25™ and 75™ percentiles.

Degenerate case. In the degenerate case where each group is of size 1, our reparameterization takes
a simpler form w; ~ u?sgn(v), i.., due to weight normalization, our method normalizes v to 1 or —1
after each step. We demonstrate the efficacy of our algorithms even in the degenerate case. We set
n = 80 and p = 200. The entries on the support are [1, —1, 1, —1, 1] with both positive and negative
entries. We present the coordinate plot and the recovery error in Figure 5.
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6 DISCUSSION

In this paper, we show that implicit regularization for group-structured sparsity can be obtained by
gradient descent (with weight normalization) for a certain, specially designed network architecture.
Overall, we hope that such analysis further enhances our understanding of neural network training.
Future work includes relaxing the assumptions on 4°s in Theorem 2, and rigorous analysis of modern
grouping architectures as well as power parametrizations.
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A GEOMETRIC PROPERTIES OF THE PARAMETRIZATION

We start by calculating the vector field induced by the parameterization G(-).
VGi([u',v)) = 2 g (i) Vi€g (i) + ui(i)eLH,
where e; € RX*P is only 1 on i entry and O elsewhere, and
VAGi([u",vT]) = 20iBq(i),60) + 2u() Byi). L1 + 20g() BLtig0i),
where E; ; € REAP)X(L4P) js the one-hot matrix for i™ row and j® column. For i # j s.t.
9(1) = g(j).
V2Gi([u", v )VG;([u",v']) = (20iEg(i),g(5) + 2ugi By, +i + 2ugi)Er1i g(i))
(2ug(j)v5€0(5) + Ug(j)@L+5)
= dug(j)vivjey(i) + dug(i)Ug(j) VjCL+i
= dugyvivieys) + 4u§(i)vje];+i,
similarly,
VQGj([uT,VT])VGi([uT,VT]) = dug(;)viviey(y + 4u3(i)vieL+j.
I;erOf for Lemma 1. For two indices within the same group, i.e, i # j and g(i) = g(j), we obtain
that
VG, VG )([n",vT]) =V2G,([u",vT))VGi([u",vT]) = V2Gi([u", v ])VG;([u”, v "))
= 4u3(i)vjeL+i — 4u§(i)vieL+j,
which is not always 0 when v; # v;. Therefore, G(-) is not commuting. O
Proof for Theorem 1. For i # j and g(i) # g(j), we have
VG, VG,]([u',v']) =0.
For i # j and ¢(i) = g(j), we have that
VG, VGy]([u",vT]) = v;VG; — v;VG; € span{VG;}I_;.

By Corollary 4.13 in (Li et al., 2022) and Lemma 1, we show that there exists and initialization and a
time-dependent loss that the gradient flow can not be analyzed by mirror flow. O

Alternatively, we can show directly that the necessary condition in Theorem 4.10 in Li et al. (2022) is

violated, i.e.,
(VG;,[VG;, VG, VG ([a",vT]) #0

for some [u', v '] in every open set M.
We first obtain that
VIVG:, VG )([u",vT]) = 8ug)viEriig0) + 4ty BriiLe;
= BugiyViBryjg¢) — 4u§(i)EL+j,L+i-
Therefore,
VG, [VG;, VG)([u",vT]) = VIVG;, VG,])([u”, v )VG;([u",v'])
= V2Gi([u",vT]))[VG;, VG]([u",vT])
= (Bug(s)V;ELtig(i) + Ul Bryintg
— Sug iy vikr () — 4ug(i)EL+j,L+i)
+ (2ug(iyvieg(i) + UL +i)
= (20iEg (i) 900) + 2ug() Eg(i), i + 29 ELtig)
- (dugyvjerts — duy vier ;)
= 16U§(i)vi1}jeL+i - 16u§(i)vfeL+j — 4U3(i)eL+j - 8ug(i)vjeg(i)

4
= 16uz(i)vi'[]jeL+i - (161]13(1)1112 + 4ug(i))eL+]‘ - 8ug(l)1}]eg(z)

13



Published as a conference paper at ICLR 2023

Hence,
(VG;, VG, [VGi, VG (', v )
=(2ug(iyvj€q(s) + UL+, 16us G vivser i — (16,07 + dug ) — 8ud i vieq(m)
=— 16u3(i)v]2 — 16u3(i)v? — 4“?7(2‘) < 0.

By Theorem 4.10 in Li et al. (2022), there exists an initialization such that no Legendre function R is
able to make the gradient flow be written as a mirror flow with respect to R.

B PROOF FOR ANALYSIS OF GRADIENT FLOW

Proof for Lemma 2. Recall

oL 2 . oL 1 ot
871” = E’LL[VZ Xl I‘(t), aiw = E'U/l Xl r(t)

Therefore, we obtain that

2
lvi@I” _ 2v] (1) axgt(t) =2v/ (1) (_885)

ot
= 2yl (X x(1)
AN 0
- ouy - ot

Proof for Lemma 3. We start with decomposing v;(0)
vi(0) = n%XzTy = Wi +1) <71LX1TX - I) Wi+ n; %XZTXVW;*/ + U%XzTﬁ
= nw| + nb;.
With this decomposition, we have that
(vi(0),vi)? = n*((u})?* + (by, vi))?
[vi(0)1l = n*((uf)" + 2(bi, wi) + [[ill3).

Therefore,
(vi(0),vi)? _ nP((uf)? + (by, v))?
VO3 2(()* + 2(bi, wy) + [bu]l3)
byl = (br, vi)?
S )t 2(bwi) + b3

/)2l = b/ ()2 v
1+ 2(by/ (uf)2,vi) + b/ (up)2l3
1— (by/|[by]|,v})? 2
=1- b;/(u
T 2ol a2/ Tl v & ol 1 )
> 1 |[bu/ ()2,

where last inequality is from

I

1—a? _ 1 _ 1
B2 +2a8+1 ﬁ"’ﬁzgﬂ 1+ ﬂ2+12f£;a2
1
RETRC

14



Published as a conference paper at ICLR 2023

for0 < a <1.
Since

)

1
[billy < Sin(u})? + Liou (uf)? + ank
2

we obtain that

< Vl(o) V*>>1_ ((5 +L6 t+H1XT£ /(u*)2>2
V)" /= n
O
Lemma 4. Consider a simplified case where 2X[X; = I, 1X[X; = 0,1 # U, if vi(0) =
U%X?y, then
1
t) =c=X,
Vl( ) CTL 1Y
for some constant c.
Proof. From the gradient on the directions, we have that
ov(t 1 1 1
0 L e = L xX]y - Sax] Y Xeud 0wt
ot n n n 7
1
= guf(t)XzTy — i (t)vi(t).

Since v;(0) is with the same direction as %XlTy at the initialization. Therefore, aval t(t) has the same
direction as v;(t). We obtain that v;(¢) = ¢+ X"y for some constant c. O
Lemma 5. Ifthe gradient flow satisfies

1 0u?(t) 6 4

— < t 2u(t)B

5 < ub(t) + vV2u'(t)
for some constant B > 0, then for anyt < T = _logg we have u(t) < V0 with initialization

2024-60v2B
u(0) = 6.

Proof. We wanted to find some time 7" such that when ¢ < T, u(t) < v/f. Since the gradient is
bounded from above, we obtain that

L (T) %92 - exp ( /0 : 2ut(t) + \@uQ(t)Bdt>

2

IN

6.

IN

1 2 2 1
_ . < Z
0 exp ((29 + \/ieB)T)

This gives us

1
< log 5 -
202 + 6+/2B
O
Lemma 6. Fix any 7 < % Consider the gradient flow
10u?(t
§auat( ) > (1 —2B)V2u? (£) (u*)? — u8(t) — v2u® (t) B(u*)?
for some constant 0 < B < 1—10 with initialization u(0) = 0 < %u*, we have that
L o3
—u(t) — (u)?| < (1 =3B —1)(u")?,
7 () — ()7 < ( )(u")
after
* 1
psT— 21/3 (y*)4/3 1 2logy 5-

1/3°

% (1 6B)V2w 0 3(u)2(1/2 — 3B) (V2(1/2 — 3B)(u*)?)
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Proof. For any T' > 0, we have that

L2y s Loz exp ( / T(l — 2B)2v2u(t) (u*)? — 2ut(t) — 2\/§u(t)3(u*)2dt> .
2 2 0

When u(t) < ju*, we first aim to get T} such that —J=u?(T1) > 3(u*)?. Therefore,

7

> %92 - exp (((1 — 2B)2V2(u*)? — V2(u*)? — 2\/§B(u*)2) 0T1>
2/3
1 \/5 *\2
> 3 (2(u ) ) .
We obtain that ap e/
T> 2473 (u*) 1

= 02 (1-6B)v2(u*)26

When ¢t > T, we have that %u?’(t) > 1(u*)% Let us denote %u?’(O) = ((1=3B) —n)(u*)?, we

wonder how many iterations T; are needed to make %u3(Td) > ((1-3B) - 1n) (u*)?

L (VE-3B) ~m @) e < [ a-2mpvauny -2t - m“(t)B(“*)th>

5 (V2 =35 - @) e ((Ga002) (V2@ -8 - m ) )
25 (Vi@ =sm - ) (14 (3007) (Va8 - m ) )

> 5 (ve (=38 5) (u*)?)m.

1
2

Therefore,
Lo (1=3B) - 1)*® —((1-3B) —n)** 1
((1—3B) —n)*® ()2 (V2 ((1 - 3B) — ) (u)2)/*
> 2 2"
T3 Ly (1 -3B) —n) (VE((1 = 3B) — ) (w)2)"?
2
>

3r)2(1/2 - 3B) (V(1/2 — 3B)(w))

Overall, we obtain that

1 *\2 *\2
Eu?’(t)—(u) < (1=3B—¢€)(u")7,

after .
tZT:Tl-FTQlOng.
27

O

Proof of Theorem 2. Denote ¢ = 100 H %XTé Hoo For [ € S, the gradient flow can be simplied as

LOouf(t) 2 1o o7
3 o A ()X, r(t)

= ow] (t)(wi — wi(t)) + ~w] X[ €

2

> 20 (0)(ut 2 0),v7) = 26 (0) I (O3 — 207 0) o)l | - X €
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Since the initialization is balanced $u?(0) = Hvl(0)||§, we know that from the balancing result
Lemma 2,

1 2

S0 = M)l

Since the initialization of v;(t) is aligned with direction le y, and with our assumption on

orthogonal design, by Lemma 3 and Lemma 4, if || 1 X[ £||, < B(u;)?, we can further simplify the
gradient flow as
1 0u?(t)
5 L = V(L= 2Bl (0)(7)? - (1) — V2ul()B
> V2(1 = 2B)u} () (uf)? — uf (t) — V2u () B,
where the last inequality holds when B < 1. We will verify that B < 1 holds in the following
analysis.

If ¢ > (u,,.)?, then our desired inequality is achieved at the initialization.
If (u},;0)? < € < (ufyq0)?, for these group that ¢ < (u})?, applying Lemma 6 with
po X8l aXe, 1 e
(ur)2  — (u))? - 100’ (uy)?

we obtain the convergence on magnitudes
W@l = IWilly | < BB +e€) [[willy,

after
21/3(uf)4/3 1 N 2log, (uze) .
62 (1-6B)V2(u)?0  3(ur)2(1/2 - 3B) (V2(1/2 - 3B)(u})2)"”
If ¢ < (uf,;,)? similarly applying Lemma 6, the number of iterations needed for entries on the
support to converge is
21/3(ur Y43 1 21og, (umam)2
CZ'VZ — max 2¢

1/3°

+
02 (1= 6B)V2(urn)®0  3(ur,, )2(1/2 — 3B) (V2(1/2 — 3B)(uf,,,)?)
We now have that for [ € S,
Wil = Wil | < (3B +¢€) [willy,

vl
*7)2 < ﬁ,Vl €S.

(Urmin

where B =

Recall that the direction is lower bounded by Lemma 3 and Lemma 8§,

w(t) Wi 2
<||wl<>||2 ||vvl||2>21 B

Therefore, the error bound on the support is as follows,
vi(t)

(WO, = () 20k + (a)? <”‘V”E’3”vl>

< (3B +7) W) + WQ\/ 2= 2( g

1
= (3B +7)(u})? + (u})2V2B < anTyH te.

o0

[wi(t) = willo < llwi(t) —will, =

2

Forl ¢ S, we derive a lower bound on the growth rate
1ouf(t) 2 wT
- = X,
S = Swl (X, < )
=2lwi(0)[5 + Wl [ X/€

SU?(t)Jr\fUz()
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By applying Lemma 5 with B = ||+ X Ty||_ . we obtain that before

log &
202 + 0v/2B°

w =

Since 6 < ¥ T, < T, is ensured.

e
2(“7’71/(11

C ANALYSIS OF GRADIENT DESCENT

C.1 MONOTONIC UPDATES

Lemma 7. With an initialization u(0) < u* and step size v < FTOTIEL the updating sequence

4(11,
u(t) = u(t — 1) 4+ 2yu(t — 1)[(u*)? — u(t — 1)],

is always bounded above by u*.

Proof. We prove it by contradiction. Assume there is a time ¢ s.t.
u(t) <u  u(t+1) >u
Therefore,
u(t) + 2yu(t)[(u*)? — u?(t)] > u*.

Denote A = u(t)/u*, we have that

T4+ 2y(w)?(1 =A%) —=1/A>0
for some A € (0, 1].
Let f(\) = 1+ 2y(u*)?(1 — A2) — 1/), we obtain the derivative

F'(\) = —4y(u )A+%>O

However, frna:(A) = f(1) =0, and f(X) <0 forall A € (0, 1], which gives our desired contradic-

tion.

C.2 UPDATES WITH BOUNDED PERTURBATIONS

O

To study the general non-orthogonal and noisy case, we first extend the lemmas above to gradient

dynamics with bounded perturbations.
Consider the update on v(t) with bounded perturbations
z(t+1) = v(t) + (1) ((u")*v* — u?($)v(t)) + neu(t)be

z(t+1)
VO D = el

and the updates on u(t)
u(t +1) = u(t) + 2yu(t)v ' (t + D){(u*)*>v* — > (O)v(t + 1)} + 2yu(t)es,

Note that if we choose 1y = ﬁ, Eq. (4) is recast as

(W), 1
z(t+1) = uT(t)v + 20
oz(t+1)

VD= e

“4)

&)

(6)
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Lemma 8. Consider the update in Eq. (6), if ||b:|| < B(u*)? for some constant 0 < B < 1, we

have that
(v(t+1),v*)>1— B2

Proof. We have that

w0V = T Y
o (w)t ()’ O 2

therefore,

(alt 1), v*)? gy + 255y (e, v*) + g (br, v*)?

2 - w*)4 *)2
”Z(t + 1)” 24(1) + 224(1) <btaV*> ;11(,5) Hbt||2
L [be* — (br,v)?
(u)* + 2(u)? <bt7v*> + Hbtll
e/ (w*)?[|* = (be/(u*)2, v*)?

1+ 2(by/(u*)? 7V*>+ IIbt/(U*) I®
—1_ 1L—(b/[be]l, v*)? H b /(u H
L2 by /()2 (b / (e ]|, v*) + B[ / (u
> 1= [[bu/ ()’

>1-— B>

(v(t+1),v*)>+/1-B2>1- B%

Hence, we have that

O

Lemma 9. Consider the updates in Eq. (5) with |e;| < B, ifu?(0) < (u*)?, then u?(t) < (u*)*+ B
forall t. If u*(0) > (u*)? and |(v(t), b;)| < Bat(u*)?, then u?(t) > (1 — By)(u*)* — B for all t.

Proof. Proof by contradiction similarly to Lemma 7. O
Lemma 10. Fix the step size vy for the update on u(t), and choose u(0) = o < %u Consider
the updates in Eq. (5) and Eq. (4) with |(v(t),by)| < o (u*)? and |e)| < 55 (u*)?, then T >

(w*)?
m, we have that u?(T) > 1(u*)>.
Proof. Apply Lemma 8 with B = %,

(vit+1),v)>1-B*=1— — >

14
400 — 5

Starting from ¢ = 1, we have that

vIO{W)v =P ()v(t)} = %(u*)2 —u?(t),

therefore, we obtain an lower bound of the growth rate on u(t), which reads

e+ 1) 2 ) + 270(0) (5002 = 20 - 55()? )

= u(t) (1 +2y (i(u*)2 - u2(t))>

> u(t) (1 + 'y;(u*)2> .
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Therefore, the requirement on the number of iterations is recast as

o? (1 +71(u*)2)2T > %(u*)Q

2
1 (u*)Z
2T > 8 202 >
log(1 +v5(u*)?)
log (u*)22
=T > 20

= 2log(1+v35(u*)?)
With these requirements, by Lemma 9, we also have that u?(t) < 2(u*)?, vt > 0. O

Lemma 11. Fix the step size 7y for the update on u(t), and choose the initialization w(0) such that
|(u*)? — u?(0)| < 7(u*)? where 0 < T < 1/2. Consider the updates in Eq. (5) and Eq. (4) with
[(v(t),by)| < 157 (u*)? and |e| < {57 (u*)?, then after T > ﬁ, we have that (v(t),v*) >

1— 172 forallt < T and |u*(T) — (u*)?| < §7(u*)2

Proof. When u2(0) < (u*)?, by applying to Lemma 8, we have that

1\’ 1
(v(it+1),v*y>1-— <10T> >1-— 57'2,

therefore,

T 5
T Ay(u)P(l-T)
5
T>
S )
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When u%(0) > (u*)?, we have that

u(t +1) < u(t) + 2yu() (<u*>2 (1) + for(u*f)

= u(t) (1 + 2y ((1 + 107) (u*)? — u2(t)>) .

< uf(t) (1 - gyT(u*F) .

Similarly, we want to get

1 4
(u*)? + 57’(1[‘)2 > ((u*)? +7(u*)?) (1 - 57T7(u*)2>
(w)? + 57(u")? 2
@y e =L 5T
L1 (u*)?
<:>7 T *\2 > 2
57 T(u)” > (u)? + 7(u*)?
5
=T
~ 8y(ur)2(1+7)
=T > 5*
8y(u*)
If u(0) <= u* and u(t) > w*,t < T, or u( ) > u* u(t? t < T, we have already have
[u?(t) — u*)?| < ir(u*)? u?(T) —u*)?| < 57( 2 remains to hold.
Hence, after 7' > 57557, we have [u?(T ) u*)? < 37(u*)? O

C.3 ANALYSIS OF PERTURBATIONS

We decompose the updates into several terms for later investigation.

The gradient of £(-) on each v; is

oL 1 1
v = —*Ul X—r y — Zulz,Xl,vl/ + fu?XlTlel
! V#1 "
1 L
= —ﬁu?XlT (y — ZUZ%XI’VZ'>
=1

When [ € S, the gradient update on each v is

zi(t+1)=v ()+771tuz( ( Zup (t)Xpvy( ))

=1
=vi(t) + m,tU?(t>((U?)2V? =} (t)vi(1))

Fmed(o) (2XTX0 T (@) — o)

1 * *
() Y X X ((wh)*vi —up () ve (D)

VAL z'es K
— e (t Z Xl Xyrug, (t)vir (t)
rese
9 LT
+eup (t) X €.
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The gradient of £(-) on each w; is

oL 2 2
76 = ——U XlVl,y — Zul%Xl/Vl/ + —ulS ||XlVlH2
u; n = n

L
2
=——u { Xyv5,y — uZ Xy vy
TGRS oy

I'=1

When [ € S, the gradient update on u; reads

=
wr(t) + 2yu ()] (t+ 1) ((u))>vi — w2 (t)vi(t + 1))

X, I) (@ )Pvf — (vt + 1))

w(t+1) =w(t) + ’y%w( ) <X1Vz(t +1), Z ug () Xpvy (4 1)>

3\>—‘

+ 2y (t)v] (t+1) (
1
+ 2yu(t)v] <t+1>gx? ST Xe((up)?vh - ub(Ove(t +1))
V£ ES

1
— 2y (t)v] (t + 1)5xlT > Xy (vt +1)
'eSe

1
+ 2’Yul(t)ﬁvlT(t +1)X/€.

We now rewrite the definition of bounded perturbation in Eq. (4, 5), where the bounded perturbation
er,. on updates of u;(t) reads

et =V, (t-l— 1) ( XTXl —I) ((u})?vy —u2(t)vi(t + 1))

v DX S Xe((wh)PvE — v+ 1)
VALIES

1
—v, (t+ 1)ﬁxlT > Xpuf (v (t+1)
l'eSe

1
+ gvlT(t +1X/¢,

and the bounded perturbation b; ; on updates of v;(¢) reads
1
b= (XX T) ()i —  Owto)
1 *
+ > XXy ((uf) i — up (v (1))

V#£LI'ES

1
-> ngTXl’“fo (t)v(t)

l'ese

1
~X/¢.

We show in Lemma 11 that when the perturbations are bounded, the direction is roughly accurate
({v(t), v*) is large) and u; (t) converges exponentially. Now we show below that when the direction
is roughly accurate and w;(¢) is close to ], the perturbations are bounded.
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Lemma 12. Assume §;, < % and Sy < 12(()8@7?)2, o < 34/Fuf, XTéH <
SloTo(ul) and |(u})? —u?(0)| < 7(u})? foreachl € [L] where 0 < 1o < 7 < 1/2. If (vi(t),v}) >

1— 172 then |(vi(t),brs)| < 357(u})? and |er| < 157 (uf)?.

Proof. We first verify
| (ur)?vi —ui(t)vi(t)|| = |[{(u)? = wf () }vi = uf () {vi(t) — vi}]]
< 1@i)? = uf (O] +uf () [va(t) = v
< 7(uf)? +uf (8)y/2 = 2(va(t), Vi)
3 2V2
5(“1) ET

<7(u)*+ (7
< 37(u})?
By Assumption 1, we have that
v (0 (SXTX0- 1) (@0 B Ow@) 97 (0 3 IR (i) - b vio)
VALIES
< B () + 358 (har)? < o () + o (uh)? = oo (ui)’.

40
For the other two terms, we have that

]' *
< 3(L— s)o® < or(up)?,

1
L)Y =X Xyl (v (t)

l’esSe
and
1
v O2XTe] < VT o), |2xTe]

< I, |5x7¢|

i *\2

SgoT(Uz)
Therefore,

lerel = [{(vi(t),brs)| < o
O

Lemma 11 shows that when the upper bound of perturbation is fixed, u;(t) grows. Now we show that
after u;(t) grows, the upper bound of perturbations will be decreased.

Lemma 13. Assume 6;

(u:nzn)2)2 and 5out < (“:nm)Q )2, a < V7o ur

T
m = 120( ;m” 120s(uk,, v W X €H

2
aTo(up)? and (vi(t),vi) > 1 — 172, If we achieve that |(ul) —u(0)] < 37(u l) Sfor each
I € [L]where 0 < 170 < 7 < 1/2, then |{vi(t),by1)| < 557 (u;)? and |e 4] < 557 (up)>

Proof. Similarly to the proof of Lemma 11,

IN

[(ur)?vi = ui Ovi(®)

IA A\
N W N~ N~
\]
—~
<
=%
e
+
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By Assumption 1, we have that

v (0 (SXTX0-T) (@) = Ow) 9T (0 Y XXl — i Oveo)

UV£LIES
< 36m7'(u V4 Dottt )2 < r ()2
— 2 max 2 max — 40 Y
where 0 < 505 Slmllarly, we obtain that
]' * 1 * * *
level = [(vi(8), bue)l < 57 (ug )? + 307w )’ + 507w )? < 507 (i ).

O

By Lemma 10, we know that after certain iterations, we have that [u?(t) — (u*)?| < %(u*)?. Starting
from there, we will apply Lemma 11 and Lemma 12 iteratively until we have our desired accuracy.

We just need to verify when 7 = %, the condition of either Lemma 11 and Lemma 12 is satisfied.
Note that the condition of Lemma 10 already satisfies the condition of Lemma 11 at 7 = 1 . Note the

2 2
condition of Lemma 10 is satisfied when §;,, < 712(0("71") 2 and 0y < 71288a1::1£)2, a< ( mm)Q,
1T 2
H X £Hoo = 807—0( Uppin)”-

max

C.4 ERROR ANALYSIS OUTSIDE THE SUPPORT

We only care about the growth rate of u;(¢) when [ ¢ S. When [ € S¢, the gradient updates on w;
reads

w(t+1)=ut) + 'y%uz( t) <szz Z ug (6) Xy vy ( )>

I'=1
— wi(t) — 2y} (1

— 2vul (t)v] (t) (TlleTXl - I) vi(t)
2OV (0% 37 Xu((p v~ u (v (0)
I'esS

2] (02X Y Kb (Bve (o)

VL1’ eSe

+ 2y (t) i) X] €

Consider the initialization is u;(0) = «, we wonder the smallest number ¢ of iterations that we can
ensure u;(t) < y/a. Denote

era = =u2lt) v () (XX~ 1) wil)

1 *
+ vlT(t)EXlT § Xy ((up)2vy —ud (t)vp (b))
’'esS

—vl<>ixT > Xeud(tve ()

U#1,1'eSe
+ Vl [ (X €
‘We have that

lerd] < o+ adip + @bout(L —s) +

3 1
U + | 1XTe

‘ oo
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Ifa<

< SOL( ur )2, Gin < % and Oy < %, we have that

L1
*
raw 20s(uly 0z

1
— 20

®)

1
(i) + [T

’ oo

Lemma 14. Consider
u(t +1) = u(t)(1 + 2ver)

then for any t < T = 1=log L, we

where |e;| < B and u(0) = «. Let the step size v < 3575 108 o1

have u(t) < y/u(0).

4B’

Proof. We start by observing,
Va > ut) > a1+ 29B)’

log 1
Ja
St —
~ log(1+ 2vB)
By using logz <z — 1,
log =
Va S 1 1 1 1

log —= > —— log —
log(1+2vB) = 27B °/a = 327B S ot

D PROOF FOR THEOREMS IN SECTION 4

D.1 PROOF OF THEOREM 3

rooj. , at the 1nitialization, we alrea ave 10r S
P If ¢ > (uf,,, he initializati Iready have for VI € [L
||ul( vl H < ul ( ) < « +( max)2
<2(u mx) <2(
< 160 HXTg ’ V 160e.
n o0

If¢ < (u , for those [ € S such that ¢ < (u})?, we can apply Lemma 10. After

m(lT)
- IOg (ul)
2log(1 + 7§(ul )2)’

we obgain that 3 (uf)? < uP(Th) < 3(u})?, where we also have that ||t X T&|| < g5(up)? for
every [.

Let mg be the number s.t.
270 (Ug0)? < ¢S 27 (U

(ur,

which can be written as mo = |log,
times. Then further after

J We can apply Lemma 11 and Lemma 12 together m

* 2 5
T, = |log, (umgz) J2’V(Ul*)2’

we have that

|uf (To) — (uf)?] <27 (u <2

mam)

1
(vi(T3),vi) >1— 52_27"0.
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Therefore,
|ui (T2)vi(T») — vill o < i (To)vi(T2) — (uf)?vi |,
< || (Wi (T2) = (uf)*)vi(T2) — (uf)*(vi — vi(T2))],
<2 (uf,)? (1)) /2 — 2vi(T), vi) ©)
<O (00 (0222
< 2.

Note that the above inequality holds for every I € S such that (u})? > (. For those [ such that
¢ > (u})?, we are not able to recover the true signal (u})?. the gradient dynamics on this group
behaves as errors outside group, and bounded by Lemma 14.

For entries outside the support, we know that from Eq. (8),

1, . 1+ 1 )
= — . —_ < — .
20 (umzn) ‘ Xl 10 (C v ( mzn) )
By Lemma 14, we have that before T3 < 535 log 21, w (T3) < v/au.

When ¢ < (u mm) , Eq. (9) holds for every I € S. Therefore, a uniform number of iterations 77 and
T5 for all groups is written as

)2
].Og ma.n
210g(1 + ’72(< 4 ( m171)2))

T =

)

and
(Uhnaz)? 5

max

Ty = |log ] -
All we left is to show that T3 > T + T5. We observe that

log (ipag)” 14720V (Whin)?) | (Ufhas)?
T = @ < 1
YT 2log(T 4 ALV (WD) — ACV (Wh)?)E 202
2 1Og(u7*naz)2

where the first inequality is by logz > £=1.

With our choice of small initialization on «, we have 177 < T3, due to o < ﬁ ‘We have
o Taw

T < §T3, because of o < ﬁ.
. log (u:”aéx)z (ur,
Hence, we obtain that after 7; = T + Th > SToe(Ty (2” ) + |log, J 2v(cv(u ,
2

3¢V (ulin) in)
_ 5
and before T, = T35 < 65V (ar )7

log L

a47

. ixT Ve, ifles.
et - povil 5 {1 Sl Ve RS

D.2 PROOF FOR COROLLARY 1

Here is a standard result for sub-Gaussian noise.
Lemma 15. Let %X be an x p matrix with l3-normalized columns. Let & € R™ be a vector of

independent o*-sub-Gaussian random variables. Then, with probability at least 1 —

2
<. ]° logp-
~ n

26

8p

e
n

’ o0
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Proof of Lemma 15. Since the vector £ are made of independent o2-sub- Gau551an random variables
and any column of X is £o-normalized, the random variable Tn L (X T¢), is still 2-sub-Gaussian.

([7rd > ) =ee(-3m)

Setting € = 24/202 log(2p), with probability at least 1 — % we have

2]
< 2\/02 log(2p) < il -

It is a standard result that for any € > 0,

XTe¢

e
n

‘ o0

O

Proof of Corollary 1. Since £ is made of independent o-2-sub-Gaussian entries, by Lemma 15 with
probability 1 — 1/(8p*) we have

202 log(2p)
—

1
“XTell <2
n

‘ o

202 log(2p)

- , we obtain that

Hence, letting € = 2

2
[Du®)? vt~ w3 3@+ Y a < s+ (L —s) 5 £ %L
les 1¢s

D.3 CONVERGENCE FOR ALGORITHM 2

Lemma 16. Consider the update in Eq. (4), choose the step size ny = n < ﬁ, if (v(t),v*) >
1— 37 [u(t) — (u*)?| < 7(u*)? and ||by|| < 157(u*)? for some constant 0 < T < 3, we have that

1
(vit+1),v:y>1-— 5T

Proof. We first rewrite z(t + 1) as

2(t +1) = nu? () (u*)*v* + (1 = 5u* () V() + nu®(t)by.

Therefore,

(&t +1),v*) > mu () (w)? + (1= nu (£))(v(£), v¥) + 1 (t)(be, v*)

> 0 + (0=t 0) (1 57) - o) g
e+ 1)1 < 2 (6) )2+ (1= (0)) + (1) 35",
We obtain that
) o EEEDY) A () + o (o) ()
VDD = TGO 2 @+ (- () + )
o L) + () (u)? L
21T RO T (Lt (0) + @) ()7 5
>1—%T.

27



Published as a conference paper at ICLR 2023

Note that compared with Lemma 8, under the condition ||b;|| < B(u*)?, we get (v(t + 1), v*) >
1 — Binstead of (v(t 4+ 1),v*) > 1 — B2. Accordingly, we need to a new version for Lemma 12
with a smaller bound on ¢ to make up the loss in Lemma 16.

Lemma 17. Assume 0;, < ‘1/2?((”’“"))22 and 0oy < féziu:::;)?’ a < 2‘/T‘Jul, |1XT€H <
?%TO(U?)Q and |(u})* —u?(0)] < 7(uf)? foreachl € [L] where 0 < 19 < 1 < 1/2. If (v (t),v}) >
1— %T, then |(vi(t),bi)| < 15 (ul) and |e; +] < 1—107'(@)2.
Proof. Similarly to Lemma 12, we have that
[(up)?vi = uf (@) vi(®)]] < 7(up)? + uf ()1 /2 = 2(vi(t), v})
< r(w)? + S22 r (10)
= l 9 l \/5

By Assumption 1, we have that

vl (0 (SXTX0= 1) (@0~ Ov) 497 (0 3 TXIXu (0~ b vio)

UV£LIES

1 1 1,
< <1 + 2\/7_—0) 57717'( max) + <1 + 2\/7_—0) SaoufT(umar)2 < %T(ul )2’

where § < %/OTT’(( :"’")) The other two terms follows exactly what we did in Lemma 12. Therefore,

1
() <

< ()

1
lerel = [(vi(t), bie)| < + 0

O

Proof to Theorem 4. The proof is similar to that of Theorem 3. For the first stage, we apply
Lemma 10, as nothing is changed from Theorem 3. For the second stage, instead of applying
Lemma 11 and Lemma 12, we apply Lemma 16 and Lemma 17 iteratively. To apply these lemmas,
we first observe that

¢
—— <7
(Uhnaz)?

¢ < moluy )2 —

max

Therefore the requirement on §’s becomes §;, < \1/;0((5;'““)3 and 0y < fég Eulz » ))3 The number

of iterations and convergence results follow from the proof of Theorem 3.
O

The criterion for switching time. We provide some motivation for the practical criterion. We first
note that, the criterion in Theorem 4 actually indicates a lower bound of switching time. With more
derivations, our results still hold if one choose to switch after the time when the criterion is first
satisfied (instead of switching right at that time.) Let us focus on the entries on the support. In the
proof of Theorem 3, one can also obtain the convergence on u;(t) as the positiveness of u;(t) can be
ensured with a small step size v (since the power-parametrization will recast the gradient updates
into a multiplicative sequence). Therefore, with an appropriate choice of 7, the practical criterion
rlne%xﬂul (t+1) — w(t)|/|w(t) + €|} < 7 would imply the theoretical criterion u; ()% > 1uj(t)?

on the support, and therefore would indicate a possibly later switching time than what the theoretical
criterion determines. For gradient updates outside the support, we observe slow growth rate and
hence the practical rule is likely satisfied on the non-support entry, which we observe in the numerical
experiments. Note that the switching only happens when both the support and non-support entries
fulfill the criterion.
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E MORE NUMERICAL RESULTS

E.1 STABILITY ISSUE OF ALGORITHM 1 AND STANDARD GD

Recovered entries Recovered direction parameters (v)
15— groupl 10
m— group2 08
= group3
107 —— non support 0.6
0.4
5 = groupl
0.2 === group2
= group3
0 T 0.01 === non support
0 100 200 300 400 500 0 100 200 300 400 500
(a) Numerical instability in direction estimations.
Recovery error Recovered group magnitudes
3
41— w(t),le S
) ; — %asxul(t)
2
= —
| = 5
E1
- 1
0 0
0 100 200 300 400 500 0 100 200 300 400 500
epochs epochs

(b) Parameter estimation error remains small.

Figure 6: Numerical instability of algorithm 1

Stability issue of Algorithm 1. Figure 6 presents the recovered entries and direction parameters v ()
under the same setting as Figure 2. Because of the large learning rate on v, the algorithm may not
show a convergent result in the latter stage due to the irreducible error (perturbations). Although the
parameter estimation is still reasonable with normalization on each v;, [ € [L], we still aim to get a
stable algorithm, which motivates our algorithm 2.

Recovered entries with zero initialization Recovered group directions with zero initialization Recovered entries with small initialization

S —

161 =— wy(t).leS 10

14] — maxui(t)

groupl
group2

— wilt).les

—max wy(t)
125

08 group3
groupd

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
epochs epochs epochs

Figure 7: Gradient descent without weight normalization.

Standard gradient descent. To further understand how weight normalization affects the gradient
dynamics, we conduct experiments using standard gradient descent without weight normalization.
For that, we use the same setting as in Figure 4 and show the result in Figure 7. The left and middle
figures are based on zero initialization on v. We see a numerically convergent result, and the inner
product between learned and true directions starts to grow from 0. As the directions guide the
magnitude to grow, there is an extra stage for the directions to become roughly accurate. The choice
of this initialization is necessary and subtle. The figure on the right is for small initialization 10~3,
where the entries outside support get significant magnitudes, and the algorithm fails.
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E.2 AUTOENCODER WITH GROUPING LAYER

The grouping layers have been used in grouped CNN and grouped attention mechanisms (Wu et al.,
2021; Xie et al., 2017; Lee et al., 2018), which usually leads to parameter efficiency and better
accuracy. To demonstrate the practical value of such grouping layers, we conduct the following
experiment about learning good representations on MNIST.

(Jing et al., 2020) proposed implicit rank-minimizing autoencoder (IRMAE), which is a deterministic
autoencoder with implicit regularization. The idea is to apply more linear layers between encoder
and decoder to penalize the rank of latent representation. A graphical illustration of the architecture
is shown in Figure 8, where we explicitly show the last convolution layer and the linear layers in the
latent space, which are absorbed into the last layer of the encoder in practice. This design is related
to the power parametrization (Schwarz et al., 2021) trick to promote sparsity/low-rankness. One
major advantage is that IRMAE produces a more interpretable latent representation, and the linear
interpolation in the latent space gives a natural transition between two images.

latent layers
e

CNN — Wi —| W, — W,

Figure 8: Implicit rank-minimizing autoencoder.

grouped latent layers

CNN;

CNN,

CNN;

CNN,

Figure 9: Implicit rank-minimizing autoencoder with grouping layers.

Inspired by our DGLNN, we design a CNN analog of it, which we call grouped autoencoder
(GAE). The architecture is shown in Figure 9. The channels feed into the last convolutional layer of
encoder is separable into g groups. The linear layers (power-parametrization) are applied within each
group. Grouping channels of convolutional layers is a common practice to improve the parameter
efficiency. With these grouping and power layers in the latent space, we expect it learns a better latent
representation as IRMAE does.
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422222272777

Figure 10: Linear interpolations between data points on the MNIST dataset. GAE4/8 stands for
grouped autoencoder with 4/8 groups.

The linear interpolations between data points in the latent space are shown in Figure 10. We compare
the grouped autoencoder (GAE) with autoencoder (AE), variantional autoencoder (VAE) and implicit
rank-minimizing autoencoder (IRMAE). We see that GAE outperforms AE and VAE, and gives
comparable results with IRMAE. However, GAE achieves a better parameter efficiency as shown in
Table 2.

# of params
IRMAE 786K
GAE4 196K
GAES 98K

Table 2: Number of parameters of hidden layers in latent space.

E.3 EXPERIMENTS WITH GAUSSIAN MEASUREMENTS

Besides the numerical results shown in Section 5, we conduct the following experiments with
sampling each entry of X from a standard normal distribution.

The effectiveness. We follow the same setting with that Figure 3 except changing Rademacher
random variables to Gaussian random variables. The convergence of Algorithm 2 is shown in
Figure 11. We see that the recovered entries, group magnitudes and directions successfully converge
to the true ones.

Recovered entries Recovered group magnitudes Recovered group directions

— wilt),

€es

— maxwy(t)
1gs ’

— ult)les
— ax (1
mas (1)

groupl
group2
group3

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
epochs epochs epochs

Figure 11: Convergence of algorithm 2 with Gaussian measurements

Comparisons with explicit regularization methods. We compare Algorithm 2 with proximal
gradient descent implemented in (Carmichael et al., 2021) and primal-dual procedure (Molinari et al.,
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2021). Each entry of X is sampled from a standard Gaussian distribution. We set n = 150 and
p = 300, and the number of non-zero entries is 10, divided into 3 groups with size 4. We vary the
variance in the noise to achieve different signal-to-noise ratios (SNR). The experiment is repeated 30
times at each noise level. The average and standard deviation of the estimation error are depicted
in Figure 12. Our algorithm is consistently better than explicit regularization methods, whereas the
primal-dual procedure has a comparable performance when SNR is large.

84
1 —e— PGD
61 & DGLNN
=] \\ —sw= Primal-Dual
% \}
| ~
L2 Sl
B LGRS
- -~
3 0 S T~
20 ~ -~
2 SC . bl T
92 ‘N\__ ~IC ]
ST
744
0 5 10 15 20 25 30 35
SNR

Figure 12: Comparisons with proximal gradient descent and iterative regularization.

To further discover the potential applications of our findings, we use a gene expression dataset from
the Microarray experiments of mammalian eye tissue samples (Scheetz et al., 2006). The dataset
consists of 120 samples with 100 predictors that are expanded from 20 genes using 5 basis B-splines,
as described in (Yang & Zou, 2015). The goal is to predict the gene expression level of TRIM32,
which causes Bardet-Biedl syndrome. We randomly split the data equally, and use the validation
dataset for hyperparameter tuning and early stopping. We compare our approach with the commonly
used proximal gradient descent and a primal-dual approach. The result is shown in Table 3. Our
approach achieves the best performance among these three methods.

Testerror | PGD Primal-Dual | Our approach
MSE 0.03096 0.02868 0.02477

Table 3: Comparisons of MSE (mean squared error) on test set.
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