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Abstract

We give the first polynomial time and sample (¢, 0)-differentially private algorithm to
estimate the mean, covariance and higher moments in the presence of a constant fraction
of adversarial outliers. Our algorithm handles an absolute constant fraction of adversarial
outliers in the data and succeeds for families of distributions that satisfy two well-studied
properties in prior works on robust estimation: certifiably subgaussianity of directional moments
and certifiably hypercontractivity of degree 2 polynomials. Our recovery guarantees hold in
the “right affine-invariant norms”: Mahalanobis distance for mean, multiplicative spectral and
relative Frobenius distance guarantees for covariance and injective norms for higher moments.
Prior works obtained private robust algorithms for mean estimation of subgaussian distributions
with bounded covariance. For covariance estimation, ours is the first efficient algorithm (even in
the absence of outliers) that succeeds without any condition-number assumptions.

Our algorithms are obtained via a new framework that provides a general blueprint modifying
convex relaxations for robust estimation to satisfy strong worst-case stability guarantees in the
appropriate parameter norms whenever the algorithms produce witnesses of correctness in their
run. We verify such guarantees for a slight modification of standard sum-of-squares (SoS)
semidefinite programming relaxations for robust estimation. Our privacy guarantees are
obtained by combining our stability guarantees with a new "estimate dependent” noise injection
mechanism that adds noise with magnitude that scales with the eigenvalues of the estimated
covariance. We believe this framework will be useful more generally in obtaining differentially
private counterparts of results in robust statistics.

Independently of our work, Ashtiani and Liaw [AL21] also obtained a polynomial time and
sample private robust estimation algorithm for Gaussian distributions.
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*Google Research



1 Introduction

In this work, we consider the problem of efficiently estimating the mean, covariance and, more
generally, the higher moments of an unknown high-dimensional probability distribution on R,
given a sample y1,v2,..., Yy € R4, under two design constraints: outlier robustness and privacy.
The first demands that we build estimators for such basic parameters of probability distributions
that tolerate a fixed (dimension-independent) constant fraction of adversarial outliers in the input
data. The second demands that our estimators preserve the privacy of individual points y;s (that
we model as being contributed by different individuals) participating in our input data.

Sans privacy constraints, the problem of robustly estimating the basic parameters of an unknown
distribution has been the focus of intense research in algorithmic robust statistics starting with
the pioneering works of [DKK*16, LRV16] from 2016. In addition to new (and often, information-
theoretically optimal) algorithms for several basic robust estimation tasks [KS17b, KS17a, HL18,
BK20a, DHKK20], this line of work has led to a deeper understanding of the properties of the
underlying distribution (algorithmic certificates of analytic properties such as subgaussianity,
hypercontractivity and anti-concentration, resilience [SCV18]) that make robust estimation possible
along with general frameworks such as outlier filtering and the sum-of-squares (S0S) method for
attacking algorithmic problems in robust statistics.

Sans outlier robustness constraints, the task of private estimation of the mean and covariance
of probability distributions has also seen considerable progress in the recent years. Differential
privacy [DMNS06] has emerged as a widely-used standard for providing strong individual privacy
guarantees. Under differential privacy, a single sample is not allowed to have too significant of an
impact on the output distribution of an algorithm that operates on a dataset. Differential privacy has
now been deployed in a number of production systems, including those at Google [EPK14, BEM"17],
Microsoft [DKY17], Apple [Grel6, Appl7], and the US Census Bureau [Abol8]. While initial
approaches to estimating the mean and covariance under differential privacy required a priori
bounds on the support of the samples, a more recent work [KV18] managed to obtain the first
private mean estimation algorithm for samples with unbounded support. Subsequent works
have built on this progress to obtain differentially private algorithms for mean estimation and
covariance estimation (under assumptions on the condition number of the unknown covariance)
of Gaussian and heavy-tailed distributions [KLSU19, BS19, BKSW19, CWZ19, BDKU20, KSU20,
DEM*+20, WXDX20, AAK21, BGS*21].

In this paper, we focus on the task of finding efficient estimation algorithms for mean, covariance
and, more generally, higher moments with recovery guarantees in multiplicative spectral distance
(i.e., an affine invariant guarantee necessary, for example, to whiten the data or put a set of points
in approximate isotropic position) and relative Frobenius distance (necessary for obtaining total
variation close estimates of an unknown high-dimensional Gaussian). A very recent work of Liu,
Kong, Kakade and Oh [LKKO21] found the first private and robust algorithm for mean estimation
under natural distributional assumptions with bounded covariance. However, their techniques
do not appear to extend to covariance estimation. Informally, this is because in order to obtain
privacy guarantees, we need robust estimation algorithms that are stable, i.e., whose output suffers
from a bounded perturbation when a single data point is changed arbitrarily. When the unknown
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covariance is bounded, one can effectively assume that the change in a single data point is bounded.
However, in general, the covariance of the unknown distribution can be exponentially (in the
underlying dimension) varying eigenvalues which precludes such a method (even in the outlier-free
regime).

This work In this paper, we give the first algorithms for differentially private robust moment
estimation with polynomial time and sample complexity. Our algorithms, in fact, provide a general
blueprint for transforming any robust estimation algorithm into a differentially private robust
moment estimation algorithm with similar accuracy guarantees as long as the robust estimation
algorithm satisfies two key properties: 1) the algorithm is “witness-producing,” i.e., the algorithm
finds a sequence of “weights” on the input corrupted sample that induce a distribution with
a relevant property of the unknown distribution family (such as certifiable subgaussianity or
hypercontractivity) and 2) the algorithm allows for finding weights that minimize a natural strongly
convex objective function in polynomial time. Such properties are naturally satisfied by robust
estimation algorithms based on sum-of-squares semidefinite programs. Our main technical result is
a simple framework that transforms such an algorithm into one that satisfies worst-case stability under
input perturbation in the relevant norms on the parameters. The final ingredient in our framework is
a new noise injection mechanism that uses the stability guarantees so obtained to derive privacy
guarantees. This mechanism allows obtaining privacy guarantees even though the distribution of
the noise being added depends on the unknown quantity being estimated. In particular, such a
subroutine allows us to obtain private robust covariance estimation without any assumptions on
the condition number. We note that even without the robustness constraints, a private covariance
estimation algorithm without any assumptions on the condition number was not known prior to
our work.

Robustness implies privacy? Our blueprint presents an intuitively appealing picture—that
robustness, when obtained by estimators that satisfy some additional but generic conditions,
implies privacy via a generic transformation. This connection might even appear natural: privacy
follows by “adding noise” to the estimates obtained via algorithms that are insensitive or stable
with respect to changing any single point in the input, while robustness involves finding estimators
that are insensitive to the effects of even up to a constant fraction of outliers. Despite this apparent
similarity, there are two key differences that prevent such an immediate connection from being
true: 1) privacy is a worst-case guarantee while robustness guarantees are only sensible under
distributional assumptions, and, 2) privacy guarantees need insensitivity even against “inliers.”
Nevertheless, our main result shows that robustness, when obtained via algorithms that satisfy
some natural additional conditions, does yield stable (or insensitive) algorithms as required for
obtaining differentially private algorithms.
In what follows, we describe our results and techniques in more detail.



1.1 Owur Results

Formally, our results provide differentially private robust estimation algorithms in the strong
contamination model, which we define below.

Definition 1.1 (Strong Contamination Model). Let n > 0 be the outlier rate. Given a distribution D
on RY and a parameter n € N, the strong contamination model with outlier rate 1 gives access to a
setY CRYof n points generated as follows: 1) Generate X C R?, an ii.d. sample from D of size n,
2) Return any (potentially adversarially chosen) Y such that |[Y N X| > (1 — n)n. In this case, we say
that Y is an n-corruption of X.

In the context of analyzing privacy, we will say that two subsets of # points Y, Y’ € R (a.k.a.
databases) are adjacent if they differ in exactly one point (i.e |[Y N Y’| > n — 1.) We now present our
main theorem, which provides a differentially private robust algorithm for moment estimation of
an unknown certifiably subgaussian distribution in the strong contamination model.

Our formal guarantees hold for moment estimation of certifiably subgaussian distributions.
A distribution D is C-subgaussian if for any direction v and any ¢t € N, Ep{x — u(D),v)* <
(CH (Ep(x — u(D), v)?)! where p(D) is the mean of the distribution D. Certifiable subgaussianity
is a stricter version of such a property that additionally demands that the difference between the
two sides of the inequality be a sum-of-squares (S50S) polynomial in the variable v. Gaussian
distributions, uniform distributions on product domains, all strongly log-concave distributions and,
more generally, any distribution that satisfies a Poincaré inequality with a dimension-independent
constant [KS17a] are known to satisfy certifiable subgaussianity. See Definition 3.22 and the
preliminaries for a detailed discussion.

Our first result is an algorithm for moment estimation of certifiably subgaussian distributions
that runs in polynomial time and has polynomial sample complexity.

Theorem 1.2. Fix Co > 0 and k € IN. Then, there exists an 19 > 0 such that for any given outlier
rate 0 < n < no and €,0 > 0, there exists a randomized algorithm Alg that takes an input of n >
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2Co + 2810 9 1 1), yuns in time (Bn)O®) (where B is the bit complexity of the entries of Y) and outputs
either “reject” or estimates fi € Q%, . € Q%, and M®) € Q™2 (for all even t < 2k such that t divides
2k) satisfying the following guarantees:

1. Privacy: Alg is (¢, 0)-differentially private with respect to the input Y, viewed as a d-dimensional
database of n individuals.

2. Utility: Let X = {x1,x2,...,Xn} beani.id. sample of sizen > ng from a certifiably Co-subgaussian
distribution O with mean ., covariance L. > 27 PO and moment tensors Mft) fort > 2. If
Y ={vy1,Y2,...,Yn} is an n-corruption of X, then with probability at least 9/10 over the draw of X
and random choices of the algorithm, Alg does not reject and outputs estimates fi € Q°, S e Q™ and
M) e QIxdx-xd (for gll t < 2k such that t divides 2k) satisfying the following guarantees:
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and,
(1 _ O((Ck)t/Zk) nl—l/k)z* < i < (1 + O((Ck)t/Zk)nl_l/k) .,

and, for all even t < 2k such that t divides 2k,

(1 _ O(Ck)nl_t/Zk) <M®t,M£t)> < <u®t’M(t)> < (1 + O(Ck)T]l_t/Zk) <u®t,M£t)> .

In the above and subsequent theorems, we use the Q notation to hide multiplicative logarithmic
factorsind, C, k, 1/n,1/¢, and In(1/9).

Discussion Our algorithm above achieves an error guarantee in the “right” affine-invariant norms
similar to the robust moment estimation algorithm of [KS17b]. In particular, the error in the
mean in any direction scales proportional to the variance of the unknown distribution providing
recovery error bounds in the strong “Mahalanobis error.” Similarly, the error in the covariance is
multiplicative in the Léwner ordering. Our algorithm succeeds in the standard word RAM model
of computation. In particular, the lower bound assumption on the eigenvalue of the unknown
covariance in the statement above is entirely an artifact of numerical issues. Such an assumption
can be removed (and in particular, we can deal with rank deficient covariances) if we assume that
the unknown covariance X, has rational entries with polynomial bit complexity. We choose to make
an assumption on the smallest eigenvalue of . for the sake of simpler exposition.

Our algorithm above is obtained by applying a general blueprint that applies to any robust
estimation algorithms that use “one-shot rounding” to produce a differentially private version. We
explain our general blueprint in more detail in Section 2.

Applications Our differentially private moment estimation algorithm immediately allows us to
obtain a differentially private mechanism to implement an outlier-robust method of moments. This
allows us to learn parameters of statistical models that rely on the method of moments, such as
mixtures of spherical Gaussians with linearly independent means [HHK13] (that rely on decomposing
3rd moments) as well as independent component analysis [DLCCO07] (that relies on decomposing
fourth moments). We direct the reader to the work on robust moment estimation that details such
applications [KS17b].

Covariance estimation in relative Frobenius error The above theorem provides a multiplicative
spectral guarantee. Such a guarantee, however, only yields a dimension-dependent bound on
the Frobenius norm of the error. While this is provably unavoidable for the class of certifiably
subgaussian distributions, recent work [BK20b] showed that for distributions that satisfy the
stronger property of having certifiably hypercontractive degree 2 polynomials (informally speaking,
this is the analog of certifiable subgaussianity for moments of degree 2 polynomials instead of linear
polynomials (x, v) of the random variable x), one can obtain a dimension-independent bound on the
Frobenius estimation error that vanishes as the fraction of outliers tends to zero. Their algorithm
relies on rounding an SoS relaxation with a slightly different constraint system. By working with



their constraint system and applying our blueprint for obtaining a “stable” version, we obtain a
version of the above theorem with the stronger Frobenius estimation guarantee (see Theorem 5.6).

By combining our privacy analysis above with the recent work that shows that the algorithm
in [BK20b] gives optimal estimation error when analyzed for corrupted samples from a Gaussian
distribution, we obtain the following stronger guarantees for private mean and covariance estimation
for Gaussian distributions.

Theorem 1.3 (Mean and Covariance Estimation for Gaussian Distributions). Fix ¢,0 > 0. Then,
there exists an absolute constant 19 > 0 such that for any given outlier rate 0 < 1 < 19, there exists a
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time (Bn)®W (where B is the bit complexity of the entries of Y) and outputs either “reject” or estimates
fi € Q% and £ € Q™ with the following guarantees:

1. Privacy: Alg is (¢, 0)-differentially private with respect to the input Y, viewed as a d-dimensional
database of n individuals.

2. Utility: Let X = {x1,x2,...,x,} be an i.i.d. sample of size n > ng from a Gaussian distribution
with mean ., and covariance T, > 27 PWD[ such that Y is an n-corruption of X. Then, with
probability at least 9/10 over the random choices of the algorithm, Alg outputs estimates [I € Q*
and 5. € Q¥ satisfying the following guarantees [Ameya: I added in the log(1/6) dependence to be
explicit. Can you check whether this lets us get rid of the tilde on the O?]:

~( log(1/6
Vu e RY, (i — ., u) < O(n-%) uTx.u,

log(1/5
| . /og(g/)).

In particular, dry(N (3, £), N (1., Z.)) < O(nlog(1/6)/e).

and,
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1.2 Related Work

Since the works of [DKK"16, LRV16], there has been a spate of works designing additional
robust estimation algorithms for a wide variety of problems, including mean and covariance
estimation [DKK"17a, DKK"17b, CDGW19, DHL19, HLZ20, Hop20, LY20], mixture models [HL18,
KSS518, BK20c, DHKK20, BDH*20], principal component analysis (PCA) [KSKO20, JLT20], etc. (see
survey [DK19] for details on recent advances in robust statistics). Furthermore, the criterion of
reslience formulated in [SCV18] as a sufficient condition for robustly learning a property of a dataset
was subsequently generalized in [Z]S19] in order to deal with a more general class of perturbations.

In the setting of high-dimensional parameter estimation, release of statistics can often reveal
signficant information about individual data points, which can be problematic in a number of
applications in which it is desirable to protect the privacy of individuals while still providing useful
aggregate information (e.g., medical data or census data). Attacks exploiting such properties have
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been investigated in a long line of works [DN03, BUV14, DS5*15, SU15, DSSU17, SSSS17]. In light
of such exploits, there has been much interest in designing statistical algorithms that protect the
privacy of individual samples in a dataset.

In the area of differentially privacy, various works have explored private estimation pertaining to
Gaussian mixtures [NRS07, KSSU19], identity testing [CKM™*20], Markov random fields [ZKKW20],
etc.

Concurrent related works The problem of private robust mean and covariance estimation has
been the subject of great interest resulting in a few concurrent and independent related works.
Kamath, Mouzakis, Singhal, Steinke, and Ullman [KMS"21] give a differentially private (in the
outlier-free regime) algorithm for mean and covariance estimation of Gaussian without making
condition number assumptions on the covariance. The work of Liu, Kong, and Oh [LKO21]
gives a statistical feasibility of private robust estimation with optimal sample complexity via a
computationally inefficient algorithm. Finally, Hopkins, Kamath, and Majid [HKM21] also use the
sum-of-squares semidefinite programs to obtain private mean estimation (in the outlier-free setting)
algorithm for bounded covariance distribution with pure differential privacy. Our result are most
directly related to the work of Asthiani and Liaw [AL21] that also obtains efficient private and
robust mean and covariance estimation for Gaussian distributions.

2 Technical Overview

In this section, we give a high-level overview of our general blueprint for obtaining differentially
private versions of robust estimation algorithms. As a running example, we will focus on the
problem of obtaining private and robust mean and covariance estimators. Specifically, our goal is
to design an algorithm that takes input consisting of 1 points, say Y € R?, along with an outlier
rate 1 and returns estimates of the mean and covariance. We would like the algorithm to be
(g, 0)-differentially private for every Y (i.e., a “worst-case” guarantee), viewed as a database in
which each d-dimensional point in Y is contributed by an individual. We would like the outputs of
the algorithm to provide faithful estimates whenever Y is an n-corruption of a i.i.d. sample from a
distribution that has C-subgaussian fourth moments.

For the purpose of the first part of this overview, we recommend the reader to ignore the
distinction between certifiable subgaussianity and “vanilla” subgaussianity. Recall that a distribution
D on R? has C-subgaussian fourth moments if for every v € RY, E,.p(x — u(D), v)* < 4C(Ey-p{x —
1(D),v)?)2. Tt turns out that the uniform distribution on a O(d?) size i.i.d. sample X from a
C-subgussian distribution has 2C-subgaussian fourth moments.

Stable robust estimation algorithms In order to design differentially private algorithms, we
need to find robust moment estimation algorithms that are stable. Specifically, a robust moment
estimation algorithm Alg is stable if the outputs of Alg on any pair of adjacent inputs Y, Y’ (i.e.,
inputs that differ in at most one point but arbitrarily so) are close. Such a guarantee must hold
over worst-case pairs Y, Y’—in particular, Y may not be obtained by taking an n-corruption of an



ii.d. sample from a distribution following our assumptions. This presents a problem at the outset
as robust moment estimation algorithms are typically analyzed under distributional assumptions.
The work of [LKKO21] addresses this issue by “opening up” an iterative filter based algorithm for
robust moment estimation and effectively making every step of the algorithm stable.

2.1 A Prototypical Robust Estimator to Privatize

To understand our ideas, it is helpful to work with a “prototypical” but inefficient robust estimation
algorithm that we can eventually swap with an efficent one. Let us thus start with a simple (but
inefficient) robust estimation algorithm that we call Alg in the discussion below.

Algorithm 2.1. Input: Y ={y1,y2,...,yn} C R? and outlier rate n>0.
Output: Estimates [, 5 of mean and covariance or “reject.”
Operation:

1. Find a witness set of n points X’ C R? such that the uniform distribution on X’ has
subgaussian fourth moments and |Y N X’| > (1 — n)n. Reject if no such X’ exists.

2. Return the mean and covariance of X’.

Observe that the property of having subgaussian fourth moments requires verifying an inequality
for every v € R?, and, in general, there is no efficient (or even sub-exponential time) algorithm
known (or expected, modulo the small-set expansion hypothesis) for this problem. Nevertheless, in
[KS17b] (see Section 2), the authors prove that a variant of the above program (which we discuss
this at the end of this overview) produces estimates that are guaranteed to be close to the mean and
covariance of D if Y is an n-corruption of an i.i.d. sample X from D. Note that, though inefficient,
such a result is sufficient to establish statistical identifiability of mean and covariance of D from
O,](dz) samples. The closeness guarantees in [KS17b] hold from a more general and basic result
that is useful to us in this exposition, which we note below:

Fact 2.2 (See Section 2 of [KS17b], Parameter Closeness from Total Variation Closeness). Suppose D, D’
are two distributions such that 1) both have subgaussian fourth moments and 2) the total variation distance
between D, D’ is at most B. Then, for every v € R?, (u(D")— (D), v) < O(n®*)4/oT(Z(D) + Z(D’))v and
vT(X(D’) = X(D))v < O(ynv T (X(D) + X(D’))v. We will say that the means (covariances, respectively)
of D, D’ are close to within O(n>/*) (O(n'/?), respectively) in Mahalanobis distance, to summarize such a
guarantee.

This fact effectively says that if two distributions both have bounded fourth moments and
happen to be close in total variation distance, then their parameters (mean and covariance) must
be close. In fact, the closeness is in strong affine-invariant norms—often called the Mahalanobis
distance for mean and covariance.



2.2 Robustness Implies Weak Stability of Alg with a Randomized Outlier Rate

Let us now consider the stability of the above inefficient algorithm. We are seemingly in trouble
at the outset: as written, there must be two adjacent Y, Y’ such that Alg rejects on Y but not on
Y’. Let us introduce our first simple idea and show how to patch the algorithm to prevent it from
displaying such “drastic” change in its behavior.

Randomizing the outlier rate The following is a simple but useful observation: If Alg does not
reject on input Y with outlier rate 1, then, Alg must also not reject on Y’ outlier rate n + 1/n.
To see why, let X be the set of points with subgaussian fourth moments that intersects Y in
(1 — n)n points. Then, since Y and Y’ differ in at most one point, Y’ must intersect X in at least
(1-nn—-1=(1-(n+1/n))n points. Thus, if, instead of a fixed outlier rate 1, we ran Alg above
with an appropriately “randomized” outlier rate, we might expect the rejection probabilities of Alg
on Y, Y’ to be similar. Such an argument can be made formal with a simple truncated Laplace noise
injection procedure.

Robustness implies weak stability in Mahalanobis norms We now address the issue of whether
the estimates computed on Y and Y’ (assuming Alg does not reject on either of Y, Y’) are close.
We first observe that the fact that Alg is outlier-robust already guarantees a weak stability property.
Specifically, suppose X, X’ are the sets of size n generated by Alg when run on inputs Y, Y’. Then,
sinceY NY"isofsizen —1, |X N X’| > (1 —2n)n — 1. Next, observe that intersection bound above
is equivalent to the uniform distributions on X, X" having a total variation distance of at most
2n +1/n. Thus, from Fact 2.2, we know that the parameters of X, X’ are O(no(l)) close in the
relative Mahalanobis distance defined above. Observe that this argument gives stability properties
in the right norms directly! However, this is a weak stability guarantee since it only provides a fixed
constant distance guarantee instead of 0, (1) that one might expect given that Y and Y’ differ in at
most 1 out of n points. Nevertheless, our discussion shows that robustness, via the inefficient algorithm
above, immediately implies weak stability.

2.3 A Simple Private Robust Mean Estimator from Weak Stability

Can we derive private algorithms from the weak stability guarantees? If the unknown covariance
happens to be spherical (i.e., has all of its eigenvalues equal to each other), then the Mahalanobis
distance guarantees are in fact equivalent (up to constant factor scaling) to Euclidean distance
guarantees. As a result, simply adding Gaussian noise calibrated to the sensitivity bounds yields a
private robust mean estimation algorithm! Indeed, 1) randomizing the outlier rate, 2) working with
the SoS relaxation of the above program and 3) adding Gaussian noise to the resulting estimate,
immediately yields a simple, straightforward private robust mean estimator that gives essentially
optimal sample complexity guarantees (i.e., matching those of the known non-private robust
estimators).



Weak stability is not enough for covariance estimation The challenge in using weak stability
to obtain private robust covariance estimators arise when the covariance is non-spherical (e.g.,
is rank deficient or has eigenvalues of vastly different scales), in which case our Mahalanobis or
multiplicative spectral stability guarantee does not translate into Euclidean/spectral norm distance
guarantees. In particular, if we were to add Gaussian noise, we would end up scrambling all small
eigenvalues up and end up with no non-trivial recovery guarantee.

Indeed, the aforementioned challenge necessitates a rethink of noise injection mechanisms for
covariance estimation in general—standard noise addition mechanisms do not appear meaningful
in faithfully preserving eigenvalues of different scales. Prior works (e.g., [KLSU19]) deal with this
by iteratively computing some approximate preconditioning matrices. We have not investigated
robust variants of their method. We instead explore one-shot, blackbox noise injection mechanisms
that still provide us the right guarantees for covariance estimation.

2.4 Noise Injection in Estimate-Dependent Norms

If we wanted to faithfully preserve all eigenvalues (of varying scales) of the unknown covariance, a
natural mechanism would be to add noise linearly transformed with respect to the computed estimate.
For example, if 5 is the computed estimate, we would like to consider the mechanism that returns
5.+ £1/2751/2 where Z is a matrix of random Gaussians. The upshot of such a mechanism is that it
adds noise that is scaled relative to the eigenvalues of the estimate S—directions where v 7% is
small get a smaller additive noise as against directions where the same quadratic form is large.

However, the distribution of the added noise in this mechanism depends on the non-privately
estimated quantity itself. Thus, a priori, it provides no useful privacy guarantee!

Key Observation: Nevertheless, our main idea to rescue the above plan is to note that the
mechanism above does indeed provide meaningful privacy guarantees (by standard computations
from the celebrated Gaussian mechanism) if we are able to guarantee that on any adjacent inputs
Y,Y’, the non-privately computed estimates are 0,(1) close in relative Frobenius distance! This
follows from elementary arguments and is presented in Lemmas 4.20 and 4.21.

The observation above crucially needs the distance between covariances (in relative Frobenius
norm) to tend to 0 as n — oo; in fact, we need the rate to be inverse polynomial to achieve polynomial
sample complexity. Our weak stability guarantee above, however, guarantees only a weak O(n'/?)
bound on multiplicative spectral distance which translates into a relative Frobenius bound of
O(n*/2v/d)—not only does this not tend to 0 as # — co but it, in fact, explodes as d — co.

Thus, in order to use the above mechanism for covariance estimation, we must come up with
significantly stronger (and asymptotically vanishing) stability guarantees. Let us investigate how to
obtain such guarantees next.

2.5 Strong Stability for Robust Estimation Algorithms

Lack of stability because of multiple differing solutions There is an important barrier that
prevents Alg from offering the strong stability guarantees we need in the covariance estimation
mechanism above. Consider the case when Y is an i.i.d. sample from a one-dimensional standard
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Gaussian distribution with mean 0 and variance 1 without any outliers added to it. Then, N(0, 1£c7)
for a small enough constant c is 1-close in total variation distance to (0, 1). By a straighforward
argument, this implies that we can choose X’ to be an i.i.d. sample of size n from N(0,1 + cn)—if n
is large enough, then X’ will have subgaussian fourth moments and will intersect Y in (1 —1)n points.
The two difference distributions (and the corresponding samples X’) however, have variances
differing by an additive O(rn)—a fixed constant independent of the sample size n. This shows that
even in one dimension, Alg has feasible solutions with variance both (1-0O(n)) and 1+ O(n). Observe
that this issue concerns the output of Alg itself, which can belong to a range that is significantly
larger than what we can tolerate—we have not yet touched upon the issue of what happens when
we change Y to an adjacent Y”.

Convexification and entropy surrogates In order to modify Alg to output a canonical solution
(and with an eye for satisfying the stronger stability property), we wish to make the feasible solution
space of Alg belong to a convex set (instead of the discrete set of solutions X’ that intersect with Y in
(1 — n)n points). With no fear of computational complexity, this is easy to do in a canonical way:
we search instead for a probability distribution over X’ that satisfy the constraints that Alg imposes.
Unlike X', distributions on X’ that satisfy the constraints are easily seen to form a convex set.

Given such a convex set, we can resolve our difficulty of not having canonical solutions for any
given Y by simply finding a solution (i.e., a probability distribution C over X’) that minimizes an
appropriate strongly convex objective function. Specifically, for any X’, let w; be the 0-1 indicator of
those indices i where x; = y;. Then, the constraints in Alg force > ; w; > (1 —n)n, and the distribution
C can be thought to be over (X’, w) in a natural way.

In order to ensure that Alg finds a canonical solution, a natural idea is to search over distributions
C over (X’, w) while minimizing some strongly convex function. We choose the simplest: ||E¢[w]]||3 .
We think of this objective as a surrogate for finding “maximum entropy solutions” as, when viewing
Ez[w;] as defining a probability distribution over y;, minimizing the ¢, norm favors “spread-out”
or high entropy solutions. Since ||E¢[w] ||§ is a convex function being minimized over convex set of
expectations with respect to C, we expect that the minimizing solution E¢, [w] should be unique.

This is not immediately true, however, as our Alg as stated outputs the mean of X’ (there could
be “multiple” X’ with the same intersection with Y, in principle).

Modifying the output of Alg In order to fit our framework better, we modify the above blueprint
in Alg to instead output the weighted average of points in Y instead of X’. While such a procedure is
not directly analyzed in [KS17b], the methods there can be naturally adapted without much hiccup.
As a result we obtain the following modified version of Alg that we can now work with:

Algorithm 2.3. Input: Y ={y1,y2,...,yn} C R? and an outlier rate n > 0.

1The exponent of the polynomials appearing in our sample complexity bounds improve if we use a strongly convex
function with respect to 1-norm such as ||x||%7 for g =1+ 1/logd. Our interest is in presenting a general “privatizing”
blueprint so we continue with the simpler choice above in this work.
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A

Output: Estimates (i, 2 of mean and covariance or “reject.”
Operation:

1. Find a probability distribution C over a witness set of nn points X’ C R and intersection
indicator w € {0,1}" that minimizes ||E; [w]ll% and is supported on (X’, w) such
that 1) the uniform distribution on X’ has subgaussian fourth moments and 2)
2 w; = (1 =mn)n. Reject if no such C exists.

2. Return (i = 1 3, Be[w;ly;, £ = 1 3, Bc[wil(yi — D) (y; — )T where Z = 3, Bc[w;].

With this modification, Alg outputs a canonical single solution on any given Y (or rejects).

Stability of Alg from the stability of the entropy potential We now return to the issue of stability.
What happens if we switch the input Y of Alg above to Y’? The strongly convex objective we imposed
in the above discussion comes in handy here! Namely, by basic convex analysis (see Proposition 3.20),
it follows that if optimum entropy potential values of Alg on Y and Y’ are say, O(1)-close, then, the
vectors E¢[w](Y) and E¢[w](Y”) are themselves O(1) close. Recall that each E¢[w;] is a number in
[0, 1] and that these numbers add up to 1. Hence, intuitively speaking, O(1)-closeness of ||E¢[w] ||§
corresponds to constant perturbation in a constant number of coordinates.

Thus, working with the strongly convex objective above reduces our stability analysis of Alg to
simply understanding how much can our entropy potential change when changing a single point
mnY.

Unfortunately, this change can be large in general. ||]Eg[w]||§ varies between (1 — n)n and
(1 —n)?n. The additive difference between these two extremes is O(nn) > O(1).

Stabilizing the entropy potential: private stable selection Before describing our key idea, we
first make a simple observation: Fix an input Y and consider the optimum value of the entropy
potential of Alg when run with outlier rate . What happens if we change ) to n + 1/n? Clearly, the
potential cannot increase: any solution C with outlier rate 7 is also a solution for outlier rate n + 1/n.
The potential can decrease arbitrarily though.

More specifically, we show the following: in order to make the entropy potential stable under
a change of Y to an adjacent Y’, it is enough to run Y with an outlier rate n’ = O(n) such that the
entropy potential of Alg on Y for any outlier rate in the interval [’ — L/n,n’ + L/n] is within an
additive O (L/n) of any other.

To see why this claim could be true, informally speaking, observe that if Y” is obtained from Y
by changing at most a single point, then a solution C with outlier rate " can be modified into a
solution C’ for Y’ with outlier rate " + 1/n by simplying zeroing out the w; for the index i where Y’
and Y differ. This allows us to relate the potentials for neighboring outlier rates on Y and Y’. Under
the above assumption, the potential remains stable in an interval around 1" on Y. This allows us to
conclude that the same must be true for Y’ for the interval [ —L/n +1,n" + L/n —1].

The above reasoning allows us to obtain strong stability guarantees if we can 1) show that a
stable interval as above exists and 2) find such an interval via a stable process.
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A stable selection procedure via the exponential mechanism We show that a stable interval as
above (for L = 5n(1)) exists via a simple Markov-like argument. Using an appropriate scoring rule,
we show that the standard exponential mechanism can then be used to produce a stable interval
like above via a stable algorithm (see Section 3.6.4).

Putting things together Altogether, we obtain a version of Alg that outputs a sequence of weights
(i.e., Ec[w;]) that are stable under the modification of a single point in Y. When viewed as a
distribution on Y, the stability guarantee we obtain corresponds to an ¢;-stability of 5(1 /A1)
compared to the O(7) (a fixed constant) stability that follows from any naive robust estimation
algorithm.

We note that 5(1 //n) can be upgraded to 5(1 /n) if we work with a more sophisticated potential
function ||x||5 forg =1+ 1/logn.

By applying Fact 2.2, we immediately get that if Alg does not reject on Y, Y’, then the parameters
of the respective inputs must be close in the Mahalanobis distance up to a polynomially vanishing
function of n, as desired. This allows us to implement the estimate-dependent noise injection
mechanism for covariance estimation!

We note that the discussion above can be formalized into an information-theoretic private identifia-
bility algorithm (i.e., an inefficient private robust algorithm). We next discuss how to transform the
above blueprint result into an efficient algorithm.

2.6 From Ideal Algorithms to Efficient Algorithms

Let us now go back and summarize 1) facts about the idealized inefficient algorithm and 2) our
general blueprint for making such an algorithm Alg private.

1. Witness Production: We have used that the fact that Alg searches over witnesses X’ that share
the relevant property of the distributional model we have chosen (e.g., subgaussianity of
fourth moments in the above discussion).

2. Strongly Convex Entropy Potential: We have minimized a strongly convex potential function
in order to ensure that Alg outputs a canonical solution.

3. Stable Outlier Rate Selection: We have implemented a randomized stable selection scheme
(via the exponential mechanism) for the outlier rate in order to argue that the optimum
entropy potential of Alg is stable under the modification of a single point in the input Y.

We can apply this scheme to any algorithm that outputs a sequence of weights on the input sample
Y, subject to the constraint that 1) the weights induce the relevant property of the distributional
model, and 2) they minimize a strongly convex potential function.

Witness-producing SoS-based robust estimation algorithms It turns out that we can ensure all
the above properties for efficient robust estimation algorithms based on “one-shot rounding” of
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convex relaxations. We specifically rely on the algorithms for robust estimation based on SoS
semidefinite programs in this work.

The SoS-based algorithms in the prior works that we use [BK20a, KS17b] almost fit our
requirements except with two technical constraints:

1. The algorithms in the aforementioned prior works do not output weights on Y explicitly.
However, we are able to show that a natural modification that outputs such weights on Y can
be analyzed by the same methods.

2. The algorithms in the aforementioned prior works were analyzed under distributional
assumptions on Y without the need to explicitly argue that the weights induce good witnesses
(which we desire in our above analysis). Indeed, arguing that these algorithms produce
such witnesses on worst-case datasets Y (whenever they don’t reject) appears challenging.
However, we are able to get by without such a statement by observing that we can adapt the
analyses of the algorithms in the prior works to infer the following statement: if the algorithm
returns a good witness on Y, then under a small perturbation of the parameters, it must also
return a good witness on an adjacent Y.

While verifying the properties makes our transformation not entirely blackbox at the moment,
we strongly believe that our blueprint demonstrates a conceptually appealing connection between
robust algorithm design and private algorithm design. Concretly, we expect our blueprint to
be useful in designing more private (and robust) estimation algorithms. Indeed, we believe our
techniques immediately extend to other problems where SoS-based robust estimation algorithms
are known, such as linear regression [KKM18, BP20] and clustering spherical and non-spherical
mixtures [DHKK20, BK20a, HL18, KS17¢, FKP19].

3 Preliminaries

In this work, we will deal with algorithms that operate on numerical inputs. In all such cases,
we will rely on the standard word RAM model of computation and assume that all the numbers
are rational represented as a pair of integers describing the numerator and the denominator. In
order to measure the running time of our algorithms, we will need to account for the length of the
numbers that arise during the run of the algorithm. The following definition captures the size of
the representations of rational numbers:

Definition 3.1 (Bit Complexity). The bit complexity of an integer p € Z is 1 + [log, p]. The bit
complexity of a rational number p/q where p, q € Z is the sum of the bit complexities of p and 4.

For any finite set X of points in R?, we will use u(X), Z(X), M®(X) to denote the mean,
covariance and the t-th moment tensor of the uniform distribution on X.

3.1 Pseudo-Distributions

Pseudo-distributions are generalizations of probability distributions and form dual objects to
sum-of-squares proofs in a precise sense that we will describe below.
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Definition 3.2 (Pseudo-distribution, Pseudo-expectations, Pseudo-moments). A degree-{ pseudo-
distribution is a finitely-supported function D : R” — Rsuchthat}, D(x) = 1and Y, D(x)f(x)* > 0
for every polynomial f of degree at most ¢/2. (Here, the summations are over the support of .)
__ The pseudo-expectation of a function f on R? with respect to a pseudo-distribution D, denoted
]ED(x) f(x), as _
Epw f(x) = )" D(x)f(x) . (3.1)
X

In particular, the mean u of a pseduo-distribution is defined naturally as the pseudo-expectation of
f(x)=x,ie, uEpg x.

The degree-f moment tensor of a pseudo-distribution u is the tensor ]Ey(x)(l, X1,X2,...,Xn
In particular, the moment tensor has an entry corresponding to the pseudo-expectation of every
monomial of degree at most ¢ in x.

)®€'

Observe that if a pseudo-distribution u satisfies, in addition, that p(x) > 0 for every x, thenitis a
mass function of some probability distribution. Further, a straightforward polynomial-interpolation
argument shows that every degree-co pseudo-distribution satisfies 1 > 0 and is thus an actual
probability distribution. The set of all degree-f moment tensors of probability distribution is a
convex set. Similarly, the set of all degree-f moment tensors of degree-d pseudo-distributions is
also convex.

We now define what it means for E to (approximately) satisfy constraints.

Definition 3.3 (Satisfying constraints). For a polynomial g, we say that a degree-k E satisfies
the constraint {g = 0} exactly if for every polynomial p of degree < k — deg(9), E[pg] = 0 and
T-approximately if |lE[pg] | <7 ||p||2 We say that E satisfies the constraint {g > 0} exactly if for
every polynomlal p of degree < k/2 — deg(g)/2, it holds that ]E[p g] > 0 and t-approximately if

Elp%g] > [l
The following fact describes the precise sense in which pseudo-distributions are duals to

sum-of-squares proofs.

Fact 3.4 (Strong Duality, [JH16], see Theorem 3.70 in [FKP19] for an exposition). Let p1,p2,..., Pk
be real-coefficient polynomials in x1,x2, ..., X,. Suppose there is a degree-d sum-of-squares refutation of the
system {p;(x) > O};<x. Then, there is no pseudo -distribution p of degree > d satisfying {pi(x) > 0}i<k.
On the other hand, suppose that there is a pseudo-distribution u of degree d consistent with {p;(x) > 0}i<k.
Suppose further that the set {p1, p2, ..., px} contains the quadratic polynomial R — 3; x? for some R > 0.
Then, there is no degree-d sum-of-squares refutation of the system {p;(x) > 0};<k.

Basic sum-of-squares (SoS) proofs

Fact 3.5 (Operator norm Bound). Let A be a symmetric d X d matrix with rational entries with numerators
and denominators upper-bounded by 28 and v be a vector in R?. Then, for every ¢ > 0,

[ {0740 < AlLfloll; + ¢}
The total bit complexity of the proof is poly(B, d,log1/¢).
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Fact 3.6 (SoS Holder’s Inequality). Let f;, g; for 1 < i < s be indeterminates. Let p be an even positive

integer. Then,
Iy 1 s . P 1 s 1 ] p-1
l—' _ § P - p - E p
v’ (S i=1 g ) ) (S f ) (S i=1 91-)

i=1
The total bit complexity of the SoS proof is sOP).
Observe that using p = 2 yields the SoS Cauchy-Schwarz inequality.
Fact 3.7 (SoS Almost Triangle Inequality). Let f1, fo, ..., f, be indeterminates. Then,

2t .
fllfzzrt-~~rfr (Zfl) < 21 (Z fiZt)

i<r i=1

The total bit complexity of the SoS proof is rO®).

Fact 3.8 (SoS AM-GM Inequality, see Appendix A of [BKS15]). Let fi1, f2, ..., fm be indeterminates.

Then, m
{fi>0|i<m}|#{a2fi) >Hz’<mﬁ}~
i=1

The total bit complexity of the SoS proof is exp(O(m)).

We will also use the following two consequence of the SoS AM-GM inequality:
Proposition 3.9. Let a, b be indeterminates. Then,
5 (a0 < o+ (- b}
The total bit complexity of the SoS proof is exp(O(t)).
Proof. We apply the SoS AM-GM inequality with f; = a®fori =1,...,jand f; = b>fori = j+1,...,t.
We thus obtain: ,
S {G/ta? + (1 = j /b3 > a®p?-2)

By the SoS Almost Triangle inequality, we have:

b . . ,

5 {G/ta® + (1= /7)< (ja + (¢ = j)o™)}

Combining the above two claims completes the proof. The total bit complexity of the SoS proof
follows immediately by using the bounds for the two constituent inequalities used in the proof
above. m]

Proposition 3.10. Let a,b be indeterminates. Then, for any positive integers i,t such that i is odd and
2t > i, we have:

lﬂ {aibzt—i < l(ai—lbzt—iﬂ + az’+1b2t—z’—1)}
2t S5 '

The total bit complexity of the SoS proof is exp(O(t)).
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Proof. Write i = 2r — 1 for some r > 1. Then, we have: a'b?~! = g"b!="a""1p!="+1. By the SoS
AM-GM inequality with f; = a"b'™" and f, = a""1b'="*!, we thus have:

a,b i1.2¢—i - “11.t— 1 . i j —i—
5 {Zlet i Zrbt "a? 1l7t r+1 < (Zl 11,21‘ i+1 Zz+1b2t i 1)} .
O

Fact 3.11 (Cancellation within SoS, Constant RHS [BK20b]). Suppose A is indeterminate and t > 1.

Then,
(A% <1} B {A2 < 1)
Further, the total bit complexity of the SoS proof is at most 201).

Lemma 3.12 (Cancellation within SoS [BK20b]). Suppose A and C are indeterminates and t > 1. Then,
[A>0UA! < CAY S (A% < ¥},

Further, the total bit complexity of the SoS proof is at most 2°®).

3.2 Algorithms and Numerical Accuracy

The following fact follows by using the ellipsoid algorithm for semidefinite programming. The
resulting algorithm to compute pseudo-distributions approximately satisfying a given set of
polynomial constraints is called the sum-of-squares algorithm.

Fact 3.13 (Computing pseudo-distributions consistent with a set of constraints [Sho87, Par00,
Nes00, Las01]). There is an algorithm with the following properties: The algorithm takes input B € N,
T > 0, and polynomials p1,pa2, ..., px of degree { with rational coefficients of bit complexity B. If there
is a pseudo-distribution of degree d consistent with the constraints {p;(x) > O}i<k, the algorithm in
time (Bn)°@ poly log(1/7) outputs a pseudo-distribution u of degree d that t-approximately satisfies
{pi(x) > O}ick.

3.3 Tensors

Since we will deal with higher moments of distributions, which are naturally represented as tensors,
we will need to define some related notation and conventions for the sake of clarity in our exposition.
Let [n] ={1,2,...,n} for any natural number n. We define the following.

Definition 3.14. Suppose we have an m X n matrix M and an m’ X n’ matrix N. We define M ® N
to be the standard mm’ X nn’ matrix given by the Kronecker product of M and N.
Moreover, for an m X n matrix M, we denote by M®' the t-fold Kronecker product M@ M ® --- @ M

t times
(of dimension tm X tn).

Given an m X n matrix M, we will also find it convenient to index M®* as follows: for any 1 <
.. . .. , t t
i1,i2,...,ir <mand 1< ji,fp,...,j: <n,wecan refer to the term Mﬁl,iZ,u-/it)/(].l,]‘Z ..... = [Tz Mi, i

We also define a useful flattening operation on tensors:
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Definition 3.15. Given an my X my X --- X m; tensor M, we define the flattening, or vectorization,
of M to be the (mm; - - - m;)-dimensional vector, denoted vec(M), whose entries are precisely the
entries of M appearing in the natural lexicographic order on [rm1] X [m3] X - - - X [m;]. In other words,
the entry M, ;,,... i, appears before M, j, ... i, (Where iy, jx € [my]fork =1,2,...,t) in vec(M) if and
only if there exists some 1 < k < t such that iy < jyand i; = j; forall I < k.

Definition 3.16. Given an n-dimensional vector ¥ and an n X n X - - - X n-dimensional tensor M,
————

t times
we define (u®, M) to be (vec(u®'), vec(M))gs, i.e., the value of the standard inner product (on

n'-dimensional vectors) between the flattenings of u®' and M.
A convenient fact we will use is a so-called “mixed product” property for matrices.

Fact 3.17. Given an m X n matrix A, m’ X n’ matrix B, and n X n’ matrix V, we have that
AVBT = (A ® B) vec(V),
where the above is expressed as matrix-vector product.
Finally, we define the moment tensor for a probability distribution.
Definition 3.18. Given a probability distribution D on R? and an integer t > 1, we define
the " moment tensor M to be a d xd X --- X d tensor whose entries are given by M, i,,..i; =

———
t times

]EXNZ)[XZ‘IXZ'Z s Xit] for il, iz, ey it € [d]
3.4 Basic Convexity

We will use the following basic propositions about convexity in our analysis.

Proposition 3.19 (Neighborhoods of minimizers of convex functions). Let K be a closed convex subset
of RN. Let f be a smooth convex function on RN. Let x be a minimizer of f on K. Then, for every y € K,

(y - x,Vf(x)) >0.

Proof. If not, then for a small enough positive A, f(x + A(y — x)) < f(x). But, x + A(y — x) =
(1-A)x+Ay e K. O

Proposition 3.20 (Pythagorean theorem from strong convexity w.r.t 2 norm). Let K be a convex
subset of R? for d € N. Let x be a minimizer of the convex function f(x) = ||x||3 on K. Let y € K. Then,

F) - f@) > |y -

Proof. We have: ||y||§ = ||y - x||§ + ||x]l5 + 2(y — x,x). The proposition follows by applying
Proposition 3.19 to observe that (y — x, x) > 0. m]

We will also need the following basic bound:
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Lemma 3.21. Suppose x,y € [0,1]" such that }; x;, 2,; yi > n/2 and ||x - y“l < Bn for B < 1/10. Let
X = ﬁ and i = % be the normalized versions of x,y. Then,

% - 7ll, <ep.

Proof. Suppose, without loss of generality, that ||x||; = cin > con = ||y||1 for ¢1,co > 1/2. Then, we
know ’chat||y||1 = con = (c1—p)n. Thus, ||X - g||1 < ﬁ(”x Hy”l -y ||x||1||1 < ﬁ(cln ||x -y |1+
pn?) < 6p. ]

3.5 Certifiable Subgaussianity

Definition 3.22 (Certifiable Subgaussianity). A distribution D on RY with mean p, is said to be
2k-certifiably C-subgaussian if there is a degree 2k sum-of-squares proof of the following polynomial
inequality in d-dimensional vector-valued indeterminate v:

k
E (x — ., v)* < (Ck)¥ ( E (x - y*,v)z) .
x~D x~D

Furthermore, we say that D is certifiable C-subgaussian if it is 2k-certifiably C-subgaussian for
every k € N.

A finite set X C R? is said to be 2k-certifiable C-subgaussian if the uniform distribution on X is
2k-certifiably C-subgaussian.

Fact 3.23 (Consequence of Theorem 1.2 in [KS17b]). Let Y be a collection of n points in RY. Let
p, v’ € [0,1]" be weight vectors satisfying ||p||1, p’”1 =1, and ||p —p’”1 = 1. Suppose that the
distributions on Y where the probability of i is p; (p;, respectively) is 2k-certifiably Cy (Cy, respectively)
subgaussian. Let u, = 3 piyi, Lp = 2 pi(yi — pp)(yi — p) T, and M;(f) = X piy® for every t € N be
the mean, covariance and t-th moment tensor of distribution defined p. Define iy, Ly, Mi(f’) similarly for the

distribution corresponding to p’.
Then, for every T < 1o for some absolute constant 1, for every u € R%, C’ = C1 + Coand t < k:

(p — ppr, u) < 12k O(VCk) uTLyu),

(1-0(Ck)Vhr, <5, < (1 +0(C’k) VL,

(1 _ O(c/t/Zkt/Z)Tl—t/2k)<u®t’Mr()t)> < <u®t’M;t,)> < <u®t,M;(7t)> ,

3.6 Differential Privacy

In this section, we state a few tools from differential privacy (DP) literature that will be used in our
algorithms. We start by recalling the definition of DP:
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Definition 3.24 (Differential Privacy [DMNS06]). An algorithm M : Y — O is said to be (¢, 0)-
differentially private (or (&, 0)-DP) for ¢, > 0 iff, for every S € O and every neighboring datasets
Y,Y’, we have

PIM(Y) e S] <e®-PIM(Y’') € S] +o.

Throughout this work, our set Y will consist of y1,...,y, € R%. Y = (y1,...,yn)and Y’ =
(y1,---,yy,) are neighbors iff they differ on a single data point, i.e., y]’. = yjforall j # i. Note that
this is the so-called substitution variant of DP; another popular variant is the add/remove DP where a
neighboring Y’ results from adding or removing an example from Y. We remark that it is not hard
to extend our algorithm to the add/remove DP setting, by first computing a DP estimate 71 of n
and either throwing away random elements or adding zero vectors to arrive at an n-size dataset on
which our algorithm can be applied.

3.6.1 Laplace Mechanism and Its Variants

The Laplace mechanism [DMNS06] is among the most widely used mechanisms in differential
privacy. It works by adding a noise drawn from the Laplace distribution (defined below) to the
output of the function one wants to privatize.

Definition 3.25 (Laplace Distribution). The Laplace distribution with mean p and parameter b on
R, denoted by Lap(y, b), has the PDF Zl—be"x‘“|/b.

We will also use the “truncated” version of the Laplace mechanism where the noise distribution
is shifted and truncated to be non-negative. The precise definition of the noise distribution and
its guarantee is given below. For completeness, we provide the DP analysis (Lemma 3.27) in
Appendix A.1.

Definition 3.26 (Truncated Laplace Distribution). The (negatively) truncated Laplace distribution
with mean p and parameter b, denoted by tLap(u, b) is defined as Lap(u, b) conditioned on the
value being negative.

Lemma 3.27 (Truncated Laplace Mechanism). Let f : Y — R be any function with sensitivity at most
A. Then the algorithm that adds tLap (—A (1 + M) , A/s) to f satisfies (¢, 6)-DP.

Finally, we also state a bound on the tail probability of the truncated Laplace distribution which
will be useful in our subsequent analysis.

Lemma 3.28. Suppose u < 0and b > 0. Let X ~ tLap(u, b). Then, for y < p, we have that

3.6.2 Composition Theorem

It will be convenient to also consider DP algorithms whose privacy guarantee holds only against
subsets of inputs. Specifically, we define:
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Definition 3.29 (Differential Privacy Under Condition). An algorithm M : Y — O is said to be
(&, 0)-differentially private under condition W (or (&, 6)-DP under condition V) for ¢, 6 > 0 iff, for every
S C€ O and every neighboring datasets Y, Y’ both satisfying ¥, we have

P[M(Y) € S] < e - PM(Y’) € S] + 6.

It is not hard to see that an analogue of the basic composition theorem still holds in this setting,
which we formalize below. We remark that this is similar to the composition theorem derived
in [DL09, Section 5]. However, since our composition theorem is slightly different, we provide its
proof in Appendix A.2.

Lemma 3.30 (Composition for Algorithm with Halting). Let My : Y — O U{L}, My : O1 XY —
O U {l},... M :Or1 XY — Ok U {L} bealgorithms. Furthermore, let M denote the algorithm that
proceeds as follows (with oy being empty): Fori=1,...,k, compute 0; = M;i(0i-1,Y) and, if o; =L, halt
and output L. Finally, if the algorithm has not halted, then output ok.

Suppose that:

e Forany 1 <i < k, we say that Y satisfies the condition V; if running the algorithm on 'Y does not
result in halting after applying My, Ma, ..., M.

° M1 is (61, 61)-DP.

o M; is (&;, 6;)-DP (with respect to neighboring datasets in the second argument) under condition V;_;
foralli={2,...,k}.

3.6.3 Hockey-Stick Divergence

It will be convenient in our analysis to use an equivalent definition of DP based on the hockey-stick
divergence. For ease of notation, let [a], = max{a, 0} foralla € R.

Definition 3.31 (Hockey-Stick Divergence). Let p(x), g(x) be probability density functions on RY,
and a a non-negative real number. The Hockey-stick divergence D,(p, q) between p, g is defined as:

De:(p,q) = /EW [p(x) — a - q(x)]+dx.

The following fact is simple to derive from the definition of DP and is often used in literature.

[Pasin: We probably need the fact that A(Y) defines a PDF below? Le. the hockey-stick
divergence as defined above is not well-defined for discrete mechanisms. But maybe this is already
clear from context?]

Fact 3.32 ((¢, 6)-DP from Hockey-Stick Divergence Bounds). Let M : Y — R? be a randomized
algorithm. M is (e, 8)-DP under condition \V iff for any neighboring pair of databases Y, Y’ both satisfying
W, we have Doc (M(Y), M(Y’)) < 6.
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We will need to bound the hockey-stick divergence between two distributions in terms of the
hockey-stick divergences to a third distribution. Unfortunately, the hockey-stick divergence does
not define a metric and, therefore, does not admit the usual triangle inequality. However, it is
possible to prove a looser inequality, which we will find useful:

Lemma 3.33. Suppose p(x), q(x), r(x) are probability density functions on R?. Then,
Dec(p, 1) < D,e(p, q) + e/% - D,ea(q, 7).

We remark that such a bound is already implicit in the so-called group differential privacy (see e.g.
[Vad17, Lemma 2.2]). Nonetheless, we provide a (short) proof in Appendix A.3.

3.6.4 Approximate-DP Selection

Finally, we will also use a DP algorithm for the selection problem, where the goal is to pick from
a (public) set of candidates one which has a high “score”. This problem can be solved using the
exponential mechanism [MT07]. The version of the algorithm we use deviates slightly from this
traditional version in that we also include a check (via truncated Laplace mechanism) to make sure
that the score is at least a certain threshold «; otherwise, the algorithm’s properties are summarized
below. Its proof is deferred to Appendix A.4.

Theorem 3.34. Suppose €,6 € (0,1]. Let C be a set of candidates and let score : C X Y be a scoring
function for candidates as a function of the databases Y € Y, such that its sensitivity (w.r.t. Y) is at most A.
There exists an algorithm Selection that satisfies the following properties:

1. Selection is (&, 0)-DP.

2. If the output of Selection is c* #.1, then score(c*,Y) > «.

3. If there exists ¢ € C such that score(c,Y) > x + O (% -log (';—6')), then Selection output L with

probability at most 5.

4 Differentially Private Robust Moment Estimation

In this section, we describe a differentially private robust moment estimation algorithm. The
following is our main technical result:

Theorem 4.1 (Differentially Private Robust Moment Estimation). Fix Co > 0 and k € IN. Then, there
exists an 1o > 0 such that for any given outlier rate 0 < 1 < ng and €, > 0, there exists a randomized

~ 4 2
algorithm Alg that takes an input of n > ng = Q (’%k (1 + (ln(i/é)) + (ln(t,/é)) ' 1) . C4kk4k+6) points

Y € Q (where C = Co + w + % +1), runs in time (Bn)°%) (where B is the bit complexity of the entries
of Y) and outputs either “reject” or estimates fi € Q%, £ € Q™?, and M® € Q™4 (for all even t < 2k
such that t divides 2k) with the following guarantees?:

2The Q notation hides multiplicative logarithmic factors in d, C, k, 1/1, 1/¢, and In(1/9).
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1. Privacy: Algis (&, d)-differentially private with respect to the input Y, viewed as a d-dimensional
database of n individuals.

2. Utility: Suppose there exists a 2k-certifiably Co-subgaussian set X C Q% of n > ng points such that
1Y N X| > (1 - n)n with mean p., covariance L., > 2~ P, and t-th moments Mft)for 2<t<k
Then, with probability at least 9/10 over the random choices of the algorithm, Alg outputs estimates
fieQ? £ eQ™, and MV e QP (for all even t < 2k such that t divides 2k) satisfying the
following guarantees:

Yu € RY, (1 — e, u)y <O (VCk) nl_l/Zk\/uTZ*u ,
and,
(1 - O((Ck)f/z’f)nl—l/k) ro<f< (1 + O((Ck)f/z")ql-l/k) .,
and, for every even t < 2k such that t divides 2k,

(1 _ O(Ck)T]l_t/Zk) <M®t,M£t)> < <M®t,M(t)> < (1 + O(Ck)nl_t/Zk) <M®t,M£t)> ]

Moreover, the algorithm succeeds (i.e., does not reject) with probability at least 9/10 over the random choices
of the algorithm.

Observe that the privacy guarantees of the algorithm are (necessarily) worst-case. The utility
guarantees, however, hold only under the assumption that Y is an n-corruption of a good set X.

The above theorem can also be translated into utility guarantees for points sampled from a given
distribution by recalling the well-known fact that points sampled from a certifiably subgaussian
distribution are good with high probability:

Fact 4.2 (See Section 5 in [KS17b]). Suppose D is a certifiably C-subgaussian distribution with mean 1. and
covariance L, > 2~ POV and t-moment tensors M(t)for te€N. Forany k € N, let X = {x1,x2,...,Xn}
be an i.i.d. sample from D of size n > ng = O(d** /n?). Then, for any t € N such that t divides k, with
probability at least 0.99 over the draw of X, the following all hold:

1. X is 2k-certifiably 2C-subgaussian.

= (u(x) - )

3. Z(X) e (1 £n)L..

4 b= {<v®t,M<t>(X)> €(1+ n)<v®t,M£”>}.

We note that our main theorem for private robust moment estimation, Theorem 1.2, is an
immediate consequence of Theorem 4.1 and Fact 4.2.

For the rest of the section, we will work to prove Theorem 4.1. In Section 4.1, we will introduce
a witness-producing robust moment estimation algorithm that will be used as a subroutine for our

2.’

<7
, ST

main algorithm and present relevant utility guarantees. In Section 4.2, we will then introduce our
main algorithm. After that, we will prove the necessary privacy guarantees in Section 4.3. Finally,
we will put together the pieces to prove our main theorem, Theorem 4.1, in Section 4.4.
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4.1 Witness-Producing Version of Robust Moment Estimation Algorithm

As a key building block, we will use the following (non-private) version of the robust moment
estimation algorithm of [KS17b] that uses the same constraint system A as in [KS17b]. Our
algorithm itself, however, makes one key change (we call our version “witness-producing” for
reasons that will soon become clear) to that of [KS17b] in order to obtain a private robust moment
estimation algorithm. Instead of outputting estimates of the moments of the unknown distribution,
our algorithm outputs a sequence of non-negative weights p1, p2, ..., p, forming a probability
distribution on the input set of points Y. The estimates can then be obtained by taking moments of
the finite set Y with respect to the probability distribution on Y defined by the weights p;s. This
simple change is crucial to our worst-case analysis of the resulting algorithm (i.e. even when the
distributional assumption that Y is an n-corruption of some good set X is not met) and obtaining
our privacy guarantees. As we discuss, our blueprint for modifying convex optimization based
robust estimation algorithms appears to broadly applicable beyond the specific setting of robust
moment estimation.

The underlying constraint system A is shown below, and the witness-producing robust moment
estimation algorithm is shown as Algorithm 4.3.

Ac kqn{¥1,Y2, ..., yn}): Constraint System for -Robust Moment Estimation
1. w? =w; foreach1l <i<mn,
2. Y wi = (1-nn,
5@ =1%x,
4. wi(x;—y;)=0for1 <i<mn,

5. L3 () — o)k < (CRF2 (L 30 (x) - i, 0)2) 2,

Algorithm 4.3 (Witness-Producing Robust Moment Estimation).

Given: A setof points Y = {y1,y2,...,Yn} C Q7 n > 0, a parameter k € N.

Output: Either “reject” or non-negative weights p1,p2, ..., pn s.t. pi < m Viand };pi = 1.
Operation:

1. Find a pseudo-distribution { of degree O(k) ([Ameya: Is this 2k?]) satisfying the
constraint system Ac k,,,»(Y). If such a pseudo-distribution does not exist, then
return “reject.”

E¢[wi]

m for each i.

2. Output weights p € [0, 1]" defined by p; =
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Analysis of the witness-producing robust estimation algorithm Robust estimation algorithms
that rely on the use of semidefinite programming are all analyzed under distributional assumptions
on the input set of points. Roughly speaking, such algorithms search over set of points that have a
large enough intersection with the input corrupted sample and satisfy certain relevant property of
the underlying family of distributions. In order to obtain privacy guarantee that holds for worst-case
inputs, we need to upgrade the analyses of such algorithms so that they not only provide estimates
of the target parameters, but also explicitly produce “witnesses”—these are subsets of the input
corrupted sample that define distributions with the estimated parameters and further, satisfy the
relevant property of the underlying family of distributions.

In this section, we verify that such a stronger guarantee can be obtained for robust moment
estimation algorithm of [KS17b]. Formally, their algorithm succeeds as long as the input is an
n-corruption of a certifiably subgaussian set.

The following guarantees for the algorithm above were shown in [KS17b].

Fact 4.4 (Lemmas 4.4, 4.5, and 4.8 in [KS17b]). Let X C R? be a set of size n that is 2k-certifiably
C-subgaussian with mean (1., covariance L. and t-th moment MY for t evenly dividing 2k. Let Y be an
n-corruption of X. Then, for u’ = % 2ix, X = %Zi(xi — W) (xi — )T, and M®" = %Zi x;®t, we have:

Abe { = e, w)* < OC K YUTZ Y
Al (T = 2., 4 < O(C* KTz ut)
7 lzu_k {(MW _ Mft)’uc;t)zk/t < O(Ckkk)uTZ*uk} .

Lemma 4.5 (Guarantees for Witness-Producing Robust Moment Estimation Algorithm). Given a
subset of of n points Y C Q* whose entries have bit complexity B, Algorithm 4.3 runs in time (Bn)°®)
and either (a.) outputs “reject,” or (b.) returns a sequence of weights 0 < p1,p2,...,Pn Satisfying
pr+p2+---+pp=1

Moreover, if X C RY is 2k-certifiably C-subgaussian with mean ., covariance L. and in general,
t-th moment tensor MW+ such that |Y N X| > (1 — n)n, then Algorithm 4.3 never rejects, and the
corresponding estimates fI = 1 ¥, pyy; and S =" pilyi — [)(y; — i) satisfy the following guarantees
for Br = O(C!2kH ) =H2k for t < k:

1. Mean Estimation:

Vu € RY, (i — p., u)y < OVCh)N' V2 \uTxu,

2. Covariance Estimation:
(1-B2)L. < £ < (1+B2)L.,

3. Moment Estimation: For all event < 2k such that t divides 2k,

Vu e R, (1-)®, MYy < @®, MOy < (1 + B)u®, My
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4. Witness: For C’ < C(1+ O(ql—l/k)),
1 n 1 n k
. t\2k AV el s M\2
;;PK% L= < (Ck) (n;myl ) )

The first three properties follow easily from an analysis similar to the one in [KS17b]. We verify

the last property below.

Lemma 4.6. Let { be a pseudo-distribution of degree O(k) consistent with A on input Y with outlier rate
1 < 1/k. Suppose there exists a 2k-certifiably C1-subgaussian distribution X C R? with mean . of size n
such that |Y N X| > (1 —n)n. Then, for n < 1o for some absolute constant ng and for i = & 31, Ez[wi]y:
where W = 374 ]E[wl-], we have:
1 v~
e W Z Eg[wi [y — fi, u)** < (C'k)* w2 Eelwillyi - i, u)*| ¢,

1=

for C’ < C(1+ O(n'"Y%)k) < C + 1 for small enough 1.

Proof. We have:

2k
1 & i A 1 - - ’ A 1 N — ’ ’ ’ ~
EZ]EE[wiKyi —fowy) =) Belwilxg - o, u)?] < — ) Bl -y + ' - {1, u)?*
i=1 i=1 i=1
The first term on the right-hand side above is at most (Ck)* ]EZ[(% Sim X =, u)?)F] < (C(1 +
O V2 k)kuTL,uk using certifiable subgaussianity constraints and Fact 5.2.
Let us analyze the 2nd term above.

1 O~ ’ ’ ’ PN
~ D Bl = )] (4.1)
i=1
1= r N2k L\O= k2, a2
= 3 2Bl =™ 2k D el = 0™ ) (4.2)
i=1
2k n
2k l . r_ 2k=j/s 0 _ A j
+;(1)n - Ez[(x] — ¢/, u)™ (' = fi, u)] (4.3)
1w~ 1w~ ~
< y ]Eg[<x§ i, u>2k] + ZkE Z(IEZ[(x; — u>2k)(2k—2)/2k(]Ez<y/ —q, u>2k)1/2k (4.4)
i=1 i=1
2k n
2k l . r_ 2k—=j /0 _ A j
+]Z:2:(].)n - Ez[(x] — ', u)™ " =, u) ] (4.5)
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Here, in the 2nd inequality, we used the Holder’s inequality for pseudo-distributions. Let us analyze
the 2nd term in the right-hand side above by observing the following that uses the bounds from
Fact 5.2:

E:[( - fi, )] < 22 [Ee (' — pre, )™ ] + 225 (e — , u)™ (4.6)
< 225(CR P M uT Sk + 22K (Cl N (1 + B)u T S (4.7)

This allows us to infer that the 2nd term in (4.5) is at most ]Ei[% Sia{x =, u )2k (@k=2)/2k .
(5Ck)YV 2=V TE u < O(k)(Ck)*n=1/2ky TE,uk using certifiable subgaussianity constraints and
Fact 5.2.

Let’s now analyze the terms corresponding to j > 2 in the right-hand side of (4.5). Each of these
terms corresponds to a “mixed monomial” in (x] — u’, u) and (u’ — u, u). Let us first analyze the
even individual degree terms.

First observe that by Holder’s inequality for pseudo-distributions again, we have:

1 O = ’ ’ - r_ A ’ ’ - e ' _ 0
= > Bl = R = )] < (-, PR E - g @)
i=1

By an analysis similar to the case of the first term on the right-hand side of (4.5) above, we obtain
that the right-hand side is at most: O(1)(Ck)k(n1‘1/2k)2uTZ*uk.
Next, let’s analyze all terms corresponding to even j. By Proposition 3.9, we have:

—ZE [(x) =/, )2 = )] < ZUE [’ = )] — w2 = i, )22

2k = r A ’ ’ - r A -
< 72(]155[(# — 0, )2 =, uy 2 (= )R]
i=1

The first term can now be upper bounded by the bound for (4.8) and the 2nd term by an application
of Fact 5.2.

The case of odd terms is similar with the first step using Proposition 3.10.

Altogether, we obtain an upper bound of (C(1 + O(n' V2 )k)kuTx, u*.

On the other hand, using the sum-of-squares version of the Cauchy-Schwarz inequality along
with the almost triangle inequality and invoking Fact 5.2 we have:

A b {( Z(l w;) () - u,u>) ( Z(l w>2)12<x;—ﬁ,u>4

1 1
< 161C? (; Z(x; — ', u)? + - Z(;/ -0, u>2) < 20nC%(1 + ﬁz)zuTZ*uz}
i=1

i=1
Thus,

n 2 " 2
A b {(% : ]Ez[wf<yi—ﬁ,u>2) = (% ]Eg[(yi—ﬁ,u)Z) - (%

i=1 i=1

n 2
E[(1- wi)(yi - i, u>2) n

i=1
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> (1-O0(Ck)n""V* —80nC?u"Z.u }

The lemma now follows immediately for small enough fixed constant 7.

4.2 Private Robust Moment Estimation

We are now ready to present our main algorithm for private robust moment estimation. Our
algorithm uses the witness-producing algorithm (Algorithm 4.3) as a major building block while
augmenting it to search for pseudo-distributions that, in addition to satisfying the relevant set
of constraints, also minimize an appropriate strongly convex potential function. We define the
relevant potential function Pot below in Definition 4.7.

Definition 4.7 (Potential Function). Let C > 0 and n,k € IN. For any pseudo-distribution C of

degree 2 consistent with Ac k. (Y) for outlier rate nn and input Y C R?, let Potrf’é(’" (Y) be defined

— 2
as H]EZ[ZU]HZ. Furthermore, let Potg K yy = min; Acjnn(Y) Potli’g (Y) be the minimum value of

the potential as { ranges over all pseudo-distributions of degree 2t consistent with Ac kpn(Y). If
no such pseudo-distribution exists, set Pot,(Y) = co.

When C, 1, k are understood from context, we may suppress these parameters and simply write
Pot, and Pot, -.

Now, we are ready to describe our main private robust moment algorithm, which is listed as
Algorithm 4.8. The algorithm consists of three main steps. In the first step, the randomized DP
selection algorithm (Theorem 3.34) is used to pick an outlier rate (according to a suitable scoring
function, as defined below in Definition 4.12). The second step invokes the witness-producing
algorithm (Algorithm 4.3) with the outlier rate chosen in step 1, after which one checks that the
outputted weights induce a certifiably subgaussian distribution on the input dataset Y. Finally, in
the last step, one takes the estimates of the mean, covariance, and higher moments provided by the
resulting weight vector and adds suitable noise to guarantee differential privacy.

Algorithm 4.8 (Private Robust Moment Estimation).

Given: A setof points Y = {y1,y2,...,yn} C Q4 parameters C,n,¢,6 >0,L, k € N.
Output: Estimates [, i, and M® (3 <t < k) for mean, covariance, and t-moments.
Operation:

1. Stable Outlier Rate Selection: Use the (¢/3,6/3)-DP Selection with x = L/2 to
sample an integer 7 € [n] with the scoring function as defined in Definition 4.12. If
T =1, then reject and halt. Otherwise, let " = 7/n.
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2. Witness Checking: Compute a pseudo-distribution { of degree 2k satisfying
Ac k,y,n(Y) and minimizing Potn,,i(Y). Let y ~ tLap (— (1 + M) ,3/8) and
C" = C + y. Check that the weight vector p = ]Ez[w] induces a C’-certifiably
subgaussian distribution on Y. If not, reject immediately. Otherwise, let i = E¢[n],
r= ]EZ [£], and M® = ]EZ[M(t)] (for all even t < 2k such that t divides 2k) be the

tth

mean, covariance, and t"' moment estimates, respectively, that are induced by the

pseudo-distribution .

3. Noise Addition: Lety; = O(C’k)(L/n)2(=%) and y, = O((C"k)/2)(L/n)2(1=%) for
t>2 Letz ~N(0,01)%and Z ~ N(0, 02)@1) , where we interpret Z as a symmetric
d X d matrix with i.i.d. entries in the upper triangular portion. Similarly, for t > 2,

let Z®O ~ N(O, at)(d+(:_1)), where we interpret Z as a symmetric d X d X - - - d tensor
—_———

t times

with (**!~V) independent “upper-triangular” entries. Moreover, let

oj = 6k€‘1)/jd% V2In(7.5k/56), forj=1,2
0; = 6ke~1y;(C’k)'d'T \2In(7.5k/5), forj > 2

Then, output:
o l=p+ Y127,
o S =X +1x12Z51/2,
o M® = MO 4+ ((Z+ pp’)Y2)®tZz® for all even t < 2k such that t divides 2k.

4.3 Privacy Analysis

Our analysis of the privacy of Algis based on a sequence of claims about each of the steps of Algthat
cumulatively establish the stability of the behavior of Algon adjacent inputs Y, Y’. We will rely on
the following simple but key observation in our analysis. It is easy to verify using the definition of
pseudo-distributions.

Lemma 4.9 (Adjacent Pseudo-distributions). Let C be a pseudo-distribution of degree 2k that satisfies all
the constraints in 5 on input Y = {y1, ya, . .., Yn } with outlier rate . Let Y’ C R? be adjacent to Y. Define
an adjacent pseudo-distribution T (that “zeroes out w;”) by ]Ei' [wsp(X’,--+)] = ]Ei [wsp(X’, )] if
i¢Sand EZ' [wsp(X’,---)] =0ifi €S for every polynomial p in X’ and other auxiliary indeterminates in
A. Then, {' is a pseudo-distribution of degree 2k that satisfies all the constraints in 5 on both inputs Y’ and
Y with outlier parameter n + 1/n.

This allows us to conclude the following basic calculus of our potential function:

Lemma 4.10 (Basic Facts about Pot). Suppose that for some Y C R? of size n, some t € N and
n' € [0,n0/4], there is a pseudo-distribution of degree 2t consistent with ‘A on input Y. Then, for every
n = n’, the following holds:
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1. Monotonicity: Pot,,1/,(Y) < Pot,(Y). In particular, Pot is monotonically decreasing as its subscript
increases.

2. Lower Bound: Pot,(Y) > (1 —1n)*n.
3. Upper Bound: Pot,(Y) < (1-n)n.

Proof. The first fact follows immediately from Lemma 4.9. For the second, observe that any
pseudo-distribution z of degree 2t consistent with A on input Y with outlier rate n must satisfy

i1 E¢[w;] > (1 - n)n. Thus, by Cauchy-Schwarz inequality, ;7:1~1E[z1),-]2 > (XL, Elw;])?/n =
(1 —n)*n. This completes the proof. For the last part, observe that E¢[w;] <1 for every i. Thus,
2?21 ]Ez[wi]z < 2?21 ]EZ [wi] =1 - T?)n~ o

Analysis of stable outlier rate selection The goal of the first step of Algis to find an outlier rate n’
such that the strongly convex potential function Pot(C) on the pseudo-distribution we will eventually
compute (in Step 3) is close on adjacent input points Y, Y’. We will later use the strong convexity of
the Pot and the closeness guarantee on Pot on Y, Y’ to infer that the weight vector p(Y) and p(Y”’)
output by the algorithm themselves are close.

Our key algorithmic trick to ensure the closeness of the strongly convex potential Pot is to find
a “stable interval” [’ — 0.5L/n,n" + 0.5L/n] of outlier rates n”” such that strongly convex potential
function at near-optimal solutions must vary slowly as 1”” varies in the the interval. We find such
an interval via a variant of the exponential mechanism.

Definition 4.11 (Stability). Fix L € N. Let 7,y € {0,...,n} such that y < 7,n — 7. Suppose for
some Y C R? of size n, the constraint system A((t — y)/n) is feasible. We define the stability of the
2y length interval centered at 7 to be

Staby(’[, V) = POt(T—)/)/n (Y) - POt(T+y)/n (Y)

Observe that if there is a pseudo-distribution consistent with A on Y with outlier rate (t — y)/n
then there is a pseudo-distribution consistent with A on Y with any outlier rate > (7 — y)/n. Thus,
stability above is well-defined.

Definition 4.12 (Score Function). Fix 11,k € Nand C > 0. Let Y C R be a set of size n. For a
parameter L, we define the following score function for every integer 7 € [n]:

0 if Alg(Y, 7/n) is infeasible,

scorey, ¢ (T, Y) = min{y,20L — staby(7, )} otherwise.

max Y
ﬂC,k,(r—;/)/n,n (Y) is feasible

In the second case, we define y},(7) := arg max min{y, L — staby(t, y)}.

'J/
Ac k (t=y)/n 1 () is feasible

Lemma 4.13. Let 7,y € [n] such that y < t,n — 7. Suppose for some Y C RY of size n, the constraint
system A((t — y)/n) is feasible for both Y. Let Y’ be any collection of n points in RY differing from Y in at
most one point. Then, for any t,y,

stabys(7,y — 1) < staby(t, y)
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~ - — 2 = 2
Proof. Using Lemma 4.9 and noting that if ¢’ is adjacent to C then H]EE'[W]Hz < “]Ez[w] o we have:
Pot(r—y+1)/n(Y") < Pot(z_yy/u(Y),
and
Pot(z4y)/n(Y) < Pot(rsy—1)/n(Y’).
Combining the two equations yields
StabY’(T/ )V 1) = POt(T—y+1)/n (Y,) - POt(T+)/—1)/n(Y/)
< Pot(r—y)/u(Y) = Pot(r4y)/x(Y) = staby(z, ). O

Lemma 4.14 (Sensitivity of Score Function). Let Y, Y be set of n points in RY differing at most in one
point, and © € [n]. Then, for every © > 0,

|score(t,Y) — score(t,Y’)| < 2. 4.9)

Proof. It suffices to prove that score(t,Y’) > score(z,Y) — 2. A symmetric argument then proves
that score(t, Y) > score(t, Y’) — 2, which establishes (4.9).
Consider the following two cases:

e Alg(Y, (Tt —1)/n) is infeasible for Y or Y’. In this case, we have score(7, Y) < 2, which implies
the desired bound.

e Alg(Y, (T —1)/n) is feasible for both Y and Y’.

Let y* := y}(1). From Lemma 4.13, we know that stab(z, y* - 1,Y”) < staby(t, y*) + 2. Thus, it
follows that

score(t, Y’) > min{y" — 1, 20L — staby.(t, y* — 1)}
> min{y" — 1,20L — staby (7, y*)} > scorey(7) — 1,

as desired. O

Lemma 4.15 (Existence of a Good Stable Interval). Suppose A(1/2) is feasible on Y. For every
L € [0,0.25nn], thereis a t € [0, nn] such that score(t,Y) > L.

Proof. Consider Pot, 5, Pot;j2421/u, - - -, POty 2421/ Where r := |0.25nn/L|. Observe that Pot,2(Y) -
Pot,(Y) < (1 —1/2)n — (1 — n)*n < 1.5nn. Therefore, there must exists r* € [r] such that

VAN
/

—_
N
P{

POt1]/2+2L(r*—1)/n - POtn/2+2Lr*/n
Let7 =n/2+ (2Lr* —1)/n and y = L. Then, we have stab(7, y) < 12L and, thus,

score(t7,Y) > max{y,20L - 12L} > L.
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Lemma 4.16 (Utility of Score Function). Suppose A(n/2) is feasibleon Y. Let ¢, 0, p € (0,1]. For every
L e€[0,0.25nn],ifL> O (% -log (l%)) then with probability 1 — B, Theorem 3.34, invoked with the score
function in Definition 4.12 and x = L/2, does not reject, and the output t satisfies staby(t, L/2) < 20L.

Proof. This follows from the guarantee of Selection (Theorem 3.34), Lemma 4.15 and the definition
of score. 0

Lemma 4.17 (Potential Stability Under Good Coupling). Let 1, ¢,6 > 0and k, L € N be given input
parameters such that 0.25nn > L = Q (% -log (%)) Let Y, Y’ be adjacent subsets of Q. Suppose Algdoes
not halt and chooses ' = t/n in Step 1 on input Y and Y’'. Then,

|Pot,y (Y) — Pot,y (Y')| < 20L.
Consequently, if p, p” are scalings of]EZ[w] and ]EZ’ [w] so that ||p||1 = ||p'||1 =1, then,
lp - 7’|l, < 120yL/n.

Proof. It is enough to prove that Pot;/(Y) — Pot;y(Y’) < 20L as a symmetric argument proves the
other direction and completes the proof.

2
, while satisfying A on Y’ with

Ezlw]]
¢
outlier rate " (computed in Step 3 of the algorithm on input Y’). Suppose Y and Y’ differ on i-th

Let  be the pseudo-distribution that minimizes

sample point. Let Zad]» be the adjacent pseudo-distribution obtained by zeroing out w;. Then,
from Lemma 4.9, we know that C,4; is consistent with A on input Y with outlier rate n + 1/n.

—~ 2 —~ 2
Further, |[E; 4 [w]Hz < “]EE[ZU]OZ Thus, Pot,y;1/,(Y) < Poty(Y”). Further, Lemma 4.16 implies that

|Pot,],+1 m(Y) — Pot,?/| < 20L. Therefore, we have Pot,y(Y) — Pot,(Y") < 20L as desired.
Now, by Cauchy-Schwarz inequality, we immediately obtain that:

_ _ 2
HIEZ[w] - ]Ez,[w]“ <20nL
1

Thus, from Lemma 3.21, we have that:
lp = 7’|l, < 120yL/n.

O

Parameter closeness from potential stability The following lemma observes that if a sequence
of weights p;(Y) induces a 2k-certifiably C’-subgaussian distribution on Y and p’(Y) is a sequence
of weights on an adjacent Y such that p;(Y) is not too far from p;(Y”), then, p;(Y’) must also induce
a 2k-certifiably C” + 1-subgaussian distribution on Y”.

Lemma 4.18. Let 0 < p;(Y) < m be a sequence of non-negative weights adding up to n that induce a
2k-certifiable C’-subgaussian distribution on'Y. Let p;(Y”) be a sequence of non-negative weights adding up
ton on 'Y’ adjacent to'Y such that ||p(Y) - p(Y’)“1 < B for p < no. Then, for small enough absolute constant

n' >0, pi(Y’) induces a 2k-certifiable (C’ + 1)-subgaussian distribution on'Y.
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Proof Sketch. Let’s first describe the idea of the proof: the proof of Lemma 4.6 requires the existence
of a certifiably subgaussian distribution that was close (in total variation distance) to the input Y.
Since Y is adjacent to Y’, the 2k-certifiably C’-subgaussian distribution is 1 —  — 2/n-close (the
additive 2/n comes from “removing” the index of the point where Y and Y’ differ) in total variation
distance to Y. Thus, the idea is to use the certifiably subgaussian distribution supported on Y in lieu
of X to repeat the argument. In order to apply Lemma 4.6, we need a “flat” distribution—but this is
easily achieved. Given a distribution with weights (without loss of generality, say, rational numbers
ri/s), we can consider a sample expansion to ns samples that has r; copies of sample y; for each i
and an analogous transformation to Y’. And finally, given a pseudo-distribution on w1, wy, ..., w,
on Y NY’, we can transform to a pseudo-distribution on ns variables by each “copying” w; for i
such that y; = y; r; times. o

As an immediate corollary of Lemma 4.17 and Lemma 4.18, we obtain:

Corollary 4.19 (Parameter Closeness from Stability of Potential). Letn, ¢, 6 > 0and k, L € IN be given
input parameters to Algorithm 4.8 such that 0.25nn > L = Q (% -log (l%)) Also, let Y, Y’ be adjacent

subsets of Q%. Suppose Algdoes not reject in any of the 3 steps, uses the constant C' in Step 2 and chooses 1’
in Step 1 on input Y and Y’
Then, for every u € R? and 0 = \/L/n, we have:

(ty — tyr, u) < O(C'k)OT"Y2 JuTSu,
Hp = Uy p

(1-0(C'ke'ML, <L, < (1+0(C'k)e'""zL,,
and, for every t < k such that t divides 2k,

(1- O(C’t/zkt/z))el_t/Zk)(u®t,M;,t)) < <M®t,Mr()t,)> <1+ O(CIt/Zkt/z)Ql_t/ZkXLl@t,Mr(,t)> ,
Proof. Let zad]- be the adjacent pseudo-distribution of degree 2k to { obtained by zeroing out w;
where i is the index of the point that Y and Y’ differ on. Then, from Lemma 4.9, we know that
zadj satisfies A on both inputs Y, Y’ with outlier rate ’ + 1/n and | H]Eiudj [w] - ]Ei[w]ﬂi | <1,

|
||p - padj||1 < 2/n (since n” < 1/2). Further, applying Lemma 4.17 and triangle inequality, we have
that ||pad]- - p’”l < O(y/L/n). Applying Fact 3.23 to p,4; and p on Y and p,4; and p” on Y’ and using
triangle inequality completes the proof. m]

— 2 ~
]Eiadj [w] — ]E@[ZU]H2 | < 1. Let pag;j be the scaling of ]EZadj [w] so that ||Padj||1 = 1. Then, clearly,

Noise injection in estimate-dependent norms Our final ingredient for obtaining privacy guaran-
tees for our robust estimation algorithms is a new noise injection mechanism where the distribution
of noise depends on the covariance estimated by our algorithm.

Lemma 4.20. Suppose ¢, > 0. Let A be an invertible d X d matrix that satisfies (1—B)I < AAT < (1+p)I,
where B < smarsy: Let z € R? be a vector whose entries are i.i.d. from N(0,1). Then,

D.:(z,Az) < 6.
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Proof. Note that the probability distribution function of Az at u € R? is

1 L -l
det(A)(\/z_n)d

Moreover, det(A) < (1 + )?/2, since det(A)? = det(A) det(AT) = det(AAT) < (1 + B)*. Thus, the
ratio of the probability densities of z and Az at u is

det(A)eIIA‘lulli/Z—IIuH%/Z <@ +ﬁ)d/Ze||A‘1u||§/2—||u||§/2
<1+ ﬁ)d/Ze%uT((AAT)’l—I)u
< (1+ B) 12208 lulz=3lul;

B 2
< (1 +ﬁ)d/2€mllullz.

Thus, note that if [|u||., < +/2In(d/5), then |lull, < Vd - ||ullo, < v/2d1In(d/5), and so,

det(A)e||A-1u||§/2—||u||§/2 < (1+ﬁ)d/ze%dln(d/5) <ef,

since f < srm@7s)-

Moreover, by standard tail bounds of the normal distribution, we have that ||z||,, > /21In(d/6)
with probability at most 6. This proves the claim. [Pasin: This seems a tad strange; can’t we use
tail bound directly on Euclidean norm, and not have a d inside In factor?][Ameya: Indeed, I think
we can use concentration of norm properties to get that ||z|[, < c(Vd + /In(1/6)) with probability
> 1 - 0, and this will allow us to get away with g < m instead of f < 7775 In the end, this
will give a looser upper bound condition on ), that needs to be satisfied (see the sentence before
(4.23)); however, even with this improvement, the bottleneck will still be the condition on ), coming
from the covariance noise (see (4.28)).] |

Lemma 4.21. Suppose €,0 > 0. Let A be a d X d matrix that satisfies ||AAT - I||2 < B.

Let t € IN. Moreover, let Z € R be a random vector indexed by [d]!, whose entries Zj, i, .. i,, for
1<i; <ip<---<ip <d areiid. from N(0,1), and moreover, Z;, i, i = Zi 1) im@)einy for any
i =(i1,iz,...,1iq) and permutation .

Ifp < m, then

D.:(Z,A®Z7) < 6.

Proof. Let K = 4/21In(d?/0). By standard tail bounds, note that
P[||Z]|, > K] < 0. (4.10)

Let S be the subspace of R consisting of all symmetric tensors, i.e.,

rrrrr
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Note that S is an d’-dimension invariant subspace of A®!, where d’ = (d+§_1) < d!. Moreover, let

R C [d]' be a representative set of indices of size |[R| = d’, i.e., R satisfies the property that for any
(i1,12,...,1it) € [d]', there exists a permutation 7t on [t] such that (ix1), iz), - - -, in¢) € R.

Now, let M = A®!|s be the restriction of A®' to the subspace S. Moreover, let Zg € R? denote
the projection of Z to indices in R.

Note that the probability distribution of Z can be equivalently viewed as the probability
distribution of Zg, since Z is uniquely determined by the projection Zg. Let p be the probability
density function of Zg over R?". Then, note that the probability distribution of MZr is g, given by

q(v) p(M™o).

B 1
~ det(M)

forv € RY. By standard properties, we know that the ih singular value of M is bounded from above
by the ih singular value of A®! and bounded from below by the (i + d* — d’)™ singular value of A®'.
Moreover, by ||AAT - I||2 < B, we know that the singular values of A®' lie in [(1 - g)!/2, (1 + B)!/?].
Hence, the singular values of M also lie in [(1 - )!/?, (1+ §)!/2], which, together with ¢ < 1, implies
that

|MMT -1|, < 2pt (4.11)

and so,
det(M)? = det(M) det(M") = det(MMT) < (1 +28t)"% < (1 + 281", (4.12)

and so, det(M) < (1 +2pt)!7'/2,
Let u € R?. Note that |u|le < Kif and only if v € R given by v = u|r also satisfies |||l < K.
Moreover, note that if ||v||c < K, then

< (1 +281)H%  exp (% (“M_lvHi - ||U||%))

< eﬁtZdt -exp (% (Z)T((MMT)_l _ I)Z)))

1
< e exp (E loll3 - (MMt - 1||2) (4.13)
By (4.11), we have that ||(MMT)_1 - 1”2 < f—gtﬁt < 4pt, since ft < }1. Therefore, (4.13) is at most

P exp (2K2d'Bt) .

Thus, if f < 2K§t T = gg hi @70y the above quantity is at most e®. This, combined with (4.10), proves
the desired claim. O

Remark 4.22. Note that Lemma 4.21 uses an assumption on the spectral norm of ||AAT -1 H . However,
it is also possible to obtain a version of the lemma under an assumption on the Frobenius norm,
AAT - I||F < B, then Eq. (4.12) instead

||AAT -1 || o In particular, if we assume that, instead,
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tdt /2 _1
becomes det(M) < (1 + ﬁ) < eftd"2/2; This follows from the fact that (a.) the eigenvalues

Vd
A, Ag, ..., Agof AAT satisfy Zfl:l()\l- -1 < 52, (b.) under the aforementioned constraint, A{Ap - - - Ay
is maximized when A1 = A, =---=A; =1+ %, (c.) the eigenvalues of (AAT)® are precisely the d’

t-fold products of eigenvalues of AAT.

Putting things together Now, we are ready to prove the main privacy guarantee provided by our
robust moment estimation algorithm, Algorithm 4.8.

Lemma 4.23 (Privacy Guarantee). Suppose C,1,¢,0 > 0 and k € N. Suppose n > ng =

2k
Q ((%W (In(6kd* /o) + é)) o ) Then, Alg (given by Algorithm 4.8), invoked with L = O(log(n/6)/¢),
is (¢,0)-DP.

Proof. Let ¢’ = ¢/3 and 6’ = 6/3. By our adaptive composition theorem under halting (Lemma 3.30),
it suffices to show that each step of the algorithm is (¢’, 5’)-DP (given the outputs of the previous
steps as parameter?). Let Y and Y’ be any neighboring datasets.

e Stable Outlier Rate Selection. Since this step invokes the (¢, 0’)-DP Selection algorithm
(Selection ), it immediately follows from Theorem 3.34 that this step is (¢’, 0’)-DP.

e Witness Checking. [Pasin: I'd suggested phrasing the DP guarantee of this step and the
next step in terms of Definition 3.29 because our composition theorem is stated in that term.]
Let C*(Y) denote the smallest C* for which p;(Y) induces a 2k-certifiable C*-subgaussian
distribution on Y. Lemma 4.18 ensures that |C*(Y) — C*(Y’)| < A for A = 1. Therefore, we may
apply Lemma 3.27 with DP parameters ¢’, 6’ to conclude that this step is also (&, 6”)-DP.

e Noise Addition. Since the algorithm has not halted in the previous step and the truncated
Laplace noise is negative, p;(Y) and p;(Y”’) must induce 2k-certifiable C’-subgaussian distribu-
tions on Y and Y’ respectively. Let u and 1’ denote the corresponding mean estimates under
pi(Y) and p;(Y’), respectively, and, similarly, let ¥ and ¥’ denote the corresponding covariance
estimates. By Corollary 4.19, we have that, for all u € R,

(T—1,uy < y1VuTZu (4.14)
(1-12)E <Y <(1+m)E (4.15)

and, forall2 < t < k,
(1= y)®, MOY < (u®, MO) < (1 +y)w®, MO), (4.16)

where 0 = \/L/n, y1 = O(C’k)01"1/%, and y; = O((C’k)!/?)0'~*/?k for 2 < t < k. Moreover,
let B = ¥ -1/23/1/2,

3Note that we may also assume that the algorithm has not halted from the previous steps.
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Note that in order to show that the noise addition step is (¢’, 8')-DP, it suffices to show that

D, (i + T2, o+ Y122) < 8" (4.17)
D, (T + V27312 5 4 Y27512) < 6 (4.18)
V2<t <k, D (MO +(EV2Z0, MO 4 (V2% 20) < 5 (4.19)

for ¢” = ¢’/k and 6” = &’/k, since Fact 3.32 and standard DP composition [DKM*06] then
imply that the entire noise addition step is (¢’, 0’)-DP. We now establish each of the above
inequalities.

Noise addition for mean: We first show (4.17). Note that

D, (i + 222, 0 + 2'V22) = D, (ZV?2, (W — ) + £/%2)
= D, (z, 2V - 1) + Bz)
= Dyrp(z,2 + X720 - )
+ e 2D, orp(z + V(W - ), ZVA(W - ) + Bz)  (4.20)
= D2z, 2 + V2@ = 1)) + D,er2(2, Bz), (4.21)

where (4.20) follows from Lemma 3.33. For the first term on the right-hand side of (4.21), we
note that Hi‘l/ 2w - ZZ)HZ < 71 (which follows from plugging in u = (i — i) into (4.14)).
Thus, by the standard hockey-stick divergence calculation for the Gaussian mechanism [DR14,
Appendix A], we have that

Doz, 2+ EVRE ~ ) < o712, 42

provided that

S 2y1y2In(2.5/0”)
z e

For the second term in (4.21), note that (4.15) implies that (1—y2)I < BBT < (1+,)I. Moreover,
Y2 < Wii/é”)’ by the condition n > ng. Thus, by Lemma 4.20,

01

7

D, p2(z, Bz) < 0" /2. (4.23)
Therefore, (4.22), (4.23),and (4.21) imply (4.17), as desired.

Noise addition for covariance: Next, we establish (4.18). Observe that

D, (T +X2zxl?, 3 + $1275"2) = D, (I + Z, BBT + BZBT)
=D, (Z,(BBT —I)+ BZB")
< D,erp2(Z,Z + (BBT = 1))
+e¢2D,rn(Z + (BBT = 1),(BBT = 1)+ BZBT))  (4.24)
< D,2(Z,Z + (BBT = 1)) + ¢¥"/?D,nn(Z, BZBT)), (4.25)
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where (4.24) follows from Lemma 3.33. To bound the right-hand side of (4.25), note that the
first term is precisely the hockey-stick divergence computation corresponding to the Gaussian
mechanism (restricted to the upper triangular portion). Moreover, by (4.15),

|IBBT - 1||, < Vd - ||BBT - 1||, < y2Vd. (4.26)

Therefore ([DR14, Appendix A]), as long as

2y24/2d In(2.5/0”)
oy 2

((:”

4

we have that
D, 2(Z,Z + (BB = 1)) < 6" /2. (4.27)

For the second term in (4.25), note that o, 17 has entries distributed in N(0,1). Moreover, let
Z' = vec(Z) be the d*-dimensional vector given by the flattening of Z (see Definition 3.15). By
Fact 3.17, we know that BZBT = B®27’. Thus, by Lemma 4.21 applied with t = 2,

Des”/Z(Z, BZBT)) = Deé‘”/Z(Z/, B®2z/)
= Dgé‘"/Z (Oz_lz” B®2(02—1z/))
< 6" [2e"2, (4.28)

as long as

SII

= 2L Qe 257
which is true, since n > ng by the conditions of the theorem. Thus, (4.27) and (4.28) imply that
(4.25) is at most 8" /2 + e€"/2(5” /2¢€"/%) = §” /2, which establishes (4.18).

Noise addition for higher-order moments: Let 2 < t < k. We write R = I + ppt and
R’ =X+ @" for simplicity.

Observe that the injective/spectral norm ||-||, of (R~1/2)®* (M’(t) -M (t)) can be bounded as

V2

H(R—1/2)®t (M/(t) _ M‘(T})) = sup (U®t)T (R—l/2)®t (M/(t) _ M‘(dt)))
o veR4
lloll,=1
< sup ((R—l/%)@f,Mf(t)_M(?))‘
veR4
lloll,=1
) ~1/2.\®t Ar(t)
< e sup [((R™750)%", MW)
veR4
llo]l,=1
T /2
<y (k) - sup ((R‘l/zv) R(R—l/%)) (4.29)
Rd
olla=1

=y (C'k)' - sup |lolls

veR?
llo]l=1

38



=Vt (C/k)t/

where (4.29) follows from the C’-subgaussianity property of the distribution induced by the weight
vector at the end of Step 2. Therefore, the Frobenius norm (or Hilbert-Schmidt norm) can be
bounded as (see Corollary 4.10 of [WDFS17])

H(R—Uz)@t (M/(t) _ X[(?))H <d?. H(R—l/z)@)t (M/(t) _ ]\717))
F

<y (R i, (4.30)
Moreover, letting W = R™Y2R"/2 we have
Deé-"(ﬁ) + (R1/2)®tZ(t)’m +(RV2)®Z0) = D ((R1/2)®tz(t),m _ MO 4 (R/1/2)®tz(t))
= Door (20, (R (M0 - MO) + Wi Z0)
< Do (20,200 + R (M) - MO) )
e 2D p(Z W 4 (R71/2)! (1\7177) - M@) ,
(R722! (M7 - MO)) + Wi Z0)) (4.31)
<D, (20,20 + RV (M0 - MO))
+ e 2D, (2, WSt Zz®), (4.32)

where again we have used Lemma 3.33 in (4.31). In order to bound the right-hand side of (4.32),
note that the first term is again the hockey-stick divergence computation corresponding to the
Gaussian mechanism (restricted according to symmetry conditions). Recalling (4.30), we see that
([DR14, Appendix A]) as long as

N 2y,(C’k)td'T \2In(2.5/5”)

6”

o

4

we have that -
D, (Z“), 70 4 (R1/2)8t (M'<t> - M<f>)) <&")2. (4.33)

For the second term in (4.32), note that Gt_lZ () has entries distributed in N(0,1). Moreover, note
that [WWT = I||. < ||BBT —I||, < y2Vd by (4.26) and the fact that (4.15) implies

(1 - )/z)R <R < (1 + yz)R

Thus, by Lemma 4.21, we have that
Dy (20, WO Z0) = D, (07120, WE (0712
< 6" /2812, (4.34)

as long as

124

€
< ,
16t2d! In(2dte€”12/57)
which is true since n > ng, by the hypothesis of the lemma. Thus, (4.33) and (4.34) imply that (4.32)
is at most 6”/2 + e"/2(5” [2e<"/?) = §”, which establishes (4.19), as desired. O

V2
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4.4 Proof of Theorem 4.1

We are now ready to prove our main theorem, Theorem 4.1.

Proof of Theorem 4.1. Choose = 1/30. Choose L = Q
3ln(3/6)

—
o =

-log ([%)) (according to the condition

in Lemma 4.16). Moreover, let C = Cp + + -+ 1. Then, we claim that setting Alg to be
Algorithm 4.8 with parameters C, 1, ¢,0, L, k sat1sf1es the desired conditions, as long as 1 < 79,
where we set 1) later.

Note that the desired privacy guarantees follow immediately from Lemma 4.23.

It remains to prove the utility guarantees. Suppose that there indeed exists a good set X € Q“
with mean ., covariance ., and ¢-th moments Mft) for 3 <t < k,such that [Y N X| > (1-n)n.

By Theorem 3.34, we have that Step 1 (stable outlier rate selection) rejects and halts with
probability at most f = 1/30, and the resulting output 7 satisfies score(7, Y) > L/2. In particular,
the latter condition implies that there exists some y > L/2 for which A (=1) is feasible. By
monotonicity, A (1) is also feasible, where we let 1/ = t/n.

Hence, the invocation of Algorithm 4.3 in Step 2 does not yield “reject.” Moreover, note that
by Lemma 3.28, we have that C’ = C + y > Cp with probability at least 29/30. In this case, the
computed weight vector p induces a C’-certifiably subgaussian distribution on Y. Hence, the
probability of re]ectlon in Step 2is at most 1 / 30.

Let u = E- [y] [Z] and M®) = [ ] (for 2 < t < k) be the estimates of the mean,
covariance, and t-th moments respectively, that are outputted by the Algorithm 4.3 subroutine in
Step 2 of Algorithm 4.8. Then, by Lemma 4.5, we have

Vu e R, (i - ., u) <O (VCk) VN uTE
(1-B)Z <Z < (1+B)%.

and, for all even 2 < t < k such that f divides 2k,
Vi e RY, (1- ), M) < u®, MYy < (1 +p)u®, M),

where B = f¢(n) = O((Ck)t/z)nl‘t/”‘ We now set 1p such that B;(no) < l for all aforementioned ¢.
Note that this guarantees that ; = (1) < 2, since we are assuming 1 < 1.

Now, consider the noise addition step, i.e., Step 3 of Algorithm 4.8. Note that by the Cauchy-
Schwarz Inequality, for any u € R?, we have

EV25, 0 = (Z:l/zfl/zz, 21/27/!)
< ”2*—1/221/2Z ' ”ﬁmu
2 2
= (ZTEV221522)  uT S
< llzl3- (1 + H’il/ZZ*—lzuz _ IHz) NaT
<zll3- (1+2B2) - VuTZou

<2|lzll3 - VuT Lo,

40




since B2 < 3 by our choice of 179. Now, note that with probability at least 1 — ﬁ, we have that
llz|l, < O (01 \Vd ln(kd)), in which case it follows that

Izllz = O() - o7 In(kd) = O(VChy' ™/,
by our choice of n > ng. Thus, the mean estimate [i outputted by the Step 3 satisfies

(= i) = (f — o) + (f - o, )
= (il/zz,w + (1 — e, 1)

-0 («/ﬁ) P TELN S (4.35)

Next, we consider the utility guarantee for the covariance. Note that |[|Z|, < v =
@) (02 Vd ln(kdz)) with probability at least 1 — 53z (this follows from standard spectral properties of

Wigner matrices; see, for instance, [Tao12]), in which case, it follows that —vzf < Tl2731/2 < vzf.
Moreover, by our choice of n > ng as well as 1, we have that v, < 82 < % Thus, it follows that

i < (1 + ﬁz)i
(1+ B2)*L.

5
1+= X
+ zﬁz)

< (1 +O(CK) - nl—l/k) .,

IA

IA

and by a similar argument, we also have . > (1 - O(Ck) - n'~V¥) £,, thus implying that
(1 ~0(Ck)- nl_l/k) << (1 +0(Ck)- ql-l/’f) % (4.36)

Finally, we consider the utility guarantee for moment estimation. Suppose 2 < t < k and f is an
even number dividing 2k. Let A = £ + ap! and A, = %, + p.u!. Note that for any 2 < t < k, we

have ||Z(t)|| =0 (tht/ 2\/ln(Tdt)) with probability at least 1 — 30%(. In this case, note that for any
u € R%, we have the following (recall that ||-|| , indicates the injective norm of a tensor):
W, (AV2)B 70y = (A2t 7(0)y

<[], -lla*2ulf

<[] -lla*2ulf

= O(ord*\in(kd) - | A"2u

= O(01d'In(kd")) - (u” Au)'?

= O(o¢(d'*\n(kd")) - (1 + Bo)u” Acur)'?

= 00 (d(1 + )itk - |41

41



= O(0:(def2)! 2 \In(kd?)) - (u®, MY) (4.37)
= O((Ck)!2)nt=t12k . @t My, (4.38)

where (4.37) follows from Jensen’s Inequality, and (4.38) follows from our choice of n > ng. Thus,
the moment estimate M) = M(®) + (A1/2)® Z() outputted by our algorithm satisfies

<I/l®t,M(t)> < <M®t,[\71(t)> + <M®t, (A1/2)®tz(t)>
< (1+B)(w®, M) + O((Ch) =12 uet, ML)
— (1 + O((Ck)t/Z)nl—t/Zk) (u®t,M£t)).

In a similar fashion, we also get that (u®, M®)) > (1 - O((Ck)!2)nt=t/2k) (u®t, MYy, thus implying
that

(1 _ O((Ck)t/2)n1—t/2k) <u®t,M£f)> < <u®t,M(t)> < (1 + O((Ck)t/Z)nl—t/Zk) <u®t,Mit)>. (4.39)

Hence, (4.35), (4.36), and (4.39) imply the desired utility guarantees.

Moreover, recall that the rejection probabilities at Steps 1 and 2 are each at most %,
possible to reject in Step 3. Moreover, the < k utility guarantees each fail with probability at most
3(1)—,(. Thus, by a union bound, it follows that the algorithm does not reject and, moreover, outputs
estimates satisfying the desired utility guarantees with probability at least 1 — % - 31—0 —k- ﬁ = %.

Finally, note that the running time of (B1)°® follows from the time complexity guarantee in
Lemma 4.5, as the invocation of Algorithm 4.3 in Step 2 is the bottleneck. Steps 1 and 3 are easily

seen to run in (Bn)°® time. This completes the proof. ]

and it is not

5 Robust Mean and Covariance Estimation for Certifiably Hypercon-
tractive Distributions

In this section, we observe that we can upgrade our guarantees from the previous section for robust
estimation of moments of distributions that have certifiably hypercontractive degree 2 polynomials.

Definition 5.1. A distribution cD on R? with mean i, and covariance ¥, is said to have 2h-certifiably
C-hypercontractive degree 2 polynomials if for a d X d matrix-valued indeterminate Q and X = x — .,

Q “TAN= =T A =\2h 2h “ 1/2 1/2H2h
E - E < h h .
|_2h {x~D(x Qx x~Dx Qx) (Ch) Q ;

The Gaussian distribution [KOTZ14], uniform distribution on the hypercube and more gen-
erally other product domains and their affine transforms are known to satisfy 2t-certfiably C-
hypercontractivity with an absolute constant C for every t.

In order to derive this conclusion, we note the following analog of the witness-producing
algorithm and its guarantees:
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Witness-producing version of the robust moment estimation algorithm We will use the follow-
ing (non-private) guarantees for the robust moment estimation algorithm in the previous section that
hold for a strengthening of the constraint system A with certifiable hypercontractivity constraints.
Using the analysis of [DKK*16], the following guarantees were recently shown in [KMZ21] for the
case when the unknown distribution is Gaussian.

For any d X d matrix-valued indeterminate Q, let JE;TQJE; =x"TQx" - % Yy x;TQx’.

A: Constraint System for n-Robust Moment Estimation
1. wl? =w,; foreach1 <i < n,
2. M =130 (i =) = )7,
3. Yiqwi=(1-nmn,
4.y = %Zz X7,

5. wi(x;—y;))=0for1<i<mn,

=T ~ .2
6. 1y % Qx/” < C||IQII|l7.

n

The following guarantees for the algorithm above were shown in [BK20a].
Fact 5.2 ([BK20a]). Let X € RY be an i.i.d. sample of size n > ng = 5(d2/r])from N(u., Z.). Let Y be an
n-corruption of X. Then, for u’ = % X, X = % 2ilxi — w)(xi — )T, we have:
A % (W = e, uy <O VHuTEu?}

Algi {0, =z uy <O Tz},

ATowm {’

The first two guarantees of the lemma below were shown in [BK20a]. The third guarantee
follows from an argument similar to that of Lemma 4.6. Notice that the key difference in the
guarantees below (compared to the ones in Lemma 4.5) is the bound on the Frobenius (instead of
the weaker spectral) distance between the estimated covariance and true unknown covariance.

2
w1 2yry 12 _IH < O(nl—l/k)} .
F

Lemma 5.3 (Guarantees for Witness-Producing Robust Moment Estimation Algorithm). Given a
subset of of n points Y C Q% whose entries have bit complexity B, Algorithm 4.3 runs in time (Bn)°®)
and either (a.) outputs “reject,” or (b.) returns a sequence of weights 0 < p1,p2,...,pn satisfying
pr+p2+---+pp=1

Moreover, if there exists a set X C R? of points with 4-certifiably C-hypercontractive degree 2 polynomials
with mean ., covariance L., then Algorithm 4.3 does not reject, and the corresponding estimates i = 1 3. p;y;
and & = Y1 piyi — )y — Q)7 satisfy the following guarantees:

1. Mean Estimation:

Vu € RY, (i — e, u) < ONC)P*NuTEut,
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2. Covariance Estimation:

y 28y IHF < 0(Cn'?),

3. Witness: For C' < C(1+ 0(n'/?)),

2
£1/2 21/2H
Q F

n " )
Q|1 X N ) A |
= ;;Pi ((%‘#/Q(yi_[u))—E;m(yi—#,Q(%_#))) <C

We can now use the above witness-producing algorithm to obtain a stronger Frobenius norm
estimation guarantee with (¢, 0)-privacy for Gaussian distributions. Notice that the only change
from the previous section is in the choice of the constraint system A and the corresponding change
in the witness checking step.

Algorithm 5.4 (Private Robust Moment Estimation).

Given: A setof points Y = {y1,y2,...,¥n} C Q4 parametersn,¢,6 >0, L € N.
Output: Estimates i and £ for mean and covariance.

Operation:

1. Stable Outlier Rate Selection: Use the (¢/3,6/3)-DP Selection with x = L/2 to
sample an integer 7 € [n] with the scoring function as defined in Definition 4.12. If
T =1, then reject and halt. Otherwise, let " = 7/n.

2. Witness Checking: Compute a pseudo-distribution { of degree O(1) satisfy-
ing A on input Y with outlier rate n° and minimizing Potn,,z(Y). Let y ~
tLap (— (1 + M) ,3/ e). Check that the weight vector p = ]Ez[w] induces a
distribution on Y that has (C + y)-certifiably hypercontractive polynomials. If not,
reject immediately. Otherwise, let i = E;[u] and E = E¢[X].

3. Noise Addition: Let y; = O(C’)(L/n)zli and y, = O(C’)(L/n)zli, Let z ~ N(0, o1)*
and Z ~ N(O, 02)@1), where we interpret Z has a symmetric d X d matrix with

independent lower-triangular entries, and 0; = 12¢71y;4/21In(15/6) for 1 < j < 2.
Then, output:

o [i= ﬁ+§1/zz.
o £ =% +xl2751/2,

The parameter closeness from potential stability is also upgraded from Corollary 4.19:

Lemma 5.5 (Parameter Closeness from Stability of Potential). Let n, ¢,6 > 0 and L € N be given input
parameters to Algorithm 5.4 such that 0.25nn > L = Q (% -log (ﬁ%)) Also, let Y, Y’ be adjacent subsets of

Q. Suppose Algdoes not reject in any of the 3 steps, uses the constant C’ in Step 2 and chooses 1’ in Step 1
on input Y and Y’
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Then, for every u € R? and 0 = \/L/n, we have:
(p = pr, uy < O(C’)63/4,/uTZpu

y12y 312 —IH < 0(C)02 .
I e EYel(e

and

The following theorem summarizes our privacy and utility guarantees for the algorithm above.
We specialize to the “base case assumption” of 4-certifiable C-hypercontractivity of degree 2
polynomials in order to derive explicit bounds here. Our analysis of the algorithm above follows
mutatis mutandis with the key upgrade being the stronger Frobenius norm guarantees in Lemma 4.18
that hold under certifiably hypercontractivity constraints in our constraint system A (this requires
us to use a version of Lemma 4.21 that makes use of a bound on ||AAT -1 || r instead of ||AAT -1

see the remark at the end of Lemma 4.21). As before, the Q) notation hides logarthmic multiplicative
factorsind, C,1/n,1/e, and In(1/0).

Theorem 5.6 (Private Robust Mean and Covariance Estimation for Certifiably Hypercontractive

Distributions). Fix Co > 0. Then, there exists an 19 > 0 such that for any given outlier rate 0 < n < 1o and
— 4

€,0 > 0, there exists a randomized algorithm Alg that takes an input of n > ng = Q (Zi—i (1 + M) . C4)

pointsY = {y1,Y2,...,Yn} C Q7 (where C = Co + M + % +1), runs in time (Bn)°W (where B is the

bit complexity of the entries of Y) and outputs either “reject” or estimates fi € Q“ and 5 e Q™ with the
following guarantees:

1. Privacy: Alg is (¢, 0)-differentially private with respect to the input Y, viewed as a d-dimensional
database of n individuals.

2. Utility: Suppose there exists a 4-certifiably Co-subgaussian set X = {x1,x2,...,x,} C Q7 such
that |Y N X| > (1 —no)n with mean . and covariance T, > 2P, Then, with probability at least
9/10 over the random choices of the algorithm, Alg outputs estimates fi € Q% and %. € Q4 satisfying
the following guarantees:

Vu € RY, (fi — ., u) < ONCWuTZ.u,

Moreover, the algorithm succeeds (i.e., does not reject) with probability at least 9/10 over the random choices
of the algorithm.

and,

yo2gy 2 IHF < O(C).

When specialized to Gaussian distributions, the Frobenius guarantee above is suboptimal—
the robust estimation algorithms of [DKK*16] allow estimating the mean and covariance of the
unknown Gaussian distribution to an error 5(17). We can in fact recover the stronger guarantees by
relyong on the analysis in [KMZ21][Theorem 1 and 2] of the same constraint system above for the
case of Gaussian distributions (in the “utility case”). This yields the following corollary:
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Theorem 1.3 (Mean and Covariance Estimation for Gaussian Distributions). Fix ¢,0 > 0. Then,
there exists an absolute constant 1o > 0 such that for any given outlier rate 0 < n < 1o, there exists a

—~ 4
randomized algorithm Alg that takes an input of n > ng = Q (‘r’;—i (1 + M) ) points Y C Q4 runs in

time (Bn)®Y) (where B is the bit complexity of the entries of Y) and outputs either “reject” or estimates
fi € Q? and £ € Q™4 with the following guarantees:

1. Privacy: Algis (&, 6)-differentially private with respect to the input Y, viewed as a d-dimensional
database of n individuals.

2. Utility: Let X = {x1,x2,...,x,} bean i.i.d. sample of size n > ng from a Gaussian distribution
with mean . and covariance T, > 27 PYD] such that Y is an n-corruption of X. Then, with
probability at least 9/10 over the random choices of the algorithm, Alg outputs estimates i € Q°
and 3. € Q™ satisfying the following guarantees [Ameya: I added in the log(1/6) dependence to be
explicit. Can you check whether this lets us get rid of the tilde on the O?]:

— log(1/6
Yu € RY, (= e, uy < O(n-%) utX.u,

log(1/0)
\ N

In particular, dry(N(fL, £), N (g, Z.)) < 5(17 log(1/0)/é¢).

and,

28y 12 IHF <0
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A Missing Proofs from Section 3.6

A.1 Proof of Lemma 3.27

Proof of Lemma 3.27. Consider any neighboring datasets Y, Y’ and let M denote the truncated
Laplace mechanism (with parameter as specified). Let p, g4 denote the probability density functions
of M(Y), M(Y’). Observe that p(x) < e® - g(x) for all x < min{f(Y), f(Y’)}. Thus, we have

De:(p,q) = / GR[p(x) —e“q(x)]+dx
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- / [p(x) —e“q(x)]dx
xzmin{f(Y),f(Y’")}

N

/ p(x)dx
xzmin{f(Y),f(Y")}

(Since sensitivity of f is at most A) < / p(x)dx
x>f(Y)-A
(Lemma 3.28) < 0,

which means that the truncated Laplace mechanism is indeed (¢, 6)-DP. O

A.2 Proof of Lemma 3.30

The proof of the composition lemma follows from that of the standard adaptive composition of
approximate DP proof [DL09, Theorem 16]. Below we use the notation [x]; to denote max{x,0}
and x A y to denote min{x, y}.

Proof of Lemma 3.30. It suffices to prove the theorem for k = 2 as we may then apply induction to
arrive at the statement for any positive integer k. To prove the case k = 2, considerany S € O, U {L}
and any pair of neighboring datasets Y, Y".

For any S1 € O; U {1}, we define the measure p(S1) := [P[M(Y) € S1] — e P[M1(Y’) € S1]]+.
Note that we have u(0;) < 61 due to our assumption that M is (&1, 61)-DP.

Now consider four cases:

e Both Y, Y satisfy W;. In this case, we may appeal to (&2, 02)-DP under W of M, which
implies

]P[Mz(ol,Y) € S] < (662 ]P[MZ(Ol,Y,) € S] A 1) + 7. (A1)

For ease of notation, let py : O; — R™ denote the measure obtained by restricting the
probability density function of M;(Y) to Oy (note that /01 py(o1)do; =1 - P[Myi(Y) =1]).
Then, observe that

PIM(Y) € 5] = 1L S]PIMy(Y) =L] + /O P[Ma(o1, Y) € Slpy(o1) dos
" Le SIPIMi(Y) =11+ [ (e P[Ma(o1, Y') € STA 1)+ 62) py(o1) doy
O

<1[Le S]PMy(Y) =1] + 65
+ [ (e PIMa(or, Y) € ST A Dpy(on) don
O
< 1[Le SJ(e® PIM(Y') =L] + u({L})) + 62
+ [ (e P[Mz(01,Y’) € S| A1)(e“ py-(01) do1 + du(o1))

O
< 1[Le S](e” PIM1(Y') =L]) + (01 U {L}) + 62
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+ [ (e22P[Ma(01,Y’) € S] A 1)(e€1py-(01)) doy
O
< 1[J_€ S](651+£2 ]P[Ml(Y,) :J_]) +061+ 0o
+/ e P[My(01,Y’) € Slpy-(01) do
O

<01+ 0 +e T2 PIM(Y) € S].

o Y satisfies V| but Y’ does not. In this case, we have P[M(Y’) =1] = 1, which implies that
PIM(Y) € S] — e "2 PIM(Y’) € S] < PIM(Y) #L] = P[M(Y) #L] — e PIM(Y’) #L1] < 61,
where the last inequality follows from the fact that M; is (&1, 61)-DP.

o Y’ satisfies W1 but Y does not. In this case, we have P[M(Y) =L] = 1, which implies that

PIM(Y) € S] = e“ "2 PIM(Y’) € S] < [PIM(Y) =L] = e "2 PIM(Y") =L]]4

<
< [PIM(Y) =L1] = e PIM(Y') =1]]+
< 611

where the last inequality once again follows from the fact that M is (&1, 01)-DP.

e Neither Y nor Y’ satisfy ;. In this case, both M(Y) and M(Y’) always output L. Therefore,
we have PIM(Y) € S] = PIM(Y’) € S].

Thus, in all cases, we have P[M(Y) € S| = et 2 P[M(Y’) € S] + 01 + 0, as desired. O

A.3 Proof of Lemma 3.33
Proof of Lemma 3.33. Then, note that

Detpr)= [ [pt) —etrol.
= [0 = e g + (20 - (o)L
_ €2 e/2 €
< [l -ergendr e [ e - o da

xeR4

- / [(p(x) — e (x)]. dx + 12 / [9(x) = ePr(x)]. dx
xeR4 xeR4

= Def/Z(P, q) +et/2. Des/z(q/ r),

as desired. O
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A4

Proof of Theorem 3.34

As stated earlier, the proof of Theorem 3.34 follows from applying the exponential mechanism [MT07]
and then use the truncated Laplace mechanism (Lemma 3.27) to check that the score indeed exceeds

K.

Proof of Theorem 3.34. Selection works as follows:

1.

First, run the (¢/2)-DP exponential mechanism [MT07], i.e. selecting each ¢ € C with
probability proportional to exp (75 - score(c, Y)). Let c1 be the output of this procedure.

21In( 2A

2. Sample the noise N ~ tLap (—A (1 + #) , T) and compute score = score(ci, Y) + N. If

score > «, then output 1. Otherwise, output L.

We will now prove each of the claimed properties:

1.

The first step satisfies (¢/2)-DP via the standard privacy guarantee of the exponential
mechanism [MTO07]. The second step is (¢/2, 6)-DP due to Lemma 3.27. Thereby, applying
the basic composition theorem implies that Selection is (¢, 6)-DP.

Since N < 0, we are guarantee that if the algorithm outputs ¢* € C, we must have score(c, Y) >
Kk as desired.

For any c € C, the standard utility analysis of the exponential mechanism [MTO7] implies
that, with probability 1 — 0.58, we have score(c1, Y) > score(c,Y) — O (% In (%)) Moreover,
the tail bound of Laplace noise (Lemma 3.28) implies that with probability 1 — 0.5 we

have N > -A (1 + w) -0 (%ln(l/ﬁ)) > -0 (%ln (#)) Therefore, if score(c,Y) >
IC]

k+0O ( % In (w) ), the probability that the algorithm outputs L is at most 5, as desired.
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