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Abstract

In the past decade, academia and industry have embraced machine
learning (ML) for database management system (DBMS) automa-
tion. These efforts have focused on designing ML models that pre-
dict DBMS behavior to support picking actions (e.g., building in-
dexes) that improve the system’s performance. Recent develop-
ments in ML have created automated methods for finding good
models. Such advances shift the bottleneck from DBMS model de-
sign to obtaining the training data necessary for building these mod-
els. But generating good training data is challenging and requires
encoding subject matter expertise into DBMS instrumentation.

Existing methods for training data collection are bespoke to indi-
vidual DBMS components and do not account for (1) how workload
trends affect the system and (2) the subtle interactions between
internal system components. Consequently, the models created
from this data do not support holistic tuning across subsystems and
require frequent retraining to boost their accuracy.

This paper presents the architecture of a database gym, an in-
tegrated environment that provides a unified API of pluggable
components for obtaining high-quality training data. The goal of a
database gym is to simplify ML model training and evaluation to
accelerate autonomous DBMS research. But unlike gyms in other
domains that rely on custom simulators, a database gym uses the
DBMS itself to create simulation environments for ML training.
Thus, we discuss and prescribe methods for overcoming challenges
in DBMS simulation, which include demanding requirements for
performance, simulation fidelity, and DBMS-generated hints for
guiding training processes.

1 INTRODUCTION

Despite major advancements over the last 50 years, database man-
agement systems (DBMSs) remain one of the most difficult software
systems to configure and optimize correctly. As such, they have a
long history of automated methods for configuring physical design,

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2023. 13th Annual Conference on
Innovative Data Systems Research (CIDR °23). January 8-11, 2023, Amsterdam, The
Netherlands.

Matthew Butrovich
Carnegie Mellon University
mbutrovi@cs.cmu.edu

Lin Ma
University of Michigan
linmacse@umich.edu

William Zhang
Carnegie Mellon University
wz2@cs.cmu.edu

Peijing Xu
Carnegie Mellon University
peijingx@cs.cmu.edu

Andrew Pavlo
Carnegie Mellon University
pavlo@cs.cmu.edu

knob settings, and other setup aspects. There is now significant in-
terest from both academia [40, 45, 48, 76] and industry [9, 19, 21, 54]
in applying machine learning (ML) to solve these problems.

The ultimate goal of these ML methods is to create an autonomous
DBMS that operates without human guidance (i.e., Level #5 — self-
driving DBMS [60]). Such a system aims to optimize itself auto-
matically for a given objective function (e.g., latency, throughput,
cost) and constraints (e.g., cost budget, SLA) [58]. It improves this
objective by deploying actions (e.g., building an index) with human-
understandable explanations in response to anticipated workloads.

Most of the previous work on using ML for DBMS automation
has focused on enhancing the models for these approaches. How-
ever, recent advances in ML have made these efforts moot. Foremost
is the emergence of a small number of models (i.e., “foundation”
models) that dominate all other models on a wide variety of tasks [7].
Furthermore, automated frameworks have greatly reduced the engi-
neering burden of crafting a model to the point of requiring minimal
effort or ML expertise [18, 20, 49, 83].

Given this, we contend that the current challenge facing the
database community is obtaining high-quality training data for the
models [64]. Other ML-heavy domains, such as robotics [37, 73, 86]
and self-driving vehicles [12, 81], obtain training data via software-
based simulators. A simulator attempts to approximate the behavior
of an object when it would otherwise be too costly, time-consuming,
or dangerous to experiment on the real system. Researchers typi-
cally package such simulators into a gym, a toolkit for developing
and evaluating ML models and algorithms. For example, OpenAl
Gym [14] is a commonly used platform for reinforcement learning
research. The standardization of simulator environments in gyms
has accelerated ML research by unifying efforts to build end-to-
end pipelines for rapid model prototyping and productionization.
Other research communities are developing similar gyms for their
respective fields, including networking [30] and fintech [10].

Despite the clear benefits of gym environments for ML research,
to the best of our knowledge, no one has attempted to build a gym to
support autonomous DBMS efforts. One possible reason is that the
effort required to build a DBMS simulator is tantamount to building
the DBMS itself. Instead, researchers and practitioners have built
custom training modules for individual DBMS components (e.g.,
optimizers [46, 47], executors [45]). This lack of standardization
results in reimplementation of basic infrastructure, like workload
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capture and analysis. Moreover, it complicates comparing the per-
formance and generalizability of ML approaches.

To overcome these problems, we argue that the next chapter of
self-driving DBMS research should focus on developing a database
gym. The gym addresses the problem of obtaining training data
to build models for autonomous DBMSs by tackling the ML and
systems challenges together. Furthermore, the gym’s ownership of
the end-to-end pipeline enables unique opportunities for learning
across different DBMSs and hardware configurations. The gym aims
to expedite research in DBMS automation by providing a turnkey
solution to the challenge of obtaining high-quality training data.

2 BACKGROUND

An autonomous DBMS makes decisions using three architectural
ML components [60]: (1) workload forecasting to predict the future
workload, (2) behavior modeling to predict the system’s response to
actions, and (3) action planning to decide which actions to apply and
when. These ML components typically rely upon models trained
on data collected from the target DBMS [15]. Such training data
consists of inputs (i.e., features) and outputs (i.e., labels). A model
fits the training data by learning associations between inputs to
predict outputs. For example, a model can predict the benefit of
building an index for the future workload.

Achieving the highest level of automated operation requires ML
models that capture subtle interactions between different DBMS
components. However, the ML models cannot account for these
interactions without high-quality training data that either (1) repre-
sents the interactions as explicit input features or (2) manifests their
effects as output labels. However, the former approach is intractable
because there are too many candidate features, many of which are
impractical to obtain [15]. The latter approach is more feasible, as
it only involves collecting training data under similar conditions as
the target DBMS. Therefore, we define high-quality training data
as data collected using a workload and state that approximates the
target DBMS. This approximation ensures that the DBMS gener-
ates training data that captures these subtleties without explicitly
modeling all DBMS interactions.

We now describe the aspects of a DBMS simulator that are impor-
tant for training data quality: (1) workload and (2) state. Related to
these, we also discuss issues surrounding how the DBMS evaluates
actions to generate diverse training data. This discussion motivates
the design of a database gym, which we present in Section 3.

2.1 Workload

The first aspect of a DBMS that is relevant to training data col-
lection is its workload (i.e., the queries it executes). Both com-
mercial DBMSs (e.g., Oracle [28], Microsoft SQL Server [50]) and
popular open-source DBMSs (e.g., PostgreSQL, MySQL) provide
tools for workload capture. Previous work uses different represen-
tations for captured workloads, including raw SQL [79, 88], query
plans [48, 77], system metrics [8, 45, 76], and simple classification
(e.g., OLTP vs. OLAP) [39]. We contend that defining the work-
load as a time series of raw SQL is the best approach because (1)
the queries do not change as the system changes, and (2) all other
representations derive from them.

Given a historical workload of SQL queries, a DBMS’s workload
forecasting component seeks to predict and synthesize the future
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Figure 1: Workload Effects on Modeling Error - We train two models
of QPPNet to predict query elapsed time on PostgreSQL v14 with TPC-H
(scale factor 10). The All model enables hash joins for all 22 queries. The
First10 model enables hash joins for only the first 10 queries. We leave out
bars where both models are below 0.125 relative error for readability.

workload. The challenging questions in synthesizing a workload
are deciding (1) what queries to consider for execution and (2)
how to determine their arrival times. Existing research in workload
prediction attempts to forecast volume [44], predict the subsequent
SQL query [25, 61], and detect shifts [35]. Furthermore, workload
compression [17] identifies important subsets of the workload for
monitoring [23] and tuning [69]. However, these approaches only
predict high-level properties or operate on historical workloads. To
our knowledge, no existing work focuses on synthesizing a future
workload that targets training data collection for ML components
(e.g., a time series of future SQL queries that the DBMS can execute).

To illustrate why this matters, we study QPPNet [48], a state-
of-the-art ML model for query performance prediction, using the
TPC-H benchmark on PostgreSQL v14. QPPNet trains on anno-
tated query plans (i.e., EXPLAIN ANALYZE) to predict the execution
time of new queries. For this experiment, we disable hash joins for
half of TPC-H’s queries while collecting training data to simulate
workload drift (e.g., query plan change due to statistics updates).
As Figure 1 shows, if aspects of the target DBMS’s workload are
missing in the training data (i.e., some queries switch to using hash
joins), then the model has a higher relative error and makes worse
predictions. These results suggest that historical workloads are
insufficient for training an autonomous DBMS’s ML models, and
therefore the system must predict and collect training data for the
future workload.

2.2 State

A DBMS’s state affects its runtime behavior during training data
collection. As we now describe, this state comprises the DBMS’s
hardware resources, along with its logical and physical components.

Hardware: The state’s hardware specification details the resources
available to the DBMS. This information includes compute (e.g.,
number of CPUs, cores, ISAs), storage (e.g., disk, memory), and
network topology. These resources can either be the target DBMS’s
current hardware specification or potential additional resources
(e.g., different cloud instance sizes).

Logical Contents: This component refers to the contents of the
database that are externally visible to users and applications. These
contents include both the database schema (e.g., columns, views,
indexes) and tuples (e.g., values, number of tuples, distributions).
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Physical Condition: Lastly, this component includes the aspects
of the DBMS that pertain to its physical elements, including (1) the
contents of data pages, (2) the layout of auxiliary data structures,
and (3) the DBMS’s knob configuration.

A DBMS’s runtime behavior (e.g., query execution performance)
obviously depends on its hardware resources and logical contents.
Its physical condition is equally important but is often overlooked in
training data collection. When a DBMS executes a query that modi-
fies a table, it can alter the table’s underlying physical organization
in ways that will affect the behavior of future queries. For example,
because of the way PostgreSQL implements multi-versioning [82],
updating a tuple may either (1) insert the new version on the same
page as the original version or (2) insert the new version on another
page. The logical contents in the database are the same in these
two scenarios, but each will result in a different physical condition
with varying performance costs.

To demonstrate the above, we execute TPC-C on PostgreSQL
v14 while changing how the DBMS stores data. For each trial, we
vary the DBMS’s knob (fillfactor) that determines how much
free space the system reserves in a page when inserting new tuples.
Reducing the fill factor makes it more likely that the DBMS will
place a tuple’s new version in the same page as the previous version
upon update. However, the extra padding also increases database
size on disk. We load the TPC-C database with BenchBase [1, 24] and
execute each trial for 30 minutes (scale factor 200, 200 terminals).

Figure 2 shows how changing the DBMS’s physical condition
results in trade-offs between its performance and storage. As we
decrease PostgreSQL’s fill factor knob, transaction latency decreases
in Figure 2a while database storage size increases in Figure 2b.
These results are unsurprising. However, Figure 3 shows that the
min/max fill factor settings (10, 100) have different latency profiles,
with the latter being pronouncedly bimodal. Moreover, the current
knob value may not reflect the actual physical condition until a
VACUUM FULL operation. This makes modeling physical condition
difficult, as it is not enough to simply scrape the current knob value.

This experiment highlights the need to consider a DBMS’s phys-
ical condition to accurately support more complex actions, such as
tuning the fill factor for individual tables and indexes. Therefore,
the quality of both training data features and labels depends on
achieving a state representative of all three facets of a DBMS.

2.3 Actions

Most DBMSs provide programmatic APIs for deploying actions in
the following categories: (1) physical design, (2) schema changes, (3)
knob configuration, (4) hardware resource allocation, and (5) query
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Figure 3: NewOrder Latency Distributions — As the fill factor decreases,
the latency approaches a Gaussian distribution.

plan hints [59]. The first two categories are changes to the data-
base’s physical state (e.g., indexes, views, partitioning) and logical
state (e.g., changing column types). The third category consists of
optimizations that affect the DBMS’s behavior through its configu-
ration knobs (e.g., caching policies). Next, resource allocations de-
termine how the DBMS uses its available hardware to store data and
execute queries. The system may either provision new resources
(e.g., adding disks, memory, or machines) or redistribute existing
resources (e.g., partitioning tables across disks). Lastly, query plan
tuning hints are directives that force the DBMS’s optimizer to make
certain decisions for individual queries (e.g., join orderings). An
autonomous DBMS must collect training data on these actions for
its ML models.

Generating training data for all these actions is infeasible because
too many possible actions exist. Thus, the key challenge is how to
identify the actions that are worth considering based on the target
DBMS’s workload and state. For example, consider building multi-
column indexes for a read-heavy workload like Wikipedia [24].
Wikipedia’s MySQL schema [6] has 364 attributes across 58 tables.
There are 31 (mL_'l), potential multi-column indexes for a table
with m attributes, which means Wikipedia has ~7-10%2 possible
indexes. Even if one could obtain training data for each index in a
nanosecond, it would still take 2m years. This estimation also does
not consider index types (e.g., hash vs. B+tree) and index arguments
(e.g., split/merge thresholds, page sizes), exacerbating the problem.

Prior work addresses this problem by pruning the action search
space with ad-hoc rules. For example, some index selection tools
only consider two-column indexes [3], while others prune can-
didates based on simple criteria (e.g., columns appear in predi-
cates [75]). But such ad-hoc rules will not result in holistic ML mod-
els for autonomous DBMSs. These rules must be programmable,
enumerable, and integrated into the training data pipeline.

In this paper, we focus on DBMS-scoped actions. Future work
may also include tuning OS-level knobs (e.g., OS page cache policy)
or modifying application code (e.g., JDBC/ODBC libraries).

3 DATABASE GYMS

The totality of the above problems impede the collection of the train-
ing data needed for an autonomous DBMS’s ML-based components.
Moreover, these problems reoccur across DBMSs, yet existing solu-
tions are typically DBMS-specific (e.g., buffer pool probes). What
is needed is an abstraction layer that synthesizes a future work-
load and state while also coordinating generation and execution of
actions to produce high-quality training data. Such an abstraction
would allow for the rapid prototyping and evaluation of ML models.
The development of this abstraction motivates our database gym.
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A gym is a toolkit that provides a consistent environment for
offline training and evaluating ML algorithms that automate tasks
on an agent. One of the most influential gyms is OpenAI Gym (OA-
Gym) [14], designed for reinforcement learning (RL) problems. The
RL setting places an agent inside an environment that advances in
discrete simulation timesteps. At each timestep, the agent performs
an action inside the environment that generates an observation and
a reward. The agent considers past observations and rewards as it
attempts to maximize its expected future reward by formulating an
action-picking policy that explores an action space. OA-Gym’s key
contribution is providing a standardized API for agent-environment
communication. This standardization led to the development of
different environments (e.g., video games [13], robotic arms [14])
and agents [62, 63] that enable reproducible benchmarking and
evaluation. Moreover, OA-Gym is extensible both in core function-
ality (e.g., distributed training [41], multi-agent environments [71])
and to other research domains [10, 30, 86].

The challenge of developing a database gym (DB-Gym) is that
simulating the environment is complex and slow. Moreover, unlike
other relatively standardized domains (e.g., most consumer cars
drive similarly), DBMS deployments are expected to operate across
heterogeneous hardware and diverse workloads, which requires
heavy customization. The good news is that a perfect simulator
exists for every DBMS, namely, the DBMS itself. But one cannot
simply wrap a DBMS with a gym API and expect it to be usable.
The gym must provide additional mechanisms for establishing the
right state in the DBMS and executing workloads to produce high-
quality training data. Additionally, the gym should aim to execute
workloads faster than in real-time (see Section 3.2).

As Figure 4 shows, the DB-Gym has three main inputs: (1) the
objective function and constraints, (2) the historical workload, and
(3) the historical state. The gym uses these inputs and its internal
components to produce training data that it stores externally.

The gym’s internal components make up the Environment and
Agent in the DB-Gym. The Environment consists of two compo-
nents: @ the Synthesizer installs the state and workload of the
target DBMS, and @ the Trainer coordinates creating an instance
of the target DBMS, applying actions, and executing the workload
to generate this iteration’s observation and reward. The gym col-
lects the Trainer’s output as training data, stores it into a repository
(Repo), and provides it as feedback to the Agent. The Agent incor-
porates this feedback into @ the Planner to generate candidate
actions and uses @ the Decider to select actions to deploy.

In the rest of this section, we describe the DB-Gym’s internals
in further detail, focusing first on the Synthesizer and Trainer,
followed by the Planner and Decider. In Section 4, we discuss open
problems in system infrastructure related to running the DB-Gym.

3.1 Synthesizer

The Synthesizer’s goal is to produce a workload and state for the
DB-Gym’s target DBMS. A baseline implementation simply passes
through the historical workload and state (i.e., predicts no change).
As Section 2 describes, although this is not ideal, it may still be valu-
able under certain assumptions (e.g., static read-only workloads).
Thus, a better approach is to generate a future workload and state.

Synthesizing the target workload was introduced in Section 2.1.
We refine the requirements further by noting that most prior work
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Figure 4: Database Gym Architecture — An overview of the database
gym’s internals. The ¢ subscript refers to iterations inside the Gym.

analyzes and costs queries in isolation [21, 48]. But queries are not
independent and have complex interactions when run together (e.g.,
lock contention, scan sharing). Furthermore, running a query can
produce secondary effects (e.g., checking constraints, generating
maintenance work, updating statistics) that are hard to model. Until
more advanced models can capture these interactions, the DB-Gym
must execute the target workload’s SQL queries to generate high-
quality training data. Therefore, the Synthesizer needs to support
predicting individual SQL queries, which brushes against the limits
of ML scalability (e.g., taking even 2 ms to predict a query limits
throughput to 5000 queries per second). Many such open problems
remain in making workload synthesis practical.

Section 2.2 describes the composition of the target state. The user
specifies the hardware resources available, which need not be the
same as for the production DBMS. The Synthesizer approximates
future logical contents by measuring database growth rates and then
scales [67, 70, 84, 87] the contents of tables accordingly. However,
we are unaware of any work synthesizing future physical condition.
We note that exact target state predictions are unnecessary as long
as execution characteristics are similar (e.g., precise tuple location
matters less than overall fill factor trends).

3.2 Trainer

The Trainer receives the generated workload and state from the
Synthesizer and obtains actions from the Decider. It then installs the
appropriate state into the target DBMS and applies any necessary
actions. The Trainer coordinates executing the target workload to
produce an observation and reward for future rounds of training
data generation by running SQL queries on the target DBMS.

The biggest challenges in this process are minimizing resource
usage, accelerating query execution, and achieving the target’s
physical condition. For example, consider collecting training data
on a workload when scaling the database size from 100 GB to 1 TB.
The gym can collect this data by (1) synthesizing and loading an
additional 900 GB of data, (2) overriding query plan leaf operators to
scan “virtual” tuples [66], or (3) downsampling to a representative
subset and extrapolating results. The first option is the most accu-
rate but also has the highest storage cost and execution time. The
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second option saves on storage, but it requires invasive changes to
the DBMS and moreover does not speed up query execution. Finally,
the third option saves on storage and execution time, but it may in-
troduce extrapolation errors and have a different physical condition
from the target DBMS. Searching for scaling laws to extrapolate
from smaller and/or cheaper database instances, and exploring the
trade-offs of these approaches, remain open problems.

However, because the Trainer orchestrates the entire end-to-end
training data pipeline, it can collect more ambitious metrics that
require different subsystems to coordinate. For example, the Trainer
can place its internal DBMS instance on a custom filesystem that
emulates a RAM disk while tracking syscalls. Doing so provides
faster than real-time execution for disk-backed DBMSs by acceler-
ating all disk operations. Additionally, the read/write syscall counts
provide a logical hardware-independent feature for the workload
that generalizes the training data across different hardware envi-
ronments. This training data improvement is possible because the
Trainer completely controls the internal target DBMS instance.

The Trainer’s overarching goal is to run workloads much more
cheaply than in a real DBMS. For example, UDO [79] distinguishes
between cheap and expensive actions to batch and evaluate cheap
actions together. Similarly, in future work, we could share large
amounts of state between workload evaluations (e.g., by keeping
small deltas between “adjacent” states).

3.3 Planner

The Planner generates candidate actions that it believes are valuable
based on its knowledge of prior training outcomes (i.e., the Trainer’s
past observations and rewards) and the user’s objective function.

The Planner requires a way to suggest good actions. General
database administration guidelines prescribe universal rules (e.g.,
use PGTune [4]), but these are often not optimal [76]. On the other
hand, collecting training data for all possible actions is not feasible
(see Section 2.3). Therefore, the Planner’s key challenge is finding
an action representation that allows for programmatic exploration
and intelligent pruning of the search space.

Existing research uses more sophisticated methods to prune
the action search space. For example, prior work generates initial
training data for ML models to select knob configurations via Latin
hypercube sampling [76]. However, the resulting actions do not
have a notion of distance from one another (e.g., an action that sets
PostgreSQL’s working memory to 4 MB should be considered more
similar to a 5 MB setting than a 50 MB setting). The Planner could
learn these distances with deep action embeddings [27].

3.4 Decider

The Decider selects the most promising actions from the list of
actions suggested by the Planner and provides them to the Trainer.
Learning to pick the most promising action is the purview of RL
research. Therefore, the Decider may incorporate multiple learning
algorithms with minimal modification (e.g., SB3 [63], UDO [79]).

4 DEPLOYMENT

There are two challenges to running the DB-Gym in production:
(1) bootstrapping the database contents and (2) bootstrapping the

CIDR’23, January 8-11, 2023, Amsterdam, The Netherlands
m— Primary Replica
80
800
60

T T T T T T T T
0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750

CPU Usage (%)
1/0 (MB/s)

Elapsed Time (s)
(a) CPU (user + system)

Elapsed Time (s)
(b) IO (read + write)

Figure 5: Replica Resource Availability - We run SmallBank (scale
factor 100, 2000 terminals, 30 minutes) on PostgreSQL with one primary and
one replica. Each datapoint averages across the last 10 readings to reduce
noise.

hardware. We focus on the trade-off between the cost (i.e., how ex-
pensive it is to run the gym) versus impact (i.e., the gym’s potential
disruption to an existing DBMS deployment) of running the gym.

Two obvious considerations are whether the DB-Gym can run
on the production DBMS (low cost, high impact) or if it must run on
a separate instance (high cost, low impact). The first option requires
restricting the gym to avoid violating SLAs with bad actions on
the production DBMS. For example, Oracle can try index actions
in production because it schedules index exploration at idle times
and forces index usage with query hints [53]. But some actions
are difficult to sandbox (e.g., knob configurations [60]). Hence, we
believe that usually the DB-Gym should not run directly on a
production system. The second approach involves creating an exact
replica of the production DBMS on the same hardware. Microsoft
uses this approach (calling them “B-instances”) for auto-indexing
in Azure [21, 43]. Such instances are completely isolated, which
allows the DB-Gym to explore actions freely, but this approach is
often prohibitively expensive and infeasible at scale.

Given the above issues, the ideal DB-Gym deployment keeps a
B-instance’s isolation advantages but without the cost. To achieve
this, we can exploit the fact that (1) the DB-Gym can tolerate stale
database snapshots, and (2) the DBMS can tear down the non-
essential gym at any time. We therefore contend that we should
reuse high-availability (HA) replicas to deploy the DB-Gym in a
resource-limited container. HA replicas are notoriously idle, allow-
ing the DB-Gym to scavenge [42] unused resources for its training
purposes. These containers bootstrap their database contents with
incremental snapshots and the DBMS’s built-in recovery logic.

To demonstrate the idle resources available for the DB-Gym, we
ran SmallBank [1, 24] on PostgreSQL v14 with a primary/replica
configuration on two machines while measuring CPU and disk I/O
utilization on each machine. Figure 5 demonstrates that HA replicas
have ample amounts of spare compute and reasonable disk I/O
available. However, this approach requires raw access to the DBMS
instance, making it impossible in managed cloud environments.

Lastly, although we have restricted our focus in this paper to op-
timizing autonomous single-node systems, real DBMS deployments
offer more tuning opportunities (e.g., optimizing replication net-
work topology). Moreover, beyond database tuning, the DB-Gym’s
organization provides opportunities to replace or learn individual
components. We defer such considerations to future work.
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5 RELATED WORK

Throughout the decades of autonomous DBMS research, ML mod-
els have always required training data. The early 2000s saw tools
such as IBM DB2 Advisor [75], but these were often rule-based
and system-specific. In recent years, the use of ML for DBMS au-
tomation has grown, though the extent of automation varies [60].
Examples include commercial systems such as Amazon Redshift [11,
57], Google AlloyDB [19], Oracle [54, 55], Oracle’s MySQL Heat-
Wave [56], Huawei openGauss [40], and Microsoft Azure SQL [21].
They also include academic systems such as NoisePage [58, 60] and
SageDB [38]. As these systems depend on their internal ML models
to guide operation, they benefit from better training data.

Recent work has focused on individual facets of the training
data generation process, including speed [15], location [21, 43], and
quality [77, 80]. However, no existing system integrates these tech-
niques nor solves the research and operational challenges described
in Sections 2 and 4 to achieve a database gym environment that
supports ML model training and evaluation. The closest thing to a
database gym today is UDO [79], which we discuss below.

Gym Environment: UDO [79] is a tool that performs offline tun-
ing for DBMSs. Given a workload and an environment, it uses RL
to find better DBMS configurations model-free, implementing the
OpenAI Gym API to compare different algorithms. UDO focuses
on developing novel algorithms [78] like the Decider uses, whereas
the DB-Gym synthesizes UDO’s input (i.e., workload, state). We
now discuss prior synthesis work.

Synthesizing Workloads: To our knowledge, no prior work syn-
thesizes a complete workload. There are methods to auto-scale for
provisioning [22, 31, 65], DBMS performance modeling [51, 52, 85],
next SQL statement prediction [26, 33, 34, 36, 61], workload com-
pression [17], and query runtime metrics prediction [29, 32]. Ma
et al. argues that these are insufficient for predicting workload vol-
ume, duration, and change [44]. Instead, they propose predicting
arrival rates, but these too may be insufficient if raw query contents
are required (e.g., for query-level features). Moreover, the DB-Gym
runs individual queries to approximate future DBMS state.

Synthesizing State: To our knowledge, no work tries to synthe-
size physical conditions for DBMSs. However, existing research
synthesizes logical contents to (1) scale datasets and (2) fake data
for testing. Dataset scaling [70] synthesizes new tuples based on
either workload [67, 84] or individual table contents [87] while
preserving cardinality constraints (e.g., data correlations). Faking
data for testing uses techniques such as substitution rules [2, 5],
differential privacy [74], and generative networks [72] to improve
ML model performance [68] and allay privacy concerns [74]. The
gym uses the above techniques to approximate future state with
similar properties (e.g., join cardinalities) to improve training data.

Training Data Quality: DataFarm [77, 80] generates synthetic
jobs from an input workload. It builds a model to predict job labels
and ranks the jobs by the uncertainty of its predictions. Next, it
uses active learning or asks a human to pick which job to evaluate.
We note that operating at the level of query plans aids synthetic
data generation but increases the sensitivity to the DBMS state. The
DB-Gym complements DataFarm by providing the input workload
and the future state, as well as a location to run in.

Wan Shen Lim et al.

Cosine [16] is a self-designing key-value storage engine that
gathers high-quality training data to train its concurrency-aware
CPU model. The model requires the workload’s degree of paral-
lelism to be known. Cosine learns this by sweeping across different
factors (e.g., cloud instance type, number of operations, number of
CPU cores) as it executes the workload.

Location: As Section 4 describes, Oracle [53] uses safeguards to
try indexes on the primary DBMS, whereas Microsoft [21] tries
indexes on B-instances (i.e., independent DBMS copies that receive
and replay the primary’s workload). The DB-Gym balances between
the two approaches by running on high-availability replicas.

6 CONCLUSION

Most of the previous work in using ML for DBMS automation has
focused on designing better ML models of DBMS behavior, but
recent advances in ML have largely automated model design. The
challenge now is to obtain good training data for building these
models. This paper outlined the architecture of the database gym,
an integrated environment that generates training data by using
the DBMS to simulate itself at the highest possible fidelity.
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