
ButterflyFlow: Building Invertible Layers with Butterfly Matrices

Chenlin Meng * 1 Linqi Zhou * 1 Kristy Choi * 1 Tri Dao 1 Stefano Ermon 1

Abstract

Normalizing flows model complex probability

distributions using maps obtained by composing

invertible layers. Special linear layers such as

masked and 1 × 1 convolutions play a key role

in existing architectures because they increase ex-

pressive power while having tractable Jacobians

and inverses. We propose a new family of invert-

ible linear layers based on butterfly layers, which

are known to theoretically capture complex linear

structures including permutations and periodicity,

yet can be inverted efficiently. This representa-

tional power is a key advantage of our approach,

as such structures are common in many real-world

datasets. Based on our invertible butterfly layers,

we construct a new class of normalizing flow mod-

els called ButterflyFlow. Empirically, we demon-

strate that ButterflyFlows not only achieve strong

density estimation results on natural images such

as MNIST, CIFAR-10, and ImageNet-32×32, but

also obtain significantly better log-likelihoods on

structured datasets such as galaxy images and

MIMIC-III patient cohorts—all while being more

efficient in terms of memory and computation

than relevant baselines.

1. Introduction

Generative models have achieved tremendous success in

a wide range of domains, such as images (Brock et al.,

2018; Karras et al., 2020; Vahdat & Kautz, 2020; Ho et al.,

2020; Song et al., 2020), natural language (Brown et al.,

2020; Chowdhery et al., 2022), video (Kumar et al., 2019;

Ho et al., 2022), molecule synthesis (Kadurin et al., 2017;

De Cao & Kipf, 2018; Gómez-Bombarelli et al., 2018), and

speech (Oord et al., 2018; Kong et al., 2020). Normalizing

*Equal contribution 1Computer Science Department, Stan-
ford University. Correspondence to: Chenlin Meng <chen-
lin@cs.stanford.edu>, Linqi Zhou <linqizhou@stanford.edu>,
Kristy Choi <kechoi@cs.stanford.edu>, Stefano Ermon <er-
mon@cs.stanford.edu>.

Proceedings of the 39
th International Conference on Machine

Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

flows, in particular, have attracted significant attention since

they allow exact likelihood evaluation of data rather than

lower-bound approximations (Dinh et al., 2014; Kingma &

Dhariwal, 2018).

To build such normalizing flows, one must design flexible

families of functions that are both invertible and admit ef-

ficient computation of Jacobian determinants (Rezende &

Mohamed, 2015; Papamakarios et al., 2019; Hoogeboom

et al., 2020; Karami et al., 2019; Finzi et al., 2019; Hooge-

boom et al., 2019; Chen et al., 2019; Ho et al., 2019; Grcić

et al., 2021). While the development of non-linear coupling

layers fueled early progress in the field (Dinh et al., 2014;

2016), recent advances have focused on the effectiveness of

special linear layers such as masked, 1× 1, and d× d con-

volutions as key architectural primitives, among others (Ma

et al., 2019; Kingma & Dhariwal, 2018; Hoogeboom et al.,

2019; 2020). In particular, most state-of-the-art flow models

first preprocess the data with such linear layers while also

leveraging non-linear layers for expressivity.

In this work, we draw inspiration from the literature on learn-

ing efficient, structured linear transformations and propose a

new class of invertible linear layers based on butterfly layers

(Dao et al., 2019). Our invertible butterfly layer satisfies

the usual desiderata of a normalizing flow primitive. How-

ever, its key distinguishing feature lies in its representational

power: in spite of its efficiency, it inherits desirable proper-

ties from Dao et al. 2019 in that it is theoretically guaranteed

to capture complex structures in data such as permutations

and periodicity. The expressivity of invertible butterfly lay-

ers gives it an advantage over existing methods when mod-

eling real-world datasets that exhibit such structures. We

then construct a new family of normalizing flow models

called ButterflyFlow by combining our proposed invertible

butterfly layers with coupling layers (Dinh et al., 2016) and

a Glow-based model backbone (Kingma & Dhariwal, 2018).

Empirically, we demonstrate that ButterflyFlow is an effec-

tive generative model, performing favorably relative to exist-

ing methods on image datasets such as MNIST, CIFAR-10,

and ImageNet-32×32. However, we highlight that Butter-

flyFlow shines when modeling real-world data with special

underlying structures, such as periodicity and permutations.

Our model outperforms relevant baselines on the MIMIC-

III patient dataset by approximately 200% in negative log-



ButterflyFlow: Building Invertible Layers with Butterfly Matrices

likelihoods per dimension while requiring less than half the

number of model parameters. In this way, our invertible

butterfly layer serves as a powerful architectural primitive

for capturing global regularities present in the data.

The contributions of our work can be summarized as:

1. We introduce ButterflyFlow, a new class of flow-based

generative models parameterized by butterfly matrices.

2. We provide theoretical guarantees that ButterflyFlow

can efficiently capture common types of structures,

such as permutations.

3. We show empirically that ButterflyFlow achieves

strong performance on density estimation and image

synthesis tasks, and is superior at modeling data with

special structure (e.g. periodicity) in real-world set-

tings relative to existing flow-based models.

2. Preliminaries

2.1. Flow-based Generative Models

Given a data distribution pX(x) and a base distribution

pZ(z) (e.g., a Gaussian distribution), a normalizing flow is

an invertible transformation fθ : x ∈ R
n 7→ z ∈ R

n that

approximates pX(x) via the change of variables formula:

pθ(x) = pZ(z)| det Jfθ (f
−1

θ (z))|, (1)

where Jfθ is the Jacobian of f(x), and θ is the set of learn-

able parameters. In practice, the Jacobian determinant

det Jfθ (f
−1

θ (z)) must be tractable to compute. Coupled

with a simple pZ(z), the change of variables formula allows

for the exact likelihood evaluation of a complex pX(x) as

well as maximum likelihood training of fθ. To sample a new

data point from the model, we first draw samples z ∼ pZ(z)
from the prior distribution and then push it through the

inverse flow transformation: x = f−1

θ (z).

Because the normalizing flow’s ability to capture complex

pX(x) hinges on the expressivity of the transformation fθ,

recent works have focused on developing more flexible

parameterizations of fθ. In particular, both non-linear and

linear layers have demonstrated promise.

Non-linear coupling layers. Coupling layers (Dinh et al.,

2014; 2016) are a powerful class of invertible non-linear

layers. The coupling layer splits the input x into two compo-

nents: xa and xb. Then, it applies an identity map to xa and

transforms xb using a learnable affine transform (with shift

and scale parameters sθ and bθ) that depend on xa. The

output of this layer y is obtained by concatenating these two

intermediate quantities:

za = xa; zb = xb ⊙ sθ(xa) + bθ(xa)

y = concat(za, zb)

Due to its simplicity and efficiency, the coupling layer has

become a fundamental building block for most state-of-

the-art flow model architectures (Chen et al., 2020; Ma

et al., 2019; Ho et al., 2019). However, their effectiveness

depends heavily on the way in which the input x is parti-

tioned. Recent works have shown that linear layers can

learn an improved partitioning scheme, thereby boosting

the performance of downstream coupling layers when used

together (Kingma & Dhariwal, 2018).

Invertible linear layers. Linear layers, such as invertible

1 × 1 convolutions, were designed to increase the effec-

tiveness of coupling layers when paired together. Specif-

ically, they learn a more general partitioning of the input

than the naive splitting as done in conventional coupling

layers (Kingma & Dhariwal, 2018). Given an input with

channel size c, we denote the learnable parameter (i.e., the

filter of the 1× 1 convolution) as W ∈ R
c×c. To compute

the Jacobian determinant efficiently, Kingma & Dhariwal

use LU decomposition and parameterize W as:

W = PL(U + diag(s)), (2)

where P is a pre-specified orthogonal matrix, L is a lower

triangular matrix with ones on the diagonal, U is an up-

per triangular matrix with zeros on the diagonal, and s is a

c-dimensional vector (Kingma & Dhariwal, 2018). This par-

ticular structure in the matrix decomposition allows for the

Jacobian determinant to be computed in O(c), rather than

O(c3). Other invertible linear layers, such as the Emerging

convolution and the Woodbury transformation (Hoogeboom

et al., 2019; Lu & Huang, 2020), leverage similar types

of matrix structures such as sparsity to improve the perfor-

mance of coupling layers without sacrificing efficiency.

2.2. Butterfly Layers for Efficient Structured

Transforms

The butterfly layer is a special family of linear layers that

can be represented as a product of K sparse matrices called

butterfly factors (Parker, 1995; Dao et al., 2019; 2020). The

butterfly factor has a particular structure that requires the

specification of two parameters: the level i ∈ [K] and the

factor dimension D. We assume that D is a power of 2 for

ease of the technical exposition.

Level-one butterfly factor. A level-one D-dimensional

butterfly factor B(1, D) is a D ×D sparse matrix. Its only

non-zero entries are the diagonals of the four D/2×D/2
sub-matrices obtained by partitioning the matrix in half (Dao

et al., 2019), as shown in the left panel in Figure 1.











ButterflyFlow: Building Invertible Layers with Butterfly Matrices

(a) MNIST (b) CIFAR-10 (c) ImageNet-32×32

Figure 5: Uncurated samples from ButterflyFlow. From left

to right: MNIST, CIFAR-10, ImageNet-32× 32.

by testing our model on image datasets with built-in permu-

tations.

Datasets. We experiment on a permuted version of MNIST,

CIFAR-10, and ImageNet-32× 32 and generate a dataset-

wide random permutation matrix. The same permutation

matrix is used to permute all images from the same dataset.

Baselines. We compare with Glow (Kingma & Dhariwal,

2018), Emerging (Hoogeboom et al., 2019), and Wood-

bury (Lu & Huang, 2020), which share the same architec-

tural backbone as ButterflyFlow and similarly exploit spatial

locality and permutation structures.

Results. We test the hypothesis that butterfly layers are more

effective at capturing the structure in permuted images as

compared to baselines. Intuitively, this is because our butter-

fly layer is a learnable permutation layer that can capture per-

mutation structure present in the data (Proposition 3.5). The

rest of the flow model can then learn the appropriate struc-

ture specific to the image dataset itself. As shown in Table 2,

we find that ButterflyFlow outperforms all other methods.

Specifically, our method achieves significantly lower likeli-

hoods as computed by bits per dimension (BPD) on CIFAR-

10 and ImageNet-32× 32. The performance gap is notice-

ably closer for MNIST, and we show some visualizations of

the generated images (permuted back) in Figure 6. All our

baselines are able to reasonably model permuted MNIST,

likely due to the large modeling capacity of the Glow-based

architecture on lower-dimensional datasets such as MNIST.

Thus adding butterfly layers to specifically model permuta-

tion in this setting only yields marginal improvements.

Table 2: Density estimation on image datasets with permu-

tations. Test set log-likelihood values are reported in bits

per dimension. Lower is better. ButterflyFlow outperforms

all relevant baselines.

MNIST CIFAR-10 ImageNet 32×32

Glow (Kingma & Dhariwal, 2018) 1.44 5.48 6.29

Emerging (Hoogeboom et al., 2019) 1.43 5.41 6.25

Woodbury (Lu & Huang, 2020) 1.43 5.41 6.26

ButterflyFlow (Ours) 1.42 5.11 6.18

5.3. Density estimation on structured datasets

Many real-world datasets often exhibit (unknown) special

types of structures such as permutation and periodicity.

Therefore, in addition to modeling images with synthetic

permutations, we also showcase a set of experiments where

ButterflyFlow can be used to model real-world datasets with

periodic structures. In particular, we experiment with galaxy

images (Ackermann et al., 2018; Hoogeboom et al., 2019)

and the MIMIC-III patient records dataset (Johnson et al.,

2016) of intensive care units (ICU).

Galaxy images. The galaxy dataset is comprised of 5000

images for both train and test sets, and exhibits periodicity

as the images are “continuous”—they represent snapshots

of a continuum in space, rather than individual images. As

shown in Table 3, we find that ButterflyFlow outperforms

all relevant baselines, achieving a BPD improvement of

up to 0.07. We also visualize 100 generated images with

100 test set examples in Figure 7. This result provides

further evidence that our invertible butterfly layers excel at

capturing naturally-occuring structure in real-world data.

Table 3: Comparison of 1× 1 convolutions (Glow), Emerg-

ing convolution, Woodbury flows, and ButterflyFlow on the

galaxy images dataset. Test set log-likelihood values are re-

ported in bits per dimension. Lower is better. ButterflyFlow

outperforms all relevant baselines.

Galaxy

1× 1 (Glow) (Kingma & Dhariwal, 2018) 2.02

Emerging 3× 3 (Hoogeboom et al., 2019) 1.98

Periodic (Hoogeboom et al., 2019) 1.98

Woodbury (Lu & Huang, 2020) 2.01

ButterflyFlow (Ours) 1.95

MIMIC-III waveform database. MIMIC-III is a large-

scale dataset containing approximately 30,000 patients’ ICU

waveforms. For each patient’s waveform, two features are

recorded: Photoplethysmography (PPG) and Ambulatory

Blood Pressure (ABP). Since each patient’s recording is

very long, we construct a per-patient dataset according to

Appendix C.2 and randomly select 3 distinct patient records

for our experiments. We illustrate some example ground-

truth waveforms in Figure 8 and highlight its repetitive,

periodic structure, which is difficult to capture faithfully

with conventional flow-based generative models.

For modeling time series, we compare with Emerging and

Periodic convolution baselines (Hoogeboom et al., 2019),

as well as Woodbury (Lu & Huang, 2020). All methods

use the same Glow-based backbone of the same depth and

levels. As shown in Table 4, ButterflyFlow outperforms all

baselines by a significant margin. In particular, our approach







ButterflyFlow: Building Invertible Layers with Butterfly Matrices

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,

Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-

berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,

R. P., and Aspuru-Guzik, A. Automatic chemical de-

sign using a data-driven continuous representation of

molecules. ACS central science, 4(2):268–276, 2018.

Grcić, M., Grubišić, I., and Šegvić, S. Densely connected

normalizing flows. Advances in Neural Information Pro-

cessing Systems, 34:23968–23982, 2021.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P.

Flow++: Improving flow-based generative models with

variational dequantization and architecture design. In

International Conference on Machine Learning, pp. 2722–

2730. PMLR, 2019.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-

bilistic models. Advances in Neural Information Process-

ing Systems, 33:6840–6851, 2020.

Ho, J., Salimans, T., Gritsenko, A., Chan, W., Norouzi, M.,

and Fleet, D. J. Video diffusion models. arXiv preprint

arXiv:2204.03458, 2022.

Hoogeboom, E., Van Den Berg, R., and Welling, M. Emerg-

ing convolutions for generative normalizing flows. In

International Conference on Machine Learning, pp. 2771–

2780. PMLR, 2019.

Hoogeboom, E., Garcia Satorras, V., Tomczak, J., and

Welling, M. The convolution exponential and general-

ized sylvester flows. Advances in Neural Information

Processing Systems, 33:18249–18260, 2020.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In International conference on machine learning, pp. 448–

456. PMLR, 2015.

Johnson, A. E., Pollard, T. J., Shen, L., Li-Wei, H. L., Feng,

M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A.,

and Mark, R. G. Mimic-iii, a freely accessible critical

care database. Scientific data, 3(1):1–9, 2016.

Kadurin, A., Nikolenko, S., Khrabrov, K., Aliper, A., and

Zhavoronkov, A. drugan: an advanced generative ad-

versarial autoencoder model for de novo generation of

new molecules with desired molecular properties in silico.

Molecular pharmaceutics, 14(9):3098–3104, 2017.

Karami, M., Schuurmans, D., Sohl-Dickstein, J., Dinh, L.,

and Duckworth, D. Invertible convolutional flow. In Wal-

lach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc,

F., Fox, E., and Garnett, R. (eds.), Advances in Neural

Information Processing Systems, volume 32. Curran As-

sociates, Inc., 2019. URL https://proceedings.

neurips.cc/paper/2019/file/

b1f62fa99de9f27a048344d55c5ef7a6-Paper.

pdf.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,

and Aila, T. Analyzing and improving the image quality

of stylegan. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pp. 8110–

8119, 2020.

Kingma, D. P. and Dhariwal, P. Glow: Generative

flow with invertible 1x1 convolutions. arXiv preprint

arXiv:1807.03039, 2018.

Kong, Z., Ping, W., Huang, J., Zhao, K., and Catanzaro, B.

Diffwave: A versatile diffusion model for audio synthesis.

arXiv preprint arXiv:2009.09761, 2020.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers

of features from tiny images. 2009.

Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine,

S., Dinh, L., and Kingma, D. Videoflow: A flow-

based generative model for video. arXiv preprint

arXiv:1903.01434, 2(5), 2019.

Lu, Y. and Huang, B. Woodbury transformations for deep

generative flows. arXiv preprint arXiv:2002.12229, 2020.

Ma, X., Kong, X., Zhang, S., and Hovy, E. Macow:

Masked convolutional generative flow. arXiv preprint

arXiv:1902.04208, 2019.

Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O.,

Kavukcuoglu, K., Driessche, G., Lockhart, E., Cobo, L.,

Stimberg, F., et al. Parallel wavenet: Fast high-fidelity

speech synthesis. In International conference on machine

learning, pp. 3918–3926. PMLR, 2018.

Papamakarios, G., Pavlakou, T., and Murray, I. Masked

autoregressive flow for density estimation. arXiv preprint

arXiv:1705.07057, 2017.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,

S., and Lakshminarayanan, B. Normalizing flows for

probabilistic modeling and inference. arXiv preprint

arXiv:1912.02762, 2019.

Parker, D. S. Random butterfly transformations with appli-

cations in computational linear algebra. 1995.

Perugachi-Diaz, Y., Tomczak, J., and Bhulai, S. Invertible

densenets with concatenated lipswish. Advances in Neu-

ral Information Processing Systems, 34:17246–17257,

2021.

Rezende, D. and Mohamed, S. Variational inference with

normalizing flows. In International conference on ma-

chine learning, pp. 1530–1538. PMLR, 2015.



ButterflyFlow: Building Invertible Layers with Butterfly Matrices

Slapničar, G., Mlakar, N., and Luštrek, M. Blood

pressure estimation from photoplethysmogram using a

spectro-temporal deep neural network. Sensors, 19

(15), 2019. ISSN 1424-8220. doi: 10.3390/s19153420.

URL https://www.mdpi.com/1424-8220/19/

15/3420.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-

mon, S., and Poole, B. Score-based generative modeling

through stochastic differential equations. arXiv preprint

arXiv:2011.13456, 2020.

Vahdat, A. and Kautz, J. Nvae: A deep hierarchical vari-

ational autoencoder. Advances in Neural Information

Processing Systems, 33:19667–19679, 2020.



ButterflyFlow: Building Invertible Layers with Butterfly Matrices

A. Proof

In this section, we provide proofs for the main paper.

Lemma A.1. The determinant of any (invertible) level-one butterfly factor Bθ(1, D) can be computed in O(D).

Proof. According to the definition of butterfly factor, we can write Bθ(1, D) =

[

D1 D2

D3 D4

]

, where Di is a D/2 × D/2

diagonal matrix. It is easy to see that det(Bθ(1, D)) = det(D1D4 − D2D3) =
∏D/2

j=1

(

D1[j, j]D4[j, j]− D2[j, j]D3[j, j]
)

,

where Di[j, j] denotes the (j, j)-th entry for Di. The Jacobian determinant of Bθ(1, D) can thus be computed in O(D).

Theorem 3.1. The determinant of any D-dimensional butterfly factor can be computed in O(D).

Proof. By definition, we have

Bθ(i,D) =









B1(1, D/2i−1), 0 ... 0

0 B2(1, D/2i−1) ... 0

...
0 0 ... B2i−1(1, D/2i−1)









where Bj(1, D/2i−1) is a level-one D/2i−1-dimensional (invertible) butterfly factor and 0 is the D/2i−1 ×D/2i−1 zero

matrix. Using the property of diagonal block matrices, we have

det(Bθ(i,D)) =

2
i−1

∏

j=1

det(Bj(1, D/2i−1)). (6)

From Lemma A.1, we know computing each det(Bj(1, D/2i−1)) takes O(D/2i−1), computing det(Bθ(i,D)) thus takes

2i−1O(D/2i−1) = O(D).

Proposition 3.3. Assuming Bθ(i,D) is non-singular, the matrix B
−1

θ (i,D) is a D-dimensional level-i butterfly factor that

can be computed in O(D). Given B
−1

θ (i,D), the map b−1

i : z → B
−1

θ (i,D)z can be computed in O(D).

To prove Proposition 3.3, we first prove Lemma A.2.

Lemma A.2. Assuming Bθ(1, D) is non-singular, then its inverse B
−1

θ (1, D) is a D-dimensional level-i butterfly factor

that can be computed in O(D) given Bθ(1, D).

Proof. According to the definition of butterfly factor, we can write Bθ(1, D) =

[

D1 D2

D3 D4

]

, where Di is a D/2 × D/2

diagonal matrix. The inverse of Bθ(1, D) can be computed as

B−1

θ (1, D) =

[

−D4/(D3 ⊙ D2 − D4 ⊙ D1) D2/(D3 ⊙ D2 − D4 ⊙ D1)
−D3/(D1 ⊙ D4 − D3 ⊙ D2) D1/(D1 ⊙ D4 − D3 ⊙ D2)

]

, (7)

where Di ⊙ Dj are element-wise multiplication of diagonal matrices. Since Di is a D/2×D/2 diagonal matrix, computing

Di ⊙ Dj can be performed in O(D/2). Thus, evaluating B−1

θ (1, D) can be performed in O(D).

Since each Di is a D/2×D/2 diagonal matrix, each of the block in Equation (7) are also diagonal. Thus, B−1

θ (1, D) is a

level-one D-dimensional butterfly block by definition.

We now prove Proposition 3.3.

Proof of Proposition 3.3. According to the definition of Bθ(i,D), we can write it as

Bθ(i,D) =









B1(1, D/2i−1), 0 ... 0

0 B2(1, D/2i−1) ... 0

...
0 0 ... B2i−1(1, D/2i−1)











ButterflyFlow: Building Invertible Layers with Butterfly Matrices

where Bj(1, D/2i−1) is a level-one D/2i−1-dimensional (invertible) butterfly factor and 0 is the D/2i−1 ×D/2i−1 zero

matrix. Using the properties of diagonal block matrices, it is easy to check

B−1

θ (i,D) =









B−1

1
(1, D/2i−1), 0 ... 0

0 B−1

2
(1, D/2i−1) ... 0

...
0 0 ... B−1

2i−1(1, D/2i−1)









.

According to Lemma A.2, we have each B−1

j (1, D/2i−1) is a level-one D/2i−1-dimensional butterfly factor that can be

computed in O(D/2i−1) given Bj(1, D/2i−1). Thus, B−1

θ (i,D) is a level-i D-dimensional butterfly factor by definition.

It can be computed in 2i−1O(D/2i−1) = O(D) given Bθ(i,D). Since B−1

θ (i,D) is a D × D sparse matrix with only

two non-zero entries each row, the map b−1

i : z → B−1

θ (i,D)z (i.e., a matrix vector multiplication) can be computed in

2O(D) = O(D) given B−1

θ (i,D).

Proposition 3.5. Any D ×D permutation matrix (with D = 2k a power of 2) can be represented by an invertible butterfly

layer.

Proof. According to Theorem 2. in (Dao et al., 2020), any D ×D permutation matrix P ∈ R
D×D (when D = 2k) can be

represented as

P = b1 ◦ b2 ◦ ... ◦ bk−1 ◦ bk ◦ b̂k ◦ b̂k−1 ◦ ... ◦ b̂1(I), (8)

where bi : x → Bθ(i,D)x and b̂i : x → Bθ̂(i,D)x are linear layers obtained by multiplying a learnable level-i D-

dimensional butterfly matrix with the input. Since P is a permutation matrix, it is non-singular, which implies that each bi,
b̄i and b̂i must be invertible. Thus, any D ×D permutation matrix can be represented by an invertible butterfly layer. We

also note that (Dao et al., 2020) does not consider settings where exponentiation of a linear transformation is also invertible

(as in our invertible butterfly layers).

Lemma A.3 ((Dao et al., 2020)). Any D ×D (D = 2k) convolution matrix CD can be represented as

CD = b1 ◦ b2 ◦ ... ◦ bk ◦ b̂k−1 ◦ b̂k−2 ◦ ... ◦ b̂1, (9)

where bi : x → Bθ(i,D)x and b̂i : x → Bθ̂(i,D)x are butterfly layers with weights in C.

Proof. See Lemma J.5. in (Dao et al., 2020).

Proposition A.4. Given a single channel 2D input x ∈ R
W×H , any 2D convolution layer with kernel size k × k, zero

padding and output channel one, can be obtained by multiplying a circulant matrix with the input with padding expanded to

a vector.

Sketch of proof. Given the input x, we apply the zero padding to x and obtain a padded input x̃. We then expand x̃ to a

one-dimensional vector. It is easy to show that the 2D convolution can be represented as a circulant matrix multiplied by x̃

with entries (of the output) corresponding to the paddings removed.

Observation 3. The block-wise invertible butterfly layer with weights in C can be used to represent a subset of the invertible

d× d convolution layer.

Sketch of proof. Given an input x ∈ R
C,W,H , an invertible d×d convolution can be decomposed into two steps: (1) mix the

channel information for each (w, h) pair, w ∈ [W ] and h ∈ [H], by performing an invertible C × C matrix multiplication

with a C-dimensional vector x[:, w, h], and (2) perform single channel d× d convolution for each of the C inputs x[i, :, :],
i = 1, ..., C, independently. As we showed previously, each of the single channel d× d convolution can be performed by

using circulant matrix, vector multiplication. For input whose size after padding is not a power of 2, we can always pad extra

zeros so that the input after padding has size of power of 2. We can remove the entries corresponding to the paddings in the

output to recover the correct output. Now, observe that each C × C matrix block in the block-wise butterfly matrix exactly

corresponds to (1) and by Lemma A.3, any circulant matrix with size a power of 2 can be represented using naive butterfly

layers. Then the D/C ×D/C block matrix in block-wise butterfly factors (seeing each C × C as a whole) corresponds to

(2). Thus block-wise invertible butterfly layer with weights in C can be used to represent a family of the invertible d× d
convolution layer.



ButterflyFlow: Building Invertible Layers with Butterfly Matrices

Table 6: Model architecture for various datasets.

Levels (L) Steps (K) Coupling channels Butterfly levels Bi-direction? EMA Butterfly scheduler γ Butterfly init

CIFAR-10 3 32 512 1 ✗ none N/A id

ImageNet-32× 32 3 32 512 1 ✗ none N/A id

MNIST 2 20 512 1 ✗ none N/A id

CIFAR-10,permuted 3 32 512 10 ✗ separate 0.99 rot

ImageNet-32× 32,permuted 3 32 512 10 ✓ separate 0.99 rot

MNIST,permuted 2 20 512 [9,8,4] ✓ separate 0.996 id

Galaxy 2 8 512 2 ✗ separate 0.996 id

MIMIC-III 2 2 16 10 ✗ none N/A rot

B. Experiments

B.1. Training details

For all experiments, we use Adam optimizer with α = 0.001, β1 = 0.9, β2 = 0.999 for training. We warm up our learning

by linearly increasing learning rate from 0 to initial learning rate for 10 iterations, and afterwards exponentially decaying

with γ = 0.999997 per iteration. Training is done on TITAN RTX GPU machines. For some experiments we also employ

exponential moving average (EMA) of either the entire model or only the butterfly layers, which we will specify in the next

section.

B.2. Model architecture

We here define relevant model architecture hyperparameters. The backbone of the our network follows Glow (Kingma

& Dhariwal, 2018) baseline as visualized in Figure 4. Our model uses L levels and K steps, and each butterfly layer

is of maximum M levels. We by default choose a list of contiguous integers to parametrize our levels {ai}
k
i=1

, i.e., for

a butterfly layer of M levels, {ai}
k
i=1

= {1, 2, . . . ,M}. For our butterfly layers we also implement a version specified

in Proposition 3.5, which stacks a level-inverted M -level butterfly layer on top of a regular butterfly layer. We indicate

this version as “bi-direction” in Table 6. If it is set, our butterfly layer has 2M butterfly factors with selected integer set

{ai}
k
i=1

= {1, 2, . . . ,M, . . . , 2, 1}. For our models, we also implement different types of parameter EMA for training.

When EMA is “none”, we use a single Adam optimizer for all parameters. When EMA is indicated as “all”, we employ EMA

on all model parameters. When EMA is indicated as “separate”, we employ EMA only for all of our butterfly layers. During

training, we use a separate Adam optimizer of the same hyperparameters and exponential decay scheduler of different γ for

butterfly layers than the Glow backbone, and we optimize the Glow backbone based on the EMA output of butterfly layers.

We also explore different initialization types for our butterfly layers. If it is “id”, we initialize all our butterfly factors

to identity matrix. If it is “rot”, we initialize our butterfly factors such that the 4 diagonal matrices are element-wise

orthogonal. That is, if a butterfly factor is

[

D1 D2

D3 D4

]

with each sub-matrix being a diagonal matrix, each 2 × 2 matrix
[

D1[k, k] D2[k, k]
D3[k, k] D4[k, k]

]

is initialized to a rotation matrix.

Image datasets. For MNIST datasets specifically, we use logit transform with λ = 10−6 for data preprocessing. For

CIFAR-10 and ImageNet-32× 32, we follow (Hoogeboom et al., 2019) for data preprocessing.

Permuted image datasets. For ImageNet-32× 32 and CIFAR-10 in particular, we use level-10 butterfly layers and decrease

the level by 1 after each Squeeze layer. Since MNIST’s image size is 28× 28 = 784, it is not divisible by 2 as required by

butterfly layers. Therefore, we choose to partition the space into a concatenation of 512, 256, 16-dimensional spaces where

each can be fed into a 9, 8, 4-level butterfly factor respectively. Each separate butterfly matrix’s level decreases by 1 after

each Squeeze layer.

Galaxy images. Model architecture is as shown in Table 6 and we empirically find the using batch size 64 results in better

performance.

MIMIC-III waveform database. Since the data has shape (1024, 2), we treat each data point as a 1D image of size 1024

and 2 channels. We then straight-forwardly adapt the Glow backbone for 2D image to process 1D data. For our Emerging

and Periodic baselines, we use filter size of 51 since we empirically found that using the default value filter size of 3 fails in

learning a reasonable density estimator. For all our model we also use learning rate of 0.0001 because we observed that





ButterflyFlow: Building Invertible Layers with Butterfly Matrices

C. Datasets

C.1. Permuted image datasets

For each of CIFAR-10, ImageNet-32 × 32, and MNIST, we generate a random permutation matrix and preprocess the

images in each dataset using the same dataset-wise permutation matrix. visualizations are done by first generating from the

model and permute back using the ground-truth matrix.

C.2. MIMIC-III waveform database

MIMIC-III is a large-scale dataset containing approximately 30,000 patients’ ICU waveforms. Each patient’s record contains

a time series of periodic measurements, which is a quasi-continuous recording of the patient’s vital signals over their entire

stay at the hospital (sometimes days and usually weeks). For this dataset in particular, two feature waveforms are recorded

by bedside monitors: Photoplethysmography (PPG) and Ambulatory Blood Pressure (ABP) waveforms.

Due to the extremely long samples per patient, we built per-patient datasets by cutting each waveform sequence into

chunks of length 1024. As a concrete example, we can build a dataset of 10,000 data points for a patient with 10.24M

sampled intervals. Within this patient’s recording, we then have 10,000 data points of dimension (1024, 2) where each

dimension corresponds to PPG and ABP features in time. The data points are additionally normalized to [−1, 1] before

training. Patient 1, 2, 3 corresponds to patient ID 3000063, 3000393, 3000397, respectively. More details about the dataset

is available at https://physionet.org/content/mimic3wdb/1.0/. We also preprocess our data according

to (Slapničar et al., 2019) with this Github page https://github.com/gslapnicar/bp-estimation-mimic3,

which performs necessary filtering for noise removal and anomaly removal.


