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Abstract

Unsupervised pre-training methods for large vision models have shown to enhance
performance on downstream supervised tasks. Developing similar techniques for
satellite imagery presents significant opportunities as unlabelled data is plentiful
and the inherent temporal and multi-spectral structure provides avenues to further
improve existing pre-training strategies. In this paper, we present SatMAE, a
pre-training framework for temporal or multi-spectral satellite imagery based on
Masked Autoencoder (MAE). To leverage temporal information, we include a
temporal embedding along with independently masking image patches across
time. In addition, we demonstrate that encoding multi-spectral data as groups of
bands with distinct spectral positional encodings is beneficial. Our approach yields
strong improvements over previous state-of-the-art techniques, both in terms of
supervised learning performance on benchmark datasets (up to 1 7%), and transfer
learning performance on downstream remote sensing tasks, including land cover
classification (up to 1 14%) and semantic segmentation. Code and data are available
on the project website: https://sustainlab-group.github.io/SatMAE/

1 Introduction

In recent years, self-supervised learning techniques have quickly become the norm for pre-training
models on large-scale natural image datasets [[1} 2} 3} 4, 5, 16l 7} 8], and have demonstrated strong
performance on downstream tasks including image classification [3} 4,19, |10], image segmentation [3}
1 1], representation learning [[12} [13} [14], image compression [12} [15], image reconstruction [1]], and
image generation [16]. Unlike supervised learning approaches, self-supervised learning techniques do
not require human labeling, making them appealing in settings where unlabeled data are abundant but
labeled data are scarce, such as remote sensing data (e.g., satellite imagery). While several large-scale
satellite image datasets have been carefully curated in the past few years, including Functional Map
of the World (fMoW) [17]], BigEarthNet [[18], xView [19], SpaceNet [20], annotating these datasets
requires specialized skills and is more expensive than traditional computer vision datasets. Moreover,
automatic analysis of satellite imagery is often needed for tasks with large societal impact such
as poverty or crop yield prediction [211 22} |23} 24} 25 26, 27, 28| |29} 30], where acquiring large
amounts of labeled data through surveys is impossible or prohibitively expensive. This suggests that
self-supervised learning approaches for satellite imagery could be especially valuable.

However, existing self-supervised learning approaches [[1, 2} 3,4} 51 |6] are mainly designed for natural
images. As opposed to natural images such as ImageNet [31], satellite imagery is usually associated

*Equal contribution. Order determined via coin flip.
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Figure 1: With carefully-designed masking strategies across mutli-spectral and temporal images, and temporal
and spectral positional encodings, our SatMAE serves as a powerful SSL vision learner for remote sensing tasks.

with meaningful geographical and temporal information, and can consist of multiple spectral bands
representing sensor readings besides visible light (i.e., RGB channels typical in natural images).
Depending on the data source, satellite imagery can also vary significantly in resolution [32] [33].
While self-supervised learning methods for satellite imagery exist [34 35]), these approaches cannot
learn general representations for both temporal and multi-spectral remote sensing data.

To address this issue we propose SatMAE, a self-supervised learning framework based on masked
autoencoders (MAES) [1]] which naturally handles temporal and multi-spectral input data. We show
that introducing a positional encoding for the temporal/spectral dimension and independently masking
patches across the temporal/spectral dimension benefits pre-training, allowing the model to learn
representations of the data that are more conducive to finetuning. Specifically, our contributions are:

1. We propose a novel method to leverage temporal or multi-spectral information in satellite
imagery to improve self-supervised pre-training with masked autoencoders (see ).

2. We introduce fMoW-Sentinel, a new Sentinel-2 dataset cross-referenced with fMoW, as a
benchmark for training models on multi-spectral satellite imagery (see[5.1).

3. We demonstrate the effectiveness of pre-training transformers [36] on satellite imagery,
achieving significant improvement over previous state-of-the-art methods on benchmark
datasets as well as downstream remote sensing tasks (see[5)

2 Related Work

ML for SITS Deep learning has been used for many Satellite Image Time Series (SITS) supervised-
learning tasks such as crop-type mapping [37138], yield prediction [39, 40], understanding the
economy [41] 42} [43] [44]), precipitation forcasting [43]], and land-cover classification 47, 1481 27].
These works establish the usefulness of tailoring architectures such as LSTMs, self-attention, and
transformers to temporal data. However, outside of their specific task, they are often not directly
applicable to other remote-sensing datasets.

SSL for Satellite Imagery Self-supervised learning [2} 3L 4. [5 [6]] has emerged as a promising
approach in remote sensing domains. For instance, [34] and propose incorporating spatially
aligned images over time for contrastive self-supervised learning. Despite promising results, these
two contrastive learning approaches rely heavily on the quality of positive pairs, which is often
hard to control. [49] combines different sensor channels to generate co-located images that serve as
positive pairs. [30} 51} [52]] apply off-the-shelf contrastive learning algorithms to satellite images. [32]]
utilizes image inpainting and transformation prediction as additional pretext tasks. [533]] leverages
geographical knowledge to aid SSL, which, however, can be difficult to obtain as annotations.



Masked Autoencoder MAE [1]] is a recent powerful self-supervised learning method. Instead of
constructing a contrastive objective, it proposes the pretext task of reconstructing masked patches
of the input, and largely avoids the need for designing specific data augmentation. Inspired by
MAE'’s state-of-the-art performance on a wide collection of vision benchmarks [1], many follow-up
works extend MAE to different data modalities. VideoMAE [54] proposes video tube masking
and reconstruction as a pretext task for video analysis. GMAE [55]] adapts MAE to the domain of
graphs. MultiMAE [56] takes optional inputs of different modalities and accordingly includes other
training objectives to facilitate multi-modality learning. However, these works fail to optimally handle
temporal and multi-spectral input. VideoMAE requires equally-spaced image frames in the temporal
dimension, which is not the case for satellite data given the temporal irregularity and discontinuity in
sampling images of a location. In this work, we incorporate temporal and spectral information into a
masked autoencoder architecture, and propose a novel self-supervised framework for satellite data.

3 Background

Masked Autoencoder The MAE is an autoencoder with asymmetrical encoding and decoding
stages [1]. It operates on images I € RE*H*W \where H,W are the height and width of the
image, respectively, and C' is the number of channels. The input image I is resized to a sequence

of non-overlapping patches, S € RIxF *C. where P is the height and width of the patch, and
L = (H/P) - (W/P) is the number of patches. Each patch is passed through a patch embedding

fp : RP’C 5 RP to create a sequence S’ € RE*D of embedded patch “tokens”. A fraction p,, of
the L tokens are masked and only the remaining (1 — p,,, )L “visible" patch tokens are fed to the
encoder, a Vision Transformer (ViT) [36] with positional embeddings to capture the spatial location
of the patch in the image. The decoder is a series of transformer blocks that operates on all L tokens
(with positional embeddings added), where the p,, L encoded visible patches are placed in their
original sequence position among (1 — p,,,) L masked patches represented by a learnable mask token.

The decoder outputs a reconstructed image I € REXHXW "which is compared to the original image
using the mean-squared error (MSE) loss, computed per-pixel only on the masked patches [[1].

Positional encoding Positional encoding allows transformers to make their learned representations
position-aware. In MAE [[1] and in many transformers [57, |58]], the positional encoding is:

Encode(k, 2i) = sin iz,, Encode(k,2i + 1) = cos LQ (1)
Oa Oa
Here, k is the position, 7 is the index of feature dimension in the encoding, d is the number of possible
positions, and €2 is a large constant (normally set to 10000). In MAE, position is defined as the index
of the patch along the x or y axes. Therefore, k ranges from 0 to H/P (or W/P). The final encoding
is generated by concatenating the encodings of the x and y coordinates.

4 Method
In this section, we describe SatMAE with temporal (1)) and multi-spectral (4.2)) satellite images.

4.1 Temporal SatMAE

We now consider input tensors I € RTXCXHXW where T denotes the number of images in a
temporal sequence. In video data, 7" frames are usually equally spaced. However, temporal satellite
imagery rarely has images at regular intervals. More commonly, several snapshots, or versions, of a
given location are taken at irregular times. The length and sample frequency of these sequences of
satellite images vary drastically over years and across different regions.

Naively, one could reshape I7 to I/, € RTC*H*W 'effectively concatenating the temporal sequence

of images along the spectral (i.e. channel) dimension, and then apply the MAE machinery verbatim.
This method poses a few difficulties: (i) the model may be unable to generalise to a temporal ordering
different to the one used in pre-training, since it can only understand order through the position of
images in the stacked-timeseries (ii) the model cannot reason about the length of time separating
two consecutive images in a time sequence, which may be variable when images of a location are



sampled at irregular intervals (iii) the model loses access to temporal fine-grained information in
deeper layers, as its only direct exposure to encode temporal information is through the initial patch
embedding f, (iv) the model is not temporally-shift invariant (i.e. the model would need to separately
learn to detect the same event in two different segments of a temporal sequence).

To address these challenges and to avoid losing temporal information, we resize the temporal sequence
Irto Sy € RET*PrP*C where Ly = L-(T/Pr) = (H/P)-(W/P)-(T/Pr), Py is the “patch size”
in the temporal dimension, and L and P are defined in[3] Prior works using transformers for video
data suggest using Pr = 2, where each “patch” is a cube of shape 2 x 16 x 16 [54,159,160]]. Since our
data has much shorter temporal sequence lengths [17]], we let Pr = 1 such that Ly = L - T'. In order
to operate on inputs of any temporal order, we re-use the same patch embedding f, : RY °Cy RP
for each image in the time series, giving us an embedded sequence of tokens S7, € RE7* D,

4.1.1 Temporal Encoding

For each embedded token in the L7 length sequence, we
need to ensure the model retains information about its
spatial and temporal position. As shown in many prior
works [34,35]], the timestamp of a satellite image is useful
for many pre-training or downstream vision tasks. We
propose a temporal encoding scheme compatible with the

- ) .y 1 yr, mo, hr masked autoencoder architecture by treating the temporal
*.y)

(year, month, hour) dimension similarly to the positional dimensions (see E[)

D The timestamp of a satellite image is represented as “year-

~———  month-day-hour-minute-second”. Instead of passing the

fpj s - entire numerized timestamp into a feature encoder, we
+ propose only keeping the useful parts. Intuitively, the day,

T minute, and second should be unrelated to the visual ap-
X, 1 . . . .
) L pearance of a region. Thus, including these components in
(spectral group) . X

the temporal encoding may not be beneficial, and can even

Figure 2: Top: Encoding each temporal patch be detrimental. In contrast, a landscape may eyo}ve over
with a shared patch embedding f,. Bottom: Years due to weather, geology, and human activity. The
Encoding each spectral patch with a different month reflects season and climate, and the hour reflects

patch embedding f,; for each group j. daylight and temperature.

Then, the temporal encoding is formulated as:
tr,; = CONCAT [Encode(kyear, ), Encode(kmont, ©), Encode(knour, ¢)] 2)

And the final encoding is generated by concatenating the temporal encoding to the positional encoding
defined in [3]such that the total length of the encoding is D.

4.1.2 Masking Strategies

With an additional temporal dimension, masking a subset of the L tokens needs to be treated with
care. As seen in figure[3] there are different ways to mask a temporal series of satellite images.

Consistent Masking Each image is “patchified” separately, but the masked regions are consistent
across all images (fig. [3a). This approach is also used in VideoMAE [54]], with video input.

Independent Masking Each image is “patchified” separately, and masked regions may not be the
same across every image. Instead, a fraction p,,, of the full sequence of all patch tokens are masked.
Another variant is to independently mask the regions of each image, but keep the ratio p,,, of masked
regions fixed per image. Both variants are equivalent in expectation. Effectively, the model may look
at unmasked values of a region that is masked in one image but not in others. This setting may lead to
an easier task for video data since the model can “cheat” and exploit temporal redundancy in videos
with high framerates [54]. However, we argue that this form of “cheating” is less feasible in temporal
satellite imagery, given the strong impact of seasonal variation and changing human activity over
periods of time and the much larger time deltas between temporally consecutive images (see fig. [3a).
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Figure 3: Temporal masking: For images in a timeseries, we can choose to keep a patch fully visible or fully
masked across time (consistent masking), or independently mask all patches (independent masking). In both
cases, a fraction p,, patches are masked. Here, T' = 3, and the leftmost column orders the temporal sequence
according to the timestamp features. For example, “y-12, m-12, h-15” is 12 years from the minimum year (2002),
the zero-indexed month 2, and the 15th hour of the day; i.e., roughly 2014, March, 15:00. @Spectral Masking:
The same masking strategies are adapted to groups of the 13 spectral bands in Sentinel-2 images.

Independent Masking + Inconsistent Cropping During data pre-processing, we can crop square
regions for input inconsistently so that images in the same temporal sequence may be spatially-
unaligned. This strategy may help the model learn better representations as it may learn to align
images in the sequence across the spatial and temporal dimensions.

4.2 Multi-spectral SatMAE

While MAE does operate on images I € RE*H*W 'ysually C' = 3 for RGB images. Satellite data,
on the other hand, can often have multiple spectral bands. For example, Sentinel-2 imagery has
C = 13 bands of 10m, 20m and 60m spatial resolution, each of different wavelengths (see[A:2.2).
Below, we discuss and later experimentally compare various ways to encode spectral information.

Stack Channels The sequence of patches S € REXP *C is embedded to a sequence of tokens
S’ € REXP | thus treating the multi-band image as is. We denote this method SatMAE+Stack.

Group Channels There are limitations to naively stacking the spectral information, especially that
a single convolutional patch embedding may be insufficient to fully capture fine-grained information
present in multiple bands of different wavelengths and spatial resolution. We would like the model to
preserve information about the different bands through the encoding and decoding stages.

To address this limitation, we propose grouping subsets of spectral bands. Given C' channels, we
form G groups g1, 92, - .., gg such that g1 + go + - - - + g¢ = C. This is analogous to slicing the
image I in the channel dimension, creating images I, ..., Ig, where I; € R XHxW We use a

separate patch embedding f;,; : RF*9 s RP for each group 7, thus allowing the model to best
represent each possibly different group of channels as token embeddings. Therefore, each group j is

first resized from Ij c RYi XHXW to SJ S RLXPng N and then each patch is embedded with fpj to
produce a sequence of embedded tokens S’ € REXD The sequences S7, . .., S, are concatenated
to produce the final set of tokens S’ € RGL* D,

Spectral Encoding Since the tokens in S’ correspond to a patch location (m, n) in the input image
and a group of channels g;, we include an encoding for the group index &, similar to
gk, = Encode(ky, 1) 3)

Note that this encoding simply depends on a user-devised channel grouping, and differs from eq. (2)
since additional metadata for the imagery, like its date, is not needed. The final encoding is a



concatenation of the positional zy, ;, Y ; and the spectral encoding gy, ; such that the total dimension
is D (see fig. . This positional encoding is added to .S’ before inputting it to the encoder. We denote
the combined setting of grouping channels and using a group encoding as SatMAE+Group.

Masking Strategies We consider consistent masking (denoted SatMAE+Group+CM) and inde-
pendent masking (SatMAE+Group+IM) as defined in section[d.1.2]and as visualized in fig.[3b]

S Experiments

In this section, we first introduce the datasets we considered, including a new multi-spectral remote
sensing image dataset for downstream task evaluation (5.1)). We then present our results on benchmark
datasets (5.2} [5.3] [5.4) and various remote sensing transfer-learning and downstream tasks [5.5] For
all experiments, we compare with the current state-of-the-art methods [34}35]] and with supervised
learning from scratch using the ViT backbone of SatMAE. In summary, our approach demonstrates
strong performance on all the tasks we considered, yielding improvements over previous state-of-the-
art techniques by up to 6% on supervised learning benchmarks, and up to 14% on remote sensing
transfer-learning downstream remote sensing tasks.

5.1 Datasets for Pre-training

fMoW RGB Functional Map of the World (fMoW) [[17] is a dataset of high-resolution satellite
image time series across the world, with a task of classification among 62 categories.

fMoW Sentinel We create a new dataset based on the fMoW RGB dataset. We collect all 13
frequency bands provided by Sentinel-2 (B1-12 and B8A) for the original fMoW locations, at some
of the same times as fMoW images plus some extra times, for a total of 712,874 training images,
84,939 validation images, and 84,966 test images. More details are included in appendix@

5.2 fMoW RGB (non-temporal)

In this section, we perform experiments on
Method Backbone  Frozen/Finetunc fMoW single image classification task. Fol-
Sup ¥ ResNo30 769.05 low.ing [34], we report both.the performance
of linear probing and finetuning setting. Table

Sup.T ResNet50 -/69.07 m .
- shows that compared to the previous state-
GASSL*[‘MJ 5.6;1;1660 68.?62;418.55 of-the-art self-supervised method using a con-
SUP- V¥T_Large - o 5' =0 trastive momentum encoding approach [34. 3],
Sﬁg Jif V;T:L:;iz :/76:91 our SatMAE achieved a 6.29% improvement in

top 1 classification accuracy. Interestingly, with-
out SatMAE pre-training the ViT-large model

Table 1: Top 1 Accuracy on fMoW classification. could only reach 62'48% at convergence after

Frozen: only performing linear classification on frozen 50 epochs of finetuning compared to 69.05%

features of the pre-trained model. Finetune: end-to-end achieved by training a ResNet-50 model from

finetuning the whole model. * is training from scratch, scratch. This is likely because the ViT [36] back-

and 1 is using supervised-learning ImageNet weights, bone is harder to finetune from scratch than

and I is SSL MAE ImageNet weights. ResNet50 [61]], which makes the pre-trained
model more valuable.

SatMAE ViT-Large 65.94/77.84

5.3 fMoW RGB (temporal)

Main experiments We perform image-sequence classification on the temporal version of fMoW
RGB to evaluate our temporal SatMAE. The temporal fMoW consists of co-located image sequences
with a length of 3. As seen in table[2] SatMAE surpasses the previous state-of-the-art by 4.48% and
improves the non-temporal result by 2.06% in top 1 classification accuracy. We also outperform
UTAE [48]], a SITS state-of-the-art, by 18%. We can observe from rows 5-8 that this gain is not from
the larger model to handle sequences of data. Naively stacking the image sequences in the channel
dimension performs even worse than the non-temporal SatMAE. Again, SatMAE pre-training is
crucial for ViT to outperform ResNet50. Training details are in appendix



Method Backbone  Top Acc. (1/5)
Method Backbone Top Acc. (1/5) Sup. Learning* ResNetl52  49.12/75.73
Sup.* ResNet50 73.24/- Sup. Learning{ Re'sNet152 54.46/78.99
SeCo [33] ResNet50 66.80/- MoCo-v3 V¥T—Base 50.45/76.37
GASSL [34] ResNet50 TA11/- MoCo—v3'+Grou[>)l< YlT—Base 51.33/75.68
UTAE [48] U-Net 61.59/36.45 SatMAE+Group V}T—Large 53.03/77.14
= . SatMAE+Groupi ViT-Large 51.61/77.26
Sup.” V}T—Large 61.89/84.23 SatMAE+Group ViT-Large 47.57/72.26
SatMAE+Stack V%T—Large 75.85/88.68 SatMAE+Group! ViT-Large 49.49/76.30
MAE+Test Aug.  ViT-Large  78.90/93.31 SatMAE+Stack ViT-Large  57.37/81.63
MAE]| ViT-Large = 76.78/92.01 SatMAE+Group+IM ~ ViT-Large  59.30/82.81
SatMAE ViT-Large 81.49/93.26 SatMAE+Group+IM  ViT-Large  61.48/85.17

Table 2: Classification results on the temporal fMoW
RGB dataset. * means finetuning from scratch. || means
copying the input image 3 times instead of using tem-
poral sequences as input. SatMAE+Stack here means
stacking the image sequence along the channel space.

Table 3: Top 1 & Top 5 Accuracy on the fMoW Sen-
tinel validation set. The different initializations are: *
from scratch, 1 MAE ImageNet weights, I supervised
ImageNet weights, § SatMAE fMoW RGB weights.
Other rows use fMoW Sentinel for pre-training. The

last row includes additional data augmentations (5.4).

Group Indp. Spec.

Temp. Indep. Cons. Test Top 1 Acc. Back. Strat.  Mask. Enc. Top 1 Acc.
Enc. Mask. Crop. Aug.
Base X v v 59.11
v v 78.07
Large X v 58.87
v v 78.45
Large X v 57.76
v v 79.90
Large H v v 57.78
v v v 79.69
7 7 7 7 31.49 Large R v v 58.76
. Large X v v 59.30
Table 4: Ablation studies on different components of Table 5: Ablation studics on spectral SatMAE on

temporal SatMAE on the temporal fMoW classification
task. The first column is whether using temporal encod-
ing, the second is whether using independent masking,
the third is whether cropping consistently, and the last
one is whether applying test-time augmentation.

fMoW-Sentinel. The first column denotes using ViT-
Base or ViT-Large. The second column is the grouping
strategy (see[5.4). The third column denotes indepen-
dent or consistent masking. The last column is whether
the spectral group encodingE]is used.

Ablation studies Table ] provides a comprehensive ablation study on the components of temporal
SatMAE. We see that improved performance is mainly due to the temporal encoding and adopting
independent masking rather than the consistent masking strategy suggested in VideoMAE [54].
Interestingly, consistent cropping slightly decreases performance, indicating that the model does
not rely on perfectly spatially-aligned image sequences. In addition, using test-time augmentations
similar to [34] is beneficial. Further ablations on mask ratio p,,, and patch size P are in appendix [A.4]

5.4 fMoW Sentinel (Multi-spectral)

In this section, we pre-train and finetune SatMAE on the image classification task of the fMoW-
Sentinel dataset. We pre-train SatMAE+Stack [4.2) and investigate SatMAE+Group+CM @.1.2and
SatMAE+Group+IM (see[d.2L .2). The full models are then finetuned on the fMoW-Sentinel
image classification task. For comparison, we also finetune the ResNet-152 model [61] from scratch
and from a supervised ImageNet initialization. We pick the largest model, ResNet-152, for fairer
comparison with ViTs. We also include MoCo-v3 [62, 3], a popular SSL. method. Given the
differences in applying RGB-image augmentations to satellite imagery, we implement two versions:
(1) MoCo-v3: we apply all of the same augmentations, except random grayscale and solarize, to
create 2 views of the 10-channel image. (ii) MoCo-v3+Group: we split the 10 bands into two groups
suggested by [2], and apply augmentations to each to create a positive pair of two 5-channel images.

Model configuration As not all of the 13 Sentinel-2 bands may be useful, in our experiments we
drop bands B1, B9 and B10, which correspond to a spatial resolution of 60m. Of the remaining
10 bands, we form three groups: (i) RGB+NIR: B2, B3, B4, B8 (ii) Red Edge: B5, B6, B7, B§A
(iii)) SWIR: B11, B12. We choose this grouping to ensure each group has bands of the same spatial
resolution and similar wavelength (see[A.2.2] [A.6). Only the last row of table [3|includes additional
data augmentations used during finetuning as in [[1]. See for pre-training and finetuning details.



Method Backbone Top 1 Acc. Method Backbone mloU

Sup. (Scratch)  ResNet50 54.46 Sup. (Scratch)  ResNet50 75.57
GASSL [34]  ResNet50 57.63 GASSL [34]  ResNet50 78.51
Sup. (Scratch)  ViT-Large 69.65 Sup. (Scratch)  ViT-Large 74.71
SatMAE ViT-Large 71.77 SatMAE ViT-Large 78.07
Table 6: NAIP land cover classification results. Table 7: SpaceNet v1 building segmentation results.
Method Backbone Top 1 Acc. Method Backbone mAP
Sup. (Scratch) ResNet18 63.21 Sup. (Scratch)  ResNet50 69.49
Sup. (IN init.) ResNetl8 86.44 Sup. (IN init.)  ResNet50 80.04
GASSL [34] ResNet18 89.51 GASSL [34] ResNet50 80.20
SeCo [35] ResNet18 93.14 SeCo [33] ResNet50 82.62
SatMAE* ViT-Large 95.74 Sup. (Scratch)  ViT-Large 80.07
SatMAE ViT-Large  98.94 SatMAE ViT-Large 82.13

SatMAE+Group+IM  ViT-Large 98.98 - - —
Table 9: BigEarthNet multi-label classification results.

Table 8: EuroSAT land cover classification results. * Following [35], we use mean Average Precision (mAP)
means we only use the RGB channels of the data. as the metric, and use a newer set of class labels.

Results We present results in table[3] Our method SatMAE+Group+IM achieves the highest accu-
racy, outperforming supervised training from scratch (1 6.27%) and ImageNet-initialized backbones
(1 4.84%). ImageNet initializations may be less useful than in fMoW-RGB given the larger distri-
butional shift to multi-spectral input data. We also note the effectiveness of grouping channels over
processing all bands only at the patch embedding level (i.e. SatMAE+Stack).

Ablation Studies We investigate the design of SatMAE for multi-spectral data in table [5} For
grouping strategy, we implement alternate band groups to test the hypothesis that grouping bands
based on wavelength and resolution is beneficial. X represents the band groups in H represents
splitting the 10 bands into two halves, {(2,3,4,5,6), (7,8,8A,11,12)}. R represents a random split into
three groups {(6,5,11,12), (8A,4,8,3), (7,2)}, reflecting the same group sizes as X. As seen, the choice
of band groups does influence performance, yielding a gain of about 0.6%. Moreover, ViT-Base
performs strongly, suggesting that SatMAE is the reason for improved performance rather than the
number of parameters in ViT. Interestingly, independent masking performs the best, which prompts
the model to “peek” at unmasked band groups to reconstruct the same region in a masked band group.

We also include further experiments on the length of pre-training (see[A.3.3)), the impact of mask
ratio p,,, and patch size P (see[A.J)), and the usefulness of the 13 Sentinel-2 spectral bands (see [A.6).

5.5 Transfer Learning Experiments

Now, we finetune our pre-trained SatMAE on downstream tasks on remote-sensing datasets, including
land cover classification (5.5)), multi-label classification (5.5), and building segmentation (5.5).

Finetuning details are included in

Land Cover Classification We perform transfer learning experiments on land cover classification
using the NAIP and EuroSAT [63] dataset. NAIP consists of RGB+CIR images of 66 land cover
classes obtained by the USDA’s National Agricultural Imagery Program, which are split into 244,471
training and 55,529 validation images. EuroSAT is a small dataset containing 27,000 13-band satellite
images of 10 classes based on Sentinel-2. We follow [35}164] for the train/val splits on EuroSAT.

Table [6] and table [§] shows the remarkable improvement of our SatMAE over the state-of-the-arts.
Although using the ViT-Large backbone already achieved good results, initializing the model with
SAT-MAE pre-trained weights further increased the accuracy by 2%-3%.

Multi-label Classification We also use the BigEarthNet [[18]] dataset for multi-label classification,
which consists of 13-band Sentinel-2 images of 19 classes in total. There are 354,196 images for
training and 118,065 images for validation. Following [35], we use a 10% subset of the train set.



Table 9] shows SatMAE pre-training improves upon the model trained from scratch by over 2%, and
achieves comparable results to the state-of-the-art. GASSL and SeCo were actually trained on a larger
pre-train dataset (1M Sentinel-2 images v.s. 713k) and with all 13 bands than our fMoW Sentinel.
Therefore we expect further improvement when we pre-train SatMAE with more data and for longer.

Building Segmentation In this section, we evaluate SatMAE on the semantic segmentation down-
stream task of the SpaceNet v1 dataset [20]. The SpaceNet v1 dataset consists of 6940 high resolution
satellite images with segmentation masks for buildings, which are divided into train and test sets of
5000 and 1940 images, respectively.

The results in table[7] show that our method achieves a larger performance gain from supervised
learning from scratch compared to [34]. The incompatibility of the ViT backbone with PSANet could
explain why the baseline performance is not as strong as that of using a ResNet50 backbone.

5.6 Visualizing reconstruction quality for SatMAE

masked input temporal input

reconstruction

Figure 4: Reconstruction quality of SatMAE+IM (left) vs. SatMAE+CM (right). Further results in appendix

We show the visualization of the reconstruction quality of two different SatMAE masking strategies in
fig. @} SatMAE+IM successfully reconstructs all the airplanes even though their number varies across
time. In contrast, the SatMAE with Consistent Masking missed some airplanes in the reconstruction.

6 Conclusion

In this paper, we propose a new SSL framework based on the MAE architecture [T]] tailored to remote-
sensing data (satellite imagery). Our novel masking strategy in a joint positional, temporal/spectral
space, along with the temporal and spectral encoding, enables our model to handle temporal and
multi-spectral satellite images as input and learn useful representations. Experiments on the datasets
for pre-training and multiple downstream datasets demonstrate the effectiveness of our pre-trained
SatMAE model, outperforming previous state-of-the-art results by large margins.

In the future, it would be useful to design more efficient transformer architectures. While SatMAE
has a similar number of parameters for both the temporal and multi-spectral setting as a regular ViT,
the increased length of token sequences can strain computational resources. Moreover, it is also worth
exploring optimal positional encodings for spectral and temporal data, as well as optimal groups of
spectral bands, either by neural-based search methods, or using prior knowledge. Lastly, investigating
better architectures for object detection and semantic segmentation using ViTs will be important in
generalising SatMAE to further downstream tasks.



Broader Impact

Accurate measurements of economic, social, and environmental phenomena are key inputs into policy
decisions made around the world, but the sparsity of labelled data on many outcomes means that
such decisions are often not guided by timely or accurate data. We demonstrate how a pre-training
framework could relieve the dependence on labelled data for many downstream tasks that use satellite
imagery as input. We hope our SatMAE method will help close the gap between SSL performance
on natural imagery and on the more challenging satellite imagery, and prompt further attention from
the ML community on the usefulness of SSL in satellite-imagery-related tasks.

Better extraction of information from satellite imagery has profound implications for our ability to
measure and understand a broad array of social, economic and environmental phenomena that are
critical for decision making. Our approach further amplifies the usefulness of the sparse amount of
labelled data that exist on key human outcomes, and could enable rapid and accurate extraction of
imagery features relevant for critical downstream tasks, including poverty prediction, infrastructure
development, and population estimation. Such information could aid governments in more rapid and
data-informed decision making and ultimately bring large societal benefits.

7 Acknowledgements

This research is based upon work supported in part by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2021-2011000004,
HAI NSF(#1651565), AFOSR (FA95501910024), ARO (W911NF-21-1-0125) and Sloan Fellowship.
The views and conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or
the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for
governmental purposes not-withstanding any copyright annotation therein.

10



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We tried our best to be precise.
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using/curating? [Yes] All data we used are released publicly.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
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5. If you used crowdsourcing or conducted research with human subjects...
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applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
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