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Abstract

Adam has been widely adopted for training deep neural networks due to less hyperparameter tuning

and remarkable performance. To improve generalization, Adam is typically used in tandem with a

squared ℓ2 regularizer (referred to as Adam-ℓ2). However, even better performance can be obtained

with AdamW, which decouples the gradient of the regularizer from the update rule of Adam-ℓ2. Yet,

we are still lacking a complete explanation of the advantages of AdamW. In this paper, we tackle

this question from both an optimization and an empirical point of view. First, we show how to

re-interpret AdamW as an approximation of a proximal gradient method, which takes advantage of

the closed-form proximal mapping of the regularizer instead of only utilizing its gradient information

as in Adam-ℓ2. Next, we consider the property of “scale-freeness” enjoyed by AdamW and by its

proximal counterpart: their updates are invariant to component-wise rescaling of the gradients. We

provide empirical evidence across a wide range of deep learning experiments showing a correlation

between the problems in which AdamW exhibits an advantage over Adam-ℓ2 and the degree to which

we expect the gradients of the network to exhibit multiple scales, thus motivating the hypothesis that

the advantage of AdamW could be due to the scale-free updates.

1 Introduction

Recent years have seen a surge of interest in applying deep neural networks (LeCun et al., 2015) to a myriad of

areas (Krizhevsky et al., 2012; Goodfellow et al., 2014; Vaswani et al., 2017; Wu et al., 2020). While Stochastic

Gradient Descent (SGD) (Robbins & Monro, 1951) remains the dominant method for optimizing such models, its

performance depends crucially on the step size hyperparameter. To alleviate this problem, there has been a significant

amount of research on adaptive gradient methods (e.g. Duchi et al., 2010a; McMahan & Streeter, 2010; Tieleman &

Hinton, 2012; Zeiler, 2012; Luo et al., 2018; Zhou et al., 2018; Zhang et al., 2018; Li & Orabona, 2019; 2020; Li et al.,

2021). These methods provide mechanisms to automatically set stepsizes and have been shown to greatly reduce the

tuning effort while maintaining good performance. Among these adaptive algorithms, one of the most widely used is

Adam (Kingma & Ba, 2015), which achieves good results across a variety of problems even by simply adopting the

default hyperparameter setting. Motivated by its huge successes, there has been much follow-up research addressing the

theoretical convergence of Adam and its variants (Reddi et al., 2018; De et al., 2018; Zhou et al., 2018; Wang et al.,

2020; Chen et al., 2019).

On the other hand, in practice, to improve the generalization ability, Adam is typically combined with a squared ℓ2

regularization, which we will call Adam-ℓ2 hereafter. Yet, as pointed out by Loshchilov & Hutter (2019), the gradient
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of the regularizer does not interact properly with the Adam update rule. To address this, they provide a method called

AdamW that decouples the gradient of the ℓ2 regularization from the update of Adam. The two algorithms are shown in

Algorithm 1. Although AdamW is very popular (Kuen et al., 2019; Lifchitz et al., 2019; Carion et al., 2020) and it

frequently outperforms Adam-ℓ2, it is currently unclear why it works so well. Recently, however, Bjorck et al. (2021)

applied AdamW in Natural Language Processing and Reinforcement Learning problems and found no improvement of

performance over sufficiently tuned Adam-ℓ2.

In this paper, we focus on understanding how the AdamW update differs from Adam-ℓ2 from an optimization point of

view. First, we unveil the surprising connection between AdamW and proximal updates (Parikh & Boyd, 2014). In

particular, we show that AdamW is an approximation of the latter and confirm such similarity with an empirical study.

Moreover, noticing that AdamW and the proximal update are both scale-free while Adam-ℓ2 is not, we also derive a

theorem showing that scale-free optimizers enjoy an automatic acceleration w.r.t. the condition number on certain cases.

This gives AdamW a concrete theoretical advantage in training over Adam-ℓ2.

Next, we empirically identify the scenario of training very deep neural networks with Batch Normalization switched off

as a case in which AdamW substantially outperforms Adam-ℓ2 in both testing and training. In such settings, we observe

that the magnitudes of the coordinates of the updates during training are much more concentrated about a fixed value

for AdamW than for Adam-ℓ2, which is an expected property of scale-free algorithms. Further, as depth increases, we

expect a greater diversity of gradient scalings, a scenario that should favor scale-free updates. Our experiments support

this hypothesis: deeper networks have more dramatic differences between the distributions of update scales between

Adam-ℓ2 and AdamW and exhibit larger accuracy advantages for AdamW.

To summarize, the contributions of this paper are:

1. We show that AdamW can be seen as an approximation of a proximal update, which utilizes the entire

regularizer rather than only its gradient.

2. We point out the scale-freeness property enjoyed by AdamW and show the advantage of such a property on a

class of functions.

3. We find a scenario where AdamW is significantly better than Adam-ℓ2 in both training and testing performance

and report an empirical observation of the correlation between such advantage and the scale-freeness property

of AdamW.

The rest of this paper is organized as follows: In Section 2 we discuss the relevant literature. The connection between

AdamW and the proximal updates as well as its scale-freeness are explained in Section 3. We then report the empirical

observations in Section 4. Finally, we conclude with a discussion of the results, some limitations of this work, and

future directions.

2 Related Work

Weight decay By biasing the optimization towards solutions with small norms, weight decay has long been a standard

technique to improve the generalization ability in machine learning (Krogh & Hertz, 1992; Bos & Chug, 1996) and

is still widely employed in training modern deep neural networks (Devlin et al., 2019; Tan & Le, 2019). Note that

here we do not attempt to explain the generalization ability of weight decay or AdamW. Rather, we assume that the

regularization and the topology of the network guarantee good generalization performance and study training algorithms

from an optimization point of view. In this view, we are not aware of other work on the influence of regularization on

the optimization process.

Proximal updates The use of proximal updates in the batch optimization literature dates back at least to 1965 (Moreau,

1965; Martinet, 1970; Rockafellar, 1976; Parikh & Boyd, 2014) and they were used in the online setting (Kivinen &

Warmuth, 1997; Campolongo & Orabona, 2020), and also in the stochastic one (Toulis & Airoldi, 2017; Asi & Duchi,

2019). We are not aware of any previous paper pointing out the connection between AdamW and proximal updates.

Scale-free algorithms The scale-free property was first proposed in the online learning field (Cesa-Bianchi et al.,

2007; Orabona & Pál, 2015; Orabona & Pál, 2018). There, they do not need to know a priori the Lipschitz constant

of the functions, while obtaining optimal convergence rates. To the best of our knowledge, the connection between
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Algorithm 1 Adam with ℓ2 regularization (Adam-ℓ2) and AdamW Loshchilov & Hutter (2017).

All operations on vectors are element-wise.

1: Given α, β1, β2, ϵ, λ ∈ R, lr schedule ¶ηt♢t≥0.

2: Initialize: x0 ∈ R
d, m0 ← 0, v0 ← 0

3: for t = 1, 2, . . . , T do

4: Compute a stochastic evaluation of the true gradient∇f(xt−1) denoted as∇ft(xt−1)

5: gt ← ∇ft(xt−1) +λxt−1

6: mt ← β1mt−1 + (1− β1)gt, vt ← β2vt−1 + (1− β2)g2
t

7: m̂t ←mt/(1− βt
1), v̂t ← vt/(1− βt

2)

8: xt ← xt−1 −ηtλxt−1 −ηtαm̂t/(
√

v̂t + ϵ)

9: end for

scale-freeness and the condition number we explain in Section 3 is novel, as is the empirical correlation between

scale-freeness and good performance.

Removing Batch Normalization (BN) The setting of removing BN is not our invention: indeed, there is already active

research in this (De & Smith, 2020; Zhang et al., 2019). The reason is that BN has many disadvantages (Brock et al.,

2021) including added memory overhead (Bulò et al., 2018) and training time (Gitman & Ginsburg, 2017), and a

discrepancy between training and inferencing (Singh & Shrivastava, 2019). BN has also been found to be unsuitable for

many cases including sequential modeling tasks (Ba et al., 2016) and contrastive learning algorithms (Chen et al., 2020).

Also, there are SOTA architectures that do not use BN including the Vision transformer (Dosovitskiy et al., 2021) and

the BERT model (Devlin et al., 2019).

3 Theoretical Insights on Merits of AdamW

AdamW and Proximal Updates Here, we show that AdamW approximates a proximal algorithm (Moreau, 1965;

Parikh & Boyd, 2014). A proximal algorithm is an algorithm for solving a convex optimization problem that uses

the proximal operators of the objective function. The proximal operator proxh : Rd → R
d of a convex function h is

defined for any y ∈ R
d as proxh(y) = arg minx∈Rd(h(x) + 1/2∥x− y∥2

2).

Consider that we want to minimize the objective function

F (x) = λ
2 ∥x∥

2
2 + f(x), (1)

where λ > 0 and f(x) : Rd → R is a function bounded from below. We could use a stochastic optimization algorithm

that updates in the following fashion

xt = xt−1 − ηtpt, (2)

where ηt is a learning rate schedule, e.g., the constant one or the cosine annealing (Loshchilov & Hutter, 2017) and pt

denotes any update direction. This update covers many cases, where α denotes the initial step size:

1. pt = αgt gives us the vanilla SGD;

2. pt = αgt/(
√

∑t
i=1 g

2
i + ϵ) gives the AdaGrad algorithm (Duchi et al., 2010a);

3. pt = αm̂t/(
√

v̂t + ϵ) recovers Adam (Kingma & Ba, 2015), where m̂t denotes the bias corrected first

moment of past gradients and v̂t denotes the bias corrected second moment of past gradients as updated in

Line 6-7 in Algorithm 1.

Note that in the above we use gt to denote the stochastic gradient of the entire objective function: gt = ∇ft(xt−1) +
λxt−1 (λ = 0 if the regularizer is not present), where ∇ft(xt−1) is a stochastic evaluation of the true gradient

∇f(xt−1).

This update rule (2) is given by the following online mirror descent update (Nemirovsky & Yudin, 1983; Warmuth &

Jagota, 1997; Beck & Teboulle, 2003):

xt = argmin
x∈Rd

λ
2 ∥xt−1∥2

2 + f(xt−1) + p
⊤
t (x− xt−1) + 1

2ηt
∥x− xt−1∥2

2 . (3)
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Update (2) Update (5)

gt ∇ft(xt−1) + λxt−1 ∇ft(xt−1)
pt = αgt xt = xt−1 − αηtgt xt = 1

1+ληt
(xt−1 − αηtgt)

pt = α gt
√

∑

t

i=1
g

2
i
+ϵ

xt = xt−1 − αηt
gt

√

∑

t

i=1
g

2
i
+ϵ

xt = 1
1+ληt



xt−1 − αηt
gt

√

∑

t

i=1
g

2
i
+ϵ





pt = α m̂t√
v̂t+ϵ

xt = xt−1 − αηt
m̂t√
v̂t+ϵ

xt = 1
1+ληt

(

xt−1 − αηt
m̂t√
v̂t+ϵ



Table 1: Comparison of Update (2) and (5) for different pt, where m̂t and v̂t are defined in Line 7 in Algorithm 1.

This approximates minimizing a first-order Taylor approximation of F centered in xt−1 plus a term that measures

the distance between the xt and xt−1 according to the ℓ2 norm. The approximation becomes exact when pt =
∇f(xt−1) + λxt−1.

Yet, this is not the only way to construct first-order updates for the objective (1). An alternative route is to linearize only

f and to keep the squared ℓ2 norm in its functional form:

xt = argmin
x∈Rd

λ
2 ∥x∥

2
2 + f(xt−1) + p

⊤
t (x− xt−1) + 1

2ηt
∥x− xt−1∥2

2 = prox ληt
2

∥·∥2
2

(xt−1 − ηtpt), (4)

which uses the proximal operator of the convex function ληt

2 ∥ · ∥2
2. It is intuitive why this would be a better update:

We directly minimize the squared ℓ2 norm instead of approximating it. We also would like to note that, similar to (3),

the proximal updates of (4) can be shown to minimize the objective F under appropriate conditions. However, we

do not include the convergence analysis of (4) as this is already well-studied in the literature. For example, when

pt = ∇f(xt−1) in (4) and f is convex and smooth, the update becomes a version of the (non-accelerated) iterative

shrinkage-thresholding algorithm. This algorithm guarantees F (xt)− F ∗ ≤ O(1/t), which is in the same order as

obtained by gradient descent on minimizing f alone (Beck & Teboulle, 2009).

From the first-order optimality condition, the update is

xt = (1 + ληt)
−1(xt−1 − ηtpt) . (5)

When λ = 0, the update in (2) and this one coincide. Yet, when λ ̸= 0, they are no longer the same. For easier

comparison between (2) and (5), we listed in Table 1 the detailed update formulas of them.

We now show how the update in (5) generalizes the one in AdamW. The update of AdamW is

xt = (1− ληt)xt−1 − ηtαm̂t/(
√

v̂t + ϵ) . (6)

On the other hand, using pt = αm̂t/(
√

v̂t + ϵ) in (5) gives:

xt = (1 + ληt)
−1(xt−1 − ηtαm̂t/(

√

v̂t + ϵ)), (7)

Its first-order Taylor approximation around ηt = 0 is

xt ≈ (1− ληt)xt−1 − ηtαm̂t/(
√

v̂t + ϵ),

exactly the AdamW update (6). Hence, AdamW is a first-order approximation of a proximal update.

The careful reader might notice that the approximation from AdamW to the update in (7) becomes less accurate when

ηt becomes too large, and so be concerned whether this approximation is practical at all. Fortunately, in practice, ηt is

never large enough for this to be an issue. The remainder term of this approximation is O(λη2
t ) which we should always

expect to be small as both λ and ηt are small. So, we can expect AdamW and the update in (7) to perform similarly for

learning rate schedules ηt commonly employed in practice, and we will indeed confirm this empirically in Section 4.3.

Let’s now derive the consequences of this connection with proximal updates. First of all, at least in the convex case, the

convergence rate of the proximal updates will depend on ∥∇f(xt)∥2
2 rather than on ∥∇f(xt) + λxt∥2

2 (Duchi et al.,
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2010b). This could be a significant improvement: the regularized loss function is never Lipschitz, so the regularized

gradients ∇f(xt) + λxt could be much larger than∇f(xt) when f itself is Lipschitz.

More importantly, proximal updates are fundamentally better at keeping the weights small. Let us consider a couple of

simple examples to see how this could be. First, suppose the weights are already zero. Then, when taking an update

according to (2), we increase the weights to −ηtpt. In contrast, update (5) clearly leads to a smaller value. This is

because it computes an update using the regularizer rather than its gradient. As an even more disturbing, yet actually

more realistic example, consider the case that xt−1 is non-zero, but gt = 0. In this case, taking an update using (2)

may actually increase the weights by causing xt to overshoot the origin. In contrast, the proximal update will never

demonstrate such pathological behavior. Notice that this pathological behavior of (2) can be mitigated by properly

tuning the learning rate. However, one of the main attractions of adaptive optimizers is that we should not need to tune

the learning rate as much. Thus, the proximal update can be viewed as augmenting the adaptive methods with an even

greater degree of learning-rate robustness.

AdamW is Scale-Free We have discussed what advantages the proximal step hidden in AdamW can give but have

not yet taken into consideration the specific shape of the update. Here instead we will look closely at the pt used in

AdamW to show its scale-freeness. Our main claim is: the lack of scale-freeness seems to harm Adam-ℓ2’s performance

in certain scenarios in deep learning, while AdamW preserves the scale-freeness even with an ℓ2 regularizer. We will

motivate this claim theoretically in this section and empirically in Section 4.

An optimization algorithm is said to be scale-free if its iterates do not change when one multiplies any coordinate of all

the gradients of the losses ft by a positive constant (Orabona & Pál, 2018). It turns out that the update (6) of AdamW

and the update (7) are both scale-free when ϵ = 0. This is evident for AdamW as the scaling factor for any coordinate

of the gradient is kept in both m̂t and
√

v̂t and will be canceled out when dividing them. (In practical applications,

though, ϵ is very small but not zero, so we empirically verify in Section 4.2 that it is small enough to still approximately

ensure the scale-free property.) In contrast, for Adam-ℓ2, the addition of the weight decay vector to the gradient (Line 5

of Algorithm 1) destroys this property.

We want to emphasize the comparison between Adam-ℓ2 and AdamW: once Adam-ℓ2 adopts a non-zero λ, it loses the

scale-freeness property; in contrast, AdamW enjoys this property for arbitrary λ. The same applies to any AdaGrad-type

and Adam-type algorithm that incorporates the squared ℓ2 regularizer by simply adding the gradient of the ℓ2 regularizer

directly to the gradient of f , as in Adam-ℓ2 (as implemented in Tensorflow and Pytorch). Such algorithms are scale-free

only when they do not use weight decay.

Also, as we wrote above, AdamW can be seen as the first-order Taylor approximation on ηt = 0 of (7); in turn, the

scale-freeness of (7) directly comes from the proximal updates. Of course, there may be other ways to design scale-free

updates solving (1); yet, for AdamW, its scale-free property derives directly from the proximal update.

We stress that the scale-freeness is an important but largely overlooked property of an optimization algorithm. It has

already been utilized to explain the success of AdaGrad (Orabona & Pál, 2018). Recently, Agarwal et al. (2020) also

provides theoretical and empirical support for setting the ϵ in the denominator of AdaGrad to be 0, thus making the

update scale-free.

Below, we show how scale-freeness can reduce the condition number of a certain class of functions.

Scale-Freeness Provides Preconditioning For a twice continuously differentiable function f , its Hessian matrix is

symmetric and its condition number κ is defined as the ratio of its largest absolute value eigenvalue to its smallest one.

It is well-known that the best convergence rate when minimizing such f using a first-order optimization algorithm (e.g.,

gradient descent) must depend on the condition number (Theorem 2.1.13, Nesterov, 2004). In particular, a problem

with a small κ can be solved more efficiently than one with a big κ. One way to reduce the effect of the condition

number is to use a preconditioner (Nocedal & Wright, 2006). While originally designed for solving systems of linear

equations, preconditioning can be extended to the optimization of non-linear functions and it should depend on the

Hessian of the function (Boyd & Vandenberghe, 2004; Li, 2018). However, it is unclear how to set the preconditioner

given that the Hessian might not be constant (Section 9.4.4 Boyd & Vandenberghe, 2004) and in stochastic optimization

the Hessian cannot be easily estimated (Li, 2018).

In the following theorem, we show that scale-freeness gives similar advantages to the use of an optimal diagonal

preconditioner, for free (proof in the Appendix). Specifically, a scale-free algorithm can automatically transform solving
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equipped with normalization mechanisms like Batch Normalization (Ioffe & Szegedy, 2015). In such cases, when using

a non-scale-free optimization algorithm (e.g., SGD), the first layers and the last layers will proceed at very different

speeds, whereas a scale-free algorithm ensures that each layer is updated at a similar pace. We will investigate these

effects empirically in the next section.

4 Deep Learning Empirical Evaluation

In this section, we empirically compare Adam-ℓ2 with AdamW. First (Section 4.1), we report experiments for deep

neural networks on image classification tasks (CIFAR10/100). Here, AdamW enjoys a significant advantage over

Adam-ℓ2 when BN is switched off on deeper neural networks. We also report the correlation between this advantage

and the scale-freeness property of AdamW. Next (Section 4.2), we show that AdamW is still almost scale-free even

when the ϵ used in practice is not 0, and how, contrary to AdamW, Adam-ℓ2 is not scale-free. Finally (Section 4.3), we

show that AdamW performs similarly to the update in (7), which we will denote by AdamProx below, thus supporting

the observations in Section 3.

Data Normalization and Augmentation: We consider the image classification task on CIFAR-10/100 datasets. Images

are normalized per channel using the means and standard deviations computed from all training images. We adopt the

data augmentation technique following Lee et al. (2015) (for training only): 4 pixels are padded on each side of an

image and a 32× 32 crop is randomly sampled from the padded image or its horizontal flip.

Models: For the CIFAR-10 dataset, we employ the Residual Network1 model (He et al., 2016) of 20/44/56/110/218

layers; and for CIFAR-100, we additionally utilize the DenseNet-BC2 model (Huang et al., 2017) with 100 layers and a

growth-rate of 12. The loss is the cross-entropy loss.

Hyperparameter tuning: For both Adam-ℓ2 and AdamW, we set β1 = 0.9, β2 = 0.999, ϵ = 10−8 as suggested

in the original Adam paper Kingma & Ba (2015). To set the initial step size α and weight decay parameter λ, we

grid search over ¶0.00005, 0.0001, 0.0005, 0.001, 0.005♢ for α and ¶0, 0.00001, 0.00005, 0.0001, 0.0005, 0.001♢ for

λ. Whenever the best performing hyperparameters lie in the boundary of the searching grid, we always extend the grid

to ensure that the final best-performing hyperparameters fall into the interior of the grid.

Training: For each experiment configuration (e.g., 110-layer Resnet without BN), we randomly select an initialization

of the model to use as a fixed starting point for all optimizers and hyperparameter settings. We use a mini-batch of 128,

and train 300 epochs unless otherwise specified.

4.1 AdamW vs. Adam-ℓ2: Influence of Batch Normalization and Correlation with Scale-freeness

With BN, Adam-ℓ2 is on par with AdamW Recently, Bjorck et al. (2021) found that AdamW has no improvement in

absolute performance over sufficiently tuned Adam-ℓ2 in some reinforcement learning experiments. We also discover

the same phenomenon in several image classification tasks, see Figure 2. Indeed, the best weight decay parameter is 0
for all cases and AdamW coincides with Adam-ℓ2 in these cases. Nevertheless, AdamW does decouple the optimal

choice of the weight decay parameter from the initial step size much better than Adam-ℓ2 in all cases.

Removing BN Notice that the models used in Figure 2 all employ BN. BN works by normalizing the input to each layer

across the mini-batch to make each coordinate have zero-mean and unit-variance. Without BN, deep neural networks

are known to suffer from gradient explosion and vanishing (Schoenholz et al., 2017). This means each coordinate of the

gradient will have very different scales, especially between the first and last layers. For non-scale-free algorithms, the

update to the network weights will also be affected and each coordinate will proceed at a different pace. In contrast,

scale-free optimizers are robust to such issues as the scaling of any single coordinate will not affect the update. Thus,

we consider the case where BN is removed as that is where AdamW and Adam-ℓ2 will show very different patterns due

to scale-freeness.

Without BN, AdamW Outperforms Adam-ℓ2 In fact, without BN, AdamW outperforms Adam-ℓ2 even when both

are finely tuned, especially on relatively deep neural networks (see Figure 3 and 4). AdamW not only obtains a much

better test accuracy but also trains much faster.

1https://github.com/akamaster/pytorch_resnet_cifar10
2https://github.com/bearpaw/pytorch-classification
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e.g., Orabona, 2014), but it is not smooth so it is harder to be optimized. However, with proximal updates, we don’t

have to worry about its non-smoothness. Hence, we can consider the objective function F (x) = λ∥x∥2 + f(x).

The corresponding prox-SGD update was derived in Duchi & Singer (2009) for scalar learning rates and it is easy to

generalize to our setting as

xt+1 = max
(

1− ληt

∥xt−ηtpt∥ , 0


(xt − ηtpt) .

Its performance, named AdamProxL2, as shown in Figure 7, can be on a par with AdamW.

Distributed Training Batch normalization is not user-friendly in distributed training as it requires each machine to

collect a batch of statistics to update the model which may be inaccurate when machines do not communicate frequently

with each other Goyal et al. (2017). Since AdamW outperforms Adam-ℓ2 significantly in settings without BN, at least

in feed-forward neural networks, we can apply AdamW in distributed training to see if it still enjoys the same merits.

Broader Impact Statement

The main contribution of this paper is the study of a known optimization algorithm AdamW from the theoretical

angles of proximal updates and scale-freeness, while the experiments are done to empirically validate and support the

theoretical findings. It is a general algorithm and we do not specify in which applications should it be employed, thus

we do not foresee any direct negative societal impact our work might cause.
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Appendices

A Proof of Theorem 3.1

Proof. From the Fundamental Theorem of Calculus we have:

∇f(x) = ∇f(x∗) +

∫ 1

0

∇2f(x∗ + t(x− x
∗))(x− x

∗)dt =

∫ 1

0

∇2f(x∗ + t(x− x
∗))(x− x

∗)dt .

Thus, for any function f̃Λ(x) whose Hessian is Λ∇2f(x) and ∇f̃Λ(x∗) = 0, we have ∇f̃Λ(x) = Λ∇f(x).

Now, from the definition of a scale-free algorithm, the iterates of such an algorithm do not change when one multiplies

each coordinate of all the gradients by a positive constant. Thus, a scale-free algorithm optimizing f behaves the same

as if it is optimizing f̃Λ.

B A Scale-free Algorithm with Dependency on the Condition Number

Algorithm 2 AdaGrad (Duchi et al., 2010a; McMahan & Streeter, 2010) (All operations on vectors are element-wise.)

Input: #Iterations T , a set K, x1 ∈ K, stepsize η
for t = 1 . . . T do

Receive: ∇f(xt)
Set: ηt = η

√

∑

t

i=1
(∇f(xi))2

Update: xt+1 = ΠK (xt − ηt∇f(xt)) where ΠK is the projection onto K.

end for

Output: x̄ = 1
T

∑T
t=1 xt.

Algorithm 3 AdaGrad with Restart

Input: #Rounds N , x0 ∈ R
d, upper bound on ∥x0 − x

∗∥∞ as D∞, strong convexity µ, smoothness M

Set: x̄0 = x0

for i = 1 . . . N do

Run Algorithm 2 to get x̄i with T = 32d M
µ

, x1 = x̄i−1, K = ¶x : ∥x − x̄i−1∥2

∞ ≤
D2

∞

4i−1 ♢, η = D∞/
√

2

2i−1

end for

Output: x̄N .

Theorem B.1. Let K be a hypercube with ∥x− y∥∞ ≤ D∞ for any x, y ∈ K. For a convex function f , set η = D∞√
2

,

then Algorithm 2 guarantees for any x ∈ K:

T
∑

t=1

f(xt) − f(x) ≤

√

√

√

√2dD2
∞

T
∑

t=1

∥∇f(xt)∥2 . (8)

Theorem B.2. For a µ strongly convex and M smooth function f , denote its unique minimizer as x
∗ ∈ R

d. Given

x0 ∈ R
d, assume that ∥x0 − x

∗∥∞ ≤ D∞, then Algorithm 3 guarantees:

∥x̄N − x
∗∥2

∞ ≤
D2

∞
4N

.

Thus, to get a x such that ∥x− x
∗∥2

∞ ≤ ϵ, we need at most 32d M
µ

log4

(

D2
∞/ϵ

)

gradient calls.

Proof of Theorem B.2. Consider round i and assume K passed to Algorithm 2 is bounded w.r.t. ℓ∞ norm by D∞i
.

When f is µ-strongly convex and M smooth, let x = x
∗, Equation (8) becomes:

T
∑

t=1

f(xt) − f(x∗) ≤

√

√

√

√2dD2
∞i

T
∑

t=1

∥∇f(xt)∥2 ≤

√

√

√

√4MdD2
∞i

T
∑

t=1

(f(xt) − f(x∗)) ,
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where the second inequality is by the M smoothness of f . This gives:

T
∑

t=1

f(xt) − f(x∗) ≤ 4MdD
2

∞i
.

Let x̄i = 1
T

∑T
t=1 xt we have by the µ-strong-convexity that:

∥x̄i − x
∗∥2

∞ ≤ ∥x̄i − x
∗∥2 ≤

2

µ
(f(x̄) − f(x∗)) ≤

2

µ

1

T

T
∑

t=1

(f(xt) − f(x∗)) ≤
8MdD2

∞i

µT
. (9)

Put T = 32d M
µ

in Equation (9) we have that ∥x̄i − x
∗∥2

∞ ≤
D2

∞i

4 . Thus, after each round, the ℓ∞ distance between

the update x̄i and x
∗ is shrinked by half, which in turn ensures that x

∗ is still inside the K passed to Algorithm 2 in the

next round with D∞i+1
=

D∞i

2 . This concludes the proof.

Proof of Theorem B.1.

T
∑

t=1

f(xt)− f(x)

≤
T

∑

t=1

⟨∇f(xt), xt − x⟩

=

T
∑

t=1

d
∑

j=1

∂f

∂xt,j

(xt) ∗ (xt,j − xj)

=

T
∑

t=1

d
∑

j=1

(xt,j − xj)2 −
(

xt,j − ηt,j
∂f

∂xt,j
(xt)− xj

2

2ηt,j

+

T
∑

t=1

d
∑

j=1

ηt,j

2



∂f

∂xt,j

(xt)

2

≤
T

∑

t=1

d
∑

j=1

(xt,j − xj)2 − (xt+1,j − xj)2

2ηt,j

+

T
∑

t=1

d
∑

j=1

ηt,j

2



∂f

∂xt,j

(xt)

2

≤
d

∑

j=1

T
∑

t=1

(xt,j − xj)2

2



1

ηt,j

− 1

ηt−1,j



+

d
∑

j=1

T
∑

t=1

ηt,j

2



∂f

∂xt,j

(xt)

2

≤ D2
∞

2η

d
∑

j=1

T
∑

t=1





√

√

√

√

t
∑

i=1



∂f

∂xi,j

(xi)

2

−

√

√

√

√

t−1
∑

i=1



∂f

∂xi,j

(xi)

2


 +

d
∑

j=1

T
∑

t=1

η

2

√

∑t
i=1

(

∂f
∂xi,j

(xi)
2



∂f

∂xt,j

(xt)

2

≤
d

∑

j=1





D2
∞

2η

√

√

√

√

T
∑

t=1



∂f

∂xt,j

(xt)

2

+ η

√

√

√

√

T
∑

t=1



∂f

∂xt,j

(xt)

2




=

d
∑

j=1

√

√

√

√2D2
∞

T
∑

t=1



∂f

∂xt,j

(xt)

2

≤

√

√

√

√2dD2
∞

T
∑

t=1

d
∑

j=1



∂f

∂xt,j

(xt)

2

=

√

√

√

√2dD2
∞

T
∑

t=1

∥∇f(xt))∥2 .
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where the first inequality is by convexity, the second one by the projection lemma as the projection onto a hypercube

equals performing the projection independently for each coordinate, the fifth one by Lemma 5 in (McMahan & Streeter,

2010), and the last one by the concavity of
√·.

C The Histograms of the Magnitude of each Update Coordinate during the Entire
Training Phase

In this section, we report the histograms of the absolute value of updates of Adam-ℓ2 vs. AdamW of all coordinates

divided by α during the whole training process. From the figures shown below, we can clearly see that AdamW’s

updates remain in a much more concentrated scale range than Adam-ℓ2 during the entire training. Moreover, as the

depth of the network grows, Adam-ℓ2’s updates become more and more dispersed, while AdamW’s updates are still

concentrated. (Note that the leftmost bin contains all values equal to or less than 2−27 ≈ 10−8.1 and the rightmost bin

contains all values equal to or larger than 1.)
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