
The proceedings version of this paper appears at USENIX Security 2021. This is the full version.

Partitioning Oracle Attacks

Julia Len Paul Grubbs Thomas Ristenpart

Cornell Tech

Abstract

In this paper we introduce partitioning oracles, a new

class of decryption error oracles which, conceptually, take

a ciphertext as input and output whether the decryption

key belongs to some known subset of keys. We introduce

the first partitioning oracles which arise when encryption

schemes are not committing with respect to their keys. We

detail novel adaptive chosen ciphertext attacks that exploit

partitioning oracles to efficiently recover passwords and de-

anonymize anonymous communications. The attacks utilize

efficient key multi-collision algorithms — a cryptanalytic

goal that we define — against widely used authenticated en-

cryption with associated data (AEAD) schemes, including

AES-GCM, XSalsa20/Poly1305, and ChaCha20/Poly1305.

We build a practical partitioning oracle attack that quickly

recovers passwords from Shadowsocks proxy servers. We

also survey early implementations of the OPAQUE proto-

col for password-based key exchange, and show how many

could be vulnerable to partitioning oracle attacks due to in-

correctly using non-committing AEAD. Our results suggest

that the community should standardize and make widely

available committing AEAD to avoid such vulnerabilities.

1 Introduction

The design of encryption historically separated the goals

of confidentiality and authenticity, which led to widespread

deployment of encryption schemes vulnerable to chosen-

ciphertext attacks (CCAs) [16, 95]. Subsequently, re-

searchers showed how to exploit CCAs to recover plain-

text data, most notably via padding [3, 4, 16, 95] and

format [10, 27] oracle attacks. As a result, cryptogra-

phers now advocate the use of authenticated encryption

with associated data (AEAD) schemes and CCA-secure

public key encryption. There has since been a shift to

adopt fast CCA-secure schemes, notably AES-GCM [64],

XSalsa20/Poly1305 [12, 14], and (in the public key setting)

hybrid encryption that makes use of the aforementioned

AEAD schemes.

Such schemes do not target being robust [1, 24], also

called committing [30]. While exact formal notions vary,

committing schemes ensure that attackers cannot construct

a ciphertext that decrypts without error under more than

one key. Thus far, robustness has not been considered an

essential security goal for most cryptographic applications.

This is perhaps because attacks exploiting lack of robustness

have arisen in relatively niche applications like auction

protocols [23] or recently as an integrity issue in moderation

for encrypted messaging [22, 30].

We introduce partitioning oracle attacks, a new type of

CCA. These are similar to previous attacks considered in

the password-authenticated key exchange (PAKE) litera-

ture [11, 72, 98]; we provide a unifying attack framework

that transcends PAKE and show partitioning oracle attacks

that exploit weaknesses in widely used non-committing

AEAD schemes. Briefly, a partitioning oracle arises when

an adversary can: (1) efficiently craft ciphertexts that suc-

cessfully decrypt under a large number of potential keys,

and (2) submit such ciphertexts to a system that reveals

whether decryption under a target secret key succeeds. This

enables learning information about the secret key.

The main cryptanalytic step for our attacks is construct-

ing (what we call) key multi-collisions, in which a single

AEAD ciphertext can be built such that decryption suc-

ceeds under some number k of keys. We formalize this

cryptanalytic goal and give an algorithm for computing key

multi-collisions for AES-GCM. It builds key multi-collision

ciphertexts of length O(k) in O(k2) time using polynomial

interpolation from off-the-shelf libraries, making them rea-

sonably scalable even to large k. An algorithm that executes

in time O(k log2 k) is possible using a different polynomial

interpolation technique [17], although it is not available

in standard library implementations to our knowledge. We

give more limited attacks against XSalsa20/Poly1305 (and

ChaCha20/Poly1305) and AES-GCM-SIV.

Given access to an oracle that reveals whether decryption

succeeds, our key multi-collisions for AES-GCM enable

a partitioning oracle attack that recovers the secret key in

roughly m+ logk queries in situations where possible keys

fall in a set of size d = m · k. This will not work to recover

much information about, e.g., random 128-bit keys where

d = 2128, but we show that it suffices to be damaging in set-

tings where keys are derived from user-selected passwords

or where key anonymity is important.

We explore partitioning oracles via two case studies. First

we show how to build a practical partitioning oracle attack

against Shadowsocks proxy servers [85]. Shadowsocks was

first built to help evade censorship in China, and it underlies

other tools such as Jigsaw’s Outline VPN [70]. In Shad-

owsocks, the connections are secured via password-based

1

AEAD with a user-chosen password shared between a client

and the proxy server. We show how an attacker can turn

the proxy server into a partitioning oracle, despite it being

designed to silently drop incorrect ciphertexts.

Simulations using password breach data show that 20%

of the time the attacker recovers the user’s password by

sending 124 ciphertexts to the server — several orders of

magnitude fewer than the ∼60,000 required by a standard

remote guessing attack. The latter requires less overall band-

width because our attack ciphertexts are large, but to suc-

ceed 70% of the time our attack requires fewer queries

and less overall bandwidth than the remote guessing attack.

We responsibly disclosed our attacks to the Shadowsocks

community, and helped them mitigate the vulnerability.

We then turn to password-authenticated key exchange

(PAKE). Here we focus on incorrect implementations of

the OPAQUE [42] protocol, which was recently chosen by

the IETF’s Crypto Forum Research Group (CFRG) as a

candidate for standardization. OPAQUE makes use of an

AEAD scheme in its protocol and both the original paper

and the (rapidly evolving) standard [52, 53] mandate that

the AEAD used be committing. We consider what happens

when implementations deviate from the standard by using

a non-committing AEAD scheme. Indeed, early implemen-

tations (some of which predate the standardization effort)

use AES-GCM, XSalsa20/Poly1305, or AES-GCM-SIV.

As we discuss, these implementations would be hard to

use without giving rise to partitioning oracles. Our simu-

lations show that a partitioning oracle here would enable

successful password recovery 20% of the time using just

18 man-in-the-middle impersonations against a vulnerable

client implementation. Our results therefore reinforce the

importance of using committing AEAD by quantifying the

danger of failing to do so.

In addition to these in-depth case studies, we discuss

other potentially vulnerable cryptographic tools and proto-

cols. Some of these, such as the file encryption tool called

age [93] and the internet-draft of the Hybrid Public Key En-

cryption scheme [8], have already made updates to mitigate

our attacks.

Our findings join prior ones [22, 30] in a growing body

of evidence that using non-committing AEAD as a default

choice can lead to subtle vulnerabilities. We suggest consid-

ering a shift towards committing AEAD being the default

for general use, and using non-committing AEAD only for

applications shown to not require robustness. This will re-

quire some work, however, as existing committing AEAD

scheme designs [22, 30] are slower than non-committing

ones and not yet supported by standards. We believe fu-

ture work should target fast, committing AEAD schemes

suitable for standardization and widespread deployment.

2 Partitioning Oracle Attacks

Here we provide an overview of the abstract partitioning

oracle attack setting. In addition to our new attacks, our

attack abstraction captures some previously known attacks

in the PAKE setting [72, 99], as we will discuss.

Attack abstraction. We consider settings in which an

attacker seeks to recover a secret pw ∈D from some set of

possible values D. The attacker has access to an interface

that takes as input a bit string V , and uses it plus pw to

output the result of some boolean function fpw : {0,1}∗→
{0,1}. Here fpw is an abstraction of some cryptographic

operations that may succeed or fail depending on pw and V .

We use fpw(V) = 1 for success and fpw(V) = 0 for failure.

We give examples of fpw below; in this work fpw usually

indicates success or failure of decrypting a ciphertext using

password pw.

Given oracle access to adaptively query fpw on cho-

sen values, the question is: Can an attacker efficiently re-

cover pw? This of course will depend on f . We refer to f as

a partitioning oracle if it is computationally tractable for an

adversary, given any set S ⊆D , to compute a value V̂ that

partitions S into two sets S∗ and S \S∗, with |S∗| ≤ |S \S∗|,
such that f (pw,V̂) = 1 for all pw ∈ S and f (pw,V̂) = 0

for all pw ∈ S \S∗. We call such a V̂ a splitting value and

refer to k = |S∗| as the degree of a splitting value V̂ . We say

that a splitting value is targeted if the adversary can select

the secrets in S∗, in contrast to untargeted attacks that, e.g.,

compute a splitting value that results in a random partition

of S.

For most fpw of practical interest it will be trivial to com-

pute splitting values with degree k = 1. In this case, a par-

titioning oracle attack coincides with a traditional online

brute-force guessing strategy for recovering pw. The ad-

versary has nothing other than black-box oracle access to

fpw and knowledge of an ordering pw1, pw2, . . . of D ac-

cording to decreasing likelihood. First compute a splitting

value V̂1 that partitions S = D into S∗1 = {pw1} and the rest

of S . Query fpw(V̂1). The resulting bit indicates whether

S∗1 = {pw1} = {pw}. Assuming not, compute a splitting

value V̂2 that partitions D \S∗1 into S∗2 = {pw2} and the re-

mainder, query fpw(V̂2), and so on. The attacker will learn

pw in worst case d = |D| oracle queries. Notice that in this

case the best possible attack is non-adaptive, meaning the

attacker can pre-compute all of its splitting values.

Partitioning oracles become more interesting when we

can efficiently build splitting values of degree k > 1. In

the limit, we can perform a simple adaptive binary search

for pw if we can compute splitting values of degree up

to k = ⌈d/2⌉. Initially set S = D and compute a value

V̂1 that splits S into two halves of (essentially) the same

size. Query fpw(V̂1) to learn which half of D the value pw

lies within. Recurse on that half. Like all binary searches,

this provides an exponential speed-up over the brute-force

strategy because we can recover pw in ⌈logd⌉ queries. We

provide more details about this attack, in particular taking

into account non-uniform distributions of the secret pw, in

Sections 4 and 5.

Example: Password-based AEAD. Consider a server

that accepts messages encrypted using a password pw. To

send an encrypted message m, a client derives a key K←
PBKDF(sa, pw) using a uniformly random per-message

salt sa. Here PBKDF is a password-based key derivation

function (e.g., one of those specified in PKCS#5 [47]). The

2

client then uses K to encrypt m according to an authen-

ticated encryption with associated data (AEAD) scheme,

resulting in a ciphertext C. It sends V = (sa,C) to the

server, which re-derives K and decrypts the ciphertext.

This represents a standardized and widely used way to per-

form password-based AEAD, and it is standard practice

now to use fast AEAD schemes such as Galois Counter

Mode (GCM) [64] or XSalsa20/Poly1305 [12, 14].

Nevertheless, if the server reveals just whether or not

decryption succeeds (e.g., due to an attacker-visible er-

ror message), one can construct a partitioning oracle with

fpw(sa,C) = 1 if and only if decryption of (sa,C) succeeds.

A priori, the authenticity (ciphertext unforgeability) of mod-

ern AEAD schemes might seem to prevent efficiently com-

puting splitting ciphertexts for degree k > 1, but it does not.

In fact a simple extension of prior work already gives an

attack for k = 2: Dodis et al. [22] showed how, for any two

keys, one can build an AES-GCM ciphertext such that de-

cryption succeeds under both keys. This is possible because

AES-GCM is not committing (also called robust) [24].

In more detail, our adversary can check membership in a

set S∗1 = {pw′, pw′′} of two passwords by sending a split-

ting value V̂1 to the server. First, it computes keys K ←
PBKDF(sa, pw′) and K′← PBKDF(sa, pw′′) for some ar-

bitrary sa. Then, it uses the Dodis et al. approach to con-

struct a ciphertext Ĉ1 that successfully decrypts under both

K and K′. Finally, it sends splitting value V̂1 = (sa,Ĉ1) to

the server. If the server’s response indicates decryption suc-

ceeded, fpw(sa,Ĉ1) = 1 and pw∈ S∗1 . Else, fpw(sa,Ĉ1) = 0

and pw 6∈ S∗1 . Iterating this procedure allows finding pw in

at most |D|/2+1 queries, beating brute-force by almost a

factor of two.

We will achieve more significant speed-ups in recover-

ing pw by showing how to build splitting ciphertexts Ĉ with

degree k proportional to |Ĉ|.

Example: password-authenticated key exchange. An

attack proposed by Patel [72] against a variant of the Diffie-

Hellman Encrypted Key Exchange (DH-EKE) [11], a pre-

decessor of PAKEs, can be viewed as a simple, nonadaptive,

untargeted partitioning oracle attack. It enables an adver-

sary impersonating one of the honest parties to eliminate

in expectation half of the attacker’s password dictionary,

although the adversary does not choose which half. Further-

more, a classical attack against an early version of the Se-

cure Remote Password (SRP) password-authenticated key

exchange (PAKE) protocol [98, 99] can also be viewed as

a partitioning oracle attack. This attack gives an adversary

who engages in the SRP protocol without knowledge of the

victim’s password the ability to check two password guesses

in one run of the protocol. In the parlance of partitioning

oracles, the attack turns an SRP client into a partitioning

oracle with degree k = 2. We describe both attacks in more

detail in Appendix D.

We note that Bellovin and Merritt’s partition attacks

against EKE schemes [11] also partition password sets but

because they rely on intercepting honest traffic to do this

partitioning, we do not consider them partitioning oracle

attacks. We describe them further later in this section.

We will show in later sections a “k-for-one” (for k≫ 2)

partitioning oracle attack against incorrect implementations

of the OPAQUE PAKE protocol. OPAQUE mandates use of

committing AEAD, and the designers clearly specified that

using non-committing AEAD leads to vulnerabilities [42].

Nevertheless we found prototype implementations that use

AES-GCM and other non-committing AEAD schemes. Our

results demonstrate how damaging exploits can be should

implementers not abide by the protocol specification.

Example: hybrid encryption. Partitioning oracles can

also arise in hybrid encryption. For example, some KEM-

DEM constructions, like the HPKE scheme [8] currently

being standardized, support authenticating senders based on

a pre-shared key (PSK) from a dictionary D by mixing the

PSK into DEM key derivation and using an AEAD scheme

as the DEM.

If the sender can learn whether the receiver successfully

decrypted a ciphertext, a trivial brute-force attack can re-

cover the PSK with enough queries. However, if the DEM

is a non-committing AEAD, a malicious sender can gain an

exponential speedup by crafting splitting DEM ciphertexts

similarly to the password-based AEAD example above. See

Appendix A for an example of this attack for HPKE.

Example: anonymity systems. Partitioning oracles

against hybrid encryption can also arise in anonymity sys-

tems. Prior work showed a link between robustness and

anonymous encryption [1, 23, 66]. By exploiting a lack of

robustness, our partitioning oracle attacks could be used to

perform de-anonymization.

As an example scenario consider anonymous end-to-end

encrypted messaging, in which a recipient has a key pair

(pk,sk) for receiving encrypted messages that are delivered

via an anonymous channel. A modern choice for encryp-

tion would be the crypto_box KEM-DEM scheme in the

widely-used libsodium library [15, 58]. An adversary wants

to determine if the recipient is using one of many possible

public keys {pk1, . . . ,pkd} (possibly gleaned from the web

or a public-key directory). The adversary has some way

of inferring when an encrypted message is successfully re-

ceived (e.g., due to a reply message or lack thereof). As

above, a brute-force attack over the set of public keys can

find the right one in d messages; this could be prohibitive

if d is large.

Instead, one can build a partitioning oracle attack against

crypto_box in this setting requiring only logd messages.

Here D = {1, . . . ,d}, that is, the partitioning oracle’s secret

is which of the keys is used. While we do not know of

any deployed system that is vulnerable to this attack sce-

nario, it is possible this vulnerability will arise with growing

adoption of non-committing AEAD for E2E encryption.

Discussion. An interesting aspect of our attack settings

is that the attacker has no information about the target se-

cret beyond access to the partitioning oracle and, perhaps,

some information about the set D and how the secret was

sampled from it. In particular, our adversaries will not have

to break in to some system or observe network commu-

nications to obtain a hash or ciphertext derived from this

3

target secret. We do note, however, that an attacker will

need to know the set of possible secrets. For example, in

the password-based setting, the attack we describe assumes

that attackers have good estimates of password distribu-

tions. If an attacker wishes to compromise the password of

a particular user whose password has never been breached,

the attack would fail. However, prior work [71] shows that

attackers do indeed have good estimates.

We further note that we have framed partitioning oracles

as outputting binary values, but it could be possible that

there exist oracles that output one of many values. A parti-

tioning oracle that returns one of r values could be used to

identify a secret chosen from D in logr |D| queries. We do

not know of any examples of such a partitioning oracle.

Relationship to partition attacks. Bellovin and Merritt

introduced partition attacks against EKE [11]. An attacker

that can intercept traffic between two parties obtains a ci-

phertext sent between them and then, given a dictionary

of possible passwords, trial decrypts with each password’s

derived key. Decryption with the incorrect key can return

an invalid value (based on the underlying number-theoretic

properties of the key exchange scheme); based on this, the

attacker can eliminate some number of the passwords from

the dictionary. With each interception, the adversary can

rule out more passwords, until it finds the correct one. Our

attacks similarly involve partitioning the set of possible

passwords, but do so via careful chosen-ciphertext construc-

tion and involve potentially adaptive querying of an oracle

(hence the name). Partition attacks instead rely on trial

decryption of intercepted traffic, thereby more closely re-

sembling dictionary attacks. We recall partition attacks in

more detail in Appendix D.

Relationship to padding oracles. Partitioning oracle at-

tacks are analogous to, but distinct from, padding oracle at-

tacks [95] or other format oracle attacks [5,27]. Partitioning

oracles can be exploited to reveal information about secret

keys, whereas format oracles can only reveal information

about plaintexts. That said, there is some overlap conceptu-

ally in the underlying techniques, as classic padding oracle

attacks like Bleichenbacher’s [16] or Vaudenay’s [95] can

also be viewed as adaptive attacks that provide exponential

speed-ups in recovering unknown values.

Additionally, padding oracles may be useful in helping

construct partitioning oracles. For example, consider our

password-based AEAD example, but replace the AEAD

scheme with a scheme such as HMAC-then-Encrypt which

is well known to give rise to padding oracle attacks that

recover plaintext data [3, 4, 95]. We can use the padding

oracle to construct a partitioning oracle where fpw(Ĉ) = 1

if and only if the padding check succeeds. Even if the check

succeeds, decrypting Ĉ will fail, but the padding oracle will

reveal f ’s output and thereby enable recovery of pw.

Relationship to side-channels. Side-channel attacks that

exploit timing or other aspects of a computation may help

in constructing partitioning oracle attacks. Many padding

oracle attacks exploit timing side-channels (e.g., [3]) and

they can analogously aid partitioning oracle attacks. One of

our attacks against Shadowsocks, for example, exploits a

side-effect of correct decryption that is remotely observable.

In Section 6 we discuss how timing side-channels that may

arise in decryption can enable partitioning oracle attacks,

even if a nominally committing scheme is used. But parti-

tioning oracles do not necessarily rely on side channels.

Timing side-channels have also been used recently to

learn information about passwords [94] from implementa-

tions of the PAKE protocol Dragonfly [35]. We discuss this

in more detail in Section 7.

3 Key Multi-Collision Attacks

Our partitioning oracle attacks will utilize the ability to

efficiently compute a ciphertext that decrypts under a large

number k of keys. We refer to this as a key multi-collision,

a cryptanalytic target for encryption schemes that is, to

the best of our knowledge, new. Our primary focus will be

on key multi-collision attacks against widely used AEAD

schemes, including AES-GCM and XSalsa20/Poly1305.

Key multi-collision attacks. We formalize our cryptana-

lytic goal as follows. Let AEAD = (AuthEnc,AuthDec) be

an authenticated encryption with associated data scheme,

and let its key space be the set K . We write encryption

AuthEncK(N,AD,M) to denote running the encryption al-

gorithm with secret key K ∈K , nonce N (a bit string), asso-

ciated data AD (a bit string), and message M (a bit string).

Decryption is written analogously, as AuthDecK(N,AD,C)
where C is a ciphertext. Decryption may output a distin-

guished error symbol ⊥. We require of our AEAD scheme

that AuthDecK(N,AD,AuthEncK(N,AD,M)) = M for all

N,AD,M not exceeding the scheme’s length restrictions.

We formalized AEAD as nonce-based [77], but our treat-

ment and results easily extend to randomized AEAD.

We define targeted multi-key collision resistance

(TMKCR) security by the following game. It is parame-

terized by a scheme AEAD and a target key set K⊆ K . A

possibly randomized adversary A is given input a target

set K and must produce nonce N∗, associated data AD∗,

and ciphertext C∗ such that AuthDecK(N
∗,AD∗,C∗) 6= ⊥

for all K ∈K. We define the advantage via

Advtmk-cr
AEAD,K(A) = Pr

[

TMKCRA
AEAD,K⇒ true

]

where “TMKCRA
AEAD,K⇒ true” denotes the event that A

succeeds in finding N∗,AD∗,C∗ that decrypt under all keys

in K. The event is defined over the coins used by A .

We can define a similar untargeted multi-key collision

resistance goal, called simply MKCR. The associated se-

curity game is the same except that the adversary gets to

output a set K of its choosing in addition to the nonce N∗,

associated data AD∗, and ciphertext C∗. For k = |K|, the

adversary wins if k ≥ κ for some parameter κ > 1 and de-

cryption of N∗,AD∗,C∗ succeeds for all K ∈K. We define

the advantage as

Advmk-cr
AEAD,κ(A) = Pr

[

MKCRA
AEAD,κ⇒ true

]

4

GCM-Enc(K,N,AD,M):

H← EK(0
128) ; P← EK(N ‖0311)

L← encode64(|AD|)‖encode64(|M|)

T ← (L ·H)⊕P

m← |M|/128 ; a← |AD|/128

b← m+a

For i = 1 to a :

T ← T ⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :

C[i]← EK(N +1+ i)⊕M[i]

T ← T ⊕ (C[i] ·Hb+2−i−a)

Return N ‖C ‖T

GCM-Dec(K,AD,N ‖C ‖T):

H← EK(0
128) ; P← EK(N ‖0311)

L← encode64(|AD|)‖encode64(|C|)

T ′← (L ·H)⊕P

m← |C|/128 ; a← |AD|/128

b← m+a

For i = 1 to a :

T ′← T ′⊕ (AD[i] ·Hb+2−i)

For i = 1 to m :

M[i]← EK(N +1+ i)⊕C[i]

T ′← T ′⊕ (C[i] ·Hb+2−i−a)

If T ′ 6= T then return ⊥

Return M

Multi-Collide-GCM(K,N,T):

L← encode64(0)‖encode64(|K|×128)

pairs[·]←⊥ ; C← ε

For i = 1 to |K| :

H← EK[i](0
128) ; P← EK[i](N‖0

311)

y← ((L ·H)⊕P⊕T) ·H−2

pairs[i]← (H,y)

f ← Interpolate(pairs) ; x← Coeffs(f)

For i = 1 to |K| :

C←C ‖x[i]

Return N ‖C ‖T

Figure 1: (Left) The Galois Counter mode (GCM) encryption and (middle) decryption algorithms. (Right) The Multi-Collide-GCM

algorithm, which takes a set K of keys, a nonce N, and a tag T and computes a nonce-ciphertext-tag triple N‖C‖T such that it decrypts

correctly under every key in K. The function encode64(·) returns a 64-bit representation of its integer input. The function Interpolate(·)
is a polynomial interpolation algorithm that accepts a vector of data pairs and returns a polynomial, while Coeffs(·) returns the coefficients

of this polynomial. We denote · as multiplication and ⊕ as addition in GF(2128).

where “MKCRA
AEAD,κ⇒ true” denotes the event that A suc-

ceeds in finding K,N∗,AD∗,C∗ such that N∗,AD∗,C∗ de-

crypts to non-⊥ under all keys in K. The event is defined

over the coins used by A .

A TMKCR adversary trivially gives an MKCR adversary,

but not vice versa. Both targeted and untargeted MKCR at-

tacks will enable partitioning oracle attacks, as both provide

the ability to compute splitting values that work for some

subset K of the key space. But targeted attacks are better

for adversaries, since it will allow, for example, generating

sets for the most probable keys (e.g., due to a non-uniform

distribution over the passwords used to derive them).

Our attacks will require that decryption fails for K /∈K.

This will hold except with tiny probability for the target

schemes of interest. We therefore focus on the cryptanalyti-

cally hard task of computing the key multi-collisions.

Committing AEAD and MKCR. Informally, a commit-

ting encryption scheme is one for which it is computation-

ally intractable to find a pair of keys and a ciphertext that

decrypts under both keys. Security goals for committing

AE were first formalized by Farshim et al. [24]. Grubbs et

al. [30] later formalized committing AEAD, with slightly

different semantics than usual for AEAD to capture a goal

of compact commitments. Compactness is relevant in the

moderation settings they considered, but not here. Commit-

ting AEAD may also be referred to as “key-committing

AEAD” in other literature; we use committing AEAD in

this work.

The Farshim et al. full robustness (FROB) notion is clos-

est to our MKCR notion: once translated to the nonce-based

AEAD setting (by adding nonces and associated data), it is

a special case of MKCR in which |K|= 2. We use commit-

ting AEAD to refer to schemes that meet this FROB notion,

which, in turn, rule out MKCR attacks. The converse is not

true, since being MKCR for κ does not imply being MKCR

for κ′ < κ.

Related security goals. Multi-collision resistance has

been treated in the context of hash functions, but here we

are interested in multi-collisions over keys and not over

messages. In particular the attacks of Joux [46] are not ap-

plicable to our setting, even if one were to focus on keyed

Merkle-Damgård hash functions, since applying his attack

technique would rely on very long multi-block keys.

One can also formalize and investigate key multi-

collision security for other symmetric and asymmetric prim-

itives, including message authentication schemes, digital

signatures, and public-key encryption. We leave doing so

to future work.

3.1 Key Multi-collisions for AES-GCM

At a high level, our multi-collision attack against AES-GCM

reduces the task of finding key multi-collisions to solving

a system of linear equations. This is possible because of

the algebraic properties of the universal hashing underlying

integrity protection in AES-GCM [64, 65].

AES-GCM is an AEAD scheme that composes AES in

counter mode with a specially designed Carter-Wegman

MAC [96]. The latter uses an XOR-universal hash func-

tion called GHASH. Detailed pseudocode is provided

in Figure 1. Encryption takes in a nonce N, an AES key

K, associated data AD, and plaintext M. It outputs a cipher-

text C1, . . . ,Cm,T ; here T is the authentication tag and m =
⌈M/n⌉ for n = 128 the block size of the underlying AES

block cipher denoted by E. The ciphertext blocks C1, . . . ,Cm

are generated using counter mode with E, and the tag T

is computed by applying GHASH to AD and C1, . . . ,Cm to

obtain a value h. Finally T = h⊕EK(N ‖0311). Decryption

re-computes the tag, compares it with T , and, if success-

ful, outputs the counter-mode decryption of the ciphertext

blocks. To disambiguate, we consider the message authenti-

cation tag T as separate from the ciphertext blocks.

We now explain GHASH, but for simplicity omit asso-

ciated data. For a key K, GHASH first derives a hash key

5

H = EK(0
n). It then hashes by computing

h =C1 ·H
m+1⊕·· ·⊕Cm−1 ·H

3⊕C∗m ·H
2⊕L ·H (1)

where C∗m is Cm concatenated with enough zeros to get an

n-bit string and L is an n-bit encoding of the length of the

message (equivalently, the length of the ciphertext). The

maximum plaintext length is 239−256. The multiplications

are performed over the finite field GF(2128) with a particular

fixed irreducible polynomial.

For a set K = {K1, . . . ,Kk} and nonce N, one can com-

pute a single ciphertext (C1, . . . ,Ck−1,T) that decrypts cor-

rectly under every key in K. For each Ki, derive the asso-

ciated GHASH key Hi = EKi
(0n) and then construct the

linear equation

T =C1 ·H
k−1
i ⊕·· ·⊕Ck−1 ·H

2
i ⊕L ·Hi⊕EKi

(N ‖0311)

which one arrives at by assigning Hi to H in (1) and

then substituting the result into the equation T = h⊕
EKi

(N ‖0311). Note that we have fixed the number of the

ciphertext blocks to be k−1. The result is then a system of

k equations in k unknowns:














1 H2
1 H3

1 · · · Hk+1
1

1 H2
2 H3

2 · · · Hk+1
2

...
...

...
. . .

...

1 H2
k H3

k · · · Hk+1
k















·















T

Ck−1

...

C1















=















B1

B2

...

Bk















(2)

where Bi = (L ·Hi)⊕EKi
(N ‖0311). At this point, one can

solve the linear equations using Gaussian elimination to

produce the desired ciphertext. This will require O(k3) time,

which may be prohibitive for very large k.

The polynomial matrix in (2) is almost a Vandermonde

matrix, whose structured form allows for finding solutions

more efficiently. The difference is the missing column

[H1,H2, . . . ,Hk]
⊺ that is omitted because of the fixed length

value L (which we cannot treat as a variable). We can, how-

ever, treat T as a fixed value (e.g., a randomly chosen con-

stant) instead of a variable and add one block of ciphertext

as a new variable. We then solve for the following system

of equations














1 H1 H2
1 · · · Hk−1

1

1 H2 H2
2 · · · Hk−1

2
...

...
...

. . .
...

1 Hk H2
k · · · Hk−1

k















·















Ck

Ck−1

...

C1















=















B′1

B′2
...

B′k















(3)

where B′i = ((L ·Hi)⊕EKi
(N + 1)⊕ T) ·H−2

i and where

now L is larger by one block. We can solve this special

system of equations in time O(k2) and space O(k) using

off-the-shelf polynomial interpolation algorithms, a factor

of k improvement. The resulting solution will have one extra

ciphertext block. While ideally an adversary wants multi-

collision ciphertexts to be as compact as possible, one extra

block will not significantly impact attacks. Detailed pseu-

docode for this procedure, denoted Multi-Collide-GCM, ap-

pears in in Figure 1.

Let Agcm be the TMKCR adversary that picks N,T arbi-

trarily and runs Multi-Collide-GCM. The adversary is guar-

anteed to succeed assuming the system of linear equations

is solvable, which is equivalent to the matrix having a non-

zero determinant. A well-known fact about Vandermonde

matrices is that their determinant is non-zero if and only

if all the Hi values are pairwise distinct, i.e., Hi 6= H j for

1≤ i < j≤ k. In the ideal cipher model we can therefore di-

rectly compute the probability of success (over the coins of

the ideal cipher), because in this case the Hi values are cho-

sen uniformly at random. Thus, Advtmk-cr
GCM (Agcm)≥ 1− k2

2n .

This is essentially one for the values of k we will consider

and n = 128.

We conjecture that, up to additive constant terms, our

attack is “tight” in its trade-off between ciphertext size and

runtime: namely, any attack that (w.h.p.) constructs degree-

k AES-GCM ciphertexts with fewer than k−1 ciphertext

blocks should require at least birthday-bound complexity.

Finding this “short” colliding AES-GCM ciphertext means

solving an overdetermined system of equations (i.e., one

which has more equations than variables). For such a sys-

tem to be solvable, there have to be rows that are linear

combinations of other rows. Since each row is increasing

powers of a random field element (i.e., the hash key) this

dependence between rows should be rare as long as the

block cipher acts like an ideal cipher. We leave confirming

or disproving our conjecture to future work.

Performance. We implemented Multi-Collide-GCM us-

ing the Python-based mathematics library SageMath [91]

and the Magma computational algebra system [18].

We used SageMath for its convenient integration with

Python and its cryptography libraries (specifically, Py-

Cryptodome [74]). While SageMath can be used directly,

we found Magma’s polynomial interpolation algorithm to

be significantly faster. Our proof-of-concept code is pub-

licly available.1 We note that SageMath and Magma imple-

ment an algorithm that interpolates a degree-k polynomial

in time O(k2), but there exists an algorithm that can do this

in time O(k log2 k) using FFTs [17]. Thus, while the times

we report here work for existing library implementations,

one could compute key multi-collisions far more quickly

with known specialized algorithms.

Timing experiments were performed on a desktop with

an Intel Core i9 processor and 128 GB RAM, running Linux

x86-64. We present the results in the table in Figure 2,

which shows both the time in seconds to generate a k-way

key multi-collision for AES-GCM and the size in bytes of

the resulting ciphertext, including the tag. There was little

variance in timing when generating multi-collisions, so we

report the times for just one execution for each k. Most of

the multi-collision ciphertexts could be computed relatively

quickly. Colliding ciphertexts for k = 216 keys, for instance,

took less than thirty minutes. For smaller k it is much faster.

We note that SageMath’s interface with Magma returns a

segmentation fault when polynomial interpolation is used

with value k = 218. In Figure 2 for this k value, we therefore

report the time to perform polynomial interpolation for 218

1https://github.com/julialen/key_multicollision

6

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

logq

S
u

cc
es

s
ra

te

k = 1 k = 210 k = 212

k = 214 k = 216 k = 218

k Time (s) Size (B)

2 0.18 48

210 6.6 16,400

212 29 65,552

214 170 262,160

216 1,820 1,048,592

218 20,122 4,194,320

Figure 2: (Left) Success rate of identifying a key uniformly chosen

from a set of size d = 230 as a function of the number of queries q

for brute-force attack (k = 1) and partitioning oracle attack (k > 1).

(Right) Time in seconds to generate key multi-collisions for AES-

GCM and the resulting ciphertext size in bytes (including the tag).

For k = 218 the time is just for Magma’s polynomial interpolation.

randomly-generated points using Magma itself; the timing

for the actual attack will be essentially the same.

To illustrate the power of key multi-collisions, we return

to the simple password-based AEAD partitioning oracle

scenario described in Section 2. Assume a partitioning or-

acle that returns fK(N,C,T) = 1 if and only if AES-GCM

decryption AuthDecK(N,C ‖T) 6=⊥ . We omit associated

data for simplicity. Then, consider an attacker attempting

to discover a key chosen uniformly from a set D of size

d = 230 (i.e., the approximate size of a large password

dictionary). We simulate the brute-force attack (k = 1) as-

suming the oracle works for plaintexts as small as one

byte. We also simulate our adaptive partitioning oracle at-

tack that constructs splitting ciphertexts of size k iteratively

for different sets of keys until the oracle returns one. At

this point the adversary performs a binary search in logk

queries to find the secret. We perform these simulations for

k ∈ {210,212,214,216,218}.

The graph in Figure 2 shows the attacks’ success rates —

how often they succeed in uniquely identifying the key —

as a function of the number of queries made. In this context

brute-force attacks do poorly, achieving negligible perfor-

mance even for large numbers of queries. The partitioning

oracle attack can search the space much more efficiently,

even for moderate k.

We also measured total bandwidth cost (total number of

bytes sent to the oracle) used by each attack to achieve a

certain success rate. We omitted the nonces from the band-

width calculations, which can only make the brute-force

attack look more competitive with the partitioning oracle at-

tacks. For a 20% success rate, the brute force attack (k = 1)

has a bandwidth cost of 3.65 GB, while the other values of

k require about 3.44 GB. For a 60% success rate, the differ-

ence is greater, with the brute force attack accumulating a

bandwidth cost of about 11 GB, while the other values of

k require only about 10.3 GB. Thus, partitioning oracle at-

tacks provide a significant speed up over brute-force search

when queries are the limiting factor.

3.2 Other AEAD Schemes

Schemes that use Poly1305. The

XSalsa20/Poly1305 [12, 14] and ChaCha20/Poly1305 [13]

are widely used AEAD schemes due to their speed, ease

of constant-time software implementations, and security

properties. Both schemes have a high-level structure similar

to AES-GCM, combining a stream cipher (XSalsa20 or

ChaCha20) with a Carter-Wegman style MAC called

Poly1305. Here we outline a key multi-collision attack

against it, and defer the details to Appendix B.

The core of the attack is against Poly1305 [12], which

is similar to GHASH except that it: (1) encodes an input

(a ciphertext in the context of its use within the AEAD

schemes here) as a sequence of blocks with 0x01 appended;

(2) performs the polynomial evaluation over Fp for prime

p = 2130− 5 (hence the name); and (3) adds the result to

a pseudorandom pad modulo 2128 to provide a tag value.

The way Poly1305 encodes its inputs breaks the algebraic

structure of the collision-finding problem, necessitating a

more complex and less scalable attack. Concretely, we were

not able to compute splitting ciphertexts with degree greater

than ten with our current techniques; this still gives a factor-

of-ten speedup in partitioning oracle attacks.

Misuse-resistant AEAD. Many schemes, including those

described above, leak information about plaintexts should

nonces (IVs) be accidentally reused. Misuse-resistant

AEAD [78] provides security even in the presence of nonce

reuse. This security goal fundamentally rules out online en-

cryption, meaning one must process the entire plaintext be-

fore outputting any ciphertext bits. One popular suggested

scheme is AES-GCM-SIV [32], which instantiates the SIV

mode of operation [78] using primitives borrowed from

AES-GCM (specifically, AES counter mode and a variant

of GHASH called POLYVAL).

Nonce misuse-resistance is different than robustness, and

in Appendix C we show that AES-GCM-SIV is vulnerable

to key multi-collision attacks. (A variant of this attack,

limited to only two keys, was discovered by Schmieg in

concurrent work [83].) One interesting point is that our

attack against AES-GCM-SIV is not targeted, meaning we

cannot precisely control the set of keys that end up in a

collision set. As mentioned previously untargeted key multi-

collisions suffice for partitioning oracle attacks.

3.3 Passing Plaintext Format Checks

Our MKCR attacks so far ensure that decryption succeeds,

but the resulting plaintexts are random. In some cases this

suffices, for example when a decryption implementation

aborts with an error message when decryption outputs ⊥.

However in some situations — including one of our attacks

against Shadowsocks — building partitioning oracles will

7

require MKCR attacks that result in plaintexts that satisfy

some format checks.

MKCR with plaintext format checks. We formalize the

resulting cryptanalytic goal by extending the MKCR se-

curity definition as follows. Let M be the set of possible

plaintexts. We generalize the MKCR game by parameter-

izing it with a predicate pr : M ∪{⊥}→ {0,1} that deter-

mines whether a message M is valid (i.e., pr(M) = 1) or

invalid (pr(M) = 0). We assume pr(⊥) = 0 and pr is fast

to compute.

Then we change the MKCR game to be parameter-

ized by pr, written MKCRAEAD,κ,pr. The adversary wins

by producing a set K, associated data AD∗, and cipher-

text C∗ such that |K| ≥ κ and for all K ∈ K it holds that

pr(AuthDecK(AD∗,C∗)) = 1. This strictly generalizes the

prior definition, since we can set pr(M) = 1 for all M ∈M

and thus arrive at the original same definition. We define

the advantage via

Advmk-cr
AEAD,κ,pr(A) = Pr

[

MKCRA
AEAD,κ,pr⇒ true

]

where “MKCRA
AEAD,κ,pr ⇒ true” denotes the event that A

wins. The event is defined over the coins used by A .

A rejection sampling approach. Consider a predicate

pr and let p1 = Pr [pr(M) = 1] for message M sampled

randomly from M . When p1 is not very small, one sim-

ple approach is to use rejection sampling. Consider a tar-

get set of keys K. We can choose a random nonce N and

tag T and run our MKCR algorithm using S ,N,T to ob-

tain a solution ciphertext N ‖C ‖ T . We then check that

pr(AuthDecK(C,T)) = 1 for all K ∈ S . If not, then repeat

the attack using a fresh choice of nonce. Each attempt will

succeed with probability (negligibly far from) pk
1 for k = |S |,

because changing the nonce leads to fresh pseudorandom

plaintexts for each key.

Most format checks will make p1 too small for this basic

approach to work. For example, one of our attacks against

Shadowsocks will require the first byte to be a fixed value,

making p1 = 1/256. So unless k is small, rejection sam-

pling alone will be too inefficient.

Exploiting structure. We can instead take advantage of

the fact that many format predicates will be structured, e.g.,

checking just the first few bytes of a header. This allows us

to extend our AES-GCM attack (and others) in an efficient

way. Intuitively, we will set aside the ciphertext blocks

whose underlying plaintext must satisfy format checks, and

we will then leave the rest as free variables to define a

system of linear equations.

As a concrete example, assume a predicate pr that only

compares the first byte of the plaintext M to some arbi-

trary fixed byte. We extend our AES-GCM MKCR attack

as follows. Consider a potential set of multi-collision keys

S . First, choose a nonce N arbitrarily and compute for each

K ∈ S the first byte of AES-GCM ciphertext. We then deter-

mine the largest subset K⊆ S that have the same ciphertext

byte value. Applying known results [75] on balls-and-bins

problems gives us that E[|K|] ≈ |D|/256+ 8
√

|D|/256. Then

run the targeted TMKCR attack against AES-GCM using

N, but fixing the first block of ciphertext to a constant equal

to the byte value plus some arbitrary 15 bytes to get a

full fixed ciphertext block C1. Then the system of equa-

tions is defined by taking the corresponding contribution

to the GHASH equation, namely C1 ·EKi
(0128)k+1 as a con-

stant and adding it to the right hand side of each equation.

One can generalize this to n bits of plaintext, for which

E[|K|]≈ |D|/2n +
√

2n|D|/2n.

This extension is efficient, running in time O(S). One

could also combine it with the rejection sampling approach

by having the first phase try multiple random nonces to look

for fortuitous multi-collisions in the first byte, but we did

not need to do this for practical attacks.

One can easily extend the approach to other kinds of

format checks, though if the check is too constrained it may

become inefficient (e.g., if plaintexts must have many fixed

bytes). The technique also extends to other stream-cipher

based AEAD schemes in a straightforward manner.

4 Password Recovery for Shadowsocks

The prior section showed how to build partitioning oracle

attacks against non-committing AEAD schemes. Now we

turn to case studies that surface how partitioning oracles

arise in practice. We start with Shadowsocks and show how

to build a partitioning oracle that efficiently recovers user-

chosen passwords.

Background on Shadowsocks. Originally written by

a pseudonymous developer, Shadowsocks [85] is an

encrypted proxy for TCP and UDP traffic, based on

SOCKS5 [55]. It is used both as a standalone proxy and as

the core of other censorship evasion tools such as Google

Jigsaw’s Outline VPN [70]. The original GitHub repository

has been “starred” by more than 32,000 users and forked

by nearly 20,000 [84].

To use Shadowsocks, a user first deploys the Shadow-

socks proxy server on a remote machine (typically hosted

in a cloud service), provisions it with a static password2 pw,

and chooses an encryption scheme to use for all connec-

tions. Originally, only AES-CFB was supported, but cipher

choices were modernized after a series of integrity attacks

on the protocol [86]. Current documentation recommends

either AES-GCM or ChaCha20/Poly1305, which are the

only two AEAD schemes supported. Clients given pw can

then forward TCP or UDP traffic from their machine to

the Shadowsocks proxy. Our attack targets UDP and use of

AES-GCM, and so we restrict our explanation to this setup.

The Shadowsocks protocol. The client starts by hash-

ing the user password to obtain a key Kr = H(pw). The

hash is currently MD5, but our attacks would still work

should it be replaced with a modern password hashing al-

gorithm. The client then samples a random sixteen-byte

salt sa and computes a session key Ks using HKDF [51],

2Using high-entropy symmetric keys instead of passwords became

possible recently [89]; this feature does not appear to be widely used.

8

pw using sa. Then we solve the optimization problem de-

fined by

Kmax = argmax
S⊆K , |S|≤k

∑
Ks∈S

p̂(Ks) .

We compute the key-colliding ciphertext C∗ that decrypts

under that subset using the first block fixed to ensure the

format check is passed. Let P⊆D be the set of passwords

associated to the subset of colliding keys Kmax (for salt sa∗).

Recall that since we must fix a block of C∗, it will have k+1

16-byte blocks, which does not include the message tag.

Querying phase: Having done the pre-computation, the

attacker can then submit to the proxy server (sa∗,C∗) and it

will decrypt correctly for any of the 4,091 passwords in P.

This is shown as step (1) in Figure 3. Should pw ∈ P, the

server will interpret the decrypted plaintext as a 01 byte

followed by a random IPv4 address, destination port, and

payload. The IPv4 and destination port will be accepted by

the server’s network protocol stack with high probability,

and so the server will send the payload as a UDP packet to

the IP address ip and destination port port. It will also open

a UDP source port to listen for a response. This is step (2)

in the figure.

The attacker does not a priori know the listening port the

server uses, and modern operating systems randomize this

port. The traditional range used for ephemeral source ports

is 49,152 through 65,535, though some systems use slightly

larger ranges. The attacker can simply send a UDP probe

to every port in that range — the port is left open for five

minutes by default for the Shadowsocks server implemen-

tations we inspected. This is shown as step (3) in the figure.

Should the system respond with ICMP error messages on

closed ports, this will already be sufficient for the attacker

to learn if a port was opened. If there is no other activity on

the system, this suffices to construct a partitioning oracle.

But in fact we observed that Shadowsocks server imple-

mentations will accept arbitrary response data. Thus, upon

receiving the UDP probe the server believes this to be the

valid response and proceeds to encrypt it and send it back to

the attacker.4 This is marked as step (4) in the diagram. At

this point, the attacker can simply perform trial decryption

for each pw ∈ P and recover the password.

The attacker can repeat steps (1)–(3) multiple times, fo-

cusing iteratively on the set of remaining passwords. The

attacker can also amortize the cost of the UDP port scan

across multiple attempts, by simply sending a sequence of

pre-computed key colliding ciphertexts to the server (for

distinct subsets of keys), and then performing the port scan.

4.2 Experimental Evaluation

Success rate simulations. To evaluate the efficacy of the

attack in recovering a target password, we perform simula-

tions using a sanitized version of a large breach compila-

tion [21] obtained from the authors of [71]. The sanitized

dataset contains 377 million unique passwords together

4This seems to be a vulnerability in its own right, as it could potentially

allow attackers to inject malicious responses to honest client UDP requests.

0 5,000 10,000 15,000 20,000
0

20

40

60

80

Number of queries

S
u
cc

es
s

ra
te

k = 1 k = 4091

0 1 2 3 4 5 6
0

20

40

60

80

Bandwidth (GB)

S
u
cc

es
s

ra
te

k = 1 k = 4091

Figure 4: The (left) number of queries versus success rate and

(right) bandwidth versus success rate for simulations of the brute-

force attack (k = 1) and partitioning oracle attack (k = 4091).

with the frequency with which they occurred, totaling 1.1

billion passwords overall. To perform password simulation

experiments, we partitioned the password dataset randomly

into two halves: a training set (Ptrain) used by the attacker

to estimate p̂ and a testing set (Ptest) used as an empirical

distribution for sampling a target password pw. This rep-

resents an attacker having a good, but not exact, estimate

of the distribution from which a password is drawn. The

maximum success rate achievable for the simulations is

70%, because the test set has many passwords not found in

the training set.

We wrote a program that uses the training set Ptrain to

determine a sequence of password sets P1,P2, . . . accord-

ing to the maximization approach described earlier. This

was run on the same Linux desktop we used for our multi-

collision timing experiments in Section 3. The probability

of success of the first set is 0.9%. In contrast, the brute-force

attack achieves a 0.76% success rate with its first ciphertext.

The reason for the mild improvement is that the formatting

check for Shadowsocks means that P1 contains one of the

most popular passwords plus many lower probability pass-

words. One could improve this with further precomputation

effort by repeating the process until a higher performing P1

is found.

Even without such embellishments, the success rate as a

function of the number of ciphertext queries made goes up

rapidly. The left graph of Figure 4 shows how the partition-

ing oracle attack outperforms brute force for all query bud-

gets. As examples: the partitioning oracle attack achieves a

success rate of 20% with just 124 queries while brute-force

achieves only 3% with the same number. A success rate of

70% would require 21,503 partitioning oracle queries while

the brute-force attack would require 87.8 million queries.

We also estimated bandwidth usage for both attacks,

shown in the right graph of Figure 4. A single query in

the partitioning oracle attack is 65,532 bytes total, includ-

ing an 8-byte UDP header, 20-byte IP header, 16-byte salt,

and 65,488-byte ciphertext. For the simple brute-force at-

tack a single query is 68 bytes, including the UDP header,

IP header, salt, and 24-byte ciphertext. The ciphertext itself

includes a 16-byte authentication tag and encrypted 7-byte

header and 1-byte payload. For success rates below 25%

the brute-force attack requires less total bandwidth than the

partitioning oracle attack, but the latter uses less bandwidth

above 25%.

10

Concretely, the total bandwidth of all the submitted ci-

phertexts in the partitioning oracle attack to achieve 20%

success rate would be 8.1 MB across 124 UDP packets.

The total bandwidth of submitted ciphertexts to achieve

70% success rate, the maximum possible, would be 1.4 GB

across 21,503 UDP packets. The simple online brute-

force attack achieves success rate of 20% using 4.1 MB

of data sent over 60,250 requests. For 70%, this increases

to 5.97 GB of data sent over 87.8 million requests. Note

that these calculations do not include the up to 28,231 UDP

packets for the port scan of the partitioning oracle attack,

but these can potentially be sent once for multiple (or even

all of the) ciphertexts.

Proof of concept. We implemented a full proof of concept

of the attack. Our adversary used the same Linux desktop

for the pre-computation step as the one used in the sim-

ulation experiments, and an EC2 micro instance running

Ubuntu 18.04 to send queries in the online portion of the

attack. The target Shadowsocks server was an EC2 micro

instance running Ubuntu 18.04 and go-shadowsocks2 [29].

We used a default configuration for the target EC2 instance,

except that we allowed UDP inbound traffic on the server’s

ephemeral port range (32,768–60,999). Without opening

those ports, Amazon’s firewall will by default block the

UDP port scan.

Using this setup, we verified steps (1)–(4) of the attack

work as expected and measured its performance. Because

our simulations above show that 20% of the training set

Ptrain can be recovered within 200 queries, we chose to

demonstrate the end-to-end time and bandwidth of an at-

tack requiring 200 queries. To complete the offline pre-

computation phase of the attack performed by the malicious

client, we wrote a program that uses Ptrain to determine a

sequence of 200 password sets P1,P2, . . . ,P200 according

to the maximization approach described earlier. Our unop-

timized implementation took approximately 33 hours, for

an average of about 10 minutes per password set, and then

took 92 minutes to compute the 200 multi-key colliding

ciphertexts for each of the resulting password sets. One

could speed up this precomputation step via parallelization

and by focusing on only higher probability passwords (in-

stead of the entire set, as these timings reflect). We then

randomly chose a target password from the set of passwords

covered by the 200 ciphertexts and registered it with the

Shadowsocks server.

Lastly, we used the EC2 client to send the 200 ciphertexts

and perform a port scan of the Shadowsocks server. Our

program waited 100 ms between each ciphertext to avoid

overloading the server, so the total time to send the cipher-

texts was 20 seconds and required 13.1 MB of bandwidth.

For the port scan, we used the python3 scapy library to

send a 20-byte payload to every port in the range 32,768 to

60,999. This took 97 seconds and required 1.36 MB of band-

width. Once the correct port was probed, we verified that

the encrypted payload was sent back to the client. Know-

ing the set of 818,200 passwords associated with the 200

ciphertexts, the client derived the key for each password

and then trial decrypted with this set of keys to find the tar-

get password. We confirmed that the correct password was

indeed found by the client. This required 392,179 decryp-

tions, which took 58 seconds. Altogether the entire attack

required a total of 14.5 MB of bandwidth.

Comparison to brute-force. We also implemented a

brute-force attack and ran it using the desktop client. Our

attack went through each password in Ptrain to derive the

key and encrypt a Shadowsocks packet whose destination

IP address is the adversarial EC2 instance. Meanwhile, the

adversarial EC2 instance was setup to run a simple echo

server. If the adversarial client submitted a ciphertext using

the correct password, the Shadowsocks server would for-

ward the decrypted payload to the echo server, and the echo

server would send it back to the Shadowsocks server. The

latter would encrypt the echo reply and send it back to the

desktop client. Thus, once the desktop client received a pay-

load from the Shadowsocks server, it would know it chose

the correct password. When the same password as above

was registered with the Shadowsocks server, this brute-force

attack found it in about 30 minutes, using 60,305 queries

and 4.1 MB of bandwidth.

Thus, both our simulations and proof of concept imple-

mentations show that if an adversary wants to minimize its

queries (e.g., because of rate limiting by the target server),

the partitioning oracle attack is strictly better than the brute-

force attack. While pre-computation for the partitioning

oracle is expensive, the online phase is fast. Finally, our

attack may require more total bandwidth than brute-force

to find the most popular passwords, but for less popular

passwords it will use less bandwidth.

4.3 Further Attack Settings

A multi-user variant. One limitation of using a port scan

to learn the output of the partitioning oracle is that strict

firewall rules can disrupt or prevent port scanning. Here we

describe another attack that does not require port scanning,

but works only in certain multi-user settings.

There are two ways of implementing multi-user support

in a Shadowsocks server. The first, used by most major

implementations, is giving each user its own dedicated port,

and attempting to decrypt that port’s inbound traffic only

with that user’s password. This method is not vulnerable to

our attack.

The second way, used by Jigsaw’s Outline server, is allow-

ing multiple passwords to be specified for a single port [88];

when the server receives a packet, it tries to decrypt the

ciphertext with every possible user password. There are

ongoing discussions on whether to make this a standard

feature for all Shadowsocks servers [87]. Our attack is ef-

fective on this latter method, and is a kind of cross-user

partitioning oracle attack: a user already having a credential

for a Shadowsocks server can learn the credentials of other

users on the same port, without the need to scan ports or

pass format checks.

To see why, assume there are two users u0 and u1

on the same port with passwords pw0 and pw1 (assume

11

pw0 6= pw1), and every ciphertext received on that port

is decrypted first with pw0 then pw1. To learn u0’s pass-

word, u1 can build a partitioning oracle as follows: first,

construct a splitting ciphertext (sa∗,C∗) that decrypts un-

der pw1 to a chosen (IP, port) pair where u1 has a UDP

listener, and decrypts to an arbitrary random plaintext un-

der some set of guesses S ⊆D. Upon sending this cipher-

text, if the Shadowsocks server sends a UDP packet to

u1’s listener we have that fpw0
(sa∗,C∗) = 0, and otherwise

fpw0
(sa∗,C∗) = 1. This holds because the server only de-

crypts under pw1 if pw0 decryption fails.

Though theoretically sound, mounting this attack on a

real multi-user deployment of Jigsaw’s server would likely

be challenging due to a performance optimization present

in their implementation. To decrease the latency of future

trial decryptions, Jigsaw’s server changes the ordering of

passwords in the list each time a correct decryption happens.

This means that the assumption about decryption happening

first with pw0 holds only for the first partitioning oracle

query — if this one fails, pw1 is moved to the top of the list,

and u1 cannot make another query until pw0 is put back at

the top of the list. If u1 can cause u0 to send traffic through

Shadowsocks, pw0 will be put at the top of the list, and u1

can make more queries. This attack is therefore likely to be

useful only in quite narrow threat models.

Shadowsocks TCP mode. We were not able to build a

working attack on Shadowsocks’s protocol for TCP con-

nections. The main challenge is that in this setting Shad-

owsocks servers expect two ciphertexts, first an encryption

of the payload length and then an encryption of the pay-

load. The former only allows ciphertexts including 2-byte

plaintexts, which seems too small for efficiently construct-

ing splitting ciphertexts — our attacks can only construct

splitting ciphertexts of at least one full block. There may be

more advanced algorithms for finding short splitting cipher-

texts; we leave to future work the question of building such

an algorithm or proving it cannot be done. As mentioned

above, deployments use the same password across TCP and

UDP, so our UDP attack affects both.

5 Password-Authenticated Key Exchange

We turn to partitioning oracles in the context of password-

authenticated key exchange (PAKE). As mentioned earlier,

a version of the PAKE secure remote password (SRP) proto-

col [98] has long been known to be vulnerable to a “two-for-

one” attack (c.f., [99]). A network adversary impersonates

a server response to a client, and based on the client’s sub-

sequent behavior can rule out two possible passwords. This

provides a modest speedup over standard brute-force. We

want to know if our techniques enable attacks with bigger

speedups against PAKE implementations.

We explore this question in the context of a modern

PAKE protocol called OPAQUE [42]. It is undergoing a

standardization process currently, having been suggested

by the IETF CFRG as a good candidate for next generation

PAKE. OPAQUE uses as a component an AEAD scheme,

and its designers and the (evolving) draft standards [52, 53]

make clear the necessity of using committing AEAD.

We perform a case study focusing on what happens when

implementations incorrectly deviate from the specification,

and instead use a non-committing AEAD. Indeed some

early prototype implementations of OPAQUE use AES-

GCM or XSalsa20/Poly1305, as we detail below.

Background on OPAQUE. OPAQUE is meant to replace

existing password authentication protocols on the web,

which today is done by having the client send the server its

password through TLS. This approach requires the server

to handle the client’s plaintext password, and also relies on

public-key infrastructure (PKI) for authentication.

In contrast, OPAQUE is an asymmetric PAKE (aPAKE)

that keeps the client’s password hidden from the server

and does not need PKI to authenticate the server to the

client. Asymmetric here means the server only stores the

equivalent of a (salted) hash of the password, while the

client uses the password directly. OPAQUE provides mu-

tual authentication based on the password. While one can

integrate OPAQUE with certificates or PKI, we focus on

password-only authentication.

OPAQUE works by composing an oblivious PRF

(OPRF) [26] with authenticated key exchange (AKE) using

a committing AEAD. For ease of reference the OPAQUE

pseudocode is provided in Figure 9 in the appendix, where

the AKE scheme used is HMQV [50]. Here we follow

the OPAQUE description from [42]; recent internet drafts

differ in some details that do not affect the attack (should

non-committing AEAD be used).

The protocol begins with the server holding an oblivious

pseudorandom function (OPRF) key ks and the user holding

password pw. A user registers by sending pw to the server

over a secure channel such as TLS. The server computes

rw← H (pw,H ′(pw)ks) where H ′ hashes strings into a

group and H is any hash function. (This is a standard OPRF

construction [43].) The server then chooses a long-term key

pair for itself and for the client, uses AEAD with key rw

to encrypt the client’s key pair and its own public key, and

stores its key pair, the client’s public key, and ciphertext C.

After the user has registered, they can initiate a login with

the server. The client first chooses an ephemeral public key

Xu, computes a blinded OPRF input α←H ′(pw)r for ran-

dom r, and then sends both values to the server. The server

retrieves the client’s keys and C, and computes a blinded

OPRF output β← αks . It chooses its own ephemeral public

key Xs and computes the HMQV session key Ksess. It sends

(β,Xs,C,As) to the client, where As is a PRF output us-

ing Ksess (used for session key confirmation). The client can

then compute rw←H (pw,β1/r) and use that to decrypt C

to get its long-term key pair. It can then derive the session

key Ksess as per HMQV and confirm that As is correct. The

OPAQUE protocol immediately aborts should the client’s

decryption of C fail.

As discussed in [42], the AEAD must be committing

because otherwise the client’s decryption of C could re-

veal information about more than one password, similar

to the Patel attack and SRP two-for-one attack. Various

12

Implementation AEAD Scheme
MKCR Emit

attacks? errors?

libsphinx [62] XSalsa20/Poly1305 X X

threshold-OPAQUE [67] XSalsa20/Poly1305 X X

Opaque [60] XSalsa20/Poly1305 X X

opaque-rs [59] AES-GCM X X

gustin/opaque [34] AES-GCM-SIV X X

gopaque [76] Encrypt-then-HMAC X –

frekui/opaque [54] Encrypt-then-HMAC X –

opaque-ke [57] AEAD-then-HMAC X –

noisat-labs/opaque [69] NORX X –

Figure 5: A summary of early prototype implementations of

OPAQUE and the AEAD scheme they use. The right-hand column

specifies whether the vulnerable implementations emit distinct,

explicit error messages during decryption.

instantiations of the AEAD have been proposed, including

Encrypt-then-HMAC, modifying AES-GCM to add a zeros

check, and more.

Early implementations. Despite this guidance, a survey

of prototype OPAQUE implementations revealed that a

majority use non-committing AEAD. See Figure 5. Many

of these prototypes predate the standard drafts, the most

recent version of which provides more specific guid-

ance on allowed AEAD schemes. Only one implemen-

tation is from a commercial product (opaque-ke [57]);

most do not appear to have been reviewed by cryptogra-

phers. We therefore expect that future implementations

will do better in terms of correctly selecting a committing

AEAD. Nevertheless, this indicates that developers need

strong, specific guidance about committing AEAD. For

instance, Figure 5 shows that XSalsa20/Poly1305, the de-

fault authenticated encryption scheme in popular cryptogra-

phy library libsodium [58], is one of the most popular

choices for an AEAD scheme. However, it is not com-

mitting, and while versions of the OPAQUE documen-

tation explicitly mention that AES-GCM should not be

used, no warnings about XSalsa20/Poly1305 have been

given. Developers seem unclear about its security proper-

ties: one implementation has source code comments stating

that a committing scheme is necessary right where it uses

XSalsa20/Poly1305 [67].

To quantify the danger of such confusion about what

AEAD to use, we turn to building partitioning oracles

against implementations that use non-committing AEAD.

Building partitioning oracles. We assume the implemen-

tation runs the OPRF and AKE in parallel, as in Figure 9,

and that an adversary that can somehow trigger client re-

quests (e.g., via appropriate client-side JavaScript [3, 6, 9]),

intercept the requests, and respond to them. Upon intercept-

ing a login request, the attacker acts as the OPAQUE server

to turn the client into a partitioning oracle fpw. It chooses

its own OPRF key k∗s , and then constructs a splitting value

(β,Xs,C
∗,As). It sets β← αk∗s , lets As be arbitrary, and gen-

erates an ephemeral key Xs. Finally it generates a key-multi-

collision ciphertext C∗ for K= {H (pw,H ′(pw)k∗s)) | pw∈

S} for some target set of passwords S . We discuss selecting

passwords for S below. Note that, save β, the splitting value

can be pre-computed.

The adversary sends (β,Xs,C
∗,As) to the client, who will

unblind β to obtain a key rw, hash it to derive an AEAD

key, and then decrypt C∗. If decryption fails, the client will

abort immediately and fpw(β,Xs,C
∗,As) = 0; if it succeeds,

the client will use the key pair from the plaintext to derive

the shared secret k. Then, the client will re-compute A′s and

abort if A′s 6= As. If this abort occurs, fpw(β,Xs,C
∗,As) = 1.

The difference between the two errors must be visible

to the server impersonator to realize the partitioning oracle.

We note that the OPAQUE security model [42] and specifi-

cation allow for distinct error messages (which should be

fine when using committing AEAD, but is dangerous here).

In Figure 5 the last column marks which vulnerable proto-

type implementations emit distinct error messages — three

of five do. If these messages reach the server impersonator,

a partitioning oracle is immediate.

Even without distinct messages, the protocol specifies

aborting if decryption fails, then having a separate abort

later if the As check fails. If implemented with this “early

abort”, side channels like memory accesses, branch predic-

tors, or timing could reveal which of the two errors occurred.

Measuring the timing channel. To determine whether

the potential timing side channel is exploitable, we per-

formed an experiment with libsphinx [62], a more mature

prototype that does not emit distinct error messages but does

abort early on decryption failure. Most of libsphinx’s code

is similar to our diagram in Figure 9, with two changes that

impact timing: (1) it uses a triple-DH handshake instead of

HMQV, and (2) it uses the memory- and time-hard Argon2

hash on rw to derive the AEAD key. By default, libsphinx

accepts a C∗ only up to length 4 MB due to a memory man-

agement bug — it crashes for larger ciphertexts due to a

statically allocated buffer. 5 Once fixed, it accepts cipher-

texts of up to 2 GB. This would enable splitting ciphertexts

with degree up to k = 1.25×108.

We performed timings for 1000 trials each on a Mac-

Book Pro with a 2.5 GHz Intel Core i7 processor using a

static 1 MB key multi-collision ciphertext. The median and

mean time were both 119 ms for server responses that did

not decrypt properly and 124 ms for server responses that

decrypted properly but failed the As check. The standard

deviation in both cases was 2 ms. A previous version of this

work reports different numbers due to an error we found

in libsphinx we have since fixed, and which has separately

also been fixed in the most recent version of the library.

The times we report here were measured on a noise-free

system, and exploiting the attack in practice may be harder.

Ultimately, our results suggest that remote timing attacks

could be feasible, though they may require multiple sam-

ples per partitioning oracle query to reduce noise, which

would reduce attack efficiency.

5More recent versions of libsphinx check for length to prevent the

issue with crashing. The library has also changed to reflect the updated

OPAQUE internet draft.

13

0 20 40 60 80 100

0

20

40

60

Number of queries

S
u

cc
es

s
ra

te

k = 1 k = 2 k = 210

k = 212 k = 214 k = 216

k = 218

k BW q

1 1.0 60,255

2 1.4 30,085

210 0.9 69

212 1.0 27

214 1.5 18

216 4.0 18

218 12.0 19

Figure 6: (Left) Success rate achieved for different numbers q of

partitioning oracle queries. (Right) The maximum total bandwidth

(BW) in megabytes and number of queries required to guarantee

a 20% success rate.

An adaptive partitioning oracle attack. Given the abil-

ity to construct a partitioning oracle, the question becomes

how to build an attack that extracts the target password pw

from the client in as few oracle queries as possible. As

for the Shadowsocks attack, consider an attacker that starts

with knowledge of a password dictionary D and an estimate

p̂ of the password probabilities. Assume k is the maximum

multi-collision feasible from our attack, given an implemen-

tation’s constraint on ciphertext size (e.g., 1.25× 108 for

bug-free libsphinx).

The algorithmic challenge is to develop a search strategy

that minimizes the expected number of queries to recover

the password. Given input D , q, and k the attacker proceeds

as follows. First it finds a subset P ⊂ D that maximally

balances the aggregate probability mass of the partition. In

other words it solves the following optimization problem:

argmin
P⊂D , |P|≤k

∣

∣

∣

∣

∣

(

∑
pw∈P

p̂(pw))

)

−

(

∑
pw∈D\P

p̂(pw)

)∣

∣

∣

∣

∣

.

This is exactly the optimization version of the partitioning

problem, which is known to be NP-hard but relatively easy

to solve (q.v., [49]). Pragmatically for the k, q, and p̂ we

found that the following simple heuristic works well. First

check if the top k passwords by probability have aggregate

mass less than 50%. If so, set P to those top k passwords.

Otherwise, perform the classic greedy heuristic that starts

with two empty sets P,P′. Then in order of decreasing

probability, add each password to whichever of the two sets

has smaller aggregate mass, initially starting with P and

stopping when |P|= k.

The attacker can then use the partitioning oracle with P

as described above to learn if pw ∈ P. If so it recurses by

setting D = P and otherwise D = D \P.

Attack performance. We run simulations using the

datasets described in Section 4 to evaluate the efficacy of

the attack and to compare with brute force. We compute

up to q = 100 the set of passwords that will be successfully

recovered by the attack for k ∈ {1,2,210,212,214,216,218}.
We then calculate their aggregate probability according to

their distribution in Ptest , yielding the success rate (the per-

centage of times the attack will succeed). Again note that

the maximum success rate is 70% for these simulations.

Figure 6 summarizes the simulation results. The graph

(left) shows that in a brute-force search (k = 1), only 3%

of passwords can be found with 100 queries. The partition-

ing oracle attack does significantly better. The curves for

k > 2 exhibit an initial exponential growth in success rate,

which then tapers off to a logarithmic growth. This shift

occurs at around log2(k) for each value of k because: (1)

the first set P almost always contains the most probable k

passwords, and (2) the attack needs around log2(k) queries

to recover passwords from this set. Growth afterwards ta-

pers off because the popularity of passwords found with

further queries decreases.

What this means is that for, e.g., k = 210 which corre-

sponds to a ciphertext length of 16.4 kB, an attacker can

achieve 20% success with just 100 queries. For k = 218, the

attack obtains 20% with only 19 queries and 57% with only

100 queries.

The right table in Figure 6 shows the total bandwidth

and number of queries used by each attack to guarantee a

20% success rate. Despite the linear dependence of k on

ciphertext length, partitioning oracles can use about the

same bandwidth (k = 212) compared to brute-force search,

while decreasing the query cost by 2,228×.

Attack viability with TLS integration. We must imper-

sonate the server to build a partitioning oracle, which is

complicated when OPAQUE is integrated with TLS as dis-

cussed by the paper [42] and a later internet-draft [90]. One

suggested integration approach is to run OPAQUE login

within an outer TLS session. The server is authenticated to

the client (via TLS’s cert auth) before the client begins the

OPAQUE login protocol, preventing server impersonation.

If the PKI is compromised or circumvented the attack can

still work. Another suggested integration approach [90] is

different, and uses the server’s OPAQUE private key for its

TLS signature. The server public key is sent to the client

as part of the plaintext underlying C. (The document notes

“there is no need to send a regular TLS certificate”.) Because

the client must decrypt C before it can check the signature,

our attack should work against this integration approach.

6 Countermeasures

The partitioning oracle attacks against Shadowsocks and

non-compliant OPAQUE implementations represent just

two examples of a broader problem. We discuss more vul-

nerable or possibly vulnerable cryptographic tools and pro-

tocols in Appendix A, including the age file encryption

tool [93], the draft HPKE RFC [8], IKEv1 with passwords

as pre-shared secrets [36], password-based encryption in

the Java Web Encryption standard [45], and proposed Ker-

beros extensions [39, 40]. We responsibly disclosed our

results to relevant parties, and in several cases worked with

developers to explore remediations. Here we discuss these

efforts as well as longer-term fixes.

14

Immediate mitigations. In many cases partitioning or-

acle vulnerabilities can be mitigated by: (1) length limi-

tations on ciphertexts and/or (2) entropy requirements on

shared secrets. For example, in response to our disclosure,

the developer of the age tool enforced ciphertext length

limits to ensure that splitting ciphertexts generated by our

attack can have degree at most k = 2 [2]. This limits a

partitioning oracle attack to a factor-2 speedup over brute

force. The HPKE draft RFC [8], after we disclosed to the

authors, was updated to require use of high-entropy secrets,

effectively barring human-chosen passwords. This makes

the attack infeasible.

When we disclosed our attack to several prominent mem-

bers of the Shadowsocks community and Outline’s tech

lead, the Shadowsocks developers took immediate action

to disable UDP proxying where enabled by default. We

discussed possible mitigations at length; because all require

non-backwards-compatible changes, the developers chose

not to deploy them.

The most recent OPAQUE draft standard specifies an

ad hoc committing AEAD scheme, obviating the concern

that future (compliant) implementations will choose a non-

committing AEAD scheme. With the current parameter

recommendations, the OPAQUE protocol only needs a six-

block AE ciphertext; thus, implementations could also limit

the ciphertext size as a defense-in-depth measure.

Modifying schemes to be committing. The mitigations

above are application-specific, and in some cases they do

not completely prevent partitioning oracle attacks. This

leaves open the question of how to fix the root cause of

vulnerability, the use of non-committing encryption.

One approach would be to attempt to retrofit existing

popular AEAD schemes to render them committing. A

transform suggested by NIST [92] and an early OPAQUE

draft appends an all-zeros block to a message before en-

crypting with AES-GCM, and, during decryption, checks

that resulting plaintext includes the zeros block. This tech-

nique can be formally shown to be committing when

used with AES-GCM as well as XSalsa20/Poly1305 and

ChaCha20/Poly1305. However, security relies on imple-

mentations avoiding timing side-channels that allow distin-

guishing between decryption failure (the authentication tag

is wrong) and a zeros-check failure.

Avoiding such timing channels will be difficult given

current cryptographic library interfaces. The natural imple-

mentation approach is to call a decryption API and only

perform the zeros check should that API call succeed. But

this may give rise to an observable timing difference, re-

enabling the attack: a splitting ciphertext Ĉ would pass

the decryption API and trigger a (failed) zeros check if

fpw(Ĉ) = 1 while the zero check would be skipped should

fpw(Ĉ) = 0. We performed an experiment to test such a

side-channel in the context of a modified OPAQUE imple-

mentation. The experiment was ultimately inconclusive due

to noise. We give more detail in Appendix F.

Side channels can be avoided if the zeros check hap-

pens in decryption before checking the authentication tag.

Current APIs for AES-GCM and other schemes cannot par-

tially decrypt a ciphertext (in other contexts this would be

dangerous), so libraries will need to be rewritten.

Moving to committing AEAD. Unfortunately no cur-

rent standards specify a committing AEAD scheme,

such as single-key6 Encrypt-then-HMAC [30]. We there-

fore suggest standardizing suitable committing AEAD

schemes, including zeros-check variants of AES-GCM and

XSalsa20/Poly1305. For general purpose AEAD where the

danger of partitioning oracles or other non-committing vul-

nerabilities (e.g., [22]) cannot be a priori ruled out, we

believe committing AEAD should be the default. In partic-

ular, this means that all password-based encryption should

use committing AEAD.

7 Related Work

A few prior attacks on PAKE protocols are relevant to

our work. The first are partition attacks, which were in-

troduced by Bellovin and Merritt in their seminal work on

PAKEs [11]. While these attacks also involve partitioning

password dictionaries, they most closely resemble dictio-

nary attacks in that they rely on intercepting honest traffic to

do this partitioning. In contrast, our attacks rely on crafting

malicious ciphertexts to query to an oracle, hence the name

partitioning oracle attacks. We describe partition attacks

and compare them to partitioning oracle attacks in more

detail in Appendix D.

The second is the Patel attack [72], mentioned

in Section 2, on the Diffie-Hellman Encrypted Key Ex-

change (DH-EKE) scheme proposed by Bellovin and Mer-

ritt in [11]. Patel proposes an ad hoc variant of DH-EKE

which enables an attack where an adversary can eliminate

half of the password dictionary in expectation with one im-

personation. We describe this in more depth and relate it to

the general partitioning oracle framework in Appendix D.

Another is the two-for-one attack [99] on an early ver-

sion of SRP, mentioned in Section 2. The attack allowed an

adversary to check two passwords with one server imper-

sonation. This can be viewed as a partitioning oracle attack,

and falls into the more general framework we introduce.

We describe this in more depth in Appendix D.

Mackenzie [61] gave a PAKE relaxation where a

bounded number of guesses can be checked in each imper-

sonation and proved a SPEKE variant [41] allows testing

only two passwords per impersonation. This can be viewed

as a formal approach for allowing (limited) partitioning

oracle attacks.

A PAKE protocol by Gentry, MacKenzie, and

Ramzan [28] introduced the use of password-based

encryption to protect protocol secrets in asymmetric

PAKEs. Unlike OPAQUE, which begins with an OPRF,

their protocol begins with a symmetric PAKE. The security

of the symmetric PAKE rules out our attack.

6Using a single key is important: a draft standard [63] for AES-

CBC-then-HMAC uses distinct AES and HMAC keys, making it non-

committing [30].

15

Dragonblood [94], an attack on the Dragonfly PAKE

used in WPA3 [35], also relates to our work. Their attack

uses side channels to recover passwords against a WPA3

server, due to a non-constant-time hash-to-curve algorithm

that is applied to passwords. They take (remote) measure-

ments and then use that to refine an offline brute force attack

against the password, and do not use adaptive attacks with

specially crafted protocol messages to elicit certain behav-

iors. One could potentially turn the Dragonfly side-channel

into a partitioning oracle, which we leave to future work.

Our attacks fall into a broader class of decryption er-

ror oracle attacks, which also includes padding oracle at-

tacks [3, 4, 16, 80, 95] and format oracle attacks [5, 27]. All

of these types of attacks involve adaptive CCAs that enable

speeding up recovery of some secret data. Partitioning ora-

cle attacks, however, recover information about decryption

keys, rather than plaintexts.

Also related to our work are a series of password-

recovery attacks against APOP, an authentication proto-

col for email, that showed that with server impersonation

MD5 collisions can be used to recover a user’s APOP pass-

word [56, 81]. Their techniques are specific to MD5.

Finally, our multi-collision attacks against AES-GCM

can be seen as a generalization of the two-key multi-

collision used in the invisible salamander attack [22] against

Facebook’s message franking protocol (q.v., [30]). Our re-

sults extend this to show how to collide more than two keys,

and identify new places where non-committing encryption

leads to subtle vulnerabilities.

8 Conclusion

We introduced partitioning oracle attacks, which exploit a

new type of decryption error oracle to learn information

about secret keys. We showed how to build AES-GCM ci-

phertexts that decrypt under a large number of keys, what

we call a key multi-collision attack. We gave more limited

attacks against XSalsa20/Poly1305, ChaCha20/Poly1305,

and AES-GCM-SIV. In case studies of Shadowsocks and

early, non-compliant implementations of the OPAQUE pro-

tocol, we demonstrate partitioning oracle attacks that can

efficiently recover passwords. We responsibly disclosed the

vulnerabilities, and helped practitioners with mitigations.

The non-committing AEAD schemes exploited by our

attacks are in wide use, and more tools and protocols are

likely to have vulnerabilities. Looking ahead, our results

suggest that future work should design, standardize, and

add to libraries schemes designed to be committing. A

starting point would be to improve the performance of, and

work towards standardizing, existing committing AEAD

designs [22, 30].

Acknowledgements

The authors thank Hugo Krawczyk for helping us design an

early version of the partitioning oracle attack in Section 5

and giving extensive feedback on early drafts of the paper.

We also thank Mihir Bellare, Scott Fluhrer, David McGrew,

Kenny Paterson, Chris Wood, and Steven Bellovin for help-

ful feedback on early drafts. We thank Samuel Neves for

pointing us to FFT-based polynomial interpolation algo-

rithms, and giving us a proof-of-concept implementation.

Lastly, we thank the anonymous reviewers of USENIX Se-

curity for their constructive feedback. This material is based

upon work supported by NSF grant CNS-1704296 and the

National Science Foundation Graduate Research Fellow-

ship under Grant No. NSF DGE-1650441.

References

[1] Michel Abdalla, Mihir Bellare, and Gregory Neven.

Robust encryption. In TCC, 2010.

[2] age: mitigate multi-key attacks on

ChaCha20Poly1305. https://

github.com/FiloSottile/age/commit/

2194f6962c8bb3bca8a55f313d5b9302596b593b,

2020.

[3] Nadhem J Al Fardan and Kenneth G Paterson. Lucky

thirteen: Breaking the TLS and DTLS record proto-

cols. In IEEE S&P, 2013.

[4] Martin R Albrecht and Kenneth G Paterson. Lucky

microseconds: a timing attack on Amazon’s s2n im-

plementation of TLS. In EUROCRYPT, 2016.

[5] Martin R Albrecht, Kenneth G Paterson, and Gaven J

Watson. Plaintext recovery attacks against SSH. In

IEEE S&P, 2009.

[6] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G.

Paterson, Bertram Poettering, and Jacob C. N. Schuldt.

On the security of RC4 in TLS. In USENIX Security,

2013.

[7] Guillaume Amringer. Chacha derived AEAD al-

gorithms in JSON Object Signing and Encryption

(JOSE), 2020. https://tools.ietf.org/html/

draft-amringer-jose-chacha-02.

[8] R.L. Barnes, K. Bhargavan, and C. Wood. Hybrid

public key encryption, 2020. https://tools.ietf.

org/html/draft-irtf-cfrg-hpke-04.

[9] Here come the ⊕ ninjas. https://tlseminar.

github.io/docs/beast.pdf, 2011. ekoparty.

[10] Gabrielle Beck, Maximilian Zinkus, and Matthew

Green. Automating the development of chosen ci-

phertext attacks. In USENIX Security, 2020.

[11] Steven M. Bellovin and Michael Merritt. En-

crypted key exchange: password-based protocols se-

cure against dictionary attacks. In IEEE S&P, 1992.

[12] Daniel J. Bernstein. The Poly1305-AES Message-

Authentication Code. In IACR FSE, 2005.

16

[13] Daniel J Bernstein. ChaCha, a variant of Salsa20.

In Workshop Record of SASC, volume 8, pages 3–5,

2008.

[14] Daniel J. Bernstein. The Salsa20 Family of Stream Ci-

phers. In New Stream Cipher Designs - The eSTREAM

Finalists. 2008.

[15] Daniel J Bernstein, Tanja Lange, and Peter Schwabe.

The security impact of a new cryptographic library. In

LATINCRYPT, 2012.

[16] Daniel Bleichenbacher. Chosen ciphertext attacks

against protocols based on the RSA encryption stan-

dard PKCS# 1. In CRYPTO, 1998.

[17] A. Borodin and R. Moenck. Fast modular transforms.

Journal of Computer and System Sciences, 1974.

[18] Wieb Bosma, John Cannon, and Catherine Playoust.

The Magma algebra system. I. The user language. J.

Symbolic Comput., 1997.

[19] Colin Boyd, Paul Montague, and Khanh Quoc Nguyen.

Elliptic curve based password authenticated key ex-

change protocols. In ACISP, 2001.

[20] Tatiana Bradley, Jan Camenisch, Stanislaw Jarecki,

Anja Lehmann, Gregory Neven, and Jiayu Xu.

Password-authenticated public-key encryption. In

ACNS, 2019.

[21] Julio Casal. 1.4 Billion Clear Text Credentials Dis-

covered in a Single Database. 2017.

[22] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and

Joanne Woodage. Fast message franking: From invis-

ible salamanders to encryptment. In CRYPTO, 2018.

[23] Pooya Farshim, Benoît Libert, Kenneth G Paterson,

and Elizabeth A Quaglia. Robust encryption, revisited.

In PKC, 2013.

[24] Pooya Farshim, Claudio Orlandi, and Răzvan Roşie.

Security of symmetric primitives under incorrect us-

age of keys. In IACR FSE, 2017.

[25] Dennis Felsch, Martin Grothe, Jörg Schwenk, Adam

Czubak, and Marcin Szymanek. The dangers of key

reuse: practical attacks on IPsec IKE. In USENIX

Security, 2018.

[26] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and

Omer Reingold. Keyword search and oblivious pseu-

dorandom functions. In TCC, 2005.

[27] Christina Garman, Matthew Green, Gabriel Kaptchuk,

Ian Miers, and Michael Rushanan. Dancing on the lip

of the volcano: Chosen ciphertext attacks on Apple

iMessage. In USENIX Security, 2016.

[28] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan.

A method for making password-based key exchange

resilient to server compromise. In CRYPTO, 2006.

[29] go-shadowsocks2. https://github.com/

shadowsocks/go-shadowsocks2, 2020.

[30] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Mes-

sage franking via committing authenticated encryp-

tion. In CRYPTO, 2017.

[31] Shay Gueron, Adam Langley, and Yehuda Lindell.

AES-GCM-SIV: specification and analysis. IACR

eprint, 2017, 2017.

[32] Shay Gueron, Adam Langley, and Yehuda Lindell.

AES-GCM-SIV: Nonce Misuse-Resistant Authenti-

cated Encryption. RFC, 8452, 2019.

[33] Shay Gueron and Yehuda Lindell. GCM-SIV: full

nonce misuse-resistant authenticated encryption at un-

der one cycle per byte. In ACM CCS, 2015.

[34] opaque. https://github.

com/gustin/opaque/tree/

8be97af05742569462c4ec40b1cc787c09b62ddb,

2019.

[35] Dan Harkins. Dragonfly key exchange (RFC 7664),

2015. https://tools.ietf.org/html/rfc7664.

[36] Dan Harkins, Dave Carrel, et al. The internet key ex-

change (IKE). Technical report, RFC 2409, november,

1998.

[37] S Hartman and L Zhu. A generalized framework for

Kerberos pre-authentication. In RFC 6113, 2011.

[38] Heimdal. https://github.com/heimdal/

heimdal, 2020.

[39] L. Howard. AEAD encryption types for

Kerberos 5. https://tools.ietf.org/html/

draft-howard-gssapi-aead-00, 2015.

[40] L. Howard. AEAD modes for Kerberos

GSS-API. https://tools.ietf.org/html/

draft-howard-gssapi-aead-00, 2015.

[41] David P. Jablon. Strong password-only authenticated

key exchange. Computer Communications Review,

1996.

[42] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu.

OPAQUE: an asymmetric PAKE protocol secure

against pre-computation attacks. In EUROCRYPT,

2018.

[43] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivi-

ous pseudorandom function with applications to adap-

tive OT and secure computation of set intersection. In

TCC, 2009.

[44] Barry Jaspan. Dual-workfactor encrypted key ex-

change: Efficiently preventing password chaining and

dictionary attacks. In USENIX Security, 1996.

17

[45] Michael Jones and Joe Hildebrand. JSON web encryp-

tion (JWE). Internet Requests for Comments, RFC,

7516, 2015.

[46] Antoine Joux. Multicollisions in iterated hash func-

tions. application to cascaded constructions. In

CRYPTO, 2004.

[47] Burt Kaliski. PKCS5: Password-based cryptogra-

phy specification version 2.0. Technical report, IETF,

2000.

[48] Charlie Kaufman, Paul Hoffman, Yoav Nir, Pasi Ero-

nen, and Tero Kivinen. Internet key exchange proto-

col version 2 (IKEv2). Technical report, RFC 5996,

September, 2010.

[49] Richard E. Korf. A Complete Anytime Algorithm for

Number Partitioning. Artif. Intell., 106(2):181–203,

1998.

[50] Hugo Krawczyk. HMQV: A high-performance secure

diffie-hellman protocol. In CRYPTO, 2005.

[51] Hugo Krawczyk. Cryptographic extraction and key

derivation: The HKDF scheme. In CRYPTO, 2010.

[52] Hugo Krawczyk. The OPAQUE asymmetric PAKE

protocol. Technical report, Internet-Draft draft-

krawczyk-cfrg-opaque-03. Internet Engineering Task

Force, 2019.

[53] Hugo Krawczyk. The OPAQUE asymmetric PAKE

protocol. Technical report, Internet-Draft draft-

krawczyk-cfrg-opaque-05. Internet Engineering Task

Force, 2019.

[54] Fredrik Kuivinen. opaque. https:

//github.com/frekui/opaque/tree/

e3899aad3efe6200ea8e65d4c486c25ca2bc0b93,

2018.

[55] Marcus Leech, Matt Ganis, Y Lee, Ron Kuris, David

Koblas, and L Jones. RFC1928: SOCKS protocol

version 5, 1996.

[56] Gaëtan Leurent. Message freedom in MD4 and MD5

collisions: Application to APOP. In FSE, 2007.

[57] Kevin Lewi and François Garil-

lot. opaque-ke. https://github.

com/novifinancial/opaque-ke/tree/

ab1b1d620939a93579b75e07809bd23fdc405d99,

2020.

[58] Libsodium. https://github.com/jedisct1/

libsodium, 2020.

[59] opaque-rs. https://github.com/

Lldenaurois/opaque-rs/tree/

baf07c220e85416db222edb9038aefc9cea33354,

2020.

[60] George Lyon. Opaque. https://

github.com/GeorgeLyon/Opaque/tree/

5e8712fdce83f5a0b464b3a6cd51144e3d0e3d77,

2019.

[61] Philip MacKenzie. On the security of the SPEKE

password-authenticated key exchange protocol. IACR

eprint, 2001. https://eprint.iacr.org/2001/

057.

[62] Stefan Marsiske. libsphinx. https:

//github.com/stef/libsphinx/tree/

8be21c9814b99662fb386bca851a0b9a1cf75a9e,

2018.

[63] David McGrew and Kenny Paterson. Authenticated

Encryption with AES-CBC and HMAC-SHA. Techni-

cal report, Internet-Draft draft-mcgrew-aead-aes-cbc-

hmac-sha2-05. Internet Engineering Task Force, 2014.

[64] David McGrew and John Viega. The Galois/Counter

mode of operation (GCM). submission to NIST Modes

of Operation Process, 20, 2004.

[65] David A. McGrew and John Viega. The security and

performance of the Galois/Counter Mode (GCM) of

Operation. In INDOCRYPT, 2004.

[66] Payman Mohassel. A closer look at anonymity and

robustness in encryption schemes. In ASIACRYPT,

2010.

[67] M. Ember Mou. Opaque. https:

//github.com/mmou/threshold-OPAQUE/tree/

f04269853ee05b7244551c1629acf0bd68f99fde,

2019.

[68] Yoav Nir and Adam Langley. RFC 8439: ChaCha20

and Poly1305 for IETF protocols. Technical report,

Internet Engineering Task Force, 2018.

[69] opaque. https://github.

com/noisat-labs/opaque/tree/

2948717a0ebb50e1e8467ec0af07241df7abee18,

2019.

[70] Jigsaw Outline Shadowsocks server. https://

getoutline.org/en/home, 2020.

[71] Bijeeta Pal, Tal Daniel, Rahul Chatterjee, and Thomas

Ristenpart. Beyond credential stuffing: Password sim-

ilarity models using neural networks. In IEEE S&P,

2019.

[72] Sarvar Patel. Number theoretic attacks on secure pass-

word schemes. In IEEE S&P, 1997.

[73] Gordon Procter. A security analysis of the composi-

tion of ChaCha20 and Poly1305. IACR ePrint, 2014.

[74] PyCryptodome. https://pypi.org/project/

pycryptodome/.

18

[75] Martin Raab and Angelika Steger. “Balls into

bins”—a simple and tight analysis. In RANDOM,

1998.

[76] Chad Retz. gopaque. https://

github.com/cretz/gopaque/tree/

d151eb14ce6f48cf07178ad3fd658c343aec4ddd,

2019.

[77] Phillip Rogaway. Nonce-based symmetric encryption.

In FSE, 2004.

[78] Phillip Rogaway and Thomas Shrimpton. A provable-

security treatment of the key-wrap problem. In Serge

Vaudenay, editor, EUROCRYPT, 2006.

[79] Phillip Rogaway and Thomas Shrimpton. The SIV

Mode of Operation for Deterministic Authenticated-

Encryption (Key Wrap) and Misuse-Resistant Nonce-

Based Authenticated-Encryption. 2007.

[80] Eyal Ronen, Kenneth G Paterson, and Adi Shamir.

Pseudo constant time implementations of TLS are

only pseudo secure. In CCS, 2018.

[81] Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kuni-

hiro. Security of MD5 challenge and response: Exten-

sion of APOP password recovery attack. In CT-RSA,

2008.

[82] Jim Schaad and Russ Housley. RFC3394: advanced

encryption standard (AES) key wrap algorithm, 2002.

[83] Sophie Schmieg. Invisible salamanders in AES-

GCM-SIV. https://keymaterial.net/2020/09/

07/invisible-salamanders-in-aes-gcm-siv/,

2020.

[84] Shadowsocks server. https://github.com/

shadowsocks/shadowsocks, 2020.

[85] Shadowsocks. https://shadowsocks.org/en/

index.html, 2020.

[86] SIP004: Support for AEADs implemented by large

libraries. https://github.com/shadowsocks/

shadowsocks-org/issues/30, 2017.

[87] [SIP] authentication based multi-user-single-

port. https://github.com/shadowsocks/

shadowsocks-org/issues/130, 2020.

[88] Jigsaw Outline Shadowsocks server. https://

github.com/Jigsaw-Code/outline-ss-server,

2020.

[89] SIP006: Getting rid of key derivation once and

for all. https://github.com/shadowsocks/

shadowsocks-org/issues/35, 2017.

[90] Nick Sullivan, Hugo Krawczyk, Owen Friel, and

Richard Barnes. Usage of OPAQUE with TLS

1.3. Technical report, Internet-Draft draft-sullivan-

tls-opaque-00. Internet Engineering Task Force, 2019.

[91] The Sage Developers. SageMath, the Sage

Mathematics Software System (Version 9.0), 2020.

https://www.sagemath.org.

[92] Meltem Sönmez Turan, Elaine Barker, William Burr,

and Lily Chen. Recommendation for password-based

key derivation part 1: Storage applications. NIST

Special Publication, 800(132), 2010.

[93] Filippo Valsorda and Ben Cartwright-Cox. age.

https://github.com/FiloSottile/age, 2019.

[94] Mathy Vanhoef and Eyal Ronen. Dragonblood: Ana-

lyzing the Dragonfly handshake of WPA3 and EAP-

pwd. In IEEE S&P, 2020.

[95] Serge Vaudenay. Security flaws induced by CBC

padding—applications to SSL, IPSEC, WTLS... In

EUROCRYPT, 2002.

[96] Mark N. Wegman and Larry Carter. New hash func-

tions and their use in authentication and set equality.

Journal of Computer and System Sciences, 1981.

[97] Philipp Winter and Stefan Lindskog. How the Great

Firewall of China is Blocking Tor. In USENIX FOCI,

2012.

[98] Thomas D Wu. The secure remote password protocol.

In NDSS, 1998.

[99] Tim Wu. SRP-6: Improvements and refinements to the

secure remote password protocol. Technical report,

Submission to the IEEE P1363 Working Group, 2002.

19

A More (Possible) Partitioning Oracles

We survey several other protocols that may be vulnerable to

partitioning oracle attacks. Actual exploitability will depend

on implementation and deployment details.

A.1 Password-based and Hybrid Encryp-

tion

Kerberos. Two internet-drafts suggested the inclusion of

AES-GCM and ChaCha20/Poly1305 as available encryp-

tion types in Kerberos [39] and GSS-API [40]. They do

not appear to have been adopted as RFCs, but the Heimdal

library [38] implemented the GSS-API draft. Using these

non-committing AE schemes in Kerberos would enable a

partitioning oracle attack on Kerberos’s encrypted times-

tamp pre-authentication [37], leading to recovery of the

client’s password.

In encrypted timestamp pre-authentication, the Kerberos

client proves knowledge of its password pw by deriving

a key Ks with a server-supplied salt sa, and using Ks to

encrypt the current time. It then sends the ciphertext C to

the server, which derives its version of the key with sa and

the stored pw, then decrypts C and checks the timestamp. If

the server sends different error codes for decryption failure

and timestamp check failure, it is trivial for an attacker

to learn any user’s password pw. To build the oracle, the

attacker crafts a splitting ciphertext V̂ for any S ⊆D of its

choice, sends V̂ to the server, then uses the error code to

learn the value of f (pw,V̂). Without explicit error codes,

response timing could also help differentiate failures.

This is a notable example of how migrating to state-of-

the-art AE schemes would, counter-productively, drastically

reduce security — our attacks don’t seem to work against

the current Kerberos cipher suites.

Age file encryption tool. Age is a file encryption CLI

tool [93] that has a password-based encryption mode. The

mode is a KEM-DEM scheme: it uses a password-derived

key with ChaCha20/Poly1305 to encapsulate a file key, then

computes an HMAC over the KEM (and some metadata)

with a key derived from the file key, and then encrypts the

plaintext using the file key with ChaCha20/Poly1305. The

ciphertext is the KEM and metadata, then the HMAC, then

the DEM.

This scheme could be vulnerable to a partitioning oracle

attack. Observe that there are three ways for decryption to

fail: (1) KEM decryption fails, (2) the HMAC check fails,

or (3) DEM decryption fails. If failures (1) and (2) are dis-

tinguishable, using a multi-colliding ChaCha20/Poly1305

ciphertext as a KEM could let an attacker check multiple

passwords in one decryption. Before we reported this issue,

the age implementation did not limit the KEM ciphertext

length, thereby allowing key multi-collisions for large key

sets. After we reported the issue, the age maintainers limited

the KEM ciphertext length and cited this work.

JavaScript Object Signing and Encryption. JOSE is a

set of standards for encrypting and authenticating autho-

rization data, such as cookies and access control informa-

tion. One part of JOSE, the Java Web Encryption (JWE)

standard [45], specifies two password-based encryption

modes which may be vulnerable to partitioning oracles.

The first mode encrypts using a supported AEAD keyed

with a password-derived key directly, similar to Shadow-

socks. The current JWE standard mandates support for

AES-CBC-then-HMAC-SHA256 and AES-GCM; adding

ChaCha20/Poly1305 has been suggested [7] and is already

supported by some implementations. If decryption success

and failure are distinguishable, our key multi-collision at-

tacks on AES-GCM or ChaCha20/Poly1305 can be used to

build a partitioning oracle.

The second, and seemingly more common, supported

mode for password-based encryption in JWE is to use a

password-derived key Ks for a KEM in a symmetric KEM-

DEM transform. In this transform, one of the supported

AEADs can be the DEM and AES-KW [82] keyed with

Ks is the KEM, though a recent proposal [7] has suggested

using ChaCha20/Poly1305 as both KEM and DEM.

This mode is similar to age’s KEM-DEM scheme de-

scribed above, except without the header HMAC; thus, if

ChaCha20/Poly1305 is used as a KEM in this mode, it is

vulnerable to similar attacks. If the KEM is AES-KW, it is

unclear if multi-collisions are possible; AES-KW’s security

as a committing AE scheme is an open problem.

Hybrid Public-Key Encryption (HPKE). Recently, the

IETF has been evaluating a new standard for hybrid public-

key encryption, HPKE [8]. It uses an ECIES-like KEM

to derive a DEM (AEAD) key, which is used to en-

crypt the message. HPKE only supports AES-GCM and

ChaCha20/Poly1305. It supports a pre-shared secret key

(PSK) sender authentication mode by (roughly speaking)

hashing the PSK together with the KEM output in AEAD

key derivation. The draft permits short PSKs, but says the

scheme is not suitable for use with passwords. If decryption

failures are observable to the sender, a partitioning oracle at-

tack can recover the PSK. To craft a splitting ciphertext for

set S∗, an attacker can run the KEM with the receiver’s key

to get the DH shared secret, then derive the set of AEAD

keys K for each pw ∈ S∗, then finally craft a ciphertext V̂

which decrypts correctly for all keys in K.

Interestingly, the draft anticipates a decryption oracle

being used to learn the PSK. The authors observe that with

“access to an oracle that allows to distinguish between a

good and a wrong PSK, [the sender] can perform a dictio-

nary attack on the PSK”. Though correct, this belies the fact

that because the AEADs are non-committing, an exponen-

tial speedup over a naive dictionary attack is possible using

our attacks. We reported this issue to HPKE’s authors; they

changed the draft to disallow short or low-entropy PSKs

and cited this work.

A.2 Authenticated Key Exchange and PSKs

Many widely-used authenticated key exchange (AKE) pro-

tocols support PSK authentication. Prominent examples in-

clude TLS, the Internet Key Exchange (IKE) used in IPSec,

20

WiFi security protocols like WEP and WPA, WireGuard,

and many more. Support for low-entropy PSKs varies be-

tween protocols, but none disallows them completely. Next

we show that partitioning oracle attacks resulting in PSK

recovery could arise on the legacy IKEv1 protocol. Our

attack does not extend to more modern AKEs used in IPSec

or TLS.

Internet Key Exchange (IKE) v1 PSK. IKEv1 [36] is

the first version of the IPSec protocol suite’s handshake

protocol, and is officially deprecated in favor of version

2 [48], but it is still supported and used for compatibility

with legacy devices.

The IKEv1 handshake has three full rounds between the

client (called the initiator in IKEv1 parlance) and the server

(responder), comprising six messages. After the first two

rounds, the client and server have established the shared DH

value for the session, but have not yet authenticated each

other. Authentication occurs in the fifth and sixth protocol

messages; these are the first to be encrypted. The fifth

message authenticates the client to the server.

In PSK mode, the client derives the encryption and au-

thentication keys Ke,Ka for the fifth message by computing

a PRF, keyed via the PSK, on the shared DH value. Then,

it computes the "authentication payload", which is a hash

of the transcript keyed with Ka, encrypts the payload with

plain CBC and Ka, and sends the resulting ciphertext to

the server. The server re-derives the keys using the shared

DH value and the PSK, decrypts the CBC ciphertext, and

checks the authentication payload. If this check passes, the

server crafts and sends the sixth message to authenticate

itself to the client.

Because the server has to decrypt the client’s message

with a PSK-derived key before authenticating the client,

a partitioning oracle attack is theoretically possible. An

adversary can initiate an IKEv1 handshake and use the fifth

protocol message as a splitting value input to the oracle,

and use the server’s response as the oracle’s output.

One way this could work is by repurposing a CBC

padding oracle vulnerability. Since encryption is done via

CBC, the adversary could craft the splitting value so that

some decryptions have valid padding and others don’t.

Then, the padding check success/failure signal could be

used as the partitioning oracle’s output. If there is no

padding oracle, other parts of the response could be used as

the oracle’s output — for example, if the server’s responses

are different for authentication payload check failure ver-

sus packet parsing failures. We have not surveyed IKEv1

implementations or found examples of vulnerable servers;

as such, this attack is purely theoretical.

Other AKEs. IKEv1’s successor IKEv2 is not vulnerable

because the encryption key for the first encrypted packet

is derived only as a function of the shared DH value and

not the PSK. Thus, in IKEv2 it appears necessary to collide

the transcript hash to build a partitioning oracle. If a PSK

was reused or correlated across both IKEv1 and IKEv2, a

partitioning oracle on IKEv1 would allow the IKEv2 PSK

to be recovered. We do not know of any settings where this

happens, but prior work showed that RSA keys were re-used

across IKEv1 and IKEv2 in many implementations [25].

We also examined the new PSK mode in TLS1.3. As in

IKEv2, a seemingly small design choice prevents partition-

ing oracles. In a TLS1.3 PSK exchange, clients can send

PSK-encrypted data in their first message to the server, but

the first message must also include (in plaintext) a PSK

identifier along with a PSK binder computed as the HMAC

of the identifier with a PSK-derived key. As long as the

binders are verified before decrypting the payload, the PSK

binder commits the client to a single guess for the PSK and

prevents partitioning oracles.

As with IKEv2’s transcript hash, TLS1.3’s PSK binders

seem to act as an implicit (pre-shared) key confirmation.

OPAQUE’s committing AEAD envelope could also be

viewed as an implicit key confirmation — decryption only

succeeds if the key is correct. In contrast, IKEv1 does not

perform key confirmation before decrypting with a PSK-

derived key, which makes an attack theoretically possible.

This raises interesting theoretical questions about the rela-

tionship between key confirmation in AKE and partitioning

oracles. We leave exploring these questions to future work.

B Poly1305-Based Schemes

Here we explain how to craft key multi-collisions

for the widely-used AEADs that are built around the

Poly1305 [12] message authentication scheme. There are at

least four such schemes in common use: Salsa20/Poly1305,

XSalsa20/Poly1305 [14] (used in libsodium [58]),

ChaCha20/Poly1305, and XChaCha20/Poly1305. All four

are similar; for concreteness, we focus on the composition

of ChaCha20 and Poly1305 standardized in RFC 7539 (up-

dated in 8439) [68] and analyzed by Procter [73], but our

attack should work on any of the four.

Background on ChaCha20/Poly1305. Pseudocode for

the scheme is provided in Figure 7, where it is denoted

as CHP. This scheme is, at a high level, very similar to

AES-GCM. It is an EtM composition of a stream cipher

(ChaCha20 [13]) with a polynomial MAC (Poly1305). Im-

portantly, all internal lengths are measured in bytes (AES-

GCM instead uses bits); we will adhere to this convention

and treat all lengths as bytes in this appendix.

Encryption takes in a 12-byte nonce N, a 32-byte

ChaCha20 key K, associated data AD and plaintext M. It

outputs ciphertext C1, . . . ,Cm,T , where m = ⌈|M|/64⌉ and

|T | = 16. The block size of ChaCha20’s block function,

denoted E, is n = 64. The ciphertext blocks C1, . . . ,Cm are

generated using counter mode with E, and the tag T is

computed by applying Poly1305 to AD and C1, . . . ,Cm. De-

cryption re-computes the tag, compares it with T , and, if

successful, outputs the counter-mode decryption of the ci-

phertext blocks.

Poly1305 in detail. Let encodele
x (·) be a function that

takes an integer and outputs an x-byte little-endian en-

coding of its input. For a key K and nonce N, Poly1305

first derives two sixteen-byte values r,s from computing

21

CHP-Enc(K,N,AD,M):

C← ChaCha(K,N,M)

B0← encodele
4 (0)

r̃ ‖ s← trunc32(EK(B0)) ; r← clamp(r̃)

L← encodele
8 (|AD|)‖encodele

8 (|M|)

T ← Poly1305(r,s,Split16(AD)‖Split16(C)‖L)

CHP-Dec(K,N,AD,C ‖T):

B0← encodele
4 (0)

r̃ ‖ s← trunc32(EK(B0)) ; r← clamp(r̃)

L← encodele
8 (|AD|)‖encodele

8 (|M|)

T ′← Poly1305(r,s,Split16(AD)‖Split16(C)‖L)

If T ′ 6= T then Return ⊥

M← ChaCha(K,N,C)

Return M

ChaCha(K,N,M):

m← |M|/64

For i = 1 to m :

Bi← encodele
4 (i)

C←C ‖ (EK(Bi)⊕M[i])

Return C

Poly1305(r,s, ~M):

b← |~M|

h← 0 ; p← (2130−5)

For i = 1 to b :

Xi← ~M[i]‖encodele
1 (1)

h← h+Xi · r
b+1−i mod p

h← h+ s mod 2128

Return h

Multi-Collide-CHP(K,N,T,m):

L← encode64(0)‖encode64(|K|−1)

A[·, ·]←⊥ ; b[·]←⊥

For i = 1 to |K| :

r̃i ‖ si← trunc32(EK[i](0
32 ‖N))

ri← clamp(r0
i)

For j = 1 to m :

A[i, j]← r|m|− j+1

b[i]← ([T − si mod 2128]−L · ri)

x← SolveSystem(A,b)

If !InRange(x) :

For z in kerA : (∗)

If InRange(x+ z) :

x← x+ z; break

If !InRange(x) :

Return ⊥

For i = 1 to |x| :

Ci← trunc16(x[i])

Return N ‖C ‖T

Figure 7: (Left) The ChaCha20-Poly1305 encryption and decryption algorithms. (Middle) ChaCha20 encryption and Poly1305 helper

functions. (Right) The Multi-Collide-CHP algorithm, which takes a set K of keys, nonce N, length m > |K| and tag T and computes

a ciphertext C such that N ‖C ‖ T decrypts correctly under every key in K. The function encodele
x (·) returns an x-byte little-endian

representation of its integer input. The function truncx truncates its input to x bytes. The function Splitx splits its input into a vector of

blocks of at most x bytes. We omit a description of the function clamp — it is inconsequential for our attacks; we include it only for

completeness. All arithmetic is done mod 2130−5 unless otherwise noted. The function InRange takes a vector and returns true if each of

its entries is in the range [2128,2129−1], and false otherwise. The boxed code represents the sieving step which is not performed in our

basic attack; see the text for more explanation. The loop marked (∗) is aborted after thirty seconds in our implementation.

EK(encode
le
4 (0)‖N) and then truncating the resulting out-

put to 32 bytes. It then “clamps” the value r, setting some

of its bits to zero. (The details of this are not important for

our purposes.) Then, it breaks the AD and ciphertext into a

sequence of blocks AD1, . . . ,ADa∗ ,C1, . . . ,Cm∗ ,L of at most

sixteen bytes, where m∗ = ⌈|M|/16⌉ and a∗ = ⌈|AD|/16⌉
and L = encodele

8 (a)‖ encode
le
8 (m) is the concatenation of

encodings of the AD and ciphertext lengths, respectively.

To compute the polynomial, Poly1305 must encode each

of the ℓ= a∗+m∗+1 blocks as an integer modulo the titular

2130−5. It does this by appending 0x01 to each block, right-

padding with zeros up to sixteen bytes if necessary, then

interpreting the resulting block as a little-endian integer Xi.

It then hashes by computing the polynomial

h =
ℓ

∑
i=1

Xi · r
ℓ−i+1 mod (2130−5) . (4)

Lastly, h is added with s modulo 2128 to produce the final

128-bit tag.

Challenges in finding multi-collisions. Poly1305 is

quite similar to GHASH; however, a few subtle differences

between the two make Poly1305 multi-collisions much

more difficult. Most important is the way Poly1305 ap-

pends 0x01 to each block before hashing it. Unlike with

GHASH, this means that not every element of F2130−5 can

be a polynomial coefficient —in fact, only a little more than

a quarter of the field elements can be (namely, those in the

range [2128,2129−1]). This complicates solving for a multi-

collision using a straightforward linear system of equations

over the field—we must either express this constraint in the

system of equations (difficult, as it is not a linear function)

or ignore it and hope the solution is in the correct range.

Another subtlety is the final reduction mod 2128, which

breaks the algebraic structure of the field of integers mod

p = 2130−5. This makes it more challenging to express the

multi-collision problem as simple linear algebra, as in our

other MKCR attacks. It could, however, benefit collision

finding: before the final reduction, any of the three or four

values of h which are congruent mod 2128 lead to the same

tag. Intuitively, this increases the number of multi-colliding

ciphertexts for a given key set and nonce; however, we

do not know how to express this in the linear-algebraic

framework of our attacks. We will ignore this additional

flexibility below, and force all equations to hold mod p.

The two-key case. As a warm-up, we will walk through

a simplified algorithm for two keys. The algorithm

2-Collide-CHP takes as input two keys K1,K2 and a nonce

N and outputs a sixteen-byte ciphertext block C and tag T .

The (N,C,T) triple decrypts to non-⊥ under both keys with

probability about one-quarter.

First write the equation representing the Poly1305 tag of

a sixteen-byte ciphertext C. Defining L,r,s as in Figure 7,

and X0←C ‖ encodele
1 (1) and Xℓ← L‖ encodele

1 (1) it is
((

(X0 · r
2 +Xℓ · r) mod p

)

+ s
)

mod 2128 .

If we want to choose C so that this equation is satisfied for

two keys, we must solve

(

(X0 · r
2
1 +Xℓ · r1) mod p

)

+ s1

≡
(

(X0 · r
2
2 +Xℓ · r2) mod p

)

+ s2 (mod 2128) .

22

We can rewrite to obtain

(

X0 · (r
2
1− r2

2)+Xℓ · (r1− r2)
)

mod p≡ s2− s1 (mod 2128)

and since 2128 < 2130−5, solving for X0 mod 2130−5 im-

plies this equation is satisfied as well, as long as the right-

hand side s2− s1 is computed mod 2128. Let rhs= s2− s1

mod 2128. Thus, we can solve for X0 as

X0 ≡ [rhs−Xℓ · (r1− r2)] · (r
2
1− r2

2)
−1 (mod p) .

At this point X0 is an integer mod 2130− 5. Letting C =
X0 mod 2128 gives a suitable sixteen-byte ciphertext block.

Finally, we can compute T ← Poly1305(r1,s1,C ‖L) and

then output C and T .

As mentioned above, 2-Collide-CHP only works for

about one-quarter of possible (K1,K2,N) inputs, if the

ChaCha20 block function acts like an ideal random function

and we ignore bias in the hash key. This is because trun-

cating X0 mod 2128 only preserves the collision if 2128 ≤
X0 ≤ 2129−1. Otherwise, during CHP-Dec, when the tag is

recomputed, the value X0 will not be a solution to the equa-

tion above: instead, it will be different by some multiple of

2128, and the tags will no longer collide.

The general case. Next, we describe the algorithm

Multi-Collide-CHP, with pseudocode given in Figure 7,

for constructing collisions under more than two keys. It

works in two steps: first, it derives the key material used by

Poly1305 and constructs a system of linear equations. This

step is straightforward, and we will describe it first below.

Then, it solves the equation to find the ciphertext blocks.

As we shall see, this step is substantially more compli-

cated than in our other MKCR attacks: the ciphertext trun-

cation/padding problem described above is compounded

with more than two keys, necessitating new techniques. We

will first describe an approach to this step with a low suc-

cess probability (corresponding to the Multi-Collide-CHP

pseudocode without the code in the box), then explain how

to increase the success probability efficiently.

Constructing the linear system. Let the keyset K and

nonce N be as in Figure 7, and k← |K|. Let ri,si be as

computed in CHP-Dec for input key Ki and nonce N. Let

C be a ciphertext with m ≥ k blocks. Then if C decrypts

correctly under all Ki ∈ K with tag T it must satisfy the

following equation for each key, where Xi and Xℓ are as

defined above:

[(

m−1

∑
i=0

Xi · r
m−i+1
i +Xℓ · ri

)

mod p

]

+si≡T (mod 2128)

Taking each of these equations as a row of a matrix/vector

equation with ciphertext blocks as unknowns, and defining

Bi = ([T −si mod 2128]−Xℓ ·ri) mod p, we get this system

of k equations in m unknowns, denoted as the matrix A and

vector b in the pseudocode:















rm+1
1 rm

1 · · · r2
1

rm+1
2 rm

2 · · · r2
2

...
...

. . .
...

rm+1
k rm

k · · · r2
k















·















X0

X1

...

Xm−1















=















B1

B2

...

Bk















.

Finding the ciphertext blocks. This linear system is sim-

ilar to the one we obtained for GCM in Section 3.1 above.

We can solve it using polynomial interpolation or Gaussian

elimination; this is what Multi-Collide-CHP does without

the boxed code. This will fail to give a valid multi-collision

if any of the field elements in the solution vector of the

linear system are outside the range [2128,2129−1]. We can

compute the failure probability analytically: if we model the

vector x output from SolveSystem as random in F
m
2130−5

and

disregard the effect of the final truncation modulo 2128, the

probability InRange(x) is true is only ≈ 1/4m. If this fails,

we can run Multi-Collide-CHP again with a new nonce,

which gives us another 1/4m probability of success, but at

the cost of O(m2) field operations: each new nonce requires

computing new values of A and b and solving a new system

of equations.

We can do better than this using a simple sieving heuristic

that seems to work with reasonable probability when k is

small. (The heuristic corresponds to the boxed code in the

Multi-Collide-CHP description in Figure 7.) To use the

heuristic, it must be the case that m > k. This in particular

means the matrix A has more variables than constraints, and

therefore also has a nontrivial kernel. (It is of dimension

m− k with high probability.)

The heuristic works as follows. First, we take the solu-

tion x ∈ F
m
2130−5

output by SolveSystem(A,b) and check if

it obeys the constraint for every block. If it does not, we

compute a basis for the kernel of A and do a limited brute-

force search: for each z ∈ kerA, add it to x and check if the

resulting vector obeys the constraint. If it does, output it

as the ciphertext. This works because Az =~0, so x+ z is

a different solution to our system. After some time bound

is exceeded (we used 30 seconds in our implementation)

abort the brute-force search and output ⊥.

Under the assumption that each vector in the kernel is

individually uniformly random and we can sieve through

n vectors per second, the overall success probability of our

heuristic is ≈ (30n+ 1)/4m. This is still relatively poor

for large m, but saves a factor of m over the naive method:

each new solution checked only costs O(m) field operations,

whereas generating a new solution by starting over with a

new nonce costs O(m2) field operations.

Implementation and analysis. We implemented

Multi-Collide-CHP using Sage 9.0 [91] and Python 3.7.7,

and successfully constructed colliding ciphertexts for

k = 10. Our implementation tried 100 nonces with the

same K (and T as the all-zeros string for simplicity) and

Multi-Collide-CHP succeeded for five of them. We tried

fifteen and twenty keys with one hundred nonces each, but

did not succeed.

23

2Key-GCM-SIV-Enc(K1,K2,N,AD,M):

lens← encode64(|AD|)‖encode64(|M|)

R← GHASH(K1,AD‖M ‖ lens)

T ← EK2
(0‖ (N⊕R)[: 126])

m← |M|/128

For i = 0 to m−1 :

Bi← 1‖T [32 : 126]‖encode32(i)

C←C ‖EK2
(Bi)⊕Mi

Return C ‖T

2Key-GCM-SIV-Dec(K1,K2,N,AD,C ‖T):

m← |C|/128

For i = 0 to m−1 :

Bi← 1‖T [32 : 126]‖encode32(i)

M←M ‖EK2
(Bi)⊕Ci

lens← encode64(|AD|)‖encode64(|M|)

R← GHASH(K1,AD‖M ‖ lens)

T ′← EK2
(0‖ (N⊕R)[: 126])

If T 6= T ′ then return ⊥

Return M

Multi-Collide-2Key-GCM-SIV(K,N,T):

lens← encode64(0)‖encode64(|K| ·128)

pairs[·]←⊥ ; C← ε

For i = 1 to |K| :

K1,K2←K[i]

X ← E−1
K2

(T)

y← (lens ·K1)⊕X⊕N

For j = 0 to |K|−1 :

Si← EK2
(1‖T [32 : 126]‖encode32(i))

y← y⊕ (Si ·K
|K|+1− j

1)

pairs[i]← (K1,y ·K
−2
1)

f ← Interpolate(pairs) ; x← Coeffs(f)

For i = 1 to |x| :

C←C ‖x[i]

Return N ‖C ‖T

Figure 8: The Two-Key GCM-SIV mode of operation from [33], with k = 32 (left and middle), and our MKCR attack,

Multi-Collide-2Key-GCM-SIV against the scheme (right). Here we assume E has a 128-bit block size. The Multi-Collide-2Key-GCM-SIV

algorithm takes a set K of keys, a nonce N, and a message tag T and computes a nonce-ciphertext-tag triple N‖C‖T ; in expectation

N‖C‖T will decrypt correctly under half the keys in K. The function encode64(·) returns a 64-bit representation of its integer input. We

denote · as multiplication and ⊕ as addition in GF(2128).

Our results here are, admittedly, much more modest than

those for GCM or GCM-SIV, and the failure rate appears

high even with our heuristic. This is probably due to the

limitations of our algorithmic techniques — while multi-

colliding ciphertexts are likely to exist, new algorithmic

ideas are needed to find them reliably.

We can argue this more quantitatively: with a few rea-

sonable assumptions, we can show that for any k, a multi-

colliding ciphertext exists (in expectation) as long as m >
(129/127) · k. First, observe that kerA is isomorphic to

F
m−k

2130−5
, and therefore |kerA| > 2129(m−k). If we again as-

sume that for each z ∈ kerA, x+ z is uniform in F
m
2130−5

,

the expected number of solutions to our system in the right

range is |kerA|/4m > 2129(m−k)/4m, which is greater than

one whenever m > (129/127)k. (This argument ignores the

final truncation mod 2128; as explained above, this trun-

cation further increases the number of multi-colliding ci-

phertexts.) Thus, our attack’s scaling difficulties should not

be taken as evidence that ChaCha20/Poly1305 inherently

resists multi-collision attacks.

C Key Multi-Collisions for AES-GCM-SIV

GCM-SIV [33] and the closely-related AES-GCM-SIV [31,

32] are two instantiations of the SIV construction [79] using

AES-GCM. They are misuse-resistant AEAD schemes [78]

that provide security in the case of accidental nonce reuse.

By necessity, they are two-pass schemes that must crypto-

graphically process the entire message before outputting

any block of ciphertext.

Their security as committing AEAD is an open prob-

lem we resolve in the negative,7 by presenting efficient

MKCR attacks on both. For the sake of brevity we focus

on the “Two-Key GCM-SIV” scheme from the original

paper. The attack also works on the one-key variant from

7While this paper was in submission, a two-key collision attack on

GCM-SIV was demonstrated by Schmieg [83].

that paper, with only one minor change — in line four of

Multi-Collide-2Key-GCM-SIV in Figure 8, K1,K2 are de-

rived as encryptions of zero and one instead of specified

directly. The three-key variant requires only minor changes

as well.

Description of 2Key-GCM-SIV. Here we give a brief de-

scription of the scheme, accompanied by pseudocode in

Figure 8. GCM-SIV uses a block cipher E with 128-bit in-

puts and outputs in counter mode, and the GHASH universal

hash function used by GCM. Our pseudocode assumes that

the plaintext and associated data are block-aligned; when

this is not the case the associated data and plaintext can

simply be padded by zeros.

Encryption takes as input two keys K1,K2 and nonce N.

The message tag T is computed on plaintext blocks, instead

of ciphertext blocks as in GCM. Furthermore, GHASH is

keyed with K1 and the first 96 bits of the resulting output is

XORed with N, after which the most significant bit is set to

zero; the result of a block cipher call on this value again with

key K2 is the message tag. This tag is then used as a counter

value in the counter mode encryption of the plaintext blocks.

Decryption uncovers the message blocks, runs GHASH on

the message and AD, encrypts it, and compares to T .

Multi-Collide-2Key-GCM-SIV. The multi-collision algo-

rithm is shown in Figure 8. It takes in a set K of keys, a

nonce N, and a tag T and computes a ciphertext C with

|K| blocks. At a high level, Multi-Collide-2Key-GCM-SIV

builds a set of input/output pairs, one per key, then inter-

polates a polynomial having those inputs and outputs. The

coefficients are the ciphertext blocks.

However, a few things make this multi-collision more

complicated than Multi-Collide-GCM. Recall that GHASH

is computed on the plaintext blocks, not the ciphertext

blocks. Thus the algorithm must compute the pad EK2
(Bi)

(in Multi-Collide-2Key-GCM-SIV, Si is the pad), and then

multiply by the appropriate exponentiation of key K1. The

equation is simplified by XORing the result to the y value,

24

leaving only the ciphertext blocks with their coefficients

on the left side. This “trick” works because counter-mode

encryption is a linear function of the message blocks, and

it therefore respects the algebraic structure we use to build

the multi-collision.

Further, the tag T itself is not the output of GHASH so

it must be decrypted by E−1
K2

(T), then the first 96 bits must

be XORed by N and the result assigned to y. The tag re-

computation in 2Key-GCM-SIV-Dec always sets the high-

order bit of its input to zero, so to succeed it must be the

case that the decryption of T under each key begins with a

zero. This means the multi-collision algorithm as depicted

succeeds on all keys in K only with probability about 1/2|K|.

For any single key the probability is 1/2, though, so in ex-

pectation |K|/2 keys decrypt correctly. Thus, an MKCR

adversary can still win with high probability by just out-

putting the subset of K for which decryption succeeds.

AES-GCM-SIV. Multi-Collide-2Key-GCM-SIV extends

to AES-GCM-SIV [31], a recently-standardized variant of

GCM-SIV which uses the POLYVAL universal hash instead

of GHASH and a nonce-based KDF. To build an MKCR

attack against AES-GCM-SIV, the following changes are

required: (1) derive K1,K2 using the correct KDF, (2) re-

place K1 with K1 · x
−128, (3) change how field elements

are mapped to ciphertext blocks. See [31] for a detailed

comparison between GCM-SIV and AES-GCM-SIV.

D Other Attacks Partitioning Password Sets

In this section, we compare partitioning oracle attacks with

other attacks that partition password dictionaries.

Partition attacks. We begin by formalizing partition at-

tacks [11], which can be considered a variant of a dictionary

attack. In this setting, an attacker seeks to recover a secret

pw∗ ∈D known only to two honest parties from some set

of possible values D. The attacker is given a transcript τ
of the communication between these two parties and some

boolean function g : {0,1}∗×{0,1}∗→{0,1}. The func-

tion g takes as input τ and pw ∈ D and returns whether

some cryptographic property of τ holds for pw. We use

g(τ, pw) = 1 to indicate success and g(τ, pw) = 0 to indi-

cate failure. The goal of the attacker is to recover pw∗.

For a traditional brute-force dictionary attack, the func-

tion g derives the key K from pw, attempts to decrypt the

ciphertext in the transcript using K, and returns 1 if decryp-

tion was successful and 0 otherwise. For this attack, g(τ, ·)
returns 1 only for a single password in D . The attacker can

then compute g(τ, pw) for every pw ∈ D to recover pw∗.

In this case, only a single transcript is sufficient for the

attacker to succeed. In contrast, during a partition attack,

g(τ, ·) returns 1 for some subset of D. For example, if for

each transcript the attacker reduces its dictionary in half,

then log(|D|) transcripts are needed to find pw∗.

Bellovin and Merritt give an example partition attack for

their RSA-based encrypted key exchange (EKE) scheme.

In this scheme, two honest parties share a password and

the first party has a public key, which it wants to send to

the second party. The public key is (e,n), where e is the

RSA encryption exponent and n is the RSA modulus. The

first party uses the password to derive a key K and sends

(EncK(e),n) to the second party, where EncK(·) is some

unauthenticated encryption algorithm with corresponding

decryption algorithm DecK(·). Unlike for the dictionary

attack, Dec will return a value even if decrypting with the

wrong key. An attacker could instead utilize the informa-

tion that the RSA encryption exponent e must be odd to

eliminate passwords. For transcript τ← (EncK(e),n), the

function g(τ, pw) can then derive a key K′ from pw and

return 1 if DecK′(EncK(e)) is odd. In expectation this will

reduce D by half.

While the partition attack described by Bellovin and

Merritt is passive, variants have been suggested in which

an attacker can impersonate one of the parties and choose

malicious protocol parameters that aid in the attack, such as

sending a non-safe prime modulus [41, 72]. We can model

this variant by additionally giving the attacker access to an

initialization function that enables the attacker to set the

protocol parameters before receiving the transcripts.

Both partitioning oracle attacks and partition attacks rely

on partitioning a password dictionary to recover a target

password, but they differ in a few crucial ways. In particu-

lar, partitioning oracle attacks are a CCA and, therefore, an

active attack. The original attack described by Bellovin and

Merritt is passive and offline. Although later variants do

involve an active attacker, the attacker only initializes the

protocol with malicious parameters and then continues the

attack passively. Indeed, partition attacks are considered by

some a special class of dictionary attack [19, 41, 44]. Fur-

thermore, for the case studies we discuss, partition attacks

are irrelevant. For Shadowsocks, an attacker only needs a

single transcript to execute a dictionary attack and discover

the target password. For OPAQUE, an attacker could not

perform a dictionary attack with the transcript alone; if,

however, the server and its OPRF key were compromised,

only a single transcript would be required to perform a

dictionary attack.

Patel attack. Patel [72] considered a variant of Bellovin

and Merritt’s Diffie-Hellman Encrypted Key Exchange

(DH-EKE) protocol [11]. The Patel variant introduces a

vulnerability that Patel then exploits via an attack; the at-

tack can be viewed as a partitioning oracle attack. In DH-

EKE, two honest parties Alice and Bob share a password

pw∗, from which they derive key Kp. The scheme proceeds

like classic Diffie-Hellman key exchange except that Al-

ice and Bob encrypt the values, ga mod p and gb mod p,

respectively, that they send to each other using Kp. They

then derive shared secret key K from gab mod p. DH-EKE

includes a subsequent challenge-response step where Bob

chooses random value CB, encrypts this using K, and sends

it to Alice. Alice decrypts the ciphertext to learn CB, chooses

random value CA, encrypts CA and CB together using K, and

sends this to Bob. Bob decrypts the ciphertext to learn CA,

verifies that CB is correct, and sends Alice an encryption of

CA by itself, which Alice can then verify.

25

Bellovin and Merritt claimed that it is possible to omit

encryption of one of the exponentials in DH-EKE and still

be secure against both passive and active attacks. Patel de-

scribes an active attack against DH-EKE where the second

message sent between Alice and Bob is unencrypted, al-

though we highlight that the attack only works because Patel

includes an ad hoc redundancy in the challenge-response

step. Indeed, Bellovin and Merritt explicitly warn against us-

ing a redundancy for the challenge. Patel’s variant includes

a bit in the challenge to indicate the sender: Alice now

sends an encryption of CA‖0 and Bob sends an encryption

of CB‖1.

In the attack, the attacker impersonates Bob, receives

EncKp(g
a mod p) from Alice, and sends gb mod p in

plaintext back to Alice. Having password dictionary D,

for each password pw ∈D the attacker derives encryption

key K′p, decrypts EncK′p
(ga mod p) to get some value A,

and then knowing b computes candidate secret key K′. For

the challenge-response step, the attacker chooses some ran-

dom value X and sends this to Alice. Alice decrypts with

K and accepts or rejects the result depending on whether it

ends with bit 0. For each candidate key computed, the at-

tacker can also decrypt X , check whether it matches Alice’s

result, and eliminate all passwords that result in the wrong

bit. In expectation, the attacker can eliminate half of D .

We can formalize Patel’s attack as a partitioning ora-

cle attack by setting V̂ ← X with degree k ≈ |D|/2. The

function fpw∗(X) = 1 if and only if decryption of X with

K results in a value that ends with bit 0. The attack is un-

targeted, since the attacker does not control the partition.

Notably, this attack requires constant time to generate the

splitting value with respect to its degree but requires time

O(|D|) after the response from the partitioning oracle to

choose the correct partition, as Patel describes the attack. In

contrast, the partitioning oracle attacks we present require

a large upfront computational cost in generating the key

multi-collisions used for the splitting value, but choosing

the correct partition is immediate after the query response.

Patel’s attack could be modified to have a similar large up-

front computational cost by performing the trial decryption

of X first and partitioning D before sending X to Alice and

observing her response.

SRP two-for-one attack. We now describe the SRP two-

for-one attack in our framework, using the notation in [98].

Impersonating the server, the attacker chooses two pass-

words pw1 and pw2 from its password dictionary D and

a salt s. The attacker then computes v1 ← gH(s,pw1) and

v2 ← gH(s,pw2) and sends B← v1 + v2 in the second mes-

sage the server sends back to the client, instead of gb for

random value b. For target password pw∗, the client sub-

tracts gH(s,pw∗) from B, so if either pw1 or pw2 is pw∗ the

protocol will proceed correctly, with the incorrect password

becoming the basis for b. In this way, the attacker can check

two passwords with only one impersonation. In terms of

the partitioning oracle attack, B is the splitting value with

degree k = 2. The attack is targeted, since the attacker can

choose the passwords it wants to compute B.

E Diagram of OPAQUE

Figure 9 depicts the OPAQUE protocol [42] instantiated

with HMQV.

F Measuring the Zeros-Check Transform

In this appendix we describe an experiment we performed

with the “zeros-check” transform applied to AES-GCM.

The purpose of the transform, discussed in Section 6, is

to turn AES-GCM into a committing AEAD. It works by

adding a block of zeros to the plaintext before encryption,

and checking the zeros during decryption.

A major benefit of the zeros-check transform is that it

does not require changing libraries or APIs that only sup-

port AES-GCM: during decryption, the zeros check can be

performed on the plaintext returned from (non-transformed)

AES-GCM decryption. In Section 6, we explained that be-

cause of the way AES-GCM and other AEAD APIs are

currently designed, the most natural way to implement the

transform could result in a timing difference between the

two different kinds of decryption failures: (1) AEAD de-

cryption failing, and (2) the zeros check failing after AEAD

decryption succeeds. The purpose of our experiment was

twofold: first, we wanted to validate our intuition and con-

firm a timing difference exists; second, we wanted to mea-

sure its exploitability.

Experiment setup. We modified the C implementation of

OPAQUE in libsphinx [62] so that it uses the GCM-with-

zeros-check construction rather than XSalsa20-Poly1305.

We used libsodium’s implementation of AES256-GCM

and appended a 16-byte all-zeros string to the plaintext.

After the client decrypts the envelope ciphertext, we use

libsodium’s constant-time memory comparison function

sodium_memcmp to compare the last 16-bytes of the de-

crypted ciphertext to an all-zeros string.

To produce an AES-GCM ciphertext decryption failure,

we chose a password pw0 and, as the client, initiated the

OPAQUE registration sequence with the server. The server

derives key rw0 and 128-byte AES-GCM envelope cipher-

text C0. Then when performing the login sequence with

the server, we provide a different password which derives

incorrect key rw′ that fails to decrypt C0.

To produce a zeros check failure, we use the same process

as above except that a 16-byte all-ones string is appended

to the plaintext instead. In particular, the client again reg-

istered pw0 as their password, but during login the server

returned the AES-GCM envelope C1, for which the last 16

bytes of its associated plaintext is all ones. When the client

decrypts C1, we confirmed that libsodium’s AES-GCM

decryption succeeds but the zeros check fails. Thus, we

are measuring the time difference between two different

failure cases of libsphinx’s implementation of the OPAQUE

client login: the first is AES-GCM decryption failing and

the second is failing after comparing the last 16-bytes of

the successfully decrypted plaintext to a 16-byte all-zeros

string using sodium_memcmp.

26

Client Server
Registration

pw, idu
ks←$Zq

rw←H (pw,(H ′(pw))ks)
ps←$Zq ; pu←$Zq

Ps← gps ; Pu← gpu

C← AuthEncrw(pu,Pu,Ps)
file[idu]← (ks, ps,Ps,Pu,C)

Login
r,xu←$Zq

α← (H ′(pw))r

Xu← gxu
α,Xu, idu

If α /∈ G∗: Return (ABORT, idu, ids)
(ks, ps,Ps,Pu,C)← file[idu]
xs←$Zq ; β← αks ; Xs← gxs

id′←H (idu, ids,α)
d←H (Xu, ids, id

′) mod q

e←H (Xs, idu, id
′) mod q

Ksess←H ((Xu(Pu)
d)xs+eps)

sk← fKsess (0, id
′) ; As← fKsess (1, id

′)

β,Xs,C,As

If β /∈ G∗: Return (ABORT,sid,ssid)
rw←H (pw,β1/r)
M← AuthDecrw(C)
If M =⊥: Return (ABORT,sid,ssid)
(pu,Pu,Ps)←M

id′←H (idu, ids,α)
d←H (Xu, ids, id

′) mod q

e←H (Xs, idu, id
′) mod q

Ksess←H ((Xs(Ps)
e)xu+d pu)

sk← fKsess (0, id
′)

A′s← fKsess (1, id
′) ; Au← fKsess (2, id

′)
If A′s 6= As: Return (ABORT, idu, ids)
Return (idu, ids,sk) Au

A′u← fKsess (2, id
′)

If A′u 6= Au:

Return (ABORT, idu, ids)
Return (idu, ids,sk)

Figure 9: The OPAQUE protocol instantiated with key exchange formula HMQV.

27

Results. We timed the AES-GCM decryption failure and

zeros check failure 1,000 times each using the time stamp

counter rdtsc, on a MacBook Pro 2017 with a 2.5 GHz

Intel Core i7 running macOS Mojave. Our results showed

that the timing difference is difficult to exploit: the mean

and median time for both decryption failure and the zeros

check failure was 118 ms with a standard deviation of 1 ms.

This was mainly due to variation in the execution time of

the Argon2 key derivation function adding noise that made

the timing difference negligible.

While these results show exploiting a timing side chan-

nel for libsphinx, and other similar OPAQUE implemen-

tations, may be challenging, this does not mean that more

sophisticated side-channel attacks cannot exploit this con-

struction. Further research is needed to understand the side

channels that may potentially arise in implementations of

committing AEAD.

28

	Introduction
	Partitioning Oracle Attacks
	Key Multi-Collision Attacks
	Key Multi-collisions for AES-GCM
	Other AEAD Schemes
	Passing Plaintext Format Checks

	Password Recovery for Shadowsocks
	The Attack
	Experimental Evaluation
	Further Attack Settings

	Password-Authenticated Key Exchange
	Countermeasures
	Related Work
	Conclusion
	More (Possible) Partitioning Oracles
	Password-based and Hybrid Encryption
	Authenticated Key Exchange and PSKs

	Poly1305-Based Schemes
	Key Multi-Collisions for AES-GCM-SIV
	Other Attacks Partitioning Password Sets
	Diagram of OPAQUE
	Measuring the Zeros-Check Transform

