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1. INTRODUCTION

In this study, we explore the relationship between the com-
plexity of neural networks and the internal compositional
structure of the function to be approximated. The results
shed light on the reason why using neural network approx-
imation helps to avoid the curse of dimensionality (COD).
In Section 2, we discuss the challenge of COD in feedback
control. In Section 3, we introduce four compositional
features that determine the complexity and error upper
bound of neural network approximation for dynamical and
control systems. In Section 4, several examples are given
to illustrate the widely observed phenomenon in science
and engineering that complicated functions are formed by
the composition of simple ones.
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Fig. 1. The size of data file that grows exponentially with
the space dimension. In each dimension, N = 50. The
total number of data points is Nd.

2. THE CURSE OF DIMENSIONALITY

The COD is a bottleneck in many applications of dynam-
ical systems and nonlinear control. It is a phenomenon
in which the complexity of an approximate solution grows
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fast, such as exponentially, with the state space dimension.
For instance, consider a feedback control law

u = u(x), x 2 Rd
, u 2 R. (1)

for a system of dimension d. If d is large and if an analytic
representation cannot be found for u(x), a numerical
approximation has to be applied to store the control
law in a digital format. If u(x) is approximated using
interpolation based on its value at grid points, the size of
the dataset increases exponentially. Specifically, suppose
we use N grid points in each dimension. Then the total
number of grid points in a d dimensional domain is N

d.
The value of u(x) over the grid forms a huge dataset
even for moderate dimensions such as d = 7 or 8. Figure
1 shows an example in which N = 50. If d = 7, the
memory needed to store the value of u(x) over the grid
using single precision is about 1TB. This number is 1PB
for d = 9 and 1EB for d = 10. Due to the limitations on
processor’s primary storage, bus speed and computation
speed, the interpolation of datasets that have such large
sizes is practically intractable, not to mention that the
computation has to be carried out in real-time for feedback
control.

3. COMPOSITIONAL FEATURES AND THE
COMPLEXITY OF NEURAL NETWORKS

For the last few years, a new trend of overcoming the COD
in nonlinear dynamics and control using deep learning has
been developed rapidly. Many examples of successfully
applying deep learning to high dimensional di↵erential
equations and optimal control were published in which the
dimensions range from six to several hundred, well beyond
what conventional computational methods can deal with
(Han et al. (2018); Izzo et al. (2019); Nakamura-Zimmerer
et al. (2021); Kang et al. (2021a); Sirignano and Spiliopou-
los (2018); Raissi et al. (2019); B. Azmi (2020)). These
empirical successes of deep learning in overcoming the
COD inspire us to study the underlying reason why neural
networks are capable of solving so many high dimensional
problems. The philosophy in our study is based on a widely



observed fact in science and engineering: complicated func-
tions are formed by the composition of relatively simple
functions. In Kang and Gong (2022), a set of key features
of compositional functions is defined. It can be mathe-
matically proved that these features determine the upper
bounds of neural network complexity and approximation
error. These upper bounds do not su↵er from the COD.

To exemplify the compositional structure of nonlinear
systems, consider the swing equations of a power system
with Ng generators
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where i = 1, ..., Ng. For the ith generator, the two state
variables are �i, the rotor angle in radian, and !i, the rotor
speed in radian per second. Other parameters include Hi

(the inertial constant of the generator), !0 = 2⇡⇥ f0 (the
synchronous angular frequency in radian per second for
an ac power system with frequency f0), D (the damping
coe�cient), Pm (the mechanical power input from the
turbine), Ei (the electromotive force or internal voltage
of the generator). In addition, Gij + jBij , the mutual
admittance between Ei and Ej , is the i

th row j
th column

element of the admittance matrix among all electromotive
forces, and Gii is the conductance representing the local
load seen from Ei. Details about the model and its
parameters refer to Athay et al. (1979).

A power system may have tens or hundreds of generators.
This complicated system model, however, is a composition
of functions that have low input dimensions. The com-
positional structure can be represented using a layered
directed acyclic graph (DAG). For example, Figure 2 is
a DAG of the function in (2). Each colored node in the
DAG represents a nonlinear function. They are all sine and
cosine functions with a single input. Although some linear
nodes (white color) have high input dimensions, such as
the node in the output layer, it is proved in Kang and Gong
(2022) that linear nodes do not increase the complexity,
or the number of neurons, of the neural network. The
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Fig. 2. The layered DAG of the function in (2) as a
compositional function.

question we would like to answer is: how does a layered
DAG help in the e↵ort of using deep learning to find
the trajectory or the optimal control of a system? Our
study shows that some compositional features are critical

to the required complexity of neural networks used in deep
learning. These features are briefly introduced as follows.

• |V| (complexity feature): The total number of nonlin-
ear nodes in the layered DAG, where V is the set of
nonlinear nodes of the compositional function.

• rmax (dimension feature): The largest ratio, d/m, for
all nodes in V, where d is the input dimension of the
node and m is the smoothness of the node.

• ⇤ (volume feature): Each nonlinear node, denote the
function by f , has a domain. Assume that the domain
is a square of edge length R. The volume feature is
defined to be the largest value in

{max{R, 1}||f ||; f 2 V}, (3)

where || · || is the Sobolev norm

||f || = ||f ||L1 +
X����

@f

@xi

����
L1

. (4)

• Lmax (Lipschitz constant feature): The largest Lips-
chitz constants associated with nonlinear nodes. Note
that this Lipschitz constant is defined based on the
layered structure of the DAG. For more details, the
readers are referred to Kang and Gong (2022).

Consider a general dynamical system

ẋ = f(x), x 2 Rd (5)

in which f(x) 2 Rd has a layered compositional structure.
Let �(t,x) represents the solution of (5) in which x is the
initiate state, �(0,x) = x.

Theorem 1. (Kang and Gong (2022)) Suppose that all
nodes in f are C

1. Let D ⇢ Rd be a closed set and R > 0
be a constant. Suppose �(t,x) 2 [�R,R]d for t 2 [0, T ]
and x 2 D. Then, there always exists a deep feedforward
neural network, denoted by �NN (x), in which activation
functions are C

1. Furthermore, the network satisfies
����NN (x)� �(T,x)

���
2
< (C1Lmax⇤ |V|+ C2)n

�1/rmax

(6)
where n is an integer that determines an upper bound
of the total number of neurons in �NN (x), i.e., the
complexity of the neural network,

# of neurons in �NN 
⇣
n
1/rmax + 1

⌘
n |V| (7)

The constants, C1 and C2, in (6) are determined by kfk2,����
@f

@x

����
2

, T and the input dimensions of the nodes in V.

It is worth to note that the error upper bound (6) depends
on ⇤, Lmax and |V| as a polynomial function, rather than
an exponential function. The value of rmax depends on the
input dimensions of individual notes of f , not directly on
the overall dimension, d. Therefore, if rmax is bounded and
if ⇤, Lmax and |V| do not increase exponentially with d,
the neural network approximation of �(T,x) is free from
the COD. A similar result holds true for optimal control.
Consider a control system

ẋ = f(x,u), x 2 D ⇢ Rd
, u 2 Rq

, t 2 [0, T ] (8)

A zero-order hold control, U = [ u1 u2 · · · uNt ] in which
uk is the constant control for t 2 [tk�1, tk]. The goal of an
optimal control problem is to find U that minimizes the
cost function



J(x, U)
=  � �(�t;uNt , ·) · �(�t;uNt�1, ·) � · · · � �(�t;u1,x)

(9)
where  : Rd ! R is a function.

Theorem 2. Suppose that f and  are compositional func-
tions in which all nodes are C2. Let D ⇢ Rd be a bounded
closed set. Assume that the Hession of J(x, U) with respect
to U is positive definite. Let U⇤(x) represents the optimal
feedback control. Then, for any ✏ > 0, there exists a deep
neural network, U

⇤NN , that approximates the optimal
control. The estimation error is��U⇤NN (x)� U

⇤(x)
��
2
 3✏, x 2 D (10)

The complexity of U⇤NN is bounded by

n  C✏
�(4rmax+1+4rmax/r

f
max) (11)

where r
f
max is the dimension feature of f and rmax is the

largest dimension feature of f and  , C is a polynomial of
q and other compositional features of f and  .

4. SOME EXAMPLES OF COMPOSITIONAL
FEATURES

According to Theorems 1 and 2, if the compositional fea-
tures of a family of systems do not increase exponentially
with d, the approximation of a trajectory or an optimal
control has a polynomial error upper bound; the complex-
ity of the neural network increases at a polynomial rate. In
the following, we use three examples to demonstrate that
this kind of polynomial relationship is not unusual.

4.1 Compositional features of power systems

The first example is the power system model in (2). Its
layered DAG is shown in Figure 2. Its compositional
features are summarized as follows.

rmax = 1, ⇤ = 4⇡, |V| = 2(Ng � 1)Ng,

Lmax = max
1i,jNg,i 6=j

⇢
!0

2Hi
EiEjGij ,

!0

2Hi
EiEjBij

�
.

(12)
The dimension feature is rmax = 1 because all nonlinear
nodes (sin(z) and cos(z)) have a single input. Here we treat
the nodes as functions in C

1 although they are also in C
1.

This simplifies the formula in the derivation. The value of
⇤ depends on the radius of the domain of nonlinear nodes
and their Sobolev norm (4). For each nonlinear node, the
domain of its input is bounded by 2⇡. Furthermore, sin(z),
cos(z) and their derivatives are all bounded by 1. Then it
is straightforward to derive the volume feature ⇤ = 4⇡.
Following the definition in Kang and Gong (2022), the
Lipschitz constant associated with a node is the Lipschitz
constant of f (not the node) with respect to the node when
the node is treated as a free variable. For example, the
nonlinear nodes in Figure 2 are cos(z) and sin(z). If one of
them, for instance the first cos(z) connecting to �i � �1, is
treated as a variable, the Lipschitz constant of the function
associated with this node equals

!0

2Hi
EiE1Gi1. (13)

This computation is for the first nonlinear node (j = 1)
in the ith generator. The value of Lmax in (19) is the
largest one among the numbers computed similarly for all
the Ng generators and all nonlinear nodes. For the ith

generator, 1  i  Ng, there are 2(Ng � 1) nonlinear
nodes. Therefore, the total number of nonlinear nodes
is |V| = 2(Ng � 1)Ng. We would like to emphasize that
the compositional features in (12) are either constants or
polynomial functions of Ng. As such, they do not increase
exponentially with Ng. From Theorem 1, there exists a
deep neural network approximation of the power system
that avoids the COD. In fact, a similar conclusion can be
extended to the Lyapunov function of the power system,
which is proved in Kang et al. (2021b).

Theorem 3. Consider a power system (2) that has Ng

generators. Let R ⇢ R2Ng be a bounded set. Then,
there exists a solution, V (x), to Zubov’s equation (a
special Lyapunov function that characterizes the domain
of attraction) and a neural network, V

NN (x), that has
n
NN hyperbolic tangent neurons. They satisfy

��V NN (x)� V (x)
�� < (C1N

2
g + C2)

Ngp
nNN

(14)

for x 2 R, where C1 and C2 are constants independent of
Ng.

4.2 Lorenz-96 model

Consider a system of ODEs

ẋ = f(x) (15)

in which f : [�R,R]d ⇢ Rd ! Rd is the vector field that
defines the Loranz-96 model in Lorenz (1996),

f =

2

66666664

x0(x2 � x�1)� x1 + F

x1(x3 � x0)� x2 + F

...
xi�1(xi+1 � xi�2)� xi + F

...
xd�1(xd+1 � xd�2)� xd + F

3

77777775

, (16)

where x�1 = xd�1, x0 = xd, xd+1 = x1 and F is a
constant. Let’s treat f as a compositional function. An
example of its layered DAG when d = 4 is shown in Figure
3. All nonlinear nodes in Figure 3 are located in the second
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Fig. 3. DAG structure of the function (16) for d = 4. For
a clear illustration, edges pointing to the first, the
second, and the third layer are shown in red, blue
and green respectively.

layer. They are defined by

f2,j(xj�1, zj) = xj�1zj , j = 1, · · · , d. (17)

All nonlinear nodes have the dimension d2,j = 2 and
the domain [�2R, 2R]2. Since f2,j is C

1, we can set the
smoothness to be any integer m � 2. As an example, we
set m = 1. Then the dimension feature is rmax = 2. The
Sobolev norm of f2,j is straightforward to compute, which



determines ⇤, the volume feature. To compute the Lipchitz
constant associated with the node, f2,j , we construct the
truncation of f along the second layer, which is given by

f̄(z1, · · · , z2d) =

2

664

z1 � zd+1 + F

z2 � zd+2 + F

...
zd � z2d + F

3

775 , (18)

where xi, 1  i  d, are represented by the dummy inputs
zj , j = d + 1, · · · , 2d. The Lipschitz constant of f̄ with
respect to zj is L2,j = 1, for j = 1, · · · , d. The total number
of nonlinear nodes in the system equals the dimension, d,
because each equation in (16) has a single nonlinear node.
To summarize, the compositional features of the Lorenz-96
model are

rmax = 2, ⇤ = max{(2R), 1}(2R+ 4R2),
Lmax = 1, |V| = d.

(19)

There is no exponential growth in the features. They are
either constants or a linear function of d.

4.3 Burgers’ Equation

Consider the following discretized Burgers’s equation

u̇1 = �u1
u2 � u0

2�x
+ 

u2 + u0 � 2u1

�x2

u̇2 = �u2
u3 � u1

2�x
+ 

u3 + u1 � 2u2

�x2

...

u̇N�1 = �uN�1
uN � uN�2

2�x
+ 

uN + uN�2 � 2uN�1

�x2

(20)
The discretization is based on central di↵erent in which
�x = L/N is the parameter that represents the step size
of the state variable x 2 [0, L]. The boundary condition
is u0 = uN = 0. The dimension of the state space is
N . The layered DAG of the function in (20) is shown in
Figure 4. Due to the viscosity term in the equation, the
solutions are stable. For initial conditions in a bounded
set, we can assume that the state variables are bounded in
[�R,R]N for some R > 0. The compositional features are
summarized in (21). They are either constants or linear
functions of N . None of them grows exponentially.

r
f
max = 1,⇤f =

1

2
R

2 +R,L
f
max =

N

L
,
��Vf

G

�� = 2N. (21)

5. CONCLUSION

The relationship revealed in this study between the com-
plexity of neural networks and the compositional fea-
tures in system models illustrates the reason why deep
learning is an e↵ective tool of overcoming the COD. The
study raises more questions than answers. Many inter-
esting problems are still widely open about the role of
compositional structure in neural network design, as well
as in the training and validation process.
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