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Abstract: Optimal control problems with free terminal time present many challenges including
nonsmooth and discontinuous control laws, irregular value functions, many local optima, and the
curse of dimensionality. To overcome these issues, we propose an adaptation of the model-based
actor-critic paradigm from the field of Reinforcement Learning via an exponential transformation
to learn an approximate feedback control and value function pair. We demonstrate the
algorithm’s effectiveness on prototypical examples featuring each of the main pathological issues

present in problems of this type.
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1. INTRODUCTION

We aim to solve optimal feedback control problems with
a free terminal time and fixed target state, which are
common in trajectory optimization and path-planning.
These problems often have solutions which saturate the
control bounds and have value functions which may not
even be continuous. We will consider the problem of
minimizing a running cost £(x,u) > 1 with free terminal
time and given terminal state z(tf) € T over a compact set
of control values Y C R™. That is, we wish to approximate
the solution of
Vi) =, pin,

/fe(x(t),u(t)) dt
0 (1)

x=f(x,u), x(0)==x¢, x(ty)eT

For optimal control problems with a continuous value
function, the value function V' : R™ — [0,00) is the
unique viscosity solution to the Hamilton-Jacobi-Bellman
(HJB) equation Bardi and Dolcetta (1997). However, in
many cases the value function may be non-differentiable or
discontinuous at or near the target and one must examine
the supremum of (viscosity) subsolutions and infimum
of supersolutions along with the comparison principle to
identify a unique solution. Solving a partial differential
equation is difficult in general because of the curse of di-
mensionality and here it is complicated further by looking
for the solution in the viscosity sense.

In the literature, optimal feedback control for this problem
has been done via discretization then applying a fixed
point operation over a grid, mesh, or tensor decomposition
of a grid/mesh as in Bardi and Dolcetta (1997); Cristiani
and Martinon (2010); Falcone et al. (2014); Gorodetsky

et al. (2018). The classic trade-off for mesh based methods
is although accuracy is very high, scaling to dimensions
higher than three is severely limited due to the requirement
of adding exponentially more grid points per dimension.
Some tensor decomposition methods alleviate the curse of
dimensionality while retaining high accuracy so long as
the tensor-rank of the optimal value function is low. That
is, they are capable of trading dimension dependence with
an auxillary metric of complexity, but the tensor-rank of
arbitrary value functions may not always be low (even in
low dimensions) and is hard to verify before performing the
computation and observing the rank or time complexity.
We aim to reduce dimension/tensor-rank dependence by
applying a neural network based Reinforcement Learning
approach. In order to do this, we show that it is possible to
apply Reinforcement Learning to free terminal time type
problems via the Semi-Lagrangian discretization, allowing
one to convert the problem of interest (1) into a form
resembling an infinite horizon optimal control problem
with a varying discount.

1.1 Semi-Lagrangian Discretization

The Semi-Lagrangian method has been successfully used
to solve low dimensional feedback control problems via
mesh-based solvers for the HJB equation such as in the
appendix of Bardi and Dolcetta (1997); Falcone and Fer-
retti (2013) or by seeding an open-loop method as in
Cristiani and Martinon (2010). We will apply the Kruzkov
transformation, a classical transformation for minimum-
time type problems,

7 (x) = 1—e Vi Vi(x) < oo,
T, otherwise.

(2)



as is done in Bardi and Dolcetta (1997); Cristiani and
Martinon (2010) in order to acquire a functional equation
which we will iteratively fit a solution to using a neural
network. The main idea will be to discretize the dynamics,
in this case with forward Euler, to get a discrete optimal
control problem which converges to the original problem
as the time step At decreases to zero. The value function
approximation corresponding to the discrete dynamics
should satisfy the discrete time dynamic programming
principle. Therefore, instead of discretizing the directional
derivative via finite differencing, we directly apply the
dynamic programming principle for the discrete dynamics
in combination with the same order integration method
over [0, At] as in Falcone et al. (2014):

Xp+1 = Xi + At f(xg,u)

At 3)
/ 0(x,0) dt ~ At (x,u)
0

= V(xg) = LIIGIZI} {AtL(xp,n) + V (xp41)} 4)

Upon manipulation of both sides to rewrite the equation
in terms of the Kruzkov transform of the value function
we obtain

e~ Vixe)  — — ming {At(xp,u)+V (xp41)}

e
6*V(xk) maxefAtl(xk,u)fV(karl)
u
1— e—V(Xk) — 1 — max e—Atf(xk,u)—V(xk_H)
u
V(xz) = 14 min {efmax’“m (f/(x;ﬁ.l) — 1)}
u

Furthermore, define the discount factor and operator for
the right-hand-side of the (semi-discrete) HJB equation as

’Y(Xy u) — efAtl(xkﬁu)
H (x,f/,u) =1+~(x,u) (V(x+Atf(x,u)) — 1)
(5)
as well as a bounded subset of R" \ 7 = § to be the

computational domain with which to solve over. Then the
equation we wish to solve is

V(x) = min H (x, V,u) , x€)

f/l(lx):o, xeT

(6)
To obtain lower truncation error, one can use a second
order differential equation discretization and integration
scheme such as second order Runge-Kutta and the Trape-
zoid Rule. Within this paper, we choose to use Euler
discretization in anticipation of high neural network fitting
error dominating the overall error in computations and
the complexity of backpropagation through the integration
terms for xi41 and the running cost. We formulate the
problem in this way in order to force a discount factor ~y
when viewed as the HJB equation of an infinite horizon
problem, prevent gradients from appearing in the semi-
discrete HJB equation we wish to solve, and allow for
a surrogate model for both value and control functions.
Most importantly, if the discount factor v was a fixed
number then this equation would correspond to an infinite
horizon discrete optimal control problem where ~ is used
to make the running cost finite when integrated over an
infinite horizon as well as acts as a contraction coeffi-

cient when applying a fixed point iteration to 6 provided
suitable growth conditions on V(x). Such a problem is
amenable to approximate dynamic programming methods
as studied in Bertsekas and Tsitsiklis (1996) as well as
reinforcement learning methods as in Lewis and Vrabie
(2009); Tutsoy and Brown (2016). In some cases, such as
in Tutsoy and Brown (2016), the minimum time problem is
approximated by setting v &~ 1 and applying reinforcement
learning techniques such as value iteration or an Actor-
Critic method. However, rate of convergence and the con-
ditioning of the problem become worse as v — 1 as the
step size and optimal cost are directly related to . We
aim to make use of this interpretation in order to apply the
well known Actor-Critic paradigm, see Lewis and Vrabie
(2009); Scherrer et al. (2015); Lillicrap et al. (2016); Zhou
et al. (2021), which is typically applied to infinite horizon
optimal control problems.

2. ACTOR-CRITIC ALGORITHM FOR KRUZKOV
HJIB

Motivated by the success of Actor-Critic methods for
infinite horizon optimal control, we propose to use a Least
Squares Temporal Difference Actor-Critic framework in
the case studied here. We implement multilayer neural
networks to represent both the actor (controller) U (x, W)
and critic (value function) representation, V(x, Wy ). We
do this to mitigate the necessity of both choosing good
set of basis functions for approximating the true optimal
control/cost as well as having enough of such functions
to represent the value and control functions adequately. It
should be noted that although this is effective in practice,
the compatibility of the actor and critic will no longer
be guaranteed and the gradients dyH(x,V,u) may be
biased estimates of the true descent direction (Silver et al.
(2014)).

The actor critic algorithm presented here in Algorithm 1
is based on value iteration, where the control and value
approximators are optimized in an alternating fashion.
Upon each iteration k, the critic f/(x, Wy ) is initially held
fixed while the control approximation U (x, Wy) minimizes
its weights against the expected cost-to-go of one step
in time, H(x,V,u) obtaining W(’;H. After the control
refinement stage, the new value approximation is set to
the closest approximation to the new predicted cost-to-go,
H(x,V,U(x, W{j*l). If this approximation is near enough,
we expect both U(x, Wy ) and V(x, Wy ) to converge to
the optimal control and value function respectively. This
intuition is due to the fact that if we use meshes coupled
with the Markov Chain Approximation of Kushner and
Dupuis (2001) then provided 1 < ¢(x,u) < M on 2 and
some technical assumptions which bound ||x(¢)—x(t+At)]|
and guarantee controllability of states at the boundary of
the target as outlined in Bardi and Dolcetta (1997), then
this process would converge to the desired approximations.

This algorithm can be efficiently performed in parallel over
the states because neural networks can operate on batch
inputs efficiently and mature frameworks for their batched
gradient computation are readily available. Practically, we
implement this algorithm as a stochastic gradient method,
only taking a few steps per optimization stage (stages 7



Algorithm 1: ACTOR-CRITIC ITERATION

Input: A tuple of weights (W2, W) for the value
and actor networks, a time step At, a
moving average coefficient « € (0, 1], and
the number of samples to draw from each
set IV, Qs N T-

Output: Neural network approximations of

cost-to-go and optimal control.

1 Let WV — W8
2 Let WU — WB

3 while WV, WU not converged do

4 Draw set of samples Xq < {x; 1N:“1 ~ P(2)
5 Draw set of samples X7 + {X]}j\f1 ~P(T)
Define function

H(x,W):=H (x,f/(x, /Wv), U(x, W))
k+1 : 7
7 Wi« ar%vrlrjnnxeﬂg(n [H (x, WU)}
8 /I/I7U — aW[’}'+1 +(1- a)WU

9 Ly (Wy) «
B | (7o) e 7))

k (/ 2
w0 | L, (W)« E [v (x, Wy) ]

11 W « argmm (L, (Wy) + Lk (Wy)]

V

12 | Wy « AW 4+ (1 - o)Wy

13 return (/V[7V, WU)

and 11) using an optimizer such as Adam from Kingma
and Ba (2017) and increasing the number of steps at stage
11 if the fitting error is large Then we update a moving

average of the model weights WV7 WUto reduce variance in
the weight updates. Algorithm (1) can be interpreted as an
Actor-Critic type fitted value iteration (or policy gradient
when steps 7 and 11 are single gradient descent updates)
where each sample from the domain is propagated forward
in time by At through an actor U(x,Wy) and the new
state is used to update the critic’s value estimate. If too
few samples are drawn, weight updates will have a high
amount of noise and the algorithm may become unstable.
One can reduce the update noise through the use of a
target network as in Lillicrap et al. (2016) where the
weights are slowly averaged into an auxillary network in
order to provide stable learning dynamics. We find that
this is not necessary for our two examples where the value
function is continuous, but helps reduce weight oscillation
when there is a discontinuity. Algorithm 1 may be able to
be transformed into a Monte Carlo, rollout-based scheme
as in Zhou et al. (2021), but due to deterministic dynamics
we are able to take advantage of per-sample parallelism
without the need for propagation beyond one step. We
also note that in the stochastic case, conversion to the

form of equation 6 should not be necessary since the
system’s diffusion should guarantee a unique, sufficiently
differentiable solution to the original HJB equation.

Remark 1. This algorithm can be extended to use su-
pervised data as in Nakamura-Zimmerer et al. (2021) by
generating a set of known optimal tuples and appending a
loss to steps 7 or 11.

Remark 2. A more efficient domain sampling which takes
into account model error over the domain instead of uni-
form random sampling would likely lead to faster con-
vergence. In regards to convergence criteria and iteration
count, either a fixed number of iterations is done and the
rnodelb are evaluated by closed-loop performance or the

mean and variance of the moving averages WV, WU are
used to stop the iteration.

3. EXAMPLES

To demonstrate the algorithm described, we apply it to
three qualitatively different examples. The first is the
double integrator, a canonical academic example known to
many in optimal control, which demonstrates a discontin-
uous (bang-bang) optimal control and non-differentiable
value function. The second is the control-regularized Du-
bins Vehicle which displays a value function which is both
non-differentiable and discontinuous in some regions of its
state-space. These properties make optimal open-loop tra-
jectories difficult to obtain without expert initial guesses
as there are infinitely many locally optimal controls. The
last example is a minimum time attitude control problem
for a 7-dimensional rigid body to demonstrate scalability
of the algorithm. For each example, we apply the Kruzkov
transformation to the critic’s final output during training
as well as enforce control constraints via the actor’s final
layer.

3.1 Double Integrator

Our first example is that of the time-optimal double

integrator:
ty
min / dt
u,ty 0 (7)

1= en-ven-o s

This is a simple example of a problem which gives rise to
a non-smooth value function without discontinuity. The
switching curve is known to be parabolic and the control
is piecewise +1 or —1 on each side of this curve, given
by u(x) = —sign(D,V(x)) wherever V is differentiable.
However, generating optimal trajectories for this system
via open-loop methods presents difficulties due to the
discontinuous optimal control. For computation, we aim
to solve this problem over the ball B(r = 5) and apply
the actor-critic algorithm with networks of 4 layers each
comprised of 128 neurons, a time discretization of dt =
0.05, no moving average (o = 0), and sample sizes of
[Xq| = 500, [X7]| = L.

We use tanh activations in this case because the optimal
control is bang-bang and the tanh function can smoothly
saturate between the bounds +1 and -1. Notably, the
actor network obtained is continuous by construction and



Fig. 1. Switching surface given by neural network ac-
tor with tanh activation (white/black) and switching
curve computed by grid-based semi-lagrangian itera-
tion (green)

therefore the switching behavior is approximated by a
steep, smooth transition between -1 to 4+1 (and vice-versa)
which also happens to avoid the chattering problem faced
by bang-bang controllers.

Fig. 2. Close up of switching curve given by neural network
actor with sample trajectories overlayed (black).

(3]

3219 1 9
T -

3 -2 y

Fig. 3. Comparison between the true value function (red)
and the critic network (surface).

Compared to the true solution over a grid of 3200
test points, obtained using a pseudospectral collocation

method, see Ross and Karpenko (2012). Note the critic
(value approximator) network is very similar geometrically
to the optimal value function and has typically differs from
the target with mean-squared-error of order 1072.

3.2 Dubins Vehicle

For our next example we will consider the control-
regularized minimum time problem for Dubin’s Vehicle:

T}?/Otf (1 + % [u(t)]2> dt

T cos 0
vl = {sin 0} ,
0 u

(8)

lul <6, t;>0
l2(tp)]* + ly(ts)* < (0.1)7

This problem displays a value function with both a non-
smooth gradient and a discontinuity at the boundary of
the target set. Physically, we aim to steer a vehicle with
constant velocity to the origin in the least time and using
the least steering input. The discontinuity at the boundary
of the target set comes from the fact that the dynamics
are not small-time-locally-controllable Bardi and Dolcetta
(1997). In other words, starting near the target does not
guarantee a small cost-to-go for some states because a
lack the controllability leads to a high cost-to-go as the
vehicle must follow an arc dependent on its turning radius.
For example, starting at position (z,y,0) = (0.1,0,0) the
vehicle must first travel away from 7 and circle back since
there is no direct control of x,y and the velocity of the
vehicle is constant. This problem has a radially symmetric
value function and so visualization is done in only the
(z,0,8) coordinates. For reference, we present below a plot
of a representative slice of the value function as computed
via the Markov Chain Approximation of Kushner and
Dupuis Kushner and Dupuis (2001).
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Fig. 4. The reference value function as computed via mesh
as in Kushner and Dupuis (2001), shown radially in
the (r,8) plane where r is on the x-axis and 6 on the
y-axis.
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The Actor-Critic method using a weight-averaging update
for the target network with a = 0.1, ReLU activation with
4 layers of 128 neurons per layer, and a rescaling of the
value function by 0.2 produced excellent results. Although
the optimal control is discontinuous, owing to the fact that
the vehicle must physically turn left or right depending on
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Fig. 5. Contour of the neural network approximation of
the value function in the (r, ) plane.

heading, the neural network controller U (x, W) performs
well after tuning the parameter a governing the moving
average.
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Fig. 6. Actor feedback control over sample trajectories
in the (z,y) space near the target. Each trajectory
begins with an initial heading 6(0) € [—m,x). There
is a paradigm switch between trajectories facing near
the target to begin to face about 45 degrees away,
corresponding to a kink in the value function. The
choice of steering left or right when facing exactly
opposite to the target also corresponds to a kink.

We found that it is necessary to rescale either the running
cost £(x,u) in order to produce adequate approximations
for this problem as the exponential term exp(—V (x)) = 0
when V(x) = 5 and many states do achieve a cost greater
than that limit. Due to limited precision of floating point,
the Kruzkov transformation truncates the values of all
states which would incur a cost of about 5. We currently
get around this limitation through either the rescaling
£(x,u) = pl(x,u) or a direct rescaling of the dynamic
programming equation through V(x) — pV(x) for 0 <
p<1

3.8 Attitude Control of Spacecraft

For our next example, we chose a higher dimensional satel-
lite system to show that this algorithm has the potential to
push to higher dimensions. The optimal control problem
is given as

min ¢
u,ty f

1 7
do 3w a
a1=11 . q+aw
Jo 9 X 0
—wyJw —u

—03<u<0.3
qty) =w(ty) =0, qo(ty) =1

59.22 —-1.14 —0.8
J = [—1.14 40.56 0.1 ]
-0.8 0.1 57.60

The state space sampling is done by sampling Euler angles
in [-%, %] uniformly then converting to quaternions, the
angular velocities are sampled uniformly from the sphere
107* < |lw||? < 0.3, and the inertia matrix is that of
the TRACE spacecraft (see Zimbelman et al. (1995)).
We used the Adagrad optimizer, sample sizes of |Xq| =
|X7| = 1500, At = 0.3, and ran the algorithm for 2000
iterations for a total of 73 seconds. The large At is used
to speed up convergence as the time-scale of trajectories
is comparatively large. The neural networks used are
sequential networks with hidden layers, L;(z), of sizes
[T — 200 — 200] where the hidden layers are residual
blocks of the form x — L;_1(z) 4z, and ReLU activation.

o =
w o
L L

(qo.q)

0.0 4 ﬁ
-0.5 1
: : :

Ullqo, 9. w] Wy)

0 5 10 15 20 25
Time (s)

Fig. 7. An example trajectory for the TRACE system using
the actor network as the controller. The value of gy is
in red and q,w in black. Note that the control inputs
resemble that of a smoothed, bang-bang controller

which one expects to observe for minimum time
solutions.

It is important to note here that because of the generality
of the model, the terminal condition ||q|| = 0 may not

exactly correspond to V(g(ty), Wy) = 0 and therefore
the steady-state may be ||q|| = € since the model is
minimizing its squared deviation from 0 over the target.
Experimentally, we have observed that for nearly all cases
that the steady state satisfies ||q]|eo < 0.05. Modifications
to achieve neural network controller stability can be found
Nakamura-Zimmerer et al. (2022). Updating the model
architecture to automatically accommodate the terminal
condition would be ideal and enforce q(ty) = 0 exactly.
A collection of 100 sample trajectories are shown in figure
8, note that they are stable. In future work, we intend
to compare these trajectories with open-loop solutions
generated via pseudospectral methods.
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Fig. 8. Ensemble trajectories displaying stability of the
neural network controller.

4. CONCLUSION

In this paper we demonstrated the use of a neural net-
work Actor-Critic algorithm for solving optimal control
problems with free terminal time that may have nons-
mooth solutions in the value or control. We find that
it is a promising approach towards alleviating the curse
of dimensionality and as a possible companion method
to open-loop solvers that struggle with local optima or
computing a solution near kinks and corners of the value
function. We find that the method has promise even for
problems with discontinuous optimal cost, such as in the
Dubins Vehicle example. In future work, the efficacy of
coupling the proposed algorithm to direct methods could
be interesting as well as analysis on the convergence of
such methods.
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