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Abstract— Mobility, power, and price points often dictate that
robots do not have sufficient computing power on board to
run contemporary robot algorithms at desired rates. Cloud
computing providers such as AWS, GCP, and Azure offer
immense computing power on demand, but tapping into that
power from a robot is non-trivial. We present FogROS2, an
open-source platform to facilitate cloud and fog robotics that is
compatible with the emerging Robot Operating System 2 (ROS 2)
standard. FogROS2 is completely redesigned and distinct from its
predecessor FogROSI1 in 9 ways, and has lower latency, overhead,
and startup times; improved usability, and additional automa-
tion, such as region and computer type selection. Additionally,
FogROS2 was added to the official distribution of ROS 2, gaining
performance, timing, and additional improvements associated
with ROS 2. In examples, FogROS2 reduces SLAM latency
by 50 %, reduces grasp planning time from 14s to 1.2s, and
speeds up motion planning 28x. When compared to FogROSI1,
FogROS2 reduces network utilization by up to 3.8x, improves
startup time by 63 %, and network round-trip latency by 97 %
for images using video compression. The source code, examples,
and documentation for FogROS2 are available at https:
//github.com/BerkeleyAutomation/FogROS2, and is
available through the official ROS 2 repository at https:
//index.ros.org/p/fogros2/

I. INTRODUCTION

It is difficult for the onboard computing power of robots to
keep up with advances in robot algorithms and new computing
hardware. However, cloud computing offers on-demand access
to immense computing resources and new and power-hungry
computing platforms, such as GPUs, TPUs, and FPGAs. Prior
work [1] showed that using the cloud for intensive computing
in robotics can be practical and cost-effective. However,
gaining access to evolving cloud computing resources requires
expertise with many new and emerging software packages,
and experience handling data security and privacy. In prior
work, we introduced FogROS [2] (henceforth FogROSI), a
framework that extends the Robot Operating System (ROS)
(henceforth ROS I) to enable quick access to the cloud.

However, FogROS1 has limitations in latency, usability,
and automation. In this paper, we introduce FogROS2 to
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Fig. 1: FogROS?2 addresses several deficiencies found in FogROS1, including
latency, usability, and automation. For example, transmitting images from
a camera to the cloud can require a lot of bandwidth, thus increasing
latency. FogROS2 transparently compresses video and image streams using
the popular H.264 compression standard. FogROS2 further improves upon
FogROS1 by speeding up launch times, improving scalability, and increasing
compatibility by migrating to Kubernetes(K8s), switching to UDP over
Wireguard, and updating to the ROS 2 ecosystem. In an example application,
FogROS2 moves a simultaneous localization and mapping (SLAM), motion
planning, and grasp planning nodes to the cloud, taking advantage of the
GPU and high CPU core counts available there to speed up processing. By
integrating Foxglove, users are also able to monitor robots from a browser
any where in the world.

reduce latency, improve usabillity, and automate additional
components of launching robot code in the cloud. Further-
more, we rewrote FogROS2 from scratch to fully integrate
with ROS2 to benefit from improvements in networking,
launch configurability, and its command line interface; and
we added integration points to Foxglove [3] to enable remote
(anywhere-in-the-world) monitoring.

Latency, the time between when an event occurs and when
the robot reacts to the event, is a critical factor in many
applications. FogROS1 and FogROS2 propose that using the
cloud can reduce latency associated with complex compu-
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tations. (It is important to note that this is not a universal
statement—some computation, such as feedback control loops,
time-bounded, or safety-critical computations are not always
suitable for the cloud due to unpredictable network round-
trip times.) FogROS1 suffered from long cloud computer
startup times (around 4 minutes) and high round-trip network
times, particularly for images (e.g., 5 seconds per image).
FogROS?2 lowers these latencies by using application-specific
cloud-computer images, using a Kubernetes backend to avoid
overhead associated with creating new cloud computers,
switching from TCP to UDP secured networking, and adding
transparent H.264 video compression for image topics.

FogROS?2 includes several usability and automation im-
provements over FogROSI1 to facilitate adoption, including:
(1) a command-line interface (CLI) to interact with FogROS2
cloud computers, (2) integration with Foxglove to enable
remote monitoring, (3) a new launch process to allow for
automating cloud-computer specification and region, and (4)
creation of custom cloud-computer images.

Many of these improvements are facilitated by re-writing
FogROS2 for ROS 2. ROS 2 [4], a rapidly growing replace-
ment for ROS 1 [5], is a standard for developing robot applica-
tions. FogROS1 and FogROS?2 enable moving computationally
intensive parts (or nodes) of a computational graph to the
cloud and securing communication channels for messages,
all with a few small changes to the launch script and without
changing a line of the robot code. By migrating to ROS 2,
FogROS2’s launch system gains additional capabilities, such
as: detecting the cloud server region nearest to the robot and
automatically selecting computers and images based computa-
tional requirements. FogROS?2 is also part of the official ROS
2 ecosystem, and installable with standard Ubuntu commands
(apt install ros-humble-fogros2).

Using 3 example applications, visual SLAM, grasp plan-
ning, and motion planning, we evaluate FogROS2’s ability
to reduce total computation times. As with FogROS1, using
cloud computers via FogROS2 speeds up the computation. We
find that FogROS2 can reduce compute times by 2x to 28x.
When compared with FogROS1, FogROS2 improves startup
times by 63 %, and network latency by 97 % for images.

FogROS?2 contributes 9 improvements over FogROS1 [2]:

1) FogROS?2 extends the ROS 2 launch system introducing
additional syntax in launch files that allow roboticists
to specify at launch time which components of their
architecture will be deployed to the cloud, and which
ones on the robot. While FogROS1 existed outside the
official ROS ecosystem, FogROS2 directly integrates
with it.

2) FogROS2 provides launch script logic that allows robots
to automate selection of cloud-computing resources, such
as nearest region, computer image, and computer type.

3) FogROS2 adds support for streaming video compression
between robot and cloud nodes—significantly improving
the performance of image processing in the cloud, and
potentially enabling new applications.

4) The architecture of FogROS?2 is extensible, making it
easy to plug in support for additional cloud computing

providers, Data Distribution Service (DDS) providers
(Sec. III), and message compression.

5) FogROS?2 integrates with ROS 2 tooling and provides
ROS 2 command-line interfaces to query and control
cloud-robotics deployments.

6) FogROS2 interfaces with the new Foxglove web-
based robot visualization software [3] to allow remote
(anywhere-in-the-world) monitoring of FogROS2 appli-
cations.

7) FogROS2 supports a new backend based on Kubernetes
that allows for faster warm starts and broader cloud-
service provider support.

8) FogROS2 automates the building of cloud-based virtual
machine images for faster startup time.

9) FogROS?2 is part of the ROS 2 ecosystem and is acces-
sible with the standard apt install command.

II. RELATED WORK

Robots have limited onboard computing capabilities and as
the computing demands of robotics algorithms grow, the cloud
has become an increasingly necessary source of computing
power. Kehoe et al. [6], [7] surveys the landscape of cloud
robotics, including capabilities, potential applications, and
challenges.

Cloud-robotics platforms facilitate offloading computation
and data to the cloud. A notable example is RoboEarth [8],
which shared information between robot and cloud. The
main use case was to use the cloud to share databases
between robots, but it did not leverage the cloud for offloading
computing. Rapyuta [9] emerged from RobotEarth to become
a platform for centralized management of robot fleets. In
Rapyuta, robot nodes or Docker images are built on the cloud
and pushed to the registered robots. A similar approach is
taken by AWS Greengrass [10]. Using proprietary interfaces,
Rapyuta and Greengrass allow building and deploying an
entire pipeline for robotics applications [11], [12], [13], [14]
from a centralized cloud interface. In contrast, FogROS2
approaches cloud deployment from the oppposite perpective—
instead of pushing applications from the cloud to a robot,
FogROS2 pushes robot nodes from robot to the cloud. It uses
an interface familiar to ROS 2 developers, allowing developers
and researchers to access cloud resources without learning
or conforming to an additional framework.

Researchers have explored using the cloud for grasp plan-
ning (e.g., Kehoe et al. [7], Tian et al. [15], and Li et al. [16]),
parallelized Monte-Carlo grasp perturbation sampling [17],
[18], [19], motion planning services (e.g., Lam et al. [11]), and
splitting motion plan computation between robot and cloud
(e.g., Bekris et al. [20] and Ichnowski et al. [21]). Researchers
also have explored using new cloud computing paradigms as
they emerge, such as serverless computing [22], [23], in which
algorithms run (and are charged) for short bursts of intensive
computing; while others have explored using the cloud to gain
access to hardware accelerators such as FPGAs [24]. Others
have explored some of these challenges, such as preserving
privacy [25] and sharing models between robots [26]. In many



of these examples, using the cloud requires a custom one-
off implementation or interfacing with a proprietary library.
FogROS2 and ROS 2 reduces this complexity.

For a robot to gain access to cloud resources, it must provi-
sion a cloud computer and establish a network connection to it.
As robots operate in the physical world, the connection to the
cloud must be secured. However, setting this up is an involved
process, in some cases requiring 12 steps for configuration and
37 steps for verification [27]. Hajjaj et al. [27] explored using
SSH tunnelling for communication with ROS nodes running
in the cloud. However, SSH tunnels do not support UDP
which is needed when using ROS 2 Data Distribution Service
(DDS) over UDP (while some DDS implementations support
TCP, using TCP can introduce performance issues, and add
unnecessary overhead for local communication). Crick et al.
proposed rosbridge [28], Pereira et al. [29] proposed ROS
Remote, and Xu et al. proposed MSA [30] as alternate ROS
communication stacks with varying degrees of security and
modifications required for their use in ROS applications. Wan
et al. [31] and Saha et al. [32] propose unifying robot-cloud
communication. Lim et al. proposed using VPNs [33], and
FogROS?2 builds on this approach. FogROS2 allows ROS 2
applications to easily use the cloud without code modification,
and with secured communication.

III. BACKGROUND ON ROS

ROS 2 [4], the successor to Robot Operating System
(ROS 1), includes many substantial improvements. One of the
core improvements in ROS 2 is its change from a proprietary
publication/subscription (pub/sub) system to the industry-
standard middleware Data Distribution Service (DDS) [34].
DDS addresses concerns common in robotics, such as
providing real-time, high-performance, interoperable, and
reliable communication [34]. As DDS is a specification, there
are several implementations, and ROS 2 is agnostic to DDS
implementation.

In ROS 2, computational units are abstracted into nodes that
communicate with each other via a pub/sub system. Nodes
subscribe to named topics and receive messages (data) as
other nodes publish them. In an example ROS 2 application
(Fig. 1), a camera node publishes images, a Simultaneous
Location And Mapping (SLAM) node processes the images
and publishes a location and map, a Motion Planner node
receives the map and then computes and publishes a collision-
free path, and a path following node drives the wheels to
reach a target.

When orchestrating a robot application, often multiple
nodes must be launched simultaneously. The ROS 2 launch
system facilitates this by providing the ability to specify all
required nodes, topic mappings, and relations between nodes
in a single python script file. Launching the robot application
is then a matter of running the command:

ros2 launch <package> <script>.

Listing 1, without the circled FogROS2 extensions, shows
an example launch script that launches two nodes, a
“erasp_motion” and a “grasp_planner” simultaneously.

stting 1: FogROS2 Launch Script Example. This example launches

two nodes. Unlike ROS 1 and FogROS1, which used an XML launch file,
FogROS2’s launch files are python scripts. In this example, the FogROS2
launch extensions are circled. The first extension defines a machine on which
to launch nodes. The second tells FogROS2 to launch the grasp planner
node on that machine.
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Fig. 2: FogROS2 Launch Sequence This is a high level overview of the
steps FogROS2 takes that are described further in Section IV. Approach.
Here we visualize a subset of the steps, keeping the same numbers as Section
IV. The steps shown here are: (3) provision an instance, (4) install ROS and
dependencies, (5) setup VPN, (6) copy ROS workspace to the instance, (7)
setup DDS, (11) launch cloud-based nodes, and (12) launch robot nodes.
The gray nodes on the Robot are copied to the cloud computer and only
launched in the cloud.

IV. APPROACH

At the front end of FogROS2 is the launch system that
specifies what nodes to launch and where. Unlike FogROSI,
FogROS2’s launch system is scriptable—allowing for launch-
time logic to automate parts of the launch process. Listing. 1
shows an example in which a grasp planner needs a GPU to
run efficiently. The script first defines a cloud machine with a
GPU, then adds an attribute to the grasp planner node to tell
the FogROS?2 launch process to run it on the cloud machine.
In more extensive use cases, multiple nodes can run on the
same machine, and FogROS2 can launch multiple machines.

The steps FogROS2 takes are (bold items are new to
FogROS2): (1) trigger launch from integration with the
command-line interface; (2) process the launch script
logic (e.g., to automate cloud selections, see Sec. IV-B);
(3) connect to the cloud provider through its programmatic
interface to create and start a new instance along with setting
up access control to isolate from other cloud computers, and
generating secure communication key pairs, using the new
Kubernetes backend when needed; (4) install the ROS
libraries and dependencies on the cloud machine needed
for the robot application to run in the cloud (skipped if
using a pre-built custom image, see Sec. IV-C); (5) set up
Wireguard virtual private networking (VPN) on robot and
cloud machine to secure the ROS2 DDS communication
between them; (6) copy the ROS nodes from the robot to the
cloud machine; (7) configure the DDS vendor’s discovery
mechanism to peer cloud and robot across the VPN;
(8) optionally configure streaming video compression
(Sec. IV-E); (9) launch docker instances; (10) optionally
launch Foxglove for monitoring (Sec. IV-F); (11) launch
cloud-based nodes; (12) launch nodes on the robot; (13) once
launched, users can use FogROS2 CLI integrations inter-
act with FogROS-related cloud computers (Sec. IV-A).

Once the launch process is complete, the nodes running on
the robot and on the cloud machine(s) securely communicate



and interact with each other—and the only change needed
was a few lines of the launch script.

A. ROS 2 Command Line Integration

FogROS2 integrates with the ROS2 Command Line
Interface (CLI), offering an intuitive way to interact with
FogROS?2 cloud instances not available in FogROS1 or ROS 1.
To use the CLI, a user types into a terminal window:

ros2 fog <command> [args...]

where command specifies an interaction with FogROS?2 along
with additional arguments. For example, command can be
1ist, which lists cloud instances, delete, to delete existing
instances that are no longer in use, image, to create and
manage cloud images, or connect, to connect via SSH [35]
to running instances.

B. Launch Script Extensions

The new launch system in FogROS2 enables custom logic
during launch. This can automate several things not possible
with the launch system in FogROS1. We include several
options:

« Since the distance between robot and cloud can dramati-
cally affect network latency, the launch script can select
nearest cloud computer based on the robot location.

« Since different computers (e.g., Intel vs Arm and with or
without GPU) and regions require different images. The
launch script can automate selecting the correct image.

« Selecting the best or most cost-effective cloud computer
for a ROS 2 node can require significant effort [36]. By
integrating ideas from Sky Computing [37], the launch
script can select a machine type based on a specification
of requirements (e.g., CPU type and core count, memory
size, GPU type and memory, and more).

As an example, to automate region selection, Listing 1,
line 5 changes to use the region returned by a call to
region=find nearest_aws_region (). This function
uses the robot’s IP to determine the robot’s approximate
location using a geolocation API, then computes the nearest
cloud data center. FogROS2 also offers a function that takes
region and computer specification to automate the process
of finding the cheapest instance type that matches the user
criteria. The function uses Amazon’s programmatic interface
to determine suitable instance types and select the lowest
priced.

C. Cloud Computer Virtual Machine Image Management

Cloud computers with FogROS|1 suffered from long startup
times, sometimes approaching 4 minutes. A significant portion
of this time is due to installing ROS and dependencies on the
cloud computer. Advanced users could address this problem
by creating computer images with software pre-installed.
FogROS2 adds a tool to automate this process using the
command-line interface, allowing it to start up pre-installed
instances in a fraction of the time of FogROSI.
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Fig. 3: FogROS2 Streaming Video Compression Unlike FogROSI,

FogROS2 uses streaming video compression of image topics to reduce
bandwidth and latency of cloud-based image processing. In (a), a cloud-
based image processor node subscribes to the camera without streaming
compression. In (b), FogROS2, using the Image Transport Plugin, introduces
an H.264 encoder (compression) node on the robot, and pairs it with an
H.264 decoder (decompression) node on the cloud. In both, the cloud-based
Image Processor Node subscribes to the same topic.

D. New Kubernetes Backend

FogROSI1 supported AWS only. To support a broad set of
additional cloud service providers, FogROS2 integrates a new
backend built on Kubernetes [38]. Kubernetes (see Fig. 1) is a
system that orchestrates running containers, where containers
are units of software packages and their dependencies—e.g., a
robot ROS node, FogROS2, ROS 2, and underlying operating
system components. With Kubernetes, computers can already
be on and waiting to run a new container. This allows for
significant speedup in startup time. There is a trade-off—the
machines managed by Kubernetes must already be on, and
there can be significant initial delay when starting Kubernetes
the first time.

E. Streaming Image Compression

Many robot algorithms depend on fast processing of image
and video data, and these algorithms increasingly require
hardware acceleration e.g., via GPUs. However, images and
videos are data intensive in ROS, and the time to transmit
data to the cloud can reduce the advantage of cloud-based
acceleration. Processing images in the cloud was possible
with FogROS1, but with high latency.

To address this, at launch time FogROS2 can setup
transparent streaming compression between robot and cloud.
The video compression we use is H.264 [39] from the open-
source 1ibx264 [40] library. Using this compression allows
FogROS2 to greatly reduce the bandwidth requirement and
latency of processing video in the cloud. We implement a
ROS 2 image_transport_plugin [41] to make the compression
transparent to the application—publishing nodes still publish
a sequence of images and subscribing nodes still receive a
sequence of images—however, in between the publisher and
subscriber sits a streaming encoder and decoder. Fig. 3 (b)
shows how FogROS2 implements transparent streaming
compression.



Mode FPS Latency (ms)

Uncompressed 1.42 1401
Compressed 15.0 333
Theora 29.6 83
h.264 29.0 38

TABLE I: Streaming FogROS2 video compression A node on a robot pub-
lishes 3000 images to a ROS topic that FogROS2 transparently compresses
and sends to a node in the cloud. We measure the frames per second (FPS)
the cloud node receives. For every image, the cloud node publishes a small
acknowledgement message that the robot uses to measure the round-trip
time, or latency (ms).

H.264 compression has additional benefits: it is popular,
well maintained and supported, and often is hardware accel-
erated, reducing the CPU utilization required to compress
and decompress.

F. Remote Monitoring and Visualization

Users of robots running FogROS1 were only able to
monitor robots locally, missing out on an advantage of the
cloud. FogROS?2 integrates Foxglove [3]—a browser-based
tool that enables visualization of ROS 2 topics. Much like rviz,
the 3D visualizer that is part of ROS, Foxglove operates by
subscribing to ROS messages, then interpreting and displaying
them. The chief difference is that Foxglove runs in a browser,
and thus requires messages to be transmitted over web-
based protocols. Thus there are two components to integrate
Foxglove with FogROS2: (1) a Foxglove server, that provides
the web interface software, and (2) ROS bridge, a ROS 2
node that subscribes to topics as a ROS node and proxies
them through websockets to a browser running the Foxglove
software (Fig. 1 bottom). When visualizations are enabled,
FogROS2 launches both the Foxglove server as a docker, and
the ROS bridge node.

Once set up, FogROS2 provides the IP address of the server,
allowing multiple users in different locations to monitor and
visualize the robot application in a browser.

V. EVALUATION

We evaluate the ability of FogROS2 to speed up robot
computations using the cloud, lower startup latency, lower
network latency and utilization.

We use an Intel NUC with an Intel® Pentium® Silver
J5005 CPU @ 1.50 GHz with 2 cores enabled and with a
10 Mbps network connection to act as the Robot. We perform
all evaluations with cloud nodes deployed to AWS unless
specified otherwise. This setup differs from the examples
in FogROSI1, thus we re-run experiments to compare on
equivalent hardware.

A. Streaming Video Compression

We evaluate the performance of using streaming H.264
video compression between robot and cloud. In this experi-
ment, we have the robot node publish images to a topic to
which a cloud node subscribes. The cloud node responds
immediately with a small acknowledgement message. We
record the round-trip time, and frames per second (FPS),
and show it in Table I. We compare to Uncompressed,

Robot FogROSI1 FogROS2
Scenario  Only  Compressed  Compressed h.264
frl/xyz 0.52 1.62 0.82 0.24
fr2/xyz 0.43 1.61 0.75 0.25
fr2/loop 0.68 1.63 0.89 0.22

TABLE II: ORB-SLAM2 results on FogROS2 We run ORB-SLAM?2 [42]
on 3 benchmarks from the TUM Dataset [46] and measure average per-frame
round-trip latencies incurred by the ORB-SLAM?2 node. Here, FogROS2
runs on a 36-core cloud computer. We observe that h.264 compression
allows FogROS?2 to outperform robot-only and image-compressed (not video-
compressed).

Robot FogROS1 FogROS2
Scenario Only Network Compute Network Total
Uncompressed  14.0 5.0 0.6 5.0 5.6
Compressed 14.0 1.3 0.6 0.7 1.3
h.264 14.0 - 0.6 0.6 1.2

TABLE III: Dex-Net results on FogROS2 We measure compute time in
seconds for 10 trials on a robot with a CPU, and compute and network time
using cloud computer with an Nvidia T4 GPU via FogROS2.

which is the raw pixel arrays native to ROS 1 and ROS 2,
Compressed, which uses (non-streaming) image compression,
Theora streaming image compression, and FogROS2’s H.264
compression. From the table, we observe the benefit of stream-
ing video compression between the robot and the cloud, as the
cloud can receive images 13x faster FPS, while shortening
the latency by 97 %. We observe performance improvement of
H.264 over Theora, the previous best available compression,
with H.264 shortening the latency by 54 %. The reduced
latency from 1401 ms to 38 ms may enable some real-time
cloud-robotics applications not possible without compression.

However, there may be a tradeoff in some applications.
Theora and H.264 are both lossy compression algorithms,
meaning they are designed to compress videos by discarding
some image information. This information loss is tailored
to human perception [39], and thus may adversely affect
computer vision algorithms.

B. Cloud Robotics Benchmark Applications

We evaluate FogROS?2 in a benchmark on 3 example robot
applications: SLAM with ORB-SLAM?2 [42], Grasp Planning
with Dex-Net [43], and Motion Planning with Motion
Planning Templates (MPT) [44]. Refer to FogROS1 [2] for
further details on these benchmarks. We compare to a baseline
of robot-only computing and FogROS1 using equivalent cloud
computers. For examples with cloud-based image processing,
we compare to additional baselines of (a) raw/uncompressed,
(b) PNG compressed, and (c) Theora [45] compressed, where
Theora is an open-source video compression library with an
existing image transport plugin [41].

C. Cloud-Computer Startup Times

We test if FogROS2 can shorten startup times compared
to FogROSI1. In this experiment, we use the new image
command in FogROS2 to generate a custom computer image,
and measure the time between launch and first robot-cloud



Robot  FogROS1 FogROS2
Scenario Only Network  Compute  Network Total
Apartment 157.6 0.07 4.22 1.28  5.50
Cubicles 35.8 0.07 2.16 0.07 223
Home 161.8 0.08 4.30 1.30  5.60
TwistyCool ~ 167.9 0.08 16.24 0.06 16.18

TABLE IV: MPT Motion Planning results on FogROS2 We run multi-core
motion planners from Motion Planning Templates (MPT) [44] on 4 motion
planning problems from the Open Motion Planning Library OMPL [47].We
record the planning time running on a 96-core cloud computer, and the
network round-trip time between robot and cloud.

FogROS2
Computer Image FogROS1 AWS GCP (K8s) Local (K8s)
Default 228+25s 275+61s b b
Custom 15543257 §5+11s 20tZ1s’ 27+083s

2 FogROS]1 custom image manually created
b Kubernetes cluster already started.

TABLE V: Startup time for cloud computer FogROS2 automates the
creation of custom computer images with pre-installed ROS and dependencies.
This speeds up cloud-computer startup allowing the robot to operating sooner.
Kubernetes uses containers that have many of the ROS component already
installed—thus they same time installing ROS, but are not fully customized
like the AWS images.

west coast east coast
us-west-1 6.1 ms 72 ms
us-east-2 74 ms 13 ms

TABLE VI: Example round-trip data times based on robot location (west or
east coast) and the cloud computer’s data center (us-west-1 vs us-east-2).
FogROS?2 launch extension can automatically select the nearest data center
resulting in lower network latency.

ROS 2 node interaction with and without the custom image.
For comparison, we manually create a custom image for
FogROS1 by using the AWS web console.

In Table V, we observe that the custom image in FogROS2
reduces AWS startup times by 63 %.

With Kubernetes, either to a local cluster or Google Cloud
Platform (GCP), startup time is reduced even further. This
is due to having the computers in the Kubernetes cluster
already running. The AWS backend must create a new cloud
computer each time, accounting for approximately 40s of
delay.

There is a tradeoff to be made in startup times. Kubernetes
requires starting up a cluster of computers, which can take on
the order of 10 minutes. If one is willing to spend this time
upfront, Kubernetes allows users to redeploy ROS nodes over
and over, which may be beneficial when rapidly prototyping
changes to robot code.

D. Automating Region Selection

We test the launch script extensions for automatic region
selection to allow robots to select the cloud data center that is
nearest to them. We test deploy a robot on the US west coast,
and the launch script selects the us-west—1 data center.
When we test to deploy the robot on the US east cost, the
robot selects the us—east-2 data center. Table VI shows

example round-trip network times in this experiment, with
the best latencies in bold and automatically selected by the
geolocation script.

VI. CONCLUSION

We present FogROS?2, an adaptive cloud-robotics platform
for running compute-intensive portions of ROS 2 applications
in the cloud. FogROS2 addresses 9 shortcomings of FogROS1,
integrates with the ROS 2 launch and communication systems,
to provision and start cloud computers, configure and secure
network communication, install robot code and dependencies,
and launch robot and cloud-robotics code. As a redesigned
and distinct successor to FogROS, FogROS2 supports ROS
2, transparent video compression, improved performance and
security, access to more cloud computing providers, and
remote visualization and monitoring. In experiments, we
observe a significant performance benefit to using cloud
computing, with the additional improvement from transparent
video compression.

In future work, we will continue to improve performance
and capablities of FogROS2. We will explore additional
models of computing, such as serverless, spot instances,
and more. We will also explore extending the networking
capabilities of FogROS2 to allow robots to communicate,
collaborate, and share data more easily.
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