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A fundamental problem in analysis of complex systems is getting a reliable estimate of entropy of
their probability distributions over the state space. This is difficult because unsampled states can
contribute substantially to the entropy, while they do not contribute to the Maximum Likelihood
estimator of entropy, which replaces probabilities by the observed frequencies. Bayesian estimators
overcome this obstacle by introducing a model of the low-probability tail of the probability distri-
bution. Which statistical features of the observed data determine the model of the tail, and hence
the output of such estimators, remains unclear. Here we show that well-known entropy estimators
for probability distributions on discrete state spaces model the structure of the low probability tail
based largely on few statistics of the data: the sample size, the Maximum Likelihood estimate, the
number of coincidences among the samples, the dispersion of the coincidences. We derive approxi-
mate analytical entropy estimators for undersampled distributions based on these statistics, and we
use the results to propose an intuitive understanding of how the Bayesian entropy estimators work.

I. INTRODUCTION

Estimating entropy — that is, the measure of uncer-
tainty [1, 2] — of a random variable from its samples is
often a key question in analysis of complex systems. This
estimation from a finite (and often small) set of sam-
ples is a hard problem, especially for high dimensional
systems, where the number of states that a variable can
take quickly overwhelms the number of samples N. Then
many of the states, hereafter called low probability states,
have probability < 1/N. Collectively, we refer to all of
these states as the tail of the probability distribution.
While there may be a lot of samples in the tail, each low
probability state will not be sampled typically, or will be
sampled at most once. Because of the tail, the entropy
estimator that replaces probabilities of states by their
empirical frequencies (the so called naive or Mazimum
Likelihood estimator [3]) has a large sample size depen-
dent bias [4]. Corrections have been derived to overcome
this bias [5H7], but these tend to be valid only in the
well-sampled regime. Outside of this regime, Bayesian
[8HLI0] and some non-parametric [LIHI3] estimators may
still result in low bias estimates by imposing a prior:
assumptions on the probabilities of the low-probability
states.

Although these Bayesian and non-parametric estima-
tors perform well on some data sets, it is known that
no estimator can be universally unbiased in this regime
[4, [14]. Thus it is crucial to understand how these esti-
mators extract information about entropy from data, and
hence when they will fail. Unfortunately, such theoretical
understanding is missing for many estimators. Ma was
the first to point out that estimation of entropy is possible
for poorly-sampled uniform distributions by analysing a
particular statistics of the data: coincidences [15]. Ne-
menman extended the theoretical idea that coincidences

determine entropy to non-uniform distributions obeying
some Bayesian priors [16]. However, a similar theoretical
understanding is still missing in a broader context, and
it remains unclear which statistics of data, in addition to
the number of coincidences, may contribute to entropy
estimation and why.

In this paper, we analytically investigate two Bayesian
estimators: that of Nemenman, Shafee and Bialek [9] [17]
and of Archer and Pillow [10]. We focus on the regime,
which is arguably the most important for real life ap-
plications, where the number of states with at least one
sample, K, is similar to the total number of samples,
Ki ~ N > 1, and yet K; < N, so that there are coin-
cidences in the data. Outside of this regime, the prob-
ability distribution is either well-sampled (so that many
different methods for entropy estimation would work),
or there are no coincidences at all (so that entropy es-
timation is impossible). In our regime of interest, we
show that the result of the estimation by the studied es-
timators depends on the Maximum Likelihood entropy
estimate Sy, the number of coincidences, and also on two
measures of dispersion of coincidences. The first of these,
K5, is the number of states with at least two samples.
The second, which we call ()1, characterizes the spread
of coincidences over states with three or more samples.

We show that values of these statistics are related to
the structure of the tails of the probability distribution
that is assumed by the estimators. Specifically, a short,
exponential, tail is more likely to be inferred by the es-
timators when there many coincidences or they are dis-
persed. If the number of coincidences is intermediate,
and the coincidences are concentrated, then the estima-
tors infer a long tail. In between these two regions, a
mixed tail dominates. We show that the studied estima-
tors correct Maximum Likelihood, and that the correc-
tion is larger when there are fewer coincidences and they



are concentrated, which in turn happens with a large
exponential tail or a slowly-decaying long tail. This un-
derstanding relates the observable data statistics to as-
sumptions that Bayesian estimators make about the un-
derlying probability distributions (see Fig. 7 and hence
provides an intuitive explanation for how these estima-
tors work and, crucially, when they fail.

II. OVERVIEW OF BAYESIAN ENTROPY
ESTIMATION

Given a probability distribution {¢.} = ¢ for a dis-
crete one-dimensional random variable X, its entropy is
defined as [I]

_qu Iqugﬁ' (1)

Note that we use the natural logarithm throughout this
paper, and hence entropy is measured in nats. One is
often faced with a problem when S must be estimated for
unknown ¢, from a set of N samples {z1,..., 2y} from
the probability distribution. The Maximum Likelihood
estimator of entropy, Sy, is then defined by replacing the
probabilities with frequencies g, — ¢, = n./N,
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States with zero frequencies in the sample do not con-
tribute to Sy resulting typically in underestimation of
the entropy [4]. In general, because of this low proba-
bility tail, estimation of entropy from data is very hard
when the number of samples is smaller than the number
of effective states of the variable, N < exp(5).

Bayesian estimators address the problem by imposing
various a priori assumptions p(q). One then uses Bayes
theorem to infer the a posteriori distribution of q, and fi-
nally integrates over q to get the a posteriori distribution
or moments of entropy. Specifically, the mean posterior
entropy S = (S|n) given the counts n = {n,} of how
many times state x was sampled is given by

= (S|n) = /S
= /S(q)5 <S+ > galog %) p(gln)dq,  (3)

where p(g|n) is the posterior over g under some prior
p(9),

p(S|q)p(g|n)dq

p(nlgp(e) _ 1L, &*p(9) 0
p(n) p(n)

For distributions with known finite size A of the space of

the possible outcomes (aka the alphabet size), the Dirich-

let distribution is often chosen as a prior due to its con-
jugacy with the categorical distribution:
A

p(q) = Dirichlet(g|)\) x H @, (5)

i=1

p(gln) =

where A is known as the concentration parameter.

Note that any chosen prior p(q) implicitly imposes as-
sumptions on the structure of the low probability tail
(and hence its contribution to the entropy) based on the
observed statistics of the well-sampled part of the proba-
bility distribution. However, these implicit assumptions
usually are not made explicit, and they remain mysteri-
ous even for most commonly used Bayesian estimators.
Lifting this veil is the goal of this work.

A. The Nemenman-Shafee-Bialek (NSB) Estimator

Nemenman et al. [9] showed that, for variables with
the finite alphabet size A, Dirichlet priors on g with a
fixed value for the concentration parameter A correspond
to highly concentrated a priori distribution on entropy,
which persists for large sample sizes. This bias induces
incorrect entropy estimates, which nonetheless have low
variance and hence are certain about their outputs. To
address this issue, Ref. [9] suggested a Dirichlet-mixture
prior

pnsn(q) = / Dirichlet (g N pprior N\, (6)

where p(\) are the mixture weights determined by
pprior(A) X 8)\<S‘A> = Ad}l (-A)‘ + 1) - wl(A + 1)7 (7)

and where (S|)\) is the a priori expected entropy under
the Dirichlet(g|A) prior, and 1 (+) is the tri-gamma func-
tion [18]. This choice of weights implies a nearly uniform
a priori distribution for the entropy S on the interval
[0,log A]. The resulting entropy estimate is then

SNSB— S|n //S

_ P(P|A)Pprior(A)
—/<S|n,/\> Sprier() g, (8)

Here (S|n,\) is the posterior mean entropy under the

prior Dirichlet(g|\), and p(n|A) is the evidence (which
has a Polya distribution) [19],

p(n|)) = / p(nlg)p(al))dg
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p(g|n, \)p(A|n)dgdA

where T'() is the gamma function [18]. Using the ana-
lytical expressions for the first two moments of posterior
mean entropy (S|n, ) (available from Refs. [8] [9]), one
then uses one-dimensional numerical integration over A
to obtain Snsg.

B. The Dirichlet and the Pitman-Yor Processes

When the size of the state space is unknown or infinite,
the standard NSB construction does not work. Then
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FIG. 1. Relation between assumptions about the tail structure and the statistics that determine entropy estimation. The set of
unsampled states, ¢; < 1/N, which we refer to as the tail, may contribute substantially to the entropy. However, the Maximum
Likelihood estimation overlooks this contribution. If the rank ordered plot of the tail is exponential with the scale « (top panel),
then the tail has effectively « states, which contribute 65 ~ log a to the entropy. While the tail cannot be observed directly,
it pulls samples from the head of the distribution, so that the number of coincidences, A, in the head decreases as a grows.
Thus one can estimate o and hence the entropy itself from A. Alternatively, if the rank-ordered plot of the tail has a power
law structure with the exponent —1/d, then the tail does not have a finite effective size (bottom panels). Then its contribution
to entropy depends on d as §S ~ (1 —d)~"'. In this case, one can estimate d, and hence the entropy, from the dispersion of the
coincidences, which depends, in part, on how many samples happen once or more, Ki, or twice or more, K2, in the dataset.

one commonly uses one of the following two stochastic
processes to construct a prior p(q) over a countably in-
finite state space: the Pitman-Yor Process (PYP) [20]
and its special case, the Dirichlet Process (DP) [21]. To
specify these processes, one requires two inputs: a pa-
rameter vector and a base distribution. Parameters of
the Pitman-Yor process are known as the discount pa-
rameter d, 0 < d < 1, and the concentration parameter
a. The parameters control the shape of typical distribu-
tions generated by the process. Specifically, d controls
the structure of the low probability tail of g, so that the
tail typically decays as ¢, < = /4. The concentration
parameter a control the probability mass near the head
of the distribution. In the limit d — 0, PYP(d, o) be-
comes the Dirichlet Process, DP(«). In other words, the
Dirichlet Process generates distributions with short tails.

When the base distribution is the Beta distribution,
one draws samples ¢, ~ PYP(d,«) via the so called
stick-breaking process [22], which uses an infinite se-
quence of independent Beta-distributed random variables

Be ~ Beta(l — d, « + zd), so that

r—1

qJE = ﬂw H(l - By) (10)

y=1

Thus obtained g are not strictly decreasing with x, and so
one obtains a strictly non-increasing distribution g from
them by rank ordering.

C. Expectations over DP and PYP Posteriors

Previous studies [23] showed that PYP priors (for
multinomial observations) yield a posterior p(q|n, «, d),
which consists of two parts: probability of K; states
that exist in the sample with the counts of, at least,
one, and probability of states that are not sampled. We
will denote the set of states with nonzero counts as K,
and its cardinality is K1 = ||K||. Then the first term
of the posterior is given by the Dirichlet distribution,
p(g € K|p) o [, ¢4+, where p is a concentration vector



p=(n1—d, -+ ,ng, —d,a+ Kyd). This leaves the prob-
ability of g. =1 -3k ¢, for the unobserved states. In
other words, the states with nonzero counts contribute
the following to the posterior:

p(q € K|n) = p(q17 e aqK17q*|n)
= Dirichlet(ny — d, -+ ,ng, —d,a + K1d)

K
o< qf"'Klqui"i*d. (11)
i=1

For the states that have no samples, the posterior is equal
to the prior. Thus their contribution to the posterior is
the Pitman-Yor Process, normalized by their total prob-
ability being ¢*:
p(q € K) = p(ax,+1,4x,42,- - ) = ¢'PYP(d, o + Kl(d)~
12)
Overall, this yields a closed form solution for the poste-
rior mean and variance of the entropy S. Specifically, the
resulting posterior mean (S|n, «,d) is

a+ Kid

(Sn,a,dy =(a+ N +1) — TEN ¥(1—d)
1 K1 (13)
_Oz+N (Z(na: —d)¢(”m —d+ 1)) ’

where 9(z) = 0, logI'(x) is the di-gamma function [18].
Unfortunately, this is usually not a good estimate of en-
tropy since, for fixed o and d, the prior PYP(d, ) on ¢
corresponds to a highly concentrated a priori distribu-
tion on entropy, just like was noted before in the context
of the NSB estimator. To counter this, Archer and Pillow
[10] followed the NSB prescription and introduced a prior
(mixture) over the parameters of PY P(d, &), pprior(e, d),
which uniformized the induced prior over entropy (with
the caveat that, for a distribution on a countable alpha-
bet, the entropy may be infinite, and hence strict uni-

form distribution over entropy is impossible). Specifi-
cally, they used
pprior(aa d) = p(’y) = 6710/(17’”, where (14)

v=@0) =91 =d)/@Pla+1) =y(1—=d), (15)

and then they confirmed numerically that this choice of
the prior leads to good estimates of entropy for various
test data sets. In other words, they proposed a new esti-
mate of entropy, the Pitman-Yor Mixture (PYM):

Spyar = (Sln) = / (S|m, @, d)pposterior (@, dIn)d(cr, d)

p(n|a, d)pprior(aa d)
= [(S|n,a,d d(a,d), (16
[ (Sl P rerl© Do )15
where (S|n,a,d) is given in Eq. (13). The evidence
p(n|a,d) is then given by (see Ref. [10] for a detailed
derivation)

(14 ) T (o + 1d) [TE, D(n, — d)
I(1—d)XT(a+ N) '

p(n|a,d) =
(17)

4

Note that taking d — 0 in Egs. and and mak-
ing the identification « = A\ in the limits A — 0 and
A — oo such that « is finite, result in a countably-infinite
analogue of the NSB estimator.

III. DETERMINING DATA STATISTICS THAT
DEFINE ENTROPY ESTIMATES

In the section, we approximate the likelihood function
of the Pitman-Yor process, Eq. , analytically in terms
of coincidence-based data statistics. We then numerically
show that the resulting analytical entropy estimates are
close to the exact Pitman-Yor Mixture estimator. We
focus on the regime where the Maximum Likelihood en-
tropy estimator fails dramatically. For this, we study ran-
dom variables with many accessible states in the regime
where the number of unique samples, K7, is of the order
of the total sample size N. This regime corresponds to
K; < N < exp(S), where N is the number of samples
and S is the true entropy.

We start by considering the log-likelihood function,
which is the logarithm of the evidence p(n|a,d) in

Eq. :

L(n|a,d) =log'(1+a)—logI'(N+a)+logT (% + Kl)

K
“logT (% n 1) +3 logT'(n; — d) — Ky log I(1 — d).
=1

(18)

We now define K,,, as the number of states with at least
m counts in the total sample of size N, K,,, = Zm>m 1.
We denote by my the largest occupancy of any state in
the sample. Further, we define I as the vector, whose
mth element is K,,,. We note that, for any function f(n),

Zf(m) =D (K = Kpnp)f(m). (19)

m

Thus, in particular, the log-likelihood L£(n|a,d) can be
viewed as L(K|a,d). With this, we can expand Eq.
around d = 0 to get (see Appendix [VI A for details):

L(n|a,d) = Li(K|a,d) =logT(1 + a)
« «
—logD(N + @) + logT (g + K1) ~ logT (g +1)
+ (K, — 1) logd + Ky log(1 — d) — Qid + O(d?), (20)

where
= E _—m_ 21
Ql — m— 17 ( )

and the subscript a denotes the d — 0 asymptotic nature
of the expression.

By rewriting the Maximum Likelihood estimate Sy of
Eq. in terms of coincidences (see Appendix ,
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FIG. 2. Comparison between PYM and related estimators and their approximations for distributions with different tails. The
upper panels (a-c) show the distributions, whose entropy is being estimated. The lower panels (d-f) show the corresponding
entropy estimates as a function of the number of samples, averaged over ten sets of samples. The full estimators, PYM and
NSB (with a large alphabet size A = 20K1), almost overlap with our approximations, aPYM and aNSB. In all panels, we show
results for Maximum Likelihood (black), NSB (blue), aNSB (dashed blue), PYM (orange), aPYM (dashed orange), and Siong
(green) estimators. The dashed gray line represents the true value of entropy for each of the studied distributions.

using the identity Eq. , and approximating certain
terms that are finite in the limit d — 1 via a Taylor
expansion around d < 1, the mean posterior entropy,

Eq. (13), results in (see Appendix [VIC):
(SIn, a,d) = (S|K,a,d)q = 9(N +a+ 1)

Oé+K1 1
—<a+N>1/1(1—d)+a+N[.N(SO—logN)—K1

+ K2(10g4 —1- 1/)(2 - d)) + Qld

2 Km
+(9<d Z (m_1)2>]7 (22)
m=3

where O(d?,Y", _3 K;n/m?) means that we kept terms
that are at most linear in d and at most proportional
to >, (75%1) Interestingly, within this approxima-
tion, the log-likelihood and the posterior mean entropy
depend on the sample size N, the Maximum Likelihood
entropy estimate Sy, and the three characteristics of the
coincidence vector: K7, Ko and Q. .

The final step in approximating the estimator Spy s,
Eq. , is to integrate the expected entropy for
fixed hyper-parameters (S|K,«,d), over the posterior
Pposterior (@, 1) o< p(nfe, d)pprior (@, d) to form the
Pitman-Yor mixture. Then the variance of the result-
ing estimator is dominated by the contribution from the

uncertainty in the posterior distribution of the parame-
ters o, d, which is about 80% of the total variance in our
simulations.

This procedure of replacing (S|n, «, d) with the asymp-
totic expression (S|K,a,d), in Eq. leads to a new
estimator of entropy, which we call approzimate PYM es-
timator, or aPYM. This estimator is fully determined by
just few data statistics, N, Sy, K1, Ko, and (1. There
are also two limiting cases of this estimator. First, by
taking d — 0 in Egs. , we define the approxi-
mate version of the NSB limit of the PYM estimator on
a countably infinite number of possible outcomes, which
we denote as aNSB. At the other extreme, taking o — 0
in Egs. , corresponds to a prior that favors dis-
tributions with long tails. We denote the corresponding
estimator as Siong.

The above observation that, in the undersampled
regime where exp(5/2) < N < exp(.S), the PYM entropy
estimator and its relatives are determined approximately
by just few statistics of the data, {N, Sy, K1, K2, @1},
is the main result of our paper. To corroborate this,
we explore the quality of the approximation numeri-
cally for different distributions g. Figure [2| presents re-
sults for three distributions with different structures of
tails, generated from the Pitman-Yor Process: a dis-
tribution with an exponential tail (Fig. , PYP(d =
0, = 400) = DP(400)), one with a mixed tail (Fig. 2b:
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FIG. 3. a: Phase diagram of the dominant tail hypothesis selected by the PYM estimator as a function of various statistics of
the data sample. The explored statistics are the fraction of coincidences in the sample, A/N, and dispersion of the coincidences,
K,/K;. This diagram is evaluated at the third crucial data statistics set at Q1 = 0.3 Qmax = 0.3(A — K3)/2. b: Schematic
diagram that illustrates how sample sets with different A, K7, and K> may look like. An empty or gray circle above a state z;
represent a single sample for that state. Gray circles denote coincidences.

PYP(d = 0.4,a = 100)), and one with a long tail
(Fig. §e: PYP(d = 0.6,a = 0)). In the lower pan-
els we show the results of estimating entropy for dif-
ferent dataset sizes using the ML estimator, the PYM
estimator, the NSB estimator with a large alphabet size
A = 20K, and the three approximations: aPYM, aNSB,
and Siong. All results are averaged over ten sets of ran-
dom samples. In all cases, the differences between NSB
and aNSB on the one hand, and PYM and aPYM on the
other are negligible, supporting the accuracy of the ap-
proximation. All four of these estimators produce high
quality estimates for all sample sizes. Further, we also
checked that the approximation of the posterior error of
the estimators is close to that of the full versions (not
shown). In contrast, Slong only performs well when the
distribution has a long tail, and the Maximum Likelihood
never works well.

IV. TAIL-HYPOTHESIS AND ENTROPY
ESTIMATION PHASE DIAGRAMS

The above discussion shows that the PYM estimator
and its relatives work by first estimating the most likely
« and d from the sampled data, and then using these
estimated parameters to approximate the structure of the

low probability tail (from short, to long) and hence of its
contributions to the entropy. We further showed that,
in the regime of interest, the log-likelihood of «@ and d is
dominated by just few statistics: IV, Sy, K1, Ks, and Q1.
It is thus illustrative to understand, which combinations
of these statistics select which hypothesis on the structure
of the tail. Building the corresponding phase diagram
of the selected tail structure as a function of the data
statistics is the goal of this Section.

We will consider three classes of tails: exponential
(d = 0 selected, denoted as hypothesis H = 1), long
tail (o = 0 selected, denoted as hypothesis H = 2), and
a mixed tails (arbitrary o and d, denoted as H = 3). Our
goal is then to evaluate which of the three tail hypothe-
ses has a higher probability given the data. Long and
short tail hypotheses have one parameter each, while the
mixed tail hypothesis has two parameters and contains
the other two hypotheses as special cases. Thus when
evaluating the log-likelihoods of each of the hypotheses,
we must penalize them for having a different number of
parameters, which we do using Bayesian Information Cri-
terion [24]. To do this, we evaluate the likelihoods

Ly =logp(K|&, cf) + logpprior(d,cZ) - n7H log N, (23)

where & and d are the maximum likelihood values of the
parameters within each hypothesis, and ng is the number



of parameters for the hypothesis (ngy = 2 for H = 3,
and ng = 1 otherwise). We remind the reader that, by
construction, & = 0 for the long tail hypothesis, H = 2,
and d = 0 for the short tailed hypothesis, H = 1.

We determine the regions of the N,Sp, Ky, Ko, Q1
space, where one of the three Ly dominates, and plot
the slice of this phase diagram in Fig. |3] Specifically, in
the Figure, we vary the total number of coincidences,
A = N — Kj, and the number of states with coinci-
dences, that is, the number of states with more than
two counts, K. By sampling many distributions, we
empirically observe that the value Q1 ~ 0.6(A — K3)/2
is when the rest of the A — K5 counts are uniformly
dispersed, and @ tends to zero when the rest of the
counts are concentrated in a single state. Note that the
maximum value @1 can take is Quax = A_2K2. For this
reason, we choose the intermediate representative value
Q1 = 0.3Qmax = 0.38552.

To simplify the presentation, we plot the winning tail
hypothesis as a function of A/N and K5 /K;. Normalized
in this way, the diagram is constrained to a square of size
1,as 0 < A/N,K5/K; < 1. In addition, K5 < A, which
means that the upper left corner is not accessible. The
ratio A/N determines how common are the coincidences,
and the ratio K5/K; describes whether the coincidences
in the data are concentrates in a few states, or dispersed
over many states (see Figure 3p).

Figure show that the exponential tail hypothesis
dominates when there are many coincidences, A/N ~ 1,
or when the coincidences are dispersed, that is Ko /K ~
1 or K5/A ~ 1. Both cases can be explained as corre-
sponding to distributions that are relatively uniform on
some fixed number of states, and have zero probability
elsewhere. A long tail only dominates when the fraction
of coincidences has an intermediate value, but the coin-
cidences are highly concentrated, Ko/K; < 1. In other
words, in this case, there are dominant states, but a lot
of samples still fall outside of them. For other values of
A/N and K5/K;, the mixed tail hypothesis dominates.

Equipped with this picture of which tail hypothe-
sis is selected by the PYM estimator as a function
of data statistics, we now can calculate how the esti-
mator corrects the ML entropy value Sy for different
data statistics. Integrating the mean posterior entropy
(SIK,a,d)q, Eq. , over our approximation of the
posterior, p,(«,d|K), which we obtain by exponentiat-
ing Eq. , we get the approximate PYM estimator
S Py M,qa- The Maximum Likelihood estimate S enters
linearly in the posterior mean entropy, Eq. . Thus
we write

(SIK, a,d)o = ba,a So + 5Sa.d, (24)

where b, 4 and 05,4 can be read off from Eq. . Per-
forming the integral over the approximate posterior, this
becomes:

S =365+bS,, (25)

where 65 and b are averages of the corresponding a- and
d-dependent quantities. Thus independent of the Max-
imum Likelihood entropy value, within our approxima-
tion, the PYM estimator obtains the entropy estimate
by decreasing the ML contribution from the well-sampled
head of the distribution and adding an offset that comes
from the low probability tail. This is similar to so-called
partition-based entropy estimators, [12} 17} 25] [26], which
divide the state space into sub-spaces, estimate entropy
in each sub-space, and then add the estimates weighted
by the probability of being in a corresponding sub-space.
However, here this partitioning arises naturally from the
Bayesian framework within our approximations.

Both the scale factor and the offset depend on the dom-
inant a and d contributing to the estimator, and hence
on the usual statistics of the data, A, Ky, Ko, and Q1.
Specifically, we numerically observe that the value of b
obtained from Eq. satisfies

b= (N/(a+ N)) <1, (26)

where the average is over the product of the approximate
posterior obtained by exponentiating Eq. (20) and the
prior p(y) = e~ 7/19 with ~ defined in Eq. |15} Note that
« is a measure of how much probability is concentrated
in the tail. Thus the ratio N/(« 4+ N) approximates the
overall weight of the the well-sampled head of the dis-
tribution, requiring to decrease the contribution to the
entropy from the head by this factor. This matches our
assertion that the aPYM estimator is a partition-based
estimator, separating the head from the tail.

In Figure 4| we show results of numerical estimation
of the offset 65 and the scaling factor b as a function of
the fraction of coincidences, A/N, and the dispersion of
coincidences, K5/K7. As in the previous case, we keep
Q1 = 0.3Qmax. We also set N = 10*. Figure a) shows
that the additive term grows when the fraction of coin-
cidences A/N decreases, and when Ks/K; is small, so
that coincidences are concentrated. Both of these cases
correspond to a lot of mass in the tail (see correspond-
ing long tail region in Figure (a). The largest values of
45 occur along the boundary strip (A/N, Ky/K; < 1)
and the boundary Ko = A. Panel b shows that the
scaling factor b is close to 1 in most areas, except near
the boundary edge Ko = A. Along this boundary, the
scaling factor becomes the largest when the number of
coincidences decreases, A/N <« 1. Figure [4| clearly high-
lights when Bayesian corrections to the ML estimation
of entropy are essential: regions of few and concentrated
coincidences.
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FIG. 4. Corrections to entropy estimation as a function of determining data statistics. We break down the final estimation for
entropy in two parts, as S = 0S(2/N, K2/k;) + b(2/N, K2/K,) So, where §S is the additive correction and b is scaling factor or
weight for the Maximum Likelihood estimate. Well-sampled distributions are located in the upper-right corner where 65 = 0
and b = 1. As in the previous plots, we leave Q1 = 0.3 (A — K32)/2. a: Additive correction to entropy. b: Scaling correction to

entropy.

V. DISCUSSION

The major finding of this work is an excellent approxi-
mation for the PYM estimator, one of the best Bayesian
entropy estimators, and its various relatives (such as
NSB). The approximation simplifies the numerics con-
siderably. Crucially, the approximation also shows that
the output of the PYM entropy estimator depends on
just a few statistics of the data, namely the maximum
likelihood (ML) entropy estimate, the fraction of coinci-
dences A/N, and the dispersion of coincidences K /Ko,
and Q). We showed that that workflow of the estimator
can be interpreted as first estimating the parameters d
and « based on the aforementioned statistics, and with
them the tail structure and the total weight of the tail.
Then the estimator rescales the ML entropy estimate by
the weight of the well-sampled head of the distribution,
and adds to it the estimated entropy of the tail. The
phase diagrams of which tail structure the estimator se-
lects, Fig.[3] and how it corrects the ML estimate, Fig. [4]
illustrate these points.

Early work of Ma showed that when states are
equiprobable, in the under-sampled regime, the coinci-
dences in counts can help with the inference of the en-
tropy of a system. Later Nemenman [16] showed that in
the severely under-sampled regime (K; close to N), en-
tropy estimation depends on the number of coincidences
K. Further, he pointed out how reliable entropy esti-

mates may be obtained by partitioning the overall state
space of the variable into sub-spaces with similar sam-
pling properties [26]. Here we extend these results to the
whole regime where entropy estimation is challenging for
multinomial observations, exp(S5/2) < N < exp(S), by
approximating the more general PYM estimator. Our
identification of the small set of statistics, which define
the output of the estimator, lifts the veil from its inner
workings, allowing for a simple, semi-analytical estima-
tion procedure. In particular, this allows us to predict if
a particular estimator will be biased simply by looking
at the values of the select statistics of the data.

How to match a priori assumptions about the underly-
ing distributions to the data to allow for an unbiased esti-
mation of quantities of interest—such as entropy [10}
or the mutual information [27]— is an open problem [2§].
It requires understanding the relation between the a pri-
ori assumptions and the data features that influence the
inference. In this work, we build such a link for entropy
estimation, and we hope that similar links might exist
for other difficult estimation problems.
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VI. APPENDIX

A. DMarginal likelihood approximation for a
Pitman-Yor process

In this Appendix we show how to approximate the
marginal posterior of a Pitman-Yor process in the regime
K; < N < exp(S). We start by manipulating each term
in the logarithm of the evidence £ = logp(n|a,d) from

Eq. ,

Ki—1
L(nla,d) = log(a + Id)+
=1

K1
> logT(n; — d) — KylogT'(1 — d)
=1

+logT(1+a) —logT'(N + ). (27)

To simplify the first term in Eq. , we rewrite it in
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terms of coincidences K; as follows:

Ki—1
=" log(a+1d)
= Z {longrlog (8 + l)] = (K7 —1)logd

1=
Ki—-1

1
+ ; {1ogF(%+l+1) flogF<%+l>}

= (K; —1)logd +logT (% +K1> “logT (% n 1) _
(28)

In order to rewrite the rest of the terms of Eq. in
terms of various coincidence statistics, we use the identity
Eq. . Joining the second and third terms in Eq.
and rewriting them in terms of count multiplicities yields

K1

Zlogf(ni —d) — KjlogI'(1 — d)

i=1

= —KylogT(1 —d) + Y (K — Kpmy1)logT(m — d)
m=2

= Z K, [logT'(m — d) —logT'(m — 1 — d)]

m=2
= Z K., log(m —1—4d)
m=2
= Kslog(1 —d) + Q(d), (29)
where
my
Q(d) =Y Kplog(m —1—d). (30)
m=3

where my denotes the largest occupancy of any state in
the sample. Since the domain of 0 < d < 1 is small, Q(d)
is approximately linearly varying with d, so that we can
expand it around d = O:

j=1 Lm=3
K,
~ Q(0) — lz — | d
m=3
1 K,
Y = d2 + O(Q )a
2 [m—S( 1)2 ’

where

I @
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for j > 1. As d approaches 1, the term K5 log(1—d) goes
to infinity, which renders any error in the Taylor expan-
sion of Q(d) irrelevant. This makes the approximations
above useable even if we ignore O(d?) terms.

Putting all of the approximations above together, the
ensuing approximate logarithm of the evidence £(n|a, d)
is

L(n|a,d) = (K; —1)logd + log T (% —|—K1)

—logT (% + 1) +1log(1+ a) —logT'(N + «)

)

up to an additive constant. This is Eq. in the main
text.

+ Kylog(l—d) — @Q1d+ O <d2 Z (mK_le> , (32)
m=3

B. Maximum likelihood Entropy in terms of
coincidences

To relate the conditional entropy, Eq. , to the
Maximum Likelihood entropy estimator Sy, we need to
rewrite the latter in terms coincidences. Utilizing the

identity Eq. , we write
N [Sy —log N] = —Znilogni =

_ (Km _
m=2

= —K>(2log?2)
— Z Ky, [mlogm — (m —1)log(m — 1)].  (33)

m=3

Kpy1)mlogm

Rewriting the expression in brackets as
mlogm—(m—1)log(m—1) = 14+1(m)+0O(m~2). (34)
and plugging this into Eq. , we finally obtain,
N [Sy —log N] = —Kylogd — (N — K1 — Kq)—

> Kpib(m) + O (Z Km/m2> . (35)
m=3

m

C. Mean posterior entropy approximation for the
Pitman-Yor Process

Similar to Appendix [VIA] here we approximate the
posterior entropy, Eq. in the limit of small d. To sim-
plify the notation, we use the shorthand S = (S|n, «, d)
in this Appendix. Rearranging Eq. , we obtain

(a+N)[S—9Y(N+a+1)=
—ap(l—d) =Ky dp(1—d) =Y (n;—d)ip(n;+1—d).

i

(36)



We now again use Eq. and a Taylor expansion in
small d to rewrite the last term on the right hand side of

Eq. :

Kydy(l—d) =) (ni -

— Kydv(l-d) - Y (Kn
m=1

d)Y(n; +1—d)

— K1) (m = dyb(m + 1 - d)

== 3 Knlln = )0(m +1-d) = (m = 1= ol — )

fZK (14 (m — d)]

:_ZK

=—-N—-Ki(1—-d)—

Kop(2 —d) — ZKm¢m d).

) (37)

where we used Y(m +1—d) = (w(m —d)+ ﬁ) .

Since m > 3, we can Taylor expand the sum in this

11

last term around d = 0 to obtain

> Kno(m—d) ~ Z Kpip(m) +d Z Kt (m
m=3

O(d? ZK P (m)).  (38)
Now using the relations ¢'(m) = ﬁ + O(m™?) and

the expression for 3~ .

K, (m) in Eq. , we rewrite
Eq. as

m=3

~ K210g4+ (N—Kl —KQ) —N[SO —logN}

+d Y K /m?), (39)
m=3

where (’)(d27zm:3 K,,/m?) means that we kept terms
that are at most linear in d and whose summands are
at most proportional to > . K,,/m. Plugging these
approximation in Eq and noticing that @1 =

K,
Zm 3 m— 1’

(a+N)[S—9Y(N+a+1)=
N(So—logN) —ay(l—d)+ Ky [-1— (1 - d)]
+K2 [_1 - ¢(2 - d) + log 4]_Q1 d+0(d2a Z Km/m2)7

m=3

(40)

which after isolating S becomes Eq. of the main text.
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