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Abstract Observations of power laws in neural activity data have raised the intriguing notion
that brains may operate in a critical state. One example of this critical state is “avalanche
criticality,” which has been observed in a range of systems, including cultured neurons, zebra�sh,
and human EEG. More recently, power laws have also been observed in neural populations in the
mouse under a coarse-graining procedure, and they were explained as a consequence of the
neural activity being coupled to multiple latent dynamical variables. An intriguing possibility is
that avalanche criticality emerges due to a similar mechanism. Here, we determine the
conditions under which dynamical latent variables give rise to avalanche criticality. We �nd that a
single, quasi-static latent variable can generate critical avalanches, but that multiple latent
variables lead to critical behavior in a broader parameter range. We identify two regimes of
avalanches, both of which are critical, but di�er in the amount of information carried about the
latent variable. Our results suggest that avalanche criticality arises in neural systems in which
there is an emergent dynamical variable or shared inputs creating an e�ective latent dynamical
variable, and when this variable can be inferred from the population activity.

Introduction
The neural criticality hypothesis – the idea that neural systems operate close to a phase transition,
perhaps for optimal information processing – is at the same time ambitious and banal. Measure-
ments from biological systems are limited in the range of spatial and temporal scales that can be
sampled, not only because of limits of recording techniques but also due to fundamentally non-
stationary behavior of most, if not all, biological systems. These limitations make proving that an
observation indicates critical behavior di�cult. At the same time, the idea that brain networks are
critical echoes the anthropic principle: tuned another way, a network becomes quiescent or epilep-
tic, and in either case seems unlikely to support perception, thought, or �exible behavior. Further
muddying the water, researchers have reported multiple kinds of criticality in neural networks, in-
cluding through analysis of avalanches (Beggs and Plenz, 2003; Plenz et al., 2021;O’Byrne and Jerbi,
2022; Girardi-Schappo, 2021) and of coarse-grained activity (Meshulam et al., 2019), as well as of
correlations (Dahmen et al., 2019). How these �avors of critical behavior relate to each other or to
any functional network mechanism is not known.

Thephenomenon thatwewill refer to as “avalanche criticality” appears to be remarkablywidespread.
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It was �rst observed in cultured neurons in a dish (Beggs and Plenz, 2003) and later studied in ze-
bra�sh (Ponce-Alvarez et al., 2018), turtles (Shew et al., 2015), rodents (Ma et al., 2019), monkeys
(Petermann et al., 2009), and even humans (Poil et al., 2008). The standard analysis, described
thoroughly later, requires extracting power-law exponents from a �t to a distribution of avalanche
size and duration and assessing the relationship between exponents. There is debate overwhether
these observations re�ect true power laws, but within the resolution achievable from experiments,
neural avalanches exhibit power laws with exponent relationships predicted from theory devel-
oped in physical systems (Perkovi� et al., 1995).

Avalanche criticality is not the only form of criticality observed in neural systems. Zipf’s law (fre-
quency of the network state being inversely proportional to its rank) appears in systems as diverse
as �ymotion estimation and salamander retina (Mora and Bialek, 2010; Schwab et al., 2014; Aitchi-
son et al., 2016). More recently, Meshulam et al. (2019) measured various statistics of population
activity in a mouse hippocampus, including the eigenvalue spectrum of the covariance matrix and
the variance of activity. These were found to scale as populations were “coarse-grained” through
a procedure in which neural activities were iteratively combined based on similarity. Neither the
Zipf’s law nor the coarse-grained criticality can be explained by simple mechanistic models.

Even though these three forms of criticality are observed through di�erent analyses, it is pos-
sible that they may originate from similar mechanisms. While avalanche power laws may result
from critical dynamics, they can also appear due to quasi-static latent variables, which can pro-
duce power laws, but not the relationships expected between the critical exponents (Priesemann
and Shriki, 2018). We have previously shown that a dynamical latent variable (DLV) model, based
on the coupling of neural populations tomultiple dynamical latent variables, can reproduce scaling
under coarse-graining analysis within experimental uncertainty (Morrell et al., 2021). The Zipf’s law
has been explained by a similar mechanism (Schwab et al., 2014; Aitchison et al., 2016). However,
it is not known under what conditions, if any, the DLV model generates avalanche criticality.

In this paper, we systematically investigate avalanche statistics in the DLVmodel. We show that
a system coupled to multiple dynamical latent variables can generate avalanche criticality, and we
examine the requirements for the number and timescale of variables for this criticality to occur.
We �nd that avalanche criticality is observed over a wide range of parameters, some of which may
be optimal for information representation. Our results suggest that latent dynamical structure in
large-scale neural recordings may be responsible for the observation of signatures of criticality
across many systems.

Results
Critical exponents values and crackling noise
We begin by de�ning the metrics used to quantify avalanche statistics and brie�y summarize ex-
perimental observations, which have been reviewed in detail elsewhere (Plenz et al., 2021;O’Byrne
and Jerbi, 2022; Girardi-Schappo, 2021). Activity is recorded across a set of neurons and binned
in time. Avalanches are then de�ned as contiguous time bins in which at least one neuron in the
population is active. The duration of an avalanche is the number of contiguous time bins and the
size is the summed activity during the avalanche. The distributions of avalanche size and duration
are �t to power laws (P (S) Ì S

*⌧ for size S, and P (D) Ì D
*↵ for durationD) using standardmethods

(Clauset et al., 2009).
Power laws can be indicative of criticality, but they can also result from non-critical mechanisms

(Touboul and Destexhe, 2017; Priesemann and Shriki, 2018). A more stringent test of criticality is
the “crackling” relationship (Perkovi� et al., 1995; Touboul and Destexhe, 2017), which involves
�tting a third power-law relationship, ÑS(D) Ì D

�fit , and comparing �fit to the predicted exponent
�pred, derived from the size and duration exponents, ⌧ and ↵:

�fit
?= �pred í ↵ * 1

⌧ * 1 . (1)
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Figure 1. Dynamical Latent Variable model produces avalanche criticality. A:Model structure. Latent
dynamical variables h

�
(t) are broadly coupled to neurons s

i
(t) in the recorded population. B: Raster plot of a

sample of activity binned at 3-ms resolution across 128 neurons with �ve latent variables, each with
correlation timescale ⌧

F
= 15 s. C: Projection of activity into a simulated �eld of view for illustration. D-F:

Avalanche analysis in a network (parameters N
F
= 5, ⌧

F
= 104, ⌘ = 4 and ✏ = 12), showing size distribution (D),

duration distribution (E), and size with duration scaling (F). Lower cuto�s used in �tting are shown with
vertical lines and their values are indicated in the �gures. There areNobs = 42725 avalanches of size S g Smin in
this simulated dataset. Estimated values of the critical exponents are shown in the titles of the panels.

Previous work demonstrating approximate power laws in size and duration distributions through
the mechanism of a slowly changing latent variable did not generate crackling (Touboul and Des-
texhe, 2017; Priesemann and Shriki, 2018).

Measuring power-laws in empirical data is challenging: it generally requires setting a lower cut-
o� in the size and duration, and the power-law behavior only has limited range due to the �nite
size and duration of the recording itself. Nonetheless, there is some consensus (Shew et al., 2015;
Fontenele et al., 2019; Ma et al., 2019) that even if ⌧ and ↵ vary over a wide range (1.5 to about 3)
across recordings, the values of �fit and �pred stay in a relatively narrow range, from about 1.1 to 1.3.

Avalanche scaling in the Dynamical Latent Variable (DLV) model
We studied a population of neurons that are coupled to dynamical latent variables but not coupled
to each other (Fig. 1A). We refer to this model as the Dynamical Latent Variable (DLV) model. The
latent variables determine the inputs to the simulated population of neurons. We are agnostic as
to the origin of these inputs: they may be externally driven from other brain areas, or they may
arise from recurrent dynamics locally. We have previously shown that the DLV model with at least
about �ve latent variables can produce power laws under the coarse-graining analysis (Morrell
et al., 2021). In this paper, we examine avalanche criticality in the same model.

Speci�cally, we model the neurons as binary units (s
i
) that are randomly (J

i�
Ì N(0, 1)) coupled

to dynamical variables h
�
(t). The probability of any pattern {s

i
}, given the current state of the latent
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variables, is

P ({s
i
}h

�
(t)) = 1

Z(h
�
(t)) exp

H

*⌘
NF
…

�=1
s
i
J
i�
h
�
(t) * ✏s

i

I

, (2)

where the parameter ⌘ controls the scaling of the variables and ✏ controls the overall activity level.
We modeled each latent variable as an Ornstein-Uhlenbeck process with the time scale ⌧

F
(see

Methods). Thus our model has four parameters: ⌘ (input scaling), ✏ (activity threshold), ⌧
F
(dynami-

cal timescale), and N
F
(number of neurons).

Distributions of avalanche size and avalanche duration within this model followed approximate
power laws (Fig. 1C; see Methods). In the example shown (N

F
= 5, ⌧

F
= 104, ⌘ = 4 and ✏ = 12), we

found exponents ⌧ = 1.89 ± 0.02 (size) and ↵ = 2.11 ± 0.02 (duration). Further, the average size of
avalanches with �xed duration scaled as S Ì D

� , with the �tted �fit = 1.24 ± 0.02, in agreement with
the predicted value �pred = 1.24±0.02. Thus, ourmodel could generate avalanche scaling, at least for
some parameter choices. In the following sections, we examine how avalanche scaling depends
on model parameters (N

F
, ⌧

F
, ⌘ and ✏; see Table 2). We �rst focus on two sets of simulations: one

set with N
F
= 1 latent variable, which does not generate scaling under coarse-graining (Morrell

et al., 2021), and one set with N
F
= 5 latent variables, which can generate such scaling for some

values of parameters ⌧
F
, ⌘, and ✏ (Morrell et al., 2021).

Avalanche scaling depends on the number of latent variables
We analyzed avalanches from one- and �ve-variable simulations, each with �xed latent dynamical
timescale (⌧

F
= 5 ù 103 time steps; see Table 2 for parameters). In the following sections, time is

measured in simulation time steps, seeMethods for converting time steps to seconds. We used es-
tablishedmethods formeasuring empirical power laws (Clauset et al., 2009). Theminimum cuto�s
for size (Smin) and duration (Dmin) are indicated by vertical lines in Fig. 2. For the population coupled
to a single latent variable, the avalanche size distribution was not well �t by a power law (Fig. 2A).
With a su�ciently highminimum cut-o� (Dmin), the duration distribution was approximately power-
law (Fig. 2B).

We next assessed whether the simulation produced crackling. If so, the value �fit obtained by
�tting ÑS(D) Ì D

�fit would be similar to �pred = ↵*1
⌧*1

. In many cases, such as the one-variable example
shown in Fig. 2C, the full range of avalanche durations were not �t by a single power law. There-
fore, we determined the largest range over which a power law was a good �t to the simulated
observations. In this case, slightly over two decades of apparent scaling were observed starting
from avalanches with minimum duration slightly less than 100 time steps (Fig. 2C), with a best-�t
value of �

fit
À [1.69, 1.74]. As we did not �nd a power-law in the size distribution, calculating �pred is

meaningless. If we do it anyway, we obtain �
pred

= 0.83 ± 0.03 (yellow line in Fig. 2C), which clearly
deviates from the �tted value of � . Thus, for the single dynamical latent variable model (⌧

F
= 5000),

power-law �ts are poor, and there is no crackling.
The �ve-variablemodel produces a di�erent picture. Wenow �nd avalanches forwhich size and

duration distributions are much better �t by power-law models starting from very low minimum
cuto�s (Fig. 2D-E, Fig. 2-Supp. Fig. 2). Average size scaled with duration, again over more than
two decades, with �f it = 1.27 ± 0.03, which was in close agreement with �pred = 1.25 ± 0.02 (Fig. 2F).
Holding other parameters constant, we thus found that scaling relationships and crackling arise in
the multi-variable model but not the single-variable model.

Avalanche scaling depends on the time scale of latent variables
Based on simulations in the previous section, we surmised that the �ve-variable simulation gen-
erated scaling more readily due to creating an “e�ective” latent variable that had slower dynam-
ics than any individual latent variable. We reasoned that at any moment in time, the latent vari-
able state h

�
(t) is a vector in the latent space. Because coupling to the latent variables is random

throughout the population, only the length (Ì
˘

N
F
) and not the direction of this vector matters,
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Figure 2. Multiple latent variables generate avalanche scaling at shorter timescales than a single latent
variable. Parameters used for simulations for this �gure are found in Table 2. A-C: Scaling analysis for one
variable models where the dynamic timescale is equal to 5 ù 103 time steps. A: Distribution of avalanche sizes.
MLE value of exponent for best-�t power law is ⌧ = 1.98 (0.02 SE), with lower cuto� indicated by the vertical
line. B: Distribution of avalanche duration. MLE value of ↵ is 1.81 (0.02 SE). C: Average size plotted against
avalanche duration (blue points), with power-law �t (black line) and predicted relationship (yellow line) from
MLE values for exponents in A and B. Gray bar on the horizontal axis indicates range over which a power law
with � = 1.72 �ts the data (seeMethods). D-F: Analysis of avalanches from a simulation of a population coupled
to �ve independent latent variables where the dynamic timescale is equal to 5 ù 103 time steps. G: Exponents
⌧ for avalanche size distributions across timescales for one-variable (blue) and �ve-variable (red) simulations.
Each circle is a simulation with independently drawn coupling parameters. Simulations had to show scaling
over at least two decades to be included in panels (G-J). H: Exponents ↵ for avalanche duration distributions
for simulations in G. I: Fitted values of � for simulations in G. J: Di�erence between �tted and predicted �

values. Five-variable simulations produce crackling over a wider range of timescales than single-variable
simulations. Figure 2–Figure supplement 1. Methods, power law distribution �ts, one variable example.
Figure 2–Figure supplement 2. Methods, power law distribution �ts, �ve variable example.
Figure 2–Figure supplement 3. Methods, gamma �t and range, one variable example.
Figure 2–Figure supplement 4. Methods, gamma �t and range, �ve variables example.
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and the timescale of changes in this length would be much slower than ⌧
F
, the timescale of each

of the components h
�
(t). We therefore speculated that increasing the timescale of dynamics of the

latent variables should eventually lead to scaling and crackling in the single-variable model as well
as the �ve-variable one. To examine the dependence of avalanche scaling on this timescale, we
simulated one-variable and �ve-variable networks at �xed ⌘ and ✏ coupled to latent variables with
the correlation time of their Ornstein-Uhlenbeck dynamics of ⌧

F
À [103, 105] time steps, spanning

from a factor of 10 faster to a factor of 10 slower than the original ⌧
F
in Fig. 1. Simulations were

replicated �ve times at each combination of parameters by drawing new latent variable coupling
values (J

i�
), as well as new latent variable dynamics and instances of neural �ring. For simulations

that passed the criteria to be �tted by power laws, we plot the �tted values of ⌧ , ↵, �fit and �fit * �pred
(Fig. 2G-J). Missing points are those for which distributions did not pass the power law �t criteria.

In the single-variable model, best-�t exponents changed abruptly for latent variable timescale
around ⌧

F
= 104 (Fig. 2G, H), while in the �ve-variable model, exponents tended to increase grad-

ually (Fig. 2G, H, red). The discontinuity in the single-variable case re�ected a change in the lower
cuto� values in the power-law �ts: size and duration distributions generated with faster latent
dynamics could be �t reasonably well to a power law by using a high value of the lower cuto�
(Fig. 2-Supp. Fig. 3). For time scales greater than Ì 104, the minimum cuto�s dropped, and the
single-variable model generated power-law distributed avalanches and crackling (Fig. 2J), similar
to the �ve-variable model. In summary, in the DLV model, introducing multiple variables gener-
ated scaling at faster timescales. However, by slowing the timescale of the latent dynamics, the
DLV model generated signatures of critical avalanche scaling for both multi- and single-variable
simulations.

Avalanche criticality, input scaling, and �ring threshold
In the previous section, we found that a very slow single DLV model generated scaling. Thus, from
now on, we simplify the model in order to characterize avalanche statistics across values of input
scaling ⌘ and �ring threshold ✏. Speci�cally, we modeled a population ofN = 128 neurons coupled
to a single quasi-static latent variable. We simulated 103 segments of 104 steps each and drew a
new value of the latent variable (h Ì N(0, 1)) for each segment. Ten replicates of the simulation
were generated at each of the combinations of ⌘ and ✏ (see Methods).

Almost independent of ⌘ and ✏, we found quality power law �ts and crackling. Fig. 3 shows
the average (across n = 10 network realizations) of the exponents extracted from size (⌧, Fig. 3A)
and duration (↵, Fig. 3C) distributions. At small �ring threshold (✏ = 2), we do not observe scaling
because the system is always active, and all avalanches merge into one. At large �ring threshold ✏

and low input scaling ⌘, we do not observe scaling because activity is so sparse that all avalanches
are small. At intermediate values of the parameters, the simulations generated plausible scaling
relationships in size and duration. The di�erence between �fit and �pred was typically less than 0.1
(Fig. 4D-F) which was consistent with previously reported di�erences between �t and predicted
exponents (Maet al., 2019). Thus, there appears to be noneed for �ne-tuning to generate apparent
scaling in this model, at least in the limit of (near) in�nite observation time. Wherever ⌘ and ✏

generate avalanches, there are approximate power-law distributions and crackling.
To determine where avalanches occur, we derive the avalanche rate across values of the latent

variable h. In the quasi-static model, the probability of an avalanche initiation is the probability of a
transition from the quiet to an active state. Because all neurons are conditionally independent, this
is Pava = Psilence(1 * Psilence). Then the expected number of avalanches ÇNava is obtained by integrating
Pava over h at each value of ⌘ and ✏:

ÇNava =   Pava(✏, ⌘,h; Ji,N)p(h)dh =  
«

i

⇠ 1
1 + e⌘Jih+✏

⇡

H

1 *
«

i

⇠ 1
1 + e⌘Jih+✏

⇡

I

p(h)dh, (3)

where p(h) is the standard normal distribution. This probability tracks the observed number of
avalanches across simulations, Fig. 4A.
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Figure 3. Exponents across network simulations. Each parameter combination ⌘, ✏ was simulated for ten
replicates, each time drawing randomly the couplings J

i
, the latent variable values, and the neural activities.

A: Average across replicates for the size exponent ⌧. B: Scatter plot of ↵ vs. ⌧ for each network replicate for
parameter combinations indicated in A. Linear relationships between ⌧ and ↵, corresponding to the minimum
and maximum values of �f it from panel E, are shown to guide the eye. C: Same as A, for duration exponent ↵.
D: Predicted exponent, �pred, derived from A and C. E: Value of �f it from �t to ÑSD Ì D

� . F: Di�erence between
�pred and �fit.
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To gain an intuition for the conditions under which avalanches occur, we show two slices of
the avalanche probability, at �xed ⌘ (Fig. 4B) and at �xed ✏ (Fig. 4C). Black regions indicate where
avalanches are likely to occur. If, for a given value of ✏ and ⌘, there is no overlap between high
avalanche probability regions and the distribution of h, then there will be no avalanches. For large
✏, avalanches occur because neurons with large coupling to the latent variable (⌘J

i
 >> 1, recall

J
i
Ì N(0, 1)) are occasionally activated by a value of the latent variable h that is su�cient to exceed

✏ (Fig. 4B). Thus, the scaling parameter ⌘ controls the value of h for which avalanches occur most
frequently (Fig. 4C). As ✏ decreases, avalanches occur for smaller and smaller h until avalanches
primarily occur when h = 0.

To calculate the probability of avalanches, we must integrate over all values of h, but we can
gain a qualitative understanding of which avalanche regime the system is in by examining the
probability of avalanches at h = 0. At h = 0, the avalanche probability (see Methods) is

Pava(✏, ⌘,h = 0; J
i
,N) =

⇠ 1
1 + e✏

⇡N
0

1 *
⇠ 1
1 + e✏

⇡N
1

, (4)

which is maximized at ✏0 = * log(21_N * 1), independent of J
i
and ⌘. The dependence on N re-

�ects that a larger threshold is required for larger networks: large networks (N ô ÿ) are unlikely
to achieve complete network silence, therefore preventing avalanches from occurring. Similarly,
small networks (N Ì 1) are unlikely to �re consecutively and thus are unlikely to avalanche.

We plot Pava(✏, ⌘; Ji,N ,h = 0) as a function of ✏ in Fig. 4B. The peak at ✏0 divides the space into
two regions. For ✏ < ✏0, a power-law is only observed in the large-size avalanches, which are rare
(Fig. 4E, green). By contrast, when ✏ > ✏0, minimum size cuto�s are low (Fig. 4F, orange). Both
regions, ✏ < ✏0 and ✏ > ✏0, exhibit crackling noise scaling. If observation times are not su�ciently
long (estimated in Fig. 4-Supp. Fig. 1), then scaling will not be observed in the ✏ < ✏0 region, whose
scaling relations consist of rare events. Insu�cient observation times may explain experiments
and simulations where avalanche scaling was not found.

Inferring the latent variable
Our analysis of Pava(✏, ⌘,h) at h = 0 suggested that there are two types of avalanche regimes: one
with high activity and high minimum cuto�s in the power law �t (Type 1), and the other with lower
activity and size cuto�s (Type 2). Further, when Pava drops to zero, avalanches disappear because
the activity is too high or too low. We now examine how information about the value of the latent
variables represented in the network activity relates to the activity type. To delineate these types,
we calculated numerically ✏<(⌘), the value of ✏ for which the probability of avalanches is maximized,
and the contours of Pava (Fig. 5A). Curves for ✏<(⌘) and ✏0 and Pava = 10*3 are shown in Fig. 5A and B.

We expect that the more cells �re, the more information they would convey, until the �ring
rate saturates, and inferring the value of the latent variable becomes impossible. Fig. 5B supports
the prediction: generally, information is higher in regions with more activity (lower ✏, higher ⌘), but
only up to a limit: as ✏ ô 0, information decreases. This decrease begins approximately where
the probability of avalanches drops to nearly zero (dashed black lines, Fig. 5B-E) because all of
the activity merges into a few very large avalanches. In other words, the Type-1 avalanche region
coincides with the highest information about the latent variable.

The critical brain hypothesis suggests that the brain operates in a critical state, and its func-
tional role may be in optimizing information processing (Beggs, 2008; Chialvo, 2010). Under this
hypothesis, we would expect the information conveyed by the network to be maximized in the
regions we observe avalanche criticality. However, we see that critical regions do not always have
optimal information transmission. In Fig. 5, the region that displays crackling noise is that where
avalanches exist (Pava > 0.001), which corresponds to any ⌘ value and ✏ ¿ 3. This avalanche re-
gion encompasses both networks with high information transmission and networks with low in-
formation transmission. In summary, observing avalanche criticality in a system does not imply a
high-information processing network state. However, the scaling can be seen at smaller cuto�s,
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Figure 4. Avalanches in the DLV model with a single quasistatic variable. A: Number of avalanches in
simulations as a function of the calculated probability of avalanches at �xed ⌘ across values of ✏ and latent
variable h. Line indicates equality. B: Analytically calculated probability of avalanches with ⌘ = 2 across values
of ✏ and h. The latent variable h is normally distributed with mean 0 and variance 1. Where the distribution of
h overlaps with regions of high probability (black), avalanches occur. C: Analytically calculated probability of
avalanches at ✏ = 8 across values of ⌘ and h. Increasing ⌘ narrows the range of h that generates avalanches. D:
Analytically calculated probability of avalanches at h = 0 for a populations of 128 neurons (black line) and for a
varying ✏. Size distributions corresponding to simulations marked by the green and orange crosses are in E, F.
E: Example of size distribution with ✏ < ✏0 (orange marker in D). Size cuto� is close to 100. F: Example of size
distribution with ✏ > ✏0 (green marker in D). Size cuto� is < 10.
Figure 4–Figure supplement 1. Estimated simulation time to observe avalanche criticality.

and hence with shorter recordings, in the high-information state. This parallels the discussion by
Schwab et al. (2014), who noticed that the Zipf’s law always emerges in neural populations driven
by quasi-stationary latent �elds, but it emerges at smaller system sizeswhen the information about
the latent variable is high.

Discussion
Here we studied systems with distributed, random coupling to Dynamical Latent Variables (DLV)
and we found that avalanche criticality is nearly always observed, with no �ne-tuning required.
Avalanche criticality was surprisingly robust to changes in input gain and �ring rate threshold. Loss
of avalanche criticality could occur if the latent process was not well-sampled, either because the
simulation was not long enough or the dynamics of the latent variables were too fast. Finally, while
information about the latent variables in the network activity was higher where avalanches were
generated compared to when they were not, there was a range of information values across the
critical avalanche regime. Thus, avalanche criticality alone was not a predictor of optimal informa-
tion transmission.

Explaining experimental exponents
A wide range of critical exponents have been found in ex vivo and in vivo recordings from various
systems. For instance, the seminal work on avalanche statistics in cultured neuronal networks
by Beggs and Plenz (2003) found size and duration exponents of 1.5 and 2.0 respectively, along
with � = 2, when time was discretized with a time bin equal to the average inter-event interval in
the system. These values are predicted by a theoretical model of a critical branching process. By
contrast, a survey of many in vivo and ex vivo recordings found power-law size distributions with
exponents ranging from 1 to 3 depending on the system (Fontenele et al., 2019). Separately, Ma
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Figure 5. Information in the neural activity about the latent variable is higher in the low-✏ avalanche region,
compared to high-✏ avalanche or high-rate avalanche-free activity. A: Probability of avalanche per time step
across values of ⌘ and ✏. Solid magenta curve follows ✏<(⌘), the value of ✏ maximizing the probability of
avalanches at �xed ⌘. Dashed magenta line indicates ✏0, calculated analytically, which matches ✏< at ⌘ = 0. B:
Information about latent variable, calculated from maximum likelihood estimate of h using population
activity. MLE approximation is invalid in the dark-blue region bounded by gray curve. Magenta line marks the
maximum values of Pava, reproduced from A. Dashed black curve indicates Pava = 0.001. The highest
information region falls between ✏

<(⌘) and the contour for Pava = 0.001. C - E: Slices of B, showing IMLE(✏) for
⌘ = {2, 5, 9}. Magenta and dashed black lines again indicate ✏

< and Pava = 0.001, respectively, as in B. Black
dashed line marks the approximate boundary between the high-activity/no avalanche and the high-cuto�
avalanche, and magenta line marks boundary between high-cuto� and low-cuto� avalanche regions.
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et al. (2019) reported recordings in freely moving rats with size exponents ranging from 1.5 to 2.7.
In all of the these recordings, when the crackling relationship held, the reported value of � was
near 1.2 (Fontenele et al., 2019;Ma et al., 2019).

Our DLV model, across the parameters we tested that produced exponents consistent with the
scaling relationship, generated ⌧ values that ranged from 1.9 to about 2.5. Across those simulations,
we found values � within a narrow band from 1.1 to 1.3 (see Fig. 2I, J and Fig. 3H).While the exponent
values our model produces are inconsistent with a critical branching process (� = 2), they match
very closely the ranges of exponents reported by Fontenele et al. (2019).

One possible resolution to the discrepancy in exponents derives from how the system is sub-
sampled in space or coarse-grained in time, both of which systematically change exponents ⌧ and
↵ (Beggs and Plenz, 2003; Shew et al., 2015). Were we to change the time bin, our modeling results
would exhibit di�erent exponent values. However, neither manipulations of the latent variable
timescale (⌧

F
or N

F
), nor of the overall activity level (⌘, ✏) produced exponents close to 1.5 and 2.0,

despite maintaining the crackling relationship across many di�erent choices of parameters.
A second possibility is that di�erent experiments study similar, but distinct biological phenom-

ena. In other words, the underlying biology can di�er between networks that were cultured in vitro
and those that were not, whether they are in vivo or ex vivo (i.e., brain slices). This could happen
if cultured networks develop connections between neurons such that they truly do produce dy-
namics that approximate a critical branching process, while brain networks that develop in a living
brain have di�erent structure and resulting dynamics and can be better understood as a system
coupled to latent dynamical variables. This is especially true in sensory systems, where coupling
to (latent) external stimuli in a way that the neural activity can be used to infer the stimuli is the
reason for the networks’ existence (Schwab et al., 2014).

Relationship to past modeling work
Our model is not the �rst to produce approximate power-law size and duration distributions for
avalanches from a latent variable process (Touboul and Destexhe, 2017; Priesemann and Shriki,
2018). In particular, Priesemann and Shriki (2018) derived the conditions under which an inhomo-
geneous Poisson process could produce such approximate scaling. The basic idea is to generate a
weighted sum of exponentially distributed event sizes, each of which are generated from a homo-
geneous Poisson process. How each process is weighted in this sum determines the approximate
power-law exponent, allowing one to tune the system to obtain the critical values of 1.5 and 2. In-
terestingly, this model did not generate non-trivial scaling of size with duration (S Ì D

� ). Instead,
they found � = 1, not the predicted � = 2. Our results di�er signi�cantly, in that � was typically
between 1.1 and 1.3 and it was nearly always close to the prediction from ↵ and ⌧. We speculate
that this is due to nonlinearity in the mapping from latent variable to spiking activity, as doubling
the latent �eld h does not double the population activity, but doubling the rate of a homogeneous
Poisson process does double the expected spike count. As biological networks are likely to have
such nonlinearities in their responses to common inputs, this scenario may be more applicable to
certain kinds of recordings.

Summary
Latent variables – whether they are emergent from network dynamics (Clark et al., 2022; Seder-
berg and Nemenman, 2020) or derived from shared inputs – are ubiquitous in large-scale neural
population recordings. This fact is re�ected most directly in the relatively low-dimensional struc-
ture in large-scale population recordings (Stringer et al., 2019; Pandarinath et al., 2018;Nieh et al.,
2021). We previously used a model based on this observation to examine signatures of neural crit-
icality under a coarse-graining analysis and found that coarse-grained criticality is generated by
systems driven by many latent variables (Morrell et al., 2021). Here we showed that the same
model also generates avalanche criticality, and that when information about the latent variables
can be inferred from the network, avalanche criticality is also observed. Crucially, �nding signa-
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tures of avalanche criticality required long observation times, such that the latent variable was
well-sampled. Previous studies showed that Zipf’s law appears generically in systems coupled to a
latent variable that changes slowly relative to the sampling time, and that the Zipf’s behavior is eas-
ier to observe in the higher information regime (Schwab et al., 2014; Aitchison et al., 2016). How-
ever, this also suggests that observation of either scaling at modest data set sizes indeed points
to some �ne-tuning — namely to the increase of the information in the individual neurons (and,
since neurons in these models are conditionally independent, also in the entire network) about
the value of the latent variables. In other words, one would expect a sensory part of the brain, if
adapted to the statistics of the external stimuli, to exhibit all of these critical signatures at relatively
modest data set sizes. In monocular deprivation experiments, when the activity in the visual cor-
tex is transiently not adapted to its inputs, scaling disappears, at least for recordings of a typical
duration, and is restored as the system adapts to the new stimulus (Ma et al., 2019). We speculate
that the observed recovery of criticality by Ma et al. (2019) could be driven by neurons adapting
to the reduced stimuli state, for instance, by adjusting ⌘ (input scaling) and ✏ (�ring rate threshold).
Taken together, these results suggest that critical behavior in neural systems – whether based on
the Zipf’s law, avalanches, or coarse-graining analysis – is expected whenever neural recordings ex-
hibit some latent structure in population dynamics and this latent structure can be inferred from
observations of the population activity.

Methods and Materials
Simulation of Dynamic Latent Variable (DLV) model
We study amodel fromMorrell et al. (2021), incorporating only latent variables (no place variables),
and assuming that every cell is coupled to every latent variablewith some randomly drawn coupling
strength.

The probability of observing a certain population state {s
i
} given latent variables {h

�
(t)} at time

t is
P ({s

i
}{h

�
}) = 1

Z({h
�
})e

H({si},{h�}), (5)

where Z is the normalization, andH is the “energy”:

H =
N ,Nf
…

i,m=1
⌘h

�
(t)J

i�
s
i
+ ✏s

i
. (6)

The latent variables {h
�
(t)} are Ornstein-Uhlenbeck processes with zero mean, unit variance, and

time constant ⌧
m
. Couplings J

i�
are drawn from the standard normal distribution.

The parameters ⌘, ✏, and ⌧
m
are constants, and we simulateN = 1024 cells. For the in�nite time

constant simulation, we reset h
n
Ì N (0, 1) (for each of n = 1..N

n
) and simulate for 10000 time steps,

then repeat for 1000 draws of h
n
.

Time step units
Most results were presented using arbitrary time units: all times (i.e., ⌧

F
and avalanche durationD)

are measured in units of an unspeci�ed time step. Specifying a time bin converts the probability

Table 1. Simulation parameters for Fig. 1.

Parameter Description Value
✏ bias towards silence ✏ = 12
⌘ variance multiplier ⌘ = 4.0
NF number of latent �elds NF = 5
⌧
F

latent �eld time constant ⌧ = 104

N number of cells N = 1024
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of �ring into actual �ring rates, in spikes per second, and this choice determines which part of the
⌘-✏ phase space is most relevant to a given experiment.

The time step is the temporal resolution at which activity is discretized, which varies from sev-
eral to hundreds of milliseconds across di�erent experimental studies (Beggs and Plenz, 2003;
Fontenele et al., 2019;Ma et al., 2019). In physical units and assuming a bin size of 3ms to 10ms,
our choice of ⌘ and ✏ in Fig. 2 would yield physiologically realistic �ring rate ranges (Hengen et al.,
2016), with high-�ring neurons reaching averages rates of 20* 50 spikes/second and median �ring-
rate neurons around 1* 2 spikes/second. The timescales of latent variables examined range from
about 3 seconds to 3000 seconds, assuming 3-ms bins. Simulations were carried out for the same
number of time steps (2ù 106), which would be approximately 1 to 2 “hours,” which is a reasonable
duration for in vivo neural recordings. Note that at large values of ⌧

F
, the latent variable space is

not well sampled during this time period.

Analysis of avalanche statistics
Setting the threshold for observing avalanches
In our model, we count avalanches as periods of continuous activity (in any subset of neurons)
that is book-ended by time bins with no activity in the entire simulated neural network. For real
neural populations of modest size, this method fails because there are no periods of quiescence.
The typical solution is to set a threshold, and to only count avalanches when the population activity
exceeds that threshold, with the hope that results are relatively robust to that choice. In ourmodel,
this operation is equivalent to changing ✏, which shifts the probability of �ring up or down by a
constant amount across all cells independent of inputs. Our results in Fig. 3 show that ↵ and ⌧

decrease as the threshold for detection is increased (equivalent to large ✏), but that the scaling
relationship is maintained. The model predicts that �pred * �f it would initially increase slightly with
the detection threshold before decreasing back to near zero.

Following the algorithm laid out in Clauset et al. (2009), we �t power laws to the size and dura-
tion distributions from simulations generating avalanches. We use least-squares �tting to estimate
�f it , the scaling exponent for size with duration, assessing the consistency of the �t across decades.

Reading power laws from data
We want, from each simulation, a quanti�cation of the quality of scaling (how many decades, min-
imally) and an estimate of the scaling exponents (⌧ for the size distribution, ↵ for the duration
distribution). Following the steps outlined by Clauset et al. (2009), we use themaximum-likelihood
estimator to determine the scaling exponent. This is the solution to the transcendental equation

⇣
®( Ç↵, xmin)

⇣ ®( Ç↵, xmin)
= *1

n

n
…

i=1
ln x

i
(7)

where ⇣ (↵, xmin) is the Hurwitz zeta function. For values of xmin < 6, a numerical look-up table based
on the built-in Hurwitz zeta function in the symbolic math toolbox was used (MATLAB2019b). For

Table 2. Simulation parameters for Fig. 2.

Parameter Description Value
✏ bias towards silence ✏ = 8 (for N

F
= 1) or

✏ = 12 (for N
F
= 5)

⌘ variance multiplier ⌘ = 4.0
NF number of latent �elds NF = 1 or 5
⌧
F

latent �eld time constant ⌧ À U [log 103, log 105]
N number of cells N = 1024
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xmin > 6 we use an approximation (Clauset et al. (2009)),

Ç↵ = 1 + n

H

…

i

ln
x
i

xmin *
1
2

I*1

. (8)

To determine xmin, we computed the maximum absolute di�erence between the empirical cu-
mulative density (S(x)) function and model’s cumulative density function P (x) (the Kolmogorov-
Smirnov (KS) statistic;D = max

xgxmin S(x)*P (x)). The KS statistic was computed between for power-
lawmodels with scaling parameter Ç↵ and cuto�s xmin. The value of xmin that minimizes the KS statis-
tic was chosen. Occasionally the KS statistic had two local minima (as in Figure 2-Supplemental
Figure 1), indicating two di�erent power-laws. In these cases, the minimum size and duration cut-
o�s were the smallest values that were within 10% of the absolute minimum of the KS statistic.
Note that the statistic is computed for each model only on the power-law portion of the CDF (i.e.
x
i
g xmin). We do not attempt to determine an upper cut-o� value.
To assess the quality of the power-law �t, Clauset et al. (2009) compared the empirical observa-

tions to surrogate data generated from a semi-parametric power-lawmodel. The semi-parametric
model sets the value of the CDF equal to the empirical CDF values up to x = xmin and then according
to the power-law model for x > xmin. If the KS statistic for the real data (relative to its �tted model)
is within the distribution of the KS statistics for surrogate datasets relative to their respective �tted
models, the power-law model was considered a reasonable �t.

Strict application of this methodology could give misleading results. Much of this is due to the
loss of statistical powerwhen theminimumcuto� is so high that the number of observations drops.
For instance, in the simulations shown in Fig. 2, the one-variable duration distribution passed the
Clauset et al. (2009) criterion, with a minimum KS statistic of 0.03 when the duration cuto� was
18 time steps. However, for the �ve-variable simulation in Fig. 2, a power-law would be narrowly
rejected for both size and duration, despite having much smaller KS statistics: for ⌧, the KS statistic
was 0.0087 (simulation range: 0.0008 to 0.0082; number of avalanches observed: 58, 787) and for ↵ it
was 0.0084 (simulation range: 0.0011 to 0.0075). Below we discuss this problem in more detail.

Determining range over which avalanche size scales with duration
For �tting � , our aim was to �nd the longest sampled range over which we have apparent power-
law scaling of size with duration. Because our sampled duration values have linear spacing, error
estimates are skewed if a naive goodness of �t criterion is used. Wedevised the following algorithm.
First, the simulation must have at least one avalanche of size 500. We �t S = cD

� over one decade
at a time. We chose as the lower duration cuto� the value of minimum duration for which the
largest number of subsequent (longer-duration) �ts produced consistent �t parameters (Figure
2-Supp. Fig. 3 and 4, top row). Next, with the minimum duration set, we gradually increased the
maximum duration cut-o�, and we determined whether there was a signi�cant bias in the residual
over the �rst decade of the �t. We selected the highest duration cuto� for which there was no bias.
Finally, over this range, we re-�t the power law relationship and extracted con�dence intervals.

Our analysis focused on �nding the apparent power-law relationship that held over the largest
log-scale range. A common feature across simulation parameters (⌧

F
, N

F
) was the existence of

Table 3. Simulation parameters for Fig. 3 and 4.

Parameter Description Value
✏ bias towards silence ✏ À {2, 4, ...14}
⌘ variance multiplier ⌘ À {1, 2, ...10}
NF number of latent �elds NF = 1
⌧
F

latent �eld time constant quasistatic
N number of cells N = 128
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two distinct power-law regimes. This is apparent in Fig. 2I, which shows that whenN
F
= 1 at small

⌧
F
, the best-�t � (that showing the largest range with power-law-consistent scaling) is much larger

(> 1.7), and then above ⌧
F
Ì 3000, the best-�t � drops to around 1.3.

Statistical power of power-law tests
In several cases, we found examples of power-law �ts that passed the rejection criteria commonly
used to determine avalanche scaling relationships because of limited number of observations. A
key example is that of the single latent variable simulation shown in Fig. 2B, where we could not
reject a power law for the duration distribution. Conversely, strict application of the surrogate cri-
teria would reject a power law for distributions that were quantitativelymuch closer to a power-law
(i. e., lower KS statistic), but for which we had many more observations and thus a much stronger
surrogate test (Fig. 2). This points to the di�culty of applying a single criterion to determining a
power-law �t. In this work, we adhere to the criteria set forth in Clauset et al. (2009), with a mod-
i�cation to control for the unreasonably high statistical power of simulated data. Speci�cally, the
number of avalanches used for �tting and for surrogate analysis was capped at 500, 000, drawn
randomly from the entire pool of avalanches.

Additionally, we found examples in which a short simulation was rejected, but increasing the
simulation time by a factor of �ve yielded excellent power-law �ts. We speculate that this arises
due to insu�cient sampling of the latent space. These observations raise an important biological
point. Simulations provide the luxury of assuming the network is unchanging for as long as the
simulator cares to keep drawing samples. In a biological network, this is not the case. Over the
course of hours, the e�ective latent degrees of freedom could change drastically (e. g., due to
circadian e�ects (Aton et al., 2009), changes in behavioral state (Fu et al., 2014), plasticity (Hooks
and Chen, 2020), etc.), and the network itself (synaptic scaling, �ring thresholds, etc.) could be
plastic (Hengen et al., 2016). All of these factors can be modeled in our framework by determining
appropriate cuto�s (in duration of recording, in time step sizes, for activity distributions) based on
speci�c experimental timescales.

Calculation of avalanche regimes
In the quasistatic model, we derive the dependence of the avalanche rate on ⌘, ✏ and number of
neuronsN , �nding that there are two distinct regimes in which avalanches occur. Each time bin is
independent, conditioned on the value of h. For an avalanche to occur, the probability of silence
in the population (i.e., all s

i
= 0) must not be too close to 0 (or there are no breaks in activity) or too

close to 1 (or there is no activity). At �xed h, the probability of silence is

Psilence(✏, ⌘; Ji,N ,h) =
«

i

1
1 + exp(*⌘J

i
h + ✏) . (9)

An avalanche occurs when a silent time bin is followed by an active bin, which has probability
Pava(✏, ⌘; Ji,N ,h) = Psilence(1 * Psilence).

Information calculation
Maximum-likelihood decoding
For large populations coupled to a single latent variable, we estimate the information between pop-
ulation spiking activity and the latent variable as the information between themaximum-likelihood
estimator h< of the latent variable h and the latent variable itself. This approximation fails at ex-
tremes of network activity levels (low or high).

Speci�cally, we approximate the log-likelihood of h< given htrue near h< by logL(h*h<) ˘ logL
max

*
1
2
(h*h<)2

�
2
h<

, so we assume that h< is normally distributed about htrue with variance �2(htrue). The variance
is then derived from the curvature of the log-likelihood at themaximum. The information between

15 of 18



two Gaussian variables, here P (h<
h) = N(h, �2

h< ) and p(h) = N(0, 1), is

I(h; Ñs
i,T
) ˘ 1

2

X

log T

�
2
htrue

Y

htrue

, (10)

where the average is taken over htrue Ì N(0, 1).
Given a set of T observations of the neurons {s

i
}, the likelihood is

P ({s
i
}
t
h) =

N ,T
«

i,t

P (s
i
h) =

N ,T
«

i,t

e
*⌘siJih*✏si

1 + e*(⌘Jih+✏)
. (11)

Maximizing the log likelihood gives the following condition:

0 = )(logP )
)h

Û

Û
h< = )

)h

H

…

i,t

�

(*⌘s
i
J
i
h * ✏s

i
) * log(1 + e

*(⌘Jih+✏)
�

I

Û

Û
h< (12)

=
…

i

*⌘ Ñs
i
J
i
T +

TJ
i
⌘

1 + e⌘Jih
<+✏ , (13)

where Ñs
i
= 1

T

≥

t
s
it
is the average over observations t. The uncertainty in h

< is �
h
, which was calcu-

lated from the second derivative of the log likelihood:

1
�
2
h<

= *)
2(logP )
)h2 (14)

= * )
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H

…

i
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i
J
i
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i
⌘
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=
…

i

T (⌘J
i
)2e⌘Jih<+✏

(1 + e⌘Jih
<+✏)2

(16)

=
…

i

T (⌘J
i
)2

4 cosh2( ⌘Jih<+✏
2

)
. (17)

This expression depends on the observations Ñs
i
only through the maximum-likelihood estimate h

<.
When h

< ô htrue, then the variance is

1
�
2
h<

=
…

i

T (⌘J
i
)2

4 cosh2( ⌘Jihtrue+✏
2

)
í T

�
2
htrue

. (18)

To generate Figure 5, we evaluated Eqn. 10 using Eqn. 18.
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Figure 2–Figure supplement 1. Illustration of algorithm for determining ⌧ and ↵, using one vari-
able example in Fig. 2. A-B: Probability density function for avalanche size (A) and duration (B) on
a log-log scale, with the best power law �t (red). C-D: In blue: Maximum likelihood exponent of a
power-law model as a function of the minimum (lower cuto�) size (C) and duration (D). In red: KS
statistics (see Methods) for each �t. “Best �t” is the power law with the minimum KS statistic. E-F:
Surrogate data procedure. To generate each surrogate, samples were drawn from a power law
with size / duration cuto� indicated (E, S

min
= 3; F, D

min
= 18) and the KS statistic was computed.

Histograms illustrate KS statistic across surrogates (blue), while values derived from data are in
red. Because the red line does not fall within the blue histogram, the hypothesis that the data is
�tted well by a power law �t was rejected in E. At the same time, since the red line falls within the
blue histogram in F, the hypothesis was accepted.



Figure 2–Figure supplement 2. Illustration of algorithm for determining ⌧ and ↵, using example
in Fig. 2, �ve latent variables. Notation the same as in Fig. 2-Fig. Supplement 3.



Figure 2–Figure supplement 3. Illustration of algorithm for �tting the exponent � and determining
the range, over which power law scaling of average size with duration is observed, using example in
Fig. 2(A-D). A-C: Determining the lower bound, the minimum duration D

min
. A: The relation logS =

b+ � logD was �t using linear least-squares, restricted to (overlapping) 1-decade ranges (blue, red:
example decades). B: Con�dence intervals for �t parameters (� , b for �ts starting at each value
of D

min
. C: Best value of Dmin was selected based on how many subsequent start points yielded

consistent slope/intercept values. D-F: Determining the upper bound, maximum duration D
max

. D:
KeepingD

min
�xed based of value obtained in C, we test values ofD

max
up to themaximumduration

event, and �t over the range [Dmin,Dmax]. E: Average residual over the �t range [Dmin,Dmin + 1],
calculated for each �t and plotted against the value of Dmax used for that �t. The largest value of
Dmax without evidence of bias in the residual was then selected. F: Final �t and range.



Figure 2–Figure supplement 4. Illustration of algorithm for �tting the exponent � and determining
the range over which power-law scaling of average size with duration is observed, using example
in Fig. 2 E-H. See Fig. 2-Fig. Supplement 3 for caption. In this example, a lower value of Dmin was
selected. Panel E, which was �at for Fig. 2-Fig. Supplement 3, now shows how extending the range
to high values of Dmax can generate systematic errors at the low range of the �t, even while having
a high overall goodness of �t metric.

Figure 4–Figure supplement 1. Estimate of how long it takes to observe avalanche criticality at
each combination of ⌘ and ✏. We took a parameter combination with a low rate of avalanches but
good apparent scaling (⌘ = 4 and ✏ = *14) and assumed that this is a reasonable estimate of the
minimum number of observations (approximately 106 avalanches) required to observe scaling. To
translate to observation length (in hours), we divided the number of avalanches observed in each
full-length simulation by this minimum count and converted to a time using a time bin of 10 ms.
Simulations were for a recorded population of 128 neurons. For this size of population, ✏0 = 5.2.
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