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Abstract—Dimensionality reduction aims to find low-
dimensional embeddings of high-dimensional data such that the
low-dimensional representation preserves some meaningful prop-
erties of structures in the original data. When low-dimensional
space is 2- or 3-dimensional, the low-dimensional embeddings
can be visualized using a scatterplot map. Most of the existing
methods try to preserve the local neighborhoods of all data points.
However, in general, it is impossible to retain all such information
for all data points in the low-dimensional space. As a result,
there could be some data points whose neighborhoods are not
faithfully displayed in the visualization due to information loss.
If the information loss happens around a specific set of points of
interest (e.g., specific patients, or proteins under observed), this
may be problematic because the withdrawn insights may not be
accurate for these observed data points. Therefore, in this paper,
we introduce a problem called focused dimensionality reduction
where given an original high-dimensional dataset and a set of
points of interest, we want to find 2- or 3-dimensional embeddings
of the original data such that the information loss in the local
neighborhoods surrounding the points of interest is minimized
as much as possible. In other words, if the information loss is
inevitable, it should not happen around the points of interest. To
solve the problem, we extend the stochastic neighbor embedding
method and introduce a focused objective function where we put
more weight on losses that involve points of interest. Experiments
on real-world datasets show that our proposed method is better in
preserving the local neighborhood structure of points of interest
while the generated visualizations are as good as those generated
by the stochastic neighbor embedding method.

Index Terms—dimensionality reduction, stochastic neighbor
embedding, focused analysis

I. INTRODUCTION

Dimensionality reduction aims to transform complex high-
dimensional data to low-dimensional embeddings so that the
low-dimensional representation preserves as much of the orig-
inal structural relationships as possible. One of the major
applications of dimensionality reduction is data visualization.
Given a dataset of N data points, X = {x1,29,...,2n},
dimensionality reduction can be used to find embeddings
Y = {y1,92,...,yn} of X in a 2- or 3-dimensional space
that can be displayed in a scatterplot. This type of visualization
has a wide range of applications such as understanding human
genetic data [1]-[3], cluster analysis of geochemistry data
[4], [5], network intrusion detection [6], [7], interpreting deep
learning models and results [8], [9]. In these applications,
visualization can help users visually discover patterns and
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insights in data that are difficult to detect in original space
due to its complex nature.

Several dimensionality reduction techniques have been pro-
posed including linear methods such as Principal Compo-
nents Analysis (PCA), multidimensional scaling (MDS) [10],
locality preserving projection [11]; and nonlinear methods
such as Kernel PCA [12], UMAP [13], Stochastic Neighbor
Embedding (SNE) [14], and t-SNE [15]. Most of the existing
methods try to preserve the local neighborhoods of all data
points. However, in general, it is impossible to retain all
such information for all data points in the low-dimensional
space. As a result, there could be some data points whose
neighborhoods are not faithfully displayed in the visualization
due to information loss. If the information loss happens around
a specific set of points of interest (e.g., specific patients, or
proteins under observed), this may be problematic because
the withdrawn insights may not be accurate for these observed
data points. Therefore, in this paper, we introduce a problem
called focused dimensionality reduction where given a original
high-dimensional dataset and a set of points of interest, we
want to find 2- or 3-dimensional embeddings of the original
data such that the information loss in the local neighborhoods
surrounding the points of interest is minimized as much as
possible. In other words, if the information loss is inevitable,
it should not happen around the points of interest.

The main idea to solve the problem is that we will enforce
the optimization of the dimensionality reduction to focus more
on points of interest by putting more weights on losses that
involve points of interest. To demonstrate this approach, we
extend the stochastic neighbor embedding method [14] and
introduce a focused objective function where pairs of points
of interest will be preferentially optimized via regularization.
Although we focus on implementing our idea with stochastic
neighbor embedding, this approach can also be added on top
of other dimensionality reduction methods to make them more
focused in needed applications.

We summarize our main contributions as follows:

1) We introduce a problem called focused dimensionality
reduction and propose a stochastic neighborhood embed-
ding approach to solve the problem via regularization.

2) We conduct extensive experiments with datasets from
different domains. The results show that our proposed



method is better in preserving the local neighborhood
structure of points of interest while the generated visual-
izations are as good as those generated by the stochastic
neighbor embedding method.

II. RELATED WORK

There are two main approaches to embed high-dimensional
data objects into a lower-dimensional space. The first approach
includes linear techniques such as the classic method PCA
[16] where a linear projection of the original data is used
to capture as much variance found in the data as possible.
Another linear method is multidimensional scaling (MDS)
[10] that measures dissimilarities between data objects using
Euclidean distance and learns the low-dimensional embed-
dings by keeping those dissimilar points far apart in the low-
dimensional space. For data that lies on a non-linear manifold,
these linear methods may not be able to discover that non-
linear structure. Therefore, in the non-linear approach, several
non-linear methods have been proposed such as Nonlinear
PCA [17], Kernel PCA [12], Isomap [18], Self-organizing
maps [19] and its probabilistic variant GTM [20], Elastic
Nets [21], and LLE [22]. In non-linear approach, the most
related work to our proposed method are SNE [14] and its
t-distributed variant t-SNE [15]. Different from the above
methods, SNE models the pairwise similarity between points
1 and j by using a probability defined over distances between
the data points. The pairwise similarities are computed in
both high-dimensional space and low-dimensional space. SNE
then learns the low-dimensional embeddings by minimizing
the discrepancies between the two probability distributions.
t-SNE improves SNE to deal with the crowding problem
by using Student-t distribution as a heavy-tailed distribution
in the low-dimensional space. All above methods treat all
data points as equally important and aim to preserve the
structural information for all points. As a result, the inevitable
information loss could happen to any data points. In contrast,
our proposed method lets users specify a set of points of
interest, and while trying to preserve the structural information
for all points, our method will preferentially minimize the
information loss around the points of interest.

III. FOCUSED STOCHASTIC NEIGHBOR EMBEDDING

We consider the problem of focused dimensionality reduc-
tion. Given a dataset of NV data points in high-dimensional
space, X = {z1,x2,...,2N}, and a set of I points of interest,
POI = {p1,ps,...,pr}, POI C X, our proposed method
aims to find embeddings Y = {y1,y2,...,yn} of X in
a 2- or 3-dimensional space for visualization such that the
local neighborhoods of data points are preserved as much as
possible in the visualization space, and the points of interest
will be preferentially optimized to avoid the information
loss in the local neighborhoods around them. To solve the
problem, we propose a method called fSNE. fSNE extends
SNE [14] with a focused objective function that allows the
optimization to put more weights on modeling correctly the
local neighborhoods of points of interest.

Following SNE, for two data points ¢ and j, we parameterize
the conditional probability that j is a neighbor of 7, p(j|i), as
a function of Euclidean distances between the data points in
the original high-dimensional space:

exp(—||x; — x;(|*/207)
ki exp(= i — el[/207)

here o; is the variance of the Gaussian centered at x;. The
denominator summing over all pairs acts as a normalization
ensuring that 3 p(j|¢) = 1. Intuitively, p(j|i) represents the
similarity of ¢ and j. The closer they are in the original space,
the higher p(j|i) is and the more similar they are.

Similarly, in the visualization space, the conditional prob-
ability that j is a neighbor of 4, ¢(j|¢), can be computed as
follows:
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To learn the embeddings YV = {y1,y2,...,yn}, we will
minimize the mismatch between ¢(j|¢) and p(j|i). In other
words, the similarity between y; and y; in the visualization
space should reflect the similarity between z; and z; in the
original space. More specifically, let P; be the conditional
distribution over all other data points given data point z; in the
original space, and (); be the conditional distribution over all
other data points given data point y; in the visualization space,
we can minimize the Kullback-Leibler divergence between P;
and @; for all points ¢ as follows:

~—

L= KLEIQ) = 33 sl log 1D )
i 2 a(ilo)

The above objective function treats all points as equally im-
portant. Therefore, to let the model focus on points of interest
POI and minimize the information loss around them as much
as possible, we introduce a coefficient parameter A for pairs
of points that involve points of interests. More specifically, the
new objective function that incorporates information on points

of interest becomes:
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here A > 1 is the weight for pairs that involve points of
interests '. The greater A is, the more the model will focus
on minimizing the mismatch between ¢(j|¢) and p(j|é), if 4
or j is one of the points of interest. Note that when A = 1,
L* becomes L, i.e., there is no focus on any points of interest
and fSNE will be reduced to the original SNE.

'\ is set to 2 in our experiments



Similar to SNE, we also implement the binary search
for o; in Eq.1 that produces a P; with a fixed perplexity.
The perplexity can be interpreted as the effective number of
neighbors. We vary the perplexity in our experiments to show
its effect to the performance. To optimize L*, we provide a
GPU-accelerated implementation of fSNE that uses Adam as
the optimizing algorithm. fSNE scales well to large datasets
on GPUs with enough memory.

IV. EXPERIMENTS

We evaluate the visualization performance of fSNE on the
following three datasets of different data types:

1) MNIST? - MNIST is an image dataset with handwritten
digits (28x28 pixels). For our experiments, we use a
sample of 5000 images (500 images for each digit).

2) 20Newsgroups® - 20Newsgroups is a corpus of news
articles categorized into 20 groups. For experiments,
we use the training subset that has 11314 documents.
As preprocessing, we lemmatize the words, remove
stopwords and documents with length less than 5 words.
The vocabulary size is 5000. We represent documents
using tf-idf vectors.

3) Wine Quality* - Wine quality is a numerical dataset
of 3918 samples of wines. Each sample has 11 wine
features (e.g., volatile acidity, citric acid, density, pH,
and alcohol). The labels are the quality levels of wine
samples. This dataset includes wine samples that have
quality scores from 3 (poor) to 9 (excellent).

For each dataset, we randomly sample three sets of points of
interest; each has 100 data points. We set A\ = 2 for fSNE and
vary the perplexities from 10 to 50. For a direct comparison,
we compare our method to SNE. Note that other methods are
orthogonal to our method because we can add the focused
layer on top of those methods for focused analysis. fSNE and
SNE are trained for 1000 iterations with learning rate set to
0.1 and optimized using Adam algorithm. All experimental
results are averaged across three independent runs.

1) Quantitative Analysis: For evaluating the quality of the
local structure preservation, we adopt the Local Approxima-
tion of Preserved Structure (LAPS) [23] that calculates the
local divergence for a point x; given the dataset X and the em-
beddings Y. A lower local divergence score signifies a better
preservation of the original local neighborhood structure. We
compute the local divergence for every point in the POI set and
report the averaged local divergence. Figure 1 shows the results
on three datasets with varied perplexities. As we can see, fSNE
is better in preserving the local neighborhood structure for
points of interest across all datasets and all settings. Therefore,
our method is particularly useful when users want the patterns
involving the points of interest to be faithfully displayed in the
visualization.

Zhttps:/pytorch.org/vision/stable/generated/torchvision.datasets. MNIST.html

3https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html

“https://github.com/aindrila- ghosh/LAPS_and_GAPS/blob/master/data/
Wine_Quality.csv
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Fig. 1. Local divergence across different perplexities

As another quantitative evaluation, we want to show that
while preferentially optimizing for points of interest, our
method also produces a good visualization of all the points
in the dataset. To measure the quality of the visualization,
we use the k-nearest neighbors (kNN) accuracy in the vi-
sualization space [15]. A good visualization will achieve
a high classification accuracy because it groups documents
of the same label together in the visualization space. We
report the averaged kNN accuracy across different & for fSNE
and SNE in Figure 2. As we can see, the performance of
fSNE is comparable to that of SNE, which demonstrates that
the generated visualizations by fSNE are as good as those
generated by SNE.
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Fig. 2. kNN accuracy across different perplexities

2) Qualitative Analysis: For qualitative evaluation, we
present example visualizations of fSNE and SNE in Figures 3,
4 and 5 where it can be seen that fSNE’s overall visualizations
are as good as those of SNE. For a deeper analysis to
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Fig. 4. Visualization of 20Newsgroups by fSNE and SNE with perplexity = 10
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Fig. 5. Visualization of Wine Quality by fSNE and SNE with perplexity = 10

TABLE I
RUNNING TIME (IN SECONDS)
Name Type Instances | Features | SNE fSNE
Wine Quality Tabular | 3918 11 209.9 | 208.3
MNIST Image 5000 784 256.4 | 259.4
20Newsgroups | Text 11314 5000 994.5 | 1035.6

showcase how well fSNE preserves the local neighborhood
structure of points of interest, Figures 6, 7 and 8 show the
original local neighborhood structure surrounding a point of
interest (the red point near the center of each figure). In
those figures, we zoom in the visualizations and show the
50 nearest neighbors of the point of interest. The original
neighborhood points are marked with an ‘x’. We clearly notice
that in the visualizations by fSNE, among the 50 nearest
neighbors in the visualization space, there are more points that
are the original neighbors of the point of interest in the high-
dimensional space, which demonstrates the effectiveness of
fSNE in preserving the local neighborhood structure of points
of interest.

3) Running Time: fSNE scales well to large datasets on
GPUs with enough memory. The running time for each dataset
is reported in Table I.

V. CONCLUSION

We propose a method based on stochastic neighbor em-
bedding for focused dimensionality reduction that aims to
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Fig. 6. Scatterplot shows the 50 nearest neighbors of a given point of interest
in the visualization space for MNIST dataset. The original neighborhood
points are marked with an ‘x’

preferentially preserve the local neighborhood structures of
points of interest. We demonstrate the effectiveness of the
proposed method in visualizing high-dimensional datasets. The
results show that our proposed method is better in preserving
the local neighborhood structure of points of interest while
the generated visualizations are as good as those generated
by the stochastic neighbor embedding method. For future
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Fig. 7. Scatterplot shows the 50 nearest neighbors of a given point of

interest in the visualization space for 20Newsgroups dataset. The original
neighborhood points are marked with an ‘x’
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Fig. 8. Scatterplot shows the 50 nearest neighbors of a given point of interest
in the visualization space for Wine Quality dataset. The original neighborhood
points are marked with an ‘x’

work, we plan to develop a generalized framework that allows
conveniently adding a focused layer on top of non-linear
dimensionality methods for focused analysis.
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