






glish for translate-test. TRANX (Yin and Neubig,

2018) is a BiLSTM-based encoder-decoder model

that uses a transition-based abstract syntax parser

to map NLs into formal meaning representations

(MR) such as Python programs. It is agnostic to

input languages and hence can be evaluated on both

translated settings. TAE (Norouzi et al., 2021) is

the state-of-the-art method on CoNaLa by training

a generic transformer with an added target autoen-

coder (TAE) objective. However, it is built with

(English-)BERT and is intended for English scenar-

ios, therefore only tested on translate-test.

As is required by zero-shot evaluation, we adopt

a multilingual model, MBART (Liu et al., 2020),

which is a seq2seq model pre-trained on 25 natu-

ral languages including our target ones. Note that

MBART can also function in monolingual contexts,

for both translate-train and translate-test settings.

3.3 Experiment

We train baseline models in their available settings,

then tokenize the generated and reference code

snippets following Yin and Neubig (2018) to eval-

uate the BLEU-4 scores. We report the average

scores of five rounds using different random seeds.

Model Setting
Language

en es ja ru avg.

MBART

translate-test

25.20

2.38 3.07 2.04 2.50

translate-train 2.64 3.45 2.65 2.91

zero-shot 2.49 1.83 2.28 2.20

TRANX
translate-test

32.26
2.46 8.34 8.12 6.31

translate-train 2.44 6.11 6.02 4.86

TAE translate-test 33.41 2.39 9.90 9.56 7.28

Table 1: BLEU scores of baselines for various train-test

settings in English (en) and target languages (es, ja, ru).

In Table 1, first, scores on target languages av-

erage to at most 7.28, much lower than 33.41

on English, revealing the similarity of English

and Python, and the difficulty of generating code

from other languages. Second, models with code-

specific designs and training (TRANX and TAE)

performs better in general. The lower scores of

MBART potentially suggest a certain representa-

tion gap between NL and PL. Third, results on two

code-specific models show consistent variations

across languages: scores are lower for Spanish,

but rise similarly on Japanese and Russian. As we

will discuss in § 4.1, this is possibly due to the

distributional gap between languages with varied

complexity.

3.4 Significance Test

To verify the effectiveness of MCoNaLa, we per-

form significance tests (Dror et al., 2018) to show

its capability of showing significant differences

between systems. We conduct paired bootstrap re-

sampling tests with each pair of models in their

available settings, using a sample rate of 0.5 and a

sample size of 10, 000.

Setting Language
Win Rate (%)

Tie p-value
MBART TRANX TAE

translate-test

es

0.532 0.402 - 0.066 0.468

0.522 - 0.396 0.102 0.478

- 0.508 0.448 0.044 0.492

ja

0.000 1.000 - 0.000 0.000

0.000 - 1.000 0.000 0.000

- 0.002 0.998 0.000 0.002

ru

0.000 1.000 - 0.000 0.000

0.000 - 1.000 0.000 0.000

- 0.001 0.998 0.001 0.002

translate-train

es 0.592 0.408 - 0.000 0.408

ja 0.000 1.000 - 0.000 0.000

ru 0.000 1.000 - 0.000 0.000

Table 2: Significance testing results between each pair

of baseline models. ‘-’ marks the model not in the pair.

In both translate-test and translate-train set-

tings of Table 2, code-specific systems (TRANX

and TAE) significantly outperform MBART on

Japanese and Russian. However, no significant dif-

ferences are shown in Spanish, as expected given

its relative difficulty. With significance testing, one

can obtain reliable results even on a small dataset.

While small sizes are not entirely desirable for in-

formative evaluation, we view them as practical

reflections of data scarcity, supporting our call for

more non-English resources.

4 Analysis

4.1 Variations between Languages

We first study the differences in size and snippet

length between languages subsets in MCoNaLa.

As listed in Table 3, snippet lengths vary across lan-

guages, and the average snippet length in Spanish

is around 2.5/1.3 times of that in Japanese/Russian.

A longer snippet is presumably more complex, sug-

gesting that snippets in Spanish samples are harder

to generate, and hence models perform poorer.

4.2 Intent Auto-translation

In § 3.1 we use MMT models for intent trans-

lation. To optimize translation quality, we com-

pare three best performing MMT models: OPUS-

MT (Tiedemann and Thottingal, 2020), M2M-





Limitations

Although the MCoNaLa dataset makes a first step

to include more natural languages aside from En-

glish, it is currently limited to the languages sup-

ported by the StackOverflow forum, since SO pro-

vides the source data for the MCoNaLa creation.

This can be mitigated by extending to more lan-

guages using programming forums in other lan-

guages that have a similar purpose to SO. Besides,

MCoNaLa dataset only supports literal evaluation

methods such as BLEU. Given the executable na-

ture of Python programs, it is beneficial to support

more evaluation metrics such as functional correct-

ness, robustness, and conciseness.

Ethics Statement

The MCoNaLa dataset is built to serve as a testbed

for evaluating code generation systems from nat-

ural languages extending beyond English, given

that an English-centric setting can harm universal

accessibility to language technologies.

We hire annotators who are proficient in target

languages and assist them with clearly documented

instructions, flexible annotation interfaces (e.g.,

Google Sheets), and automated methods (e.g., us-

ing a neural classifier to filter out possibly invalid

cases) to optimize the annotation efficiency. We

carefully check in line with our instructions and

standards, to ensure the quality of both the ques-

tion posts given and the annotation results back

from our annotators. We emphasize the differences

between samples in different languages, because

they are natural reflections of the questions that pro-

grammers asked in each specific language, similar

to many works in fields such as multilingual ques-

tion answering (Clark et al., 2020) and named entity

recognition (Nothman et al., 2013). We reckon that

it is of paramount importance to evaluate on data

that was originally produced in the target language,

and results may be less reliable otherwise.

Nevertheless, with the advances in models capa-

ble of generating code from natural language in-

puts, we should be aware of the potentially harmful

usage such as concealing malicious code (Wallace

et al., 2020), or generating code with security vul-

nerabilities (Verdi et al., 2020; Pearce et al., 2021).

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998–5007, On-
line. Association for Computational Linguistics.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In Proceedings of the
33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2091–2100. JMLR.org.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.
2021. Program synthesis with large language models.
ArXiv preprint, abs/2108.07732.

Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen.
2009. Sniff: A search engine for java using free-
form queries. In International Conference on Funda-
mental Approaches to Software Engineering, pages
385–400. Springer.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. ArXiv preprint,
abs/2107.03374.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454–470.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin. 2018. Multilingual bert readme.
https://github.com/google-research/bert/blob/
master/multilingual.md.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing
statistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383–1392.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at



scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489–500, Brussels, Belgium. Association for
Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric mul-
tilingual machine translation. Journal of Machine
Learning Research, 22(107):1–48.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’Aurelio Ranzato, Francisco Guzmán,
and Angela Fan. 2022. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522–538.

Sven Hartrumpf, Ingo Glöckner, and Johannes Level-
ing. 2008. Efficient question answering with ques-
tion decomposition and multiple answer streams. In
Workshop of the Cross-Language Evaluation Forum
for European Languages, pages 421–428. Springer.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
ArXiv preprint, abs/2105.09938.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 4411–4421.
PMLR.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018. Summarizing source code with trans-
ferred API knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 2269–2275. ijcai.org.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073–2083, Berlin, Germany. Association for Com-
putational Linguistics.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643–1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452–466.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950–2962, Online. Association for Computa-
tional Linguistics.

Qingyuan Liang, Zeyu Sun, Qihao Zhu, Wenjie Zhang,
Lian Yu, Yingfei Xiong, and Lu Zhang. 2021. Lyra:
A benchmark for turducken-style code generation.
ArXiv preprint, abs/2108.12144.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin Wang,
and Andrew Senior. 2016. Latent predictor networks
for code generation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 599–609,
Berlin, Germany. Association for Computational Lin-
guistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. ArXiv
preprint, abs/2102.04664.

Mehrad Moradshahi, Giovanni Campagna, Sina Sem-
nani, Silei Xu, and Monica Lam. 2020. Localizing
open-ontology QA semantic parsers in a day using
machine translation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5970–5983, Online. As-
sociation for Computational Linguistics.

Dana Movshovitz-Attias and William W. Cohen. 2013.
Natural language models for predicting programming
comments. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 35–40, Sofia, Bul-
garia. Association for Computational Linguistics.

Sajad Norouzi, Keyi Tang, and Yanshuai Cao. 2021.
Code generation from natural language with less prior
knowledge and more monolingual data. In Proceed-
ings of the 59th Annual Meeting of the Association for



Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 776–785, Online.
Association for Computational Linguistics.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James R Curran. 2013. Learning multilin-
gual named entity recognition from wikipedia. Artifi-
cial Intelligence, 194:151–175.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 574–584. IEEE.

Sebastiano Panichella, Jairo Aponte, Massimiliano
Di Penta, Andrian Marcus, and Gerardo Canfora.
2012. Mining source code descriptions from de-
veloper communications. In 2012 20th IEEE In-
ternational Conference on Program Comprehension
(ICPC), pages 63–72. IEEE.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan,
Brendan Dolan-Gavitt, and Ramesh Karri. 2021.
An empirical cybersecurity evaluation of github
copilot’s code contributions. arXiv preprint
arXiv:2108.09293.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 878–888, Beijing, China.
Association for Computational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Sebastian Ruder and Avi Sil. 2021. Multi-domain mul-
tilingual question answering. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing: Tutorial Abstracts, pages 17–
21, Punta Cana, Dominican Republic & Online. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96,
Berlin, Germany. Association for Computational Lin-
guistics.

Tom Sherborne and Mirella Lapata. 2021. Zero-shot
cross-lingual semantic parsing. ArXiv preprint,
abs/2104.07554.

Tom Sherborne, Yumo Xu, and Mirella Lapata. 2020.
Bootstrapping a crosslingual semantic parser. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 499–517, Online. As-
sociation for Computational Linguistics.

Peng Shi, Rui Zhang, He Bai, and Jimmy Lin. 2021.
Cross-lingual training with dense retrieval for docu-
ment retrieval. ArXiv preprint, abs/2109.01628.

Hideki Shima and Teruko Mitamura. 2010. Bootstrap
pattern learning for open-domain CLQA. In Proceed-
ings of NTCIR-8 Workshop Meeting.

Aditya Siddhant, Ankur Bapna, Yuan Cao, Orhan Firat,
Mia Chen, Sneha Kudugunta, Naveen Arivazhagan,
and Yonghui Wu. 2020. Leveraging monolingual
data with self-supervision for multilingual neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2827–2835, Online. Association for
Computational Linguistics.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT – building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479–480, Lisboa, Portugal. European Associa-
tion for Machine Translation.

Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse
Khomh, Gias Uddin, and Alireza Karami Motlagh.
2020. An empirical study of c++ vulnerabilities in
crowd-sourced code examples. IEEE Transactions
on Software Engineering.

Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh.
2020. Concealed data poisoning attacks on nlp mod-
els. arXiv preprint arXiv:2010.12563.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696–8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Edmund Wong, Taiyue Liu, and Lin Tan. 2015. Clocom:
Mining existing source code for automatic comment
generation. In 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengi-
neering (SANER), pages 380–389. IEEE.

Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. Auto-
comment: Mining question and answer sites for auto-
matic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 562–567. IEEE.

Mengzhou Xia, Xiang Kong, Antonios Anastasopou-
los, and Graham Neubig. 2019. Generalized data



augmentation for low-resource translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5786–
5796, Florence, Italy. Association for Computational
Linguistics.

Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan
Vasilescu, and Graham Neubig. 2020. Incorporating
external knowledge through pre-training for natural
language to code generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6045–6052, Online. Asso-
ciation for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings of
the 2018 World Wide Web Conference on World Wide
Web, WWW 2018, Lyon, France, April 23-27, 2018,
pages 1693–1703. ACM.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018a. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018b. Learning to
mine aligned code and natural language pairs from
stack overflow. In 2018 IEEE/ACM 15th interna-
tional conference on mining software repositories
(MSR), pages 476–486. IEEE.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7–12, Brussels, Belgium. Association
for Computational Linguistics.

Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai.
2012. Example overflow: Using social media for
code recommendation. In 2012 Third International
Workshop on Recommendation Systems for Software
Engineering (RSSE), pages 38–42. IEEE.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. ArXiv
preprint, abs/1709.00103.

A Related Work

Natural Language to Code Generation Datasets

There have been several benchmark datasets for

NL-to-Code generation, such as Hearthstone (Ling

et al., 2016), Django (Oda et al., 2015), CON-

CODE (Iyer et al., 2018), and CoNaLa (Yin

et al., 2018a). Other examples include datasets

for problem solving, such as HumanEval (Chen

et al., 2021), MBPP (Austin et al., 2021), and

APPS (Hendrycks et al., 2021). A number of meth-

ods have been proposed to mine intent-snippet pairs

for the purpose of code search, summarization, or

generation. While our work falls in the line of

mining from SO (Wong et al., 2013; Iyer et al.,

2016; Yao et al., 2018; Yin et al., 2018b), other

work also attempts to exploit other data sources

such as API documentation (Chatterjee et al., 2009;

Movshovitz-Attias and Cohen, 2013; Xu et al.,

2020), code comments (Wong et al., 2015), special-

ized sites (Quirk et al., 2015), and developer com-

munications (Panichella et al., 2012). One prior

methodology to automatically collect large-scale

parallel data is using heuristics to extract intent-

snippet pairs (Chatterjee et al., 2009; Wong et al.,

2013; Zagalsky et al., 2012), but this often results

in compromised data quality (Xu et al., 2020). Our

work resorts to a manual annotation strategy that

often yields accurately aligned intent-snippet pairs.

Multilingual Learning While the bulk of code-

related tasks have their NL components in English,

program developers native in other languages can-

not enjoy the advances in code intelligence tech-

niques, leading to the current lacunae in multilin-

gual learning. Our work intends to mitigate this

gap by facilitating NL-to-Code generation in multi-

ple languages beyond English. To enable language

understanding across multiple languages, a number

of works propose to train language models with

corpus in multiple languages (Devlin, 2018; Liu

et al., 2020; Conneau et al., 2020; Xue et al., 2021).

In addition to multilingual training, other data aug-

mentation techniques commonly used in machine

translation (MT), such as back-translation (Edunov

et al., 2018), monolingual (Sennrich et al., 2016;

Siddhant et al., 2020) or generalized data augmen-

tation (Xia et al., 2019), also inspired our experi-

ments. However, these techniques have rarely been

utilized for NL-conditioned code generation. We

present preliminary attempts in the experiments.


