MCoNaLa: A Benchmark for Code Generation
from Multiple Natural Languages

Zhiruo Wang*’ Grace Cuenca™*
’Carnegie Mellon University

Shuyan Zhou® Frank F. Xu®* Graham Neubig"
* Princeton University

‘Inspired Cognition

{zhiruow, shuyanzh,fangzhex,gneubig}@cs.cmu.edu, gcuenca@princeton.edu

Abstract

While there has been a recent burgeoning of ap-
plications at the intersection of natural and pro-
gramming languages, such as code generation
and code summarization, these applications are
usually English-centric. This creates a barrier
for program developers who are not proficient
in English. To mitigate this gap in technol-
ogy development across languages, we propose
a multilingual dataset, MCoNaLa, to bench-
mark code generation from natural language
commands extending beyond English. Mod-
eled off of the methodology from the English
Code/Natural Language Challenge (CoNaLa)
dataset, we annotated a total of 896 NL-Code
pairs in three languages: Spanish, Japanese,
and Russian. We present a systematic evalu-
ation on MCoNalL a by testing state-of-the-art
code generation systems. Although the diffi-
culties vary across three languages, all systems
lag significantly behind their English counter-
parts, revealing the challenges in adapting code
generation to new languages.

1 Introduction

There are an increasing number of applications
related to “code intelligence”, such as code sum-
marization (Allamanis et al., 2016; Hu et al., 2018;
Ahmad et al., 2020) and natural language (NL)
to code generation (Ling et al., 2016; Rabinovich
et al., 2017; Yin et al., 2018a; Xu et al., 2020;
Norouzi et al., 2021; Wang et al., 2021), accompa-
nied by code-specific tasks and benchmarks (Oda
et al., 2015; Zhong et al., 2017; Yin et al., 2018b;
Lu et al., 2021). However, in the cases where
these benchmarks include natural language, that
language is almost invariably English.

There are a few exceptions, but most of them ei-
ther focus on languages of specific domains (Sher-
borne and Lapata, 2021; Sherborne et al., 2020;

*Equal contribution.

'Code and data are available at https://github.com/zorazrw/
multilingual-conala

+Como sumar el campo ‘precio’ de todos los elementos del

modelo ‘Precompra’ en Django?
Spanish | (How to sum the ‘precio’ field of all the elements of the
‘Precompra’ model in Django?)

totaldos = Precompra.objects.aggregate(Sum(precio)).values()[0])

2R TEELFTarr DEFH LI > TOARTTES A HIFHDED H AR E H

(Extract only the first value from the 1D array that is the element
Japanese N
of the 2D array ‘arr’)

arr[:, 0]

YcTaHOBUTBH KOAMPOBKY ‘My_encode’ /71l IepeMEeHHBIX
OKDY>XEHHsI [0JIb30BaTEs ‘username’

Russian (Set ‘my_encode’ encoding for ‘username’ environment variables)

os.environ(‘username’).decode(my_encode)

Figure 1: Examples in the MCoNalLa dataset, that aim
to generate general-purpose Python code snippets from
source intent of multiple natural languages.

Moradshahi et al., 2020) or types of code (Oda
et al., 2015; Liang et al., 2021), or contain NL in-
tents collected via automatic translation (Li et al.,
2021) (Appendix A). However, similarly to how
Kwiatkowski et al. (2019) argue that “natural ques-
tions” are necessary to appropriately benchmark
QA systems, we argue that ensuring the naturalness
and coverage of questions is essential for bench-
marking code generation systems as well.

A dataset for English code generation based
on natural programming questions is the CoNaLa
dataset (Yin et al., 2018a). It is based on natural
developer questions harvested from the Stack Over-
flow (SO) question answering forum. In fact, in
addition to English, SO also supports four other lan-
guages (Spanish, Portuguese, Japanese, and Rus-
sian) that have strong developer communities and
engage in non-English programming environments.
In this work, we utilize this resource to construct
the MCoNalLa dataset, consisting of 341, 210, and
345 manually curated parallel samples with nat-
ural intents in Spanish, Japanese, and Russian,
along with corresponding Python code snippets.
Like CoNal a, these snippets are collected from
language-specific SO sites and annotated by na-



tive speakers who are also proficient in the Python
programming language.

To provide insights in the state of code gen-
eration on this new resource, we conduct com-
prehensive experiments with three state-of-the-art
text generation models in the context of cross-
lingual transfer, by unifying training and testing
NL via translation (Ruder and Sil, 2021; Shi et al.,
2021; Shima and Mitamura, 2010; Hartrumpf et al.,
2008), or utilizing a multilingual NL encoder such
as MBART (Liu et al., 2020). Our results sug-
gest that cross-lingual NL-to-Code generation is
challenging. Among all languages and experiment
settings, the highest average BLEU score is 7.28,
far behind that of English, which achieves 33.41,
presumably because English resembles Python
more than other NLs. In addition, we find models
with task-specific modules and training outperform
generic seq2seq models, yet the discrepancy be-
tween languages are consistent across all baseline
models. In all, our corpus and experiments demon-
strate the varied difficulty of the NL-to-Code gener-
ation task under different languages, emphasizing
the need to develop a language-comprehensive ap-
proach to code intelligence.

2 The MCoNaLa Dataset

2.1 Task Definition

Concerning the task of answering natural language
questions with machine-executable programs, our
focus is to build a benchmark dataset to evaluate
models for their ability to encode NL intents in
multiple languages and generate code snippets. For
each example in Figure 1, the infent above asks
how to achieve a particular goal, and the snippet
below responds with a piece of Python code.

2.2 Annotation Workflow

Our goal is to collect intent-snippet parallel data
in multiple natural languages. In this section, we
outline the main workflow for data annotation: (1)
language source selection, (2) valid SO post identi-
fication, and (3) parallel sample annotation.

Language source and selection Besides the En-
glish version, Stack Overflow also has forums avail-
able in four other languages: Spanish, Portuguese,
Japanese, and Russian. Data annotation in each
language requires a native speaker of that language,
who should also be proficient in both English and
Python. Due to the high cost and difficulty of hiring

. e
! Verificar que un archivo ‘fname’ exista
Cw Verify that a file ‘fname’ exists
i

rewritten
intent
i ¢Como verificar que un archivo exista en Python?:

] -mmnr
< IHow to check that a file exists in Python? :—-

i

Usando Python, zcémo verifico si un archivo existe?, sin usar la sentencia try

questio:

7 Using Python, how do | checkif afile exists, without using the ‘try

« Check whether a file exists using Python de spence91 {pair }

Puedes usar os.path. isfile

answer

Figure 2: Ilustration of the annotation process.

reliable annotators with such a specialized skill set,
we only employ one Upwork annotator for each of
Spanish, Japanese, and Russian. From the official
SO data dump2 dated March 2021, we obtained all
posts in these languages. However, we were unsuc-
cessful in finding a Portuguese-speaking annotator
at the time of corpus collection.

Identifying how-to questions Following Yin
et al. (2018a), annotators are first asked to iden-
tify valid posts that contain how-to type questions,
which are imperative utterances seeking particular
goals achievable by code. They are often in the post
title or description, such as the example in Figure 2.

Posts are sent in 100-sample batches, and then
categorized by annotators. To improve annotation
efficiency, we bootstrapped a MBART how-to ques-
tion classifier, with English examples, then itera-
tively multilingual samples. It achieves an accuracy
of 72.50%. We then automatically filter the proba-
ble invalid posts using this classifier and designate
the rest for manual annotation. We collect all valid
posts and extract questions as raw intents, for sub-
sequent parallel data annotation.

Collecting intent-snippet pairs For each post,
we ask the annotators to find at most three snip-
pets of Python code that correctly answer the ex-
tracted question. However, questions from post
title or description are often ambiguous, especially
in respective context of answer snippet, such as
the example in Figure 2, that the question does
not specify the names of “data” and “list” vari-
ables to allow precise code implementation. To
disambiguate the intent and align it with a snip-
pet, we ask annotators to rewrite the intent by:
(1) specifying variable names appearing in the an-
swer snippet, and (2) clarifying commands with
reference question descriptions. Concretely, vari-
able names and data types in the rewritten intent

2https://archive.org/details/stalcl«:xchange



train

<English> translate-test

Concatenate elements of a list 'x" of
multiple integers to a single integer.
sum(d * 10 ** i for i, d in enumerate(x[::-11))

<Spanish>, translated from English

Concatena los elementos de una lista x" de
varios enteros en un solo entero.

sum(d * 10 ** i for i, d in enumerate(x[::-11)) translate-train

<English>, translated from Spanish
How to sum the “precio’ field of all elements of the ‘Precompra’
model in Django?

totaldos = Precompra.objects.aggregate(Sum(precio)).values()[0])

/1

<Spanish>
Cémo sumar el campo ‘precio’ de todos los elementos del modelo
‘Precompra’ en Django?

totaldos = Precompra.objects.aggregate(Sum(precio)).values()[0])

Figure 3: Example usage on the original English and Multilingual samples in three settings.

need to be surrounded by the ASCII grave accent
marks (e.g., ~data”), string literals or file paths
should use singular typographic quotation marks
(e.g., ‘filel.txt’, ‘https://www.abc.com/’).

The final MCoNalLa dataset consists of 341, 210,
and 345 intent-snippet pairs in Spanish, Japanese,
and Russian. It is noteworthy that the goal of
MCoNal.a is to benchmark cross-lingual NL-to-
Code generation task and mainly for testing pur-
poses, instead of curating large-scale dataset for
training. While its size is relatively small given the
collection difficulty, we show that it can reliably
inform significant method improvements (§ 3.3).
We believe it is important for our dataset to be rep-
resentative of the naturally occurring questions in
respective language environments.

2.3 Quality Analysis

To ensure high data quality as intended, we checked
15 random samples from each language subset.
Each rater score NL intents and code snippets from
1 to 5 based on their correctness and specificity.

The results demonstrate the high quality of our
dataset, achieving 4.78, 4.65, 4.78 points on Span-
ish, Japanese, and Russian intents; and 4.84, 4.89,
4.78 points on their corresponding code snippets.
Meanwhile, three raters present high agreement —
the Fleiss’ Kappa measure is 64.29 for NL intents
and 69.49 for code snippets — both numbers indi-
cate substantial agreement among the raters.

3 Method

To provide insights about evaluating on MCoNalLa,
we demonstrate potential dataset usage in three
train-test settings (§ 3.1), and propose to adapt three
baseline models from either multilingual (NL) or
code understanding to achieve both ends (§ 3.2).
Because the size of MCoNalLa allows only test-
ing purposes, we resort to its larger English counter-

part, CoNaLa (Yin et al., 2018a), to allow training.
CoNal.a contains 2,879 manually annotated sam-
ples and 600k samples extracted from English SO
forum and API documents, which can serve as a
sufficient source for training. Given this usage, we
denote the three test languages as target languages.

3.1 Train-Test Settings

We adopt three settings from two paradigms (Hu
et al., 2020) as illustrated in Figure 3: (1) trans-
lating intents in train (translate-train) or test
(translate-test) sets to bridge the language gap, (2)
using multilingual encoder to transfer from English
to target languages (zero-shot).

For each target language, we can align the lan-
guages of training and testing intents and use a
monolingual encoder. The translate-train setting
translates English intents in CoNaLa to each target
language for training and then tests with MCoNaLa
samples. translate-test translates MCoNalLa intents
in three target languages into English. Because it
is not feasible to manually translate 600K + intents,
we use existing multilingual machine translation
(MMT) models to automate translation. We bench-
marked several open-source options, as elaborated
in § 4.2, and settled on the M2M-124 model used
on the FLORES-101 dataset (Goyal et al., 2022).

Also, we can train models on English samples
and directly evaluate on MCoNaLa samples in tar-
get languages zero-shot, requiring models to en-
code multiple NLs, further, transfer the code gener-
ation ability from English context to target ones.

3.2 Baseline Models

We introduce three baseline methods targeting the
above train-test settings. We encourage readers to
refer to the original papers for more details.

In a monolingual context, models should func-
tion in target languages for translate-train and En-



glish for translate-test. TRANX (Yin and Neubig,
2018) is a BiILSTM-based encoder-decoder model
that uses a transition-based abstract syntax parser
to map NLs into formal meaning representations
(MR) such as Python programs. It is agnostic to
input languages and hence can be evaluated on both
translated settings. TAE (Norouzi et al., 2021) is
the state-of-the-art method on CoNaLa by training
a generic transformer with an added target autoen-
coder (TAE) objective. However, it is built with
(English-)BERT and is intended for English scenar-
ios, therefore only tested on translate-test.

As is required by zero-shot evaluation, we adopt
a multilingual model, MBART (Liu et al., 2020),
which is a seq2seq model pre-trained on 25 natu-
ral languages including our target ones. Note that
MBART can also function in monolingual contexts,
for both translate-train and translate-test settings.

3.3 Experiment

We train baseline models in their available settings,
then tokenize the generated and reference code
snippets following Yin and Neubig (2018) to eval-
uate the BLEU-4 scores. We report the average
scores of five rounds using different random seeds.

Model Setting Language
en ‘ es ja ru avg.
translate-test 2.38 3.07 2.04 250
MBART translate-train 25.20 | 2.64 3.45 2.65 2091
zero-shot 249 1.83 228 220
translate-test 246 834 8.12 631
TRANX anslate-train 220 ‘ 244 611 602 4386
TAE  translate-test 33.41 | 239 9.90 9.56 7.28

Table 1: BLEU scores of baselines for various train-test
settings in English (en) and target languages (es, ja, ru).

In Table 1, first, scores on target languages av-
erage to at most 7.28, much lower than 33.41
on English, revealing the similarity of English
and Python, and the difficulty of generating code
from other languages. Second, models with code-
specific designs and training (TRANX and TAE)
performs better in general. The lower scores of
MBART potentially suggest a certain representa-
tion gap between NL and PL. Third, results on two
code-specific models show consistent variations
across languages: scores are lower for Spanish,
but rise similarly on Japanese and Russian. As we
will discuss in § 4.1, this is possibly due to the
distributional gap between languages with varied
complexity.

3.4 Significance Test

To verify the effectiveness of MCoNalLa, we per-
form significance tests (Dror et al., 2018) to show
its capability of showing significant differences
between systems. We conduct paired bootstrap re-
sampling tests with each pair of models in their
available settings, using a sample rate of 0.5 and a
sample size of 10, 000.

Setting Languag ‘ Win Rate (%) ‘ Tie ‘p-value
| MBART TRANX TAE | |
0532 0402 - [0066 | 0468
es 0522 - 0396|0102 | 0478
- 0508 0448 | 0.044 | 0492
| 0.000  1.000 - [0.000 | 0.000
translate-test ja 0.000 . 1.000 | 0.000 | 0.000
- 0.002  0.998 | 0.000 | 0.002
0.000  1.000 - [0.000 ]| 0.000
ru 0.000 - 1.000 | 0.000 | 0.000
- 0.001  0.998 | 0.001 | 0.002
es | 0592 0408 | 0.000 | 0.408
wranslae-train 5, 0,000 1,000 | 0.000 | 0.000
m | 0.000 1.000 | 0.000 | 0.000

Table 2: Significance testing results between each pair
of baseline models. ‘-* marks the model not in the pair.

In both translate-test and translate-train set-
tings of Table 2, code-specific systems (TRANX
and TAE) significantly outperform MBART on
Japanese and Russian. However, no significant dif-
ferences are shown in Spanish, as expected given
its relative difficulty. With significance testing, one
can obtain reliable results even on a small dataset.
While small sizes are not entirely desirable for in-
formative evaluation, we view them as practical
reflections of data scarcity, supporting our call for
more non-English resources.

4 Analysis

4.1 Variations between Languages

We first study the differences in size and snippet
length between languages subsets in MCoNalLa.
As listed in Table 3, snippet lengths vary across lan-
guages, and the average snippet length in Spanish
is around 2.5/1.3 times of that in Japanese/Russian.
A longer snippet is presumably more complex, sug-
gesting that snippets in Spanish samples are harder
to generate, and hence models perform poorer.

4.2 Intent Auto-translation

In § 3.1 we use MMT models for intent trans-
lation. To optimize translation quality, we com-
pare three best performing MMT models: OPUS-
MT (Tiedemann and Thottingal, 2020), M2M-



original intent (English)

translated intent (Spanish)

Prepend string ‘hello’ to all items in list ‘a’

Preparacion (prepare) de la cadena ‘hello’ a todos los elementos en la lista ‘a’

snippet ['hello{0}'.format(i) for i in a]
original intent (English)

translated intent (Japanese)

add a colorbar to plot “plt’ using image ‘im’ on axes ‘ax’

B im 2> Cax O#NZ AT — S —%1B

snippet plt.colorbar(im, ax=ax)
original intent (English)

translated intent (Russian)

extend dictionary ‘a’ with key/value pairs of dictionary ‘b’

pacIIUpUTh CJIOBAph d’ C KJIIOYEBBIMI,/3HAaYHTEIbHBIMH (significant) mapamu ciosapst ‘b’

a.update(b)

snippet

Figure 4: Examples showing that the translation errors or omits critical words in the original intent.

# Snippet Tokens

Language | Size |
| | average max min

English | 2,879 | 182 170

Spanish 341 42.6 343 4
Japanese 210 17.7 94 2
Russian 345 32.0 243 3

Table 3: Data size and snippet length (in number of
tokens) of MCoNaLa samples between target languages.

100 (Fan et al., 2021), and M2M-124 used in
FLORES-101 (Goyal et al., 2022). Since com-
paring in translate-train needs intensive re-training
with different model translations, we ablate in the
translate-test setting, using each model to translate
test intents and evaluate NL-to-Code respectively.

Baseline ~ MMT Language
Spanish  Japanese Russian

M2M-124 2.38 3.08 2.04
MBART OPUS-MT 2.28 3.21 2.46
M2M-100 1.83 2.79 2.00
M2M-124 2.46 8.41 8.09
TRANX  OPUS-MT 2.46 5.09 5.00
M2M-100 2.04 7.38 8.48
M2M-124 2.39 9.88 9.57
TAE OPUS-MT 3.15 3.89 5.30
M2M-100 2.21 8.20 9.32

Table 4: Comparing MMT models under translate-test.

As in Table 4, their results are close, but M2M-
124 tends to be more stable across languages and
baselines. Despite its relative superiority, its trans-
lation quality may still lag behind human perfor-
mance, with more examples in § 4.3.

4.3 Quality of Auto-translation

To better measure the quality of translated intents,
we manually check the semantic alignment be-

tween the original and translated intents, with the
assistance of the Google Translate API and dictio-
naries. Concretely, we take 20 English CoNaLa in-
tents and check if their semantics preserve after be-
ing translated into three target languages (translate-
train). We similarly examine 20 MCoNaLa intents
in each target language and check their English
translations (translate-test). We use the M2M-124
translations given its best results. As shown in Fig-
ure 4, MMT translations are still sub-optimal: often
mis-translate, even omit, the key words. This is es-
pecially severe on verbs that indicate certain Python
operations. Hence, the translation step may impair
intent-snippet alignment, being one of the major
factors to the poor results in translated settings.

5 Conclusion

In this work, we extend the task of NL-to-Code
generation from English-centric to multilingual sce-
narios. We establish the MCoNalLa benchmark that
contains NL intent and code snippet pairs available
in Spanish, Japanese, and Russian. Our benchmark
serves for the multilingual code generation task, re-
quiring models of both multilingual understanding
and code synthesis. We conduct systematic experi-
ments on three baseline models and show varying
difficulty across languages and settings. We hope to
reveal the necessity to develop, and serve as a solid
test bed for language-comprehensive approaches
regarding code intelligence.

Acknowledgements

We thank all the annotators for their hard work.
This work was supported by the National Science
Foundation under grant number 1815287.



Limitations

Although the MCoNaLa dataset makes a first step
to include more natural languages aside from En-
glish, it is currently limited to the languages sup-
ported by the StackOverflow forum, since SO pro-
vides the source data for the MCoNalLa creation.
This can be mitigated by extending to more lan-
guages using programming forums in other lan-
guages that have a similar purpose to SO. Besides,
MCoNalLa dataset only supports literal evaluation
methods such as BLEU. Given the executable na-
ture of Python programes, it is beneficial to support
more evaluation metrics such as functional correct-
ness, robustness, and conciseness.

Ethics Statement

The MCoNaLa dataset is built to serve as a testbed
for evaluating code generation systems from nat-
ural languages extending beyond English, given
that an English-centric setting can harm universal
accessibility to language technologies.

We hire annotators who are proficient in target
languages and assist them with clearly documented
instructions, flexible annotation interfaces (e.g.,
Google Sheets), and automated methods (e.g., us-
ing a neural classifier to filter out possibly invalid
cases) to optimize the annotation efficiency. We
carefully check in line with our instructions and
standards, to ensure the quality of both the ques-
tion posts given and the annotation results back
from our annotators. We emphasize the differences
between samples in different languages, because
they are natural reflections of the questions that pro-
grammers asked in each specific language, similar
to many works in fields such as multilingual ques-
tion answering (Clark et al., 2020) and named entity
recognition (Nothman et al., 2013). We reckon that
it is of paramount importance to evaluate on data
that was originally produced in the target language,
and results may be less reliable otherwise.

Nevertheless, with the advances in models capa-
ble of generating code from natural language in-
puts, we should be aware of the potentially harmful
usage such as concealing malicious code (Wallace
et al., 2020), or generating code with security vul-
nerabilities (Verdi et al., 2020; Pearce et al., 2021).

References

Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and
Kai-Wei Chang. 2020. A transformer-based ap-
proach for source code summarization. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 4998-5007, On-
line. Association for Computational Linguistics.

Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for extreme
summarization of source code. In Proceedings of the
33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24,
2016, volume 48 of JMLR Workshop and Conference
Proceedings, pages 2091-2100. JMLR.org.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al.
2021. Program synthesis with large language models.
ArXiv preprint, abs/2108.07732.

Shaunak Chatterjee, Sudeep Juvekar, and Koushik Sen.
2009. Sniff: A search engine for java using free-
form queries. In International Conference on Funda-
mental Approaches to Software Engineering, pages
385—400. Springer.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large lan-
guage models trained on code. ArXiv preprint,
abs/2107.03374.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454-470.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440—
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin. 2018. Multilingual bert readme.
https://github.com/google-research/bert/blob/
master/multilingual.md.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi
Reichart. 2018. The hitchhiker’s guide to testing
statistical significance in natural language processing.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1383—-1392.

Sergey Edunov, Myle Ott, Michael Auli, and David
Grangier. 2018. Understanding back-translation at



scale. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 489-500, Brussels, Belgium. Association for
Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep
Baines, Onur Celebi, Guillaume Wenzek, Vishrav
Chaudhary, et al. 2021. Beyond english-centric mul-
tilingual machine translation. Journal of Machine
Learning Research, 22(107):1-48.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-
Jen Chen, Guillaume Wenzek, Da Ju, Sanjana Kr-
ishnan, Marc’ Aurelio Ranzato, Francisco Guzman,
and Angela Fan. 2022. The flores-101 evaluation
benchmark for low-resource and multilingual ma-
chine translation. Transactions of the Association for
Computational Linguistics, 10:522-538.

Sven Hartrumpf, Ingo Glockner, and Johannes Level-
ing. 2008. Efficient question answering with ques-
tion decomposition and multiple answer streams. In
Workshop of the Cross-Language Evaluation Forum
for European Languages, pages 421-428. Springer.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
ArXiv preprint, abs/2105.09938.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. XTREME: A massively multilingual multi-
task benchmark for evaluating cross-lingual gener-
alisation. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 4411-4421.
PMLR.

Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and
Zhi Jin. 2018. Summarizing source code with trans-
ferred API knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden, pages 2269-2275. ijcai.org.

Srinivasan lIyer, loannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073-2083, Berlin, Germany. Association for Com-
putational Linguistics.

Srinivasan lyer, loannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2018. Mapping language to code
in programmatic context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1643—-1652, Brussels, Bel-
gium. Association for Computational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: A benchmark for question answering
research. Transactions of the Association for Compu-
tational Linguistics, 7:452-466.

Haoran Li, Abhinav Arora, Shuohui Chen, Anchit
Gupta, Sonal Gupta, and Yashar Mehdad. 2021.
MTOP: A comprehensive multilingual task-oriented
semantic parsing benchmark. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 2950-2962, Online. Association for Computa-
tional Linguistics.

Qingyuan Liang, Zeyu Sun, Qihao Zhu, Wenjie Zhang,
Lian Yu, Yingfei Xiong, and Lu Zhang. 2021. Lyra:
A benchmark for turducken-style code generation.
ArXiv preprint, abs/2108.12144.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomas Kocisky, Fumin Wang,
and Andrew Senior. 2016. Latent predictor networks
for code generation. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 599-609,
Berlin, Germany. Association for Computational Lin-
guistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726-742.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset
for code understanding and generation. ArXiv
preprint, abs/2102.04664.

Mehrad Moradshahi, Giovanni Campagna, Sina Sem-
nani, Silei Xu, and Monica Lam. 2020. Localizing
open-ontology QA semantic parsers in a day using
machine translation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5970-5983, Online. As-
sociation for Computational Linguistics.

Dana Movshovitz-Attias and William W. Cohen. 2013.
Natural language models for predicting programming
comments. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 35-40, Sofia, Bul-
garia. Association for Computational Linguistics.

Sajad Norouzi, Keyi Tang, and Yanshuai Cao. 2021.
Code generation from natural language with less prior
knowledge and more monolingual data. In Proceed-
ings of the 59th Annual Meeting of the Association for



Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 776—785, Online.
Association for Computational Linguistics.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James R Curran. 2013. Learning multilin-
gual named entity recognition from wikipedia. Artifi-
cial Intelligence, 194:151-175.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation. In 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 574-584. IEEE.

Sebastiano Panichella, Jairo Aponte, Massimiliano
Di Penta, Andrian Marcus, and Gerardo Canfora.
2012. Mining source code descriptions from de-
veloper communications. In 2012 20th IEEE In-
ternational Conference on Program Comprehension
(ICPC), pages 63—72. IEEE.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan,
Brendan Dolan-Gavitt, and Ramesh Karri. 2021.
An empirical cybersecurity evaluation of github
copilot’s code contributions. arXiv preprint
arXiv:2108.09293.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 878—888, Beijing, China.
Association for Computational Linguistics.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139—
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

Sebastian Ruder and Avi Sil. 2021. Multi-domain mul-
tilingual question answering. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing: Tutorial Abstracts, pages 17—
21, Punta Cana, Dominican Republic & Online. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86-96,
Berlin, Germany. Association for Computational Lin-
guistics.

Tom Sherborne and Mirella Lapata. 2021. Zero-shot
cross-lingual semantic parsing. ArXiv preprint,
abs/2104.07554.

Tom Sherborne, Yumo Xu, and Mirella Lapata. 2020.
Bootstrapping a crosslingual semantic parser. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 499-517, Online. As-
sociation for Computational Linguistics.

Peng Shi, Rui Zhang, He Bai, and Jimmy Lin. 2021.
Cross-lingual training with dense retrieval for docu-
ment retrieval. ArXiv preprint, abs/2109.01628.

Hideki Shima and Teruko Mitamura. 2010. Bootstrap
pattern learning for open-domain CLQA. In Proceed-
ings of NTCIR-8 Workshop Meeting.

Aditya Siddhant, Ankur Bapna, Yuan Cao, Orhan Firat,
Mia Chen, Sneha Kudugunta, Naveen Arivazhagan,
and Yonghui Wu. 2020. Leveraging monolingual
data with self-supervision for multilingual neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2827-2835, Online. Association for
Computational Linguistics.

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT - building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
pages 479-480, Lisboa, Portugal. European Associa-
tion for Machine Translation.

Morteza Verdi, Ashkan Sami, Jafar Akhondali, Foutse
Khombh, Gias Uddin, and Alireza Karami Motlagh.
2020. An empirical study of c++ vulnerabilities in
crowd-sourced code examples. IEEE Transactions
on Software Engineering.

Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh.
2020. Concealed data poisoning attacks on nlp mod-
els. arXiv preprint arXiv:2010.12563.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.
Hoi. 2021. CodeT5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8696—8708, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Edmund Wong, Taiyue Liu, and Lin Tan. 2015. Clocom:
Mining existing source code for automatic comment
generation. In 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengi-

neering (SANER), pages 380-389. IEEE.

Edmund Wong, Jingiu Yang, and Lin Tan. 2013. Auto-
comment: Mining question and answer sites for auto-
matic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 562-567. IEEE.

Mengzhou Xia, Xiang Kong, Antonios Anastasopou-
los, and Graham Neubig. 2019. Generalized data



augmentation for low-resource translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5786—
5796, Florence, Italy. Association for Computational
Linguistics.

Frank F. Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan
Vasilescu, and Graham Neubig. 2020. Incorporating
external knowledge through pre-training for natural
language to code generation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6045-6052, Online. Asso-
ciation for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mTS5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483-498, On-
line. Association for Computational Linguistics.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings of
the 2018 World Wide Web Conference on World Wide
Web, WWW 2018, Lyon, France, April 23-27, 2018,
pages 1693-1703. ACM.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018a. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476—486.
ACM.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018b. Learning to
mine aligned code and natural language pairs from
stack overflow. In 2018 IEEE/ACM 15th interna-
tional conference on mining software repositories
(MSR), pages 476—486. IEEE.

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstra-
tions, pages 7—12, Brussels, Belgium. Association
for Computational Linguistics.

Alexey Zagalsky, Ohad Barzilay, and Amiram Yehudai.
2012. Example overflow: Using social media for
code recommendation. In 2012 Third International
Workshop on Recommendation Systems for Software
Engineering (RSSE), pages 38—42. IEEE.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. ArXiv
preprint, abs/1709.00103.

A Related Work

Natural Language to Code Generation Datasets
There have been several benchmark datasets for
NL-to-Code generation, such as Hearthstone (Ling
et al., 2016), Django (Oda et al., 2015), CON-
CODE (Iyer et al., 2018), and CoNaLa (Yin
et al., 2018a). Other examples include datasets
for problem solving, such as HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), and
APPS (Hendrycks et al., 2021). A number of meth-
ods have been proposed to mine intent-snippet pairs
for the purpose of code search, summarization, or
generation. While our work falls in the line of
mining from SO (Wong et al., 2013; Iyer et al.,
2016; Yao et al., 2018; Yin et al., 2018b), other
work also attempts to exploit other data sources
such as API documentation (Chatterjee et al., 2009;
Movshovitz-Attias and Cohen, 2013; Xu et al.,
2020), code comments (Wong et al., 2015), special-
ized sites (Quirk et al., 2015), and developer com-
munications (Panichella et al., 2012). One prior
methodology to automatically collect large-scale
parallel data is using heuristics to extract intent-
snippet pairs (Chatterjee et al., 2009; Wong et al.,
2013; Zagalsky et al., 2012), but this often results
in compromised data quality (Xu et al., 2020). Our
work resorts to a manual annotation strategy that
often yields accurately aligned intent-snippet pairs.

Multilingual Learning While the bulk of code-
related tasks have their NL components in English,
program developers native in other languages can-
not enjoy the advances in code intelligence tech-
niques, leading to the current lacunae in multilin-
gual learning. Our work intends to mitigate this
gap by facilitating NL-to-Code generation in multi-
ple languages beyond English. To enable language
understanding across multiple languages, a number
of works propose to train language models with
corpus in multiple languages (Devlin, 2018; Liu
et al., 2020; Conneau et al., 2020; Xue et al., 2021).
In addition to multilingual training, other data aug-
mentation techniques commonly used in machine
translation (MT), such as back-translation (Edunov
et al., 2018), monolingual (Sennrich et al., 2016;
Siddhant et al., 2020) or generalized data augmen-
tation (Xia et al., 2019), also inspired our experi-
ments. However, these techniques have rarely been
utilized for NL-conditioned code generation. We
present preliminary attempts in the experiments.



