






glish for translate-test. TRANX (Yin and Neubig,

2018) is a BiLSTM-based encoder-decoder model

that uses a transition-based abstract syntax parser

to map NLs into formal meaning representations

(MR) such as Python programs. It is agnostic to

input languages and hence can be evaluated on both

translated settings. TAE (Norouzi et al., 2021) is

the state-of-the-art method on CoNaLa by training

a generic transformer with an added target autoen-

coder (TAE) objective. However, it is built with

(English-)BERT and is intended for English scenar-

ios, therefore only tested on translate-test.

As is required by zero-shot evaluation, we adopt

a multilingual model, MBART (Liu et al., 2020),

which is a seq2seq model pre-trained on 25 natu-

ral languages including our target ones. Note that

MBART can also function in monolingual contexts,

for both translate-train and translate-test settings.

3.3 Experiment

We train baseline models in their available settings,

then tokenize the generated and reference code

snippets following Yin and Neubig (2018) to eval-

uate the BLEU-4 scores. We report the average

scores of five rounds using different random seeds.

Model Setting
Language

en es ja ru avg.

MBART

translate-test

25.20

2.38 3.07 2.04 2.50

translate-train 2.64 3.45 2.65 2.91

zero-shot 2.49 1.83 2.28 2.20

TRANX
translate-test

32.26
2.46 8.34 8.12 6.31

translate-train 2.44 6.11 6.02 4.86

TAE translate-test 33.41 2.39 9.90 9.56 7.28

Table 1: BLEU scores of baselines for various train-test

settings in English (en) and target languages (es, ja, ru).

In Table 1, first, scores on target languages av-

erage to at most 7.28, much lower than 33.41

on English, revealing the similarity of English

and Python, and the difficulty of generating code

from other languages. Second, models with code-

specific designs and training (TRANX and TAE)

performs better in general. The lower scores of

MBART potentially suggest a certain representa-

tion gap between NL and PL. Third, results on two

code-specific models show consistent variations

across languages: scores are lower for Spanish,

but rise similarly on Japanese and Russian. As we

will discuss in § 4.1, this is possibly due to the

distributional gap between languages with varied

complexity.

3.4 Significance Test

To verify the effectiveness of MCoNaLa, we per-

form significance tests (Dror et al., 2018) to show

its capability of showing significant differences

between systems. We conduct paired bootstrap re-

sampling tests with each pair of models in their

available settings, using a sample rate of 0.5 and a

sample size of 10, 000.

Setting Language
Win Rate (%)

Tie p-value
MBART TRANX TAE

translate-test

es

0.532 0.402 - 0.066 0.468

0.522 - 0.396 0.102 0.478

- 0.508 0.448 0.044 0.492

ja

0.000 1.000 - 0.000 0.000

0.000 - 1.000 0.000 0.000

- 0.002 0.998 0.000 0.002

ru

0.000 1.000 - 0.000 0.000

0.000 - 1.000 0.000 0.000

- 0.001 0.998 0.001 0.002

translate-train

es 0.592 0.408 - 0.000 0.408

ja 0.000 1.000 - 0.000 0.000

ru 0.000 1.000 - 0.000 0.000

Table 2: Significance testing results between each pair

of baseline models. ‘-’ marks the model not in the pair.

In both translate-test and translate-train set-

tings of Table 2, code-specific systems (TRANX

and TAE) significantly outperform MBART on

Japanese and Russian. However, no significant dif-

ferences are shown in Spanish, as expected given

its relative difficulty. With significance testing, one

can obtain reliable results even on a small dataset.

While small sizes are not entirely desirable for in-

formative evaluation, we view them as practical

reflections of data scarcity, supporting our call for

more non-English resources.

4 Analysis

4.1 Variations between Languages

We first study the differences in size and snippet

length between languages subsets in MCoNaLa.

As listed in Table 3, snippet lengths vary across lan-

guages, and the average snippet length in Spanish

is around 2.5/1.3 times of that in Japanese/Russian.

A longer snippet is presumably more complex, sug-

gesting that snippets in Spanish samples are harder

to generate, and hence models perform poorer.

4.2 Intent Auto-translation

In § 3.1 we use MMT models for intent trans-

lation. To optimize translation quality, we com-

pare three best performing MMT models: OPUS-

MT (Tiedemann and Thottingal, 2020), M2M-





Limitations

Although the MCoNaLa dataset makes a first step

to include more natural languages aside from En-

glish, it is currently limited to the languages sup-

ported by the StackOverflow forum, since SO pro-

vides the source data for the MCoNaLa creation.

This can be mitigated by extending to more lan-

guages using programming forums in other lan-

guages that have a similar purpose to SO. Besides,

MCoNaLa dataset only supports literal evaluation

methods such as BLEU. Given the executable na-

ture of Python programs, it is beneficial to support

more evaluation metrics such as functional correct-

ness, robustness, and conciseness.

Ethics Statement

The MCoNaLa dataset is built to serve as a testbed

for evaluating code generation systems from nat-

ural languages extending beyond English, given

that an English-centric setting can harm universal

accessibility to language technologies.

We hire annotators who are proficient in target

languages and assist them with clearly documented

instructions, flexible annotation interfaces (e.g.,

Google Sheets), and automated methods (e.g., us-

ing a neural classifier to filter out possibly invalid

cases) to optimize the annotation efficiency. We

carefully check in line with our instructions and

standards, to ensure the quality of both the ques-

tion posts given and the annotation results back

from our annotators. We emphasize the differences

between samples in different languages, because

they are natural reflections of the questions that pro-

grammers asked in each specific language, similar

to many works in fields such as multilingual ques-

tion answering (Clark et al., 2020) and named entity

recognition (Nothman et al., 2013). We reckon that

it is of paramount importance to evaluate on data

that was originally produced in the target language,

and results may be less reliable otherwise.

Nevertheless, with the advances in models capa-

ble of generating code from natural language in-

puts, we should be aware of the potentially harmful

usage such as concealing malicious code (Wallace

et al., 2020), or generating code with security vul-

nerabilities (Verdi et al., 2020; Pearce et al., 2021).
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A Related Work

Natural Language to Code Generation Datasets

There have been several benchmark datasets for

NL-to-Code generation, such as Hearthstone (Ling

et al., 2016), Django (Oda et al., 2015), CON-

CODE (Iyer et al., 2018), and CoNaLa (Yin

et al., 2018a). Other examples include datasets

for problem solving, such as HumanEval (Chen

et al., 2021), MBPP (Austin et al., 2021), and

APPS (Hendrycks et al., 2021). A number of meth-

ods have been proposed to mine intent-snippet pairs

for the purpose of code search, summarization, or

generation. While our work falls in the line of

mining from SO (Wong et al., 2013; Iyer et al.,

2016; Yao et al., 2018; Yin et al., 2018b), other

work also attempts to exploit other data sources

such as API documentation (Chatterjee et al., 2009;

Movshovitz-Attias and Cohen, 2013; Xu et al.,

2020), code comments (Wong et al., 2015), special-

ized sites (Quirk et al., 2015), and developer com-

munications (Panichella et al., 2012). One prior

methodology to automatically collect large-scale

parallel data is using heuristics to extract intent-

snippet pairs (Chatterjee et al., 2009; Wong et al.,

2013; Zagalsky et al., 2012), but this often results

in compromised data quality (Xu et al., 2020). Our

work resorts to a manual annotation strategy that

often yields accurately aligned intent-snippet pairs.

Multilingual Learning While the bulk of code-

related tasks have their NL components in English,

program developers native in other languages can-

not enjoy the advances in code intelligence tech-

niques, leading to the current lacunae in multilin-

gual learning. Our work intends to mitigate this

gap by facilitating NL-to-Code generation in multi-

ple languages beyond English. To enable language

understanding across multiple languages, a number

of works propose to train language models with

corpus in multiple languages (Devlin, 2018; Liu

et al., 2020; Conneau et al., 2020; Xue et al., 2021).

In addition to multilingual training, other data aug-

mentation techniques commonly used in machine

translation (MT), such as back-translation (Edunov

et al., 2018), monolingual (Sennrich et al., 2016;

Siddhant et al., 2020) or generalized data augmen-

tation (Xia et al., 2019), also inspired our experi-

ments. However, these techniques have rarely been

utilized for NL-conditioned code generation. We

present preliminary attempts in the experiments.


